1
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
2
|
Jing Q, Zhang J, Yuan L, Zhang H, Lin W, Pei D, Di D, Yang L, Fan Z, Hai J. Copper-based hollow mesoporous nanogenerator with reactive oxygen species and reactive nitrogen species storm generation for self-augmented immunogenic cell death-mediated triple-negative breast cancer immunotherapy. J Colloid Interface Sci 2025; 688:688-702. [PMID: 40024101 DOI: 10.1016/j.jcis.2025.02.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Although nanotheranostics have great potential in tumor immunotherapy, their effectiveness is often hindered by low immunogenic cell death (ICD) and inactivated immune responses in the tumor immunosuppressive microenvironment (TIME). Such vulnerability may lead to metastasis or recurrence, especially in triple-negative breast cancer (TNBC). Addressing this challenge, the study presents a multimodal immunotherapeutic approach using a self-enhanced ICD copper (Cu)-based hollow nanogenerator. This nanogenerator is activated by a near-infrared (NIR) laser to produce reactive oxygen species (ROS) and reactive nitrogen species (RNS) storms. Specifically, the nitric oxide (NO) donor l-Arginine (l-Arg) is loaded into hollow mesoporous Cu sulfide nanoparticles (HCuSNPs) with inherent NIR absorption and coated with tumor-targeting peptides (RGD), forming l-Arg@HCuSNPs-PEG-RGD (AHPR). In vitro and in vivo experiments demonstrate that AHPR can induce tumor thermal ablation, cuproptosis, and the generation of peroxynitrite anions (ONOO-) under NIR laser irradiation, resulting in multiple antitumor effects. Additionally, the nanogenerator enhances ICD through mechanisms such as mild-photothermal therapy (mPTT), cuproptosis, and ONOO- production, promoting immune cell infiltration and activation, and converting 'cold' tumors into 'hot' ones. By combining AHPR with the immune checkpoint inhibitor anti-programmed cell death protein ligand-1 antibody (αPD-L1), the study significantly improves the immunotherapy response rate in TNBC, offering a promising strategy to enhance TNBC immunotherapy efficacy.
Collapse
Affiliation(s)
- Quan Jing
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlong Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Longlong Yuan
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wanquan Lin
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361002, China
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lichao Yang
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361002, China.
| | - Zhongxiong Fan
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China.
| | - Jun Hai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
3
|
Lin Q, Zhang Y, Zeng Y, Zha Y, Xue W, Yu S. Hybrid membrane based biomimetic nanodrug with high-efficient melanoma-homing and NIR-II laser-amplified peroxynitrite boost properties for enhancing antitumor therapy via effective immunoactivation. Biomaterials 2025; 317:123045. [PMID: 39742839 DOI: 10.1016/j.biomaterials.2024.123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Owing to the excellent stability, anticancer activity and immunogenicity, peroxynitrite (ONOO-) has been gained enormous interests in cancer therapy. Nevertheless, precise delivery and control release of ONOO- in tumors remains a big challenge. Herein, B16F10 cancer cell membrane/liposome hybrid membrane (CM-Lip) based biomimetic nanodrug with high-efficient tumor-homing and NIR-II laser controlled ONOO- boost properties was designed for melanoma treatment. Briefly, NIR-II molecule IR1061, NO donor BNN6 and β-lapachone (Lapa) were firstly encapsulated in the heat-responsive palmitoyl phosphatidylcholine/cholesterol liposome, followed by fusion with B16F10 cell membrane (CM) to obtain biomimetic CM-Lip@(IR/BNN6/Lapa). The hybrid membrane-based nanodrug displayed excellent biocompatibility and melanoma-targeting efficiency. Upon 1064 nm laser irradiation, the mild photothermal effect of CM-Lip@(IR/BNN6/Lapa) firstly triggered the release of NO and Lapa, which subsequently catalyzed the quinone oxidoreductase 1 (NQO1) overexpressed in tumors to produce O2•-, finally caused intraturmal ONOO- boost via cascade reaction. The boosted ONOO- could effectively inhibit melanoma by ways of triggering mitochondrion-mediated apoptotic pathway, upregulating 3-nitrotyrosine expression, inducing DNA damage and inhibiting DNA repair enzyme expression of poly (ADP-ribose) polymerase 1 (PARP-1). Moreover, ONOO- displayed excellent immunoactivation and immunomodulation activities by effectively inducing immunogenic tumor cell death, promoting dendritic cells maturation, increasing cytotoxic T lymphocytes expression and repolarizing M1-phenotype macrophages.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yu Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yina Zeng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yongchao Zha
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Siming Yu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Hao H, Sun S, Fu Y, Wen S, Wen Y, Yi Y, Peng Z, Fang Y, Tang J, Wang T, Wu M. Magnesium peroxide-based biomimetic nanoigniter degrades extracellular matrix to awake T cell-mediated cancer immunotherapy. Biomaterials 2025; 317:123043. [PMID: 39754969 DOI: 10.1016/j.biomaterials.2024.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/25/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
As the elite force of our immune system, T cells play a determining role in the effectiveness of cancer immunotherapy. However, the clever tumor cells construct a strong immunosuppressive tumor microenvironment (TME) fortress to resist the attack of T cells. Herein, a magnesium peroxide (MP)-based biomimetic nanoigniter loaded with doxorubicin (DOX) and metformin (MET) is rationally designed (D/M-MP@LM) to awake T cell-mediated cancer immunotherapy via comprehensively destroying the strong TME fortress. The nanoigniter not only effectively initiate CD8+ T cell-mediated immune response by promoting the presentation of tumor antigens, but also greatly facilitate the infiltration of T cells by degrading rigid extracellular matrix (ECM). More importantly, the nanoigniter significantly augment the effector functions of infiltrated CD8+ T cells by Mg2+-mediated metalloimmunotherapy and avoid the exhaustion of CD8+ T cells by improving the acidic TME. Thus, the nanoigniter comprehensively awakes T cells and achieves remarkable tumor inhibition efficacy.
Collapse
Affiliation(s)
- Huisong Hao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yanan Fu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Simin Wen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yingfei Wen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yixuan Fang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jia Tang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Tianqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
5
|
Li K, Su Y, Zhao W, An H, Qin H, Shen J, Su M, Chen W, Gao R, Han Y, Han C, Chen X. Albumin-based synergistic chemiexcited photodynamic biomimetic nanoreactor overcoming adaptive immune resistance for enhanced cancer immunotherapy. Int J Biol Macromol 2025; 314:144288. [PMID: 40393600 DOI: 10.1016/j.ijbiomac.2025.144288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
The application of traditional photodynamic therapy (PDT) is hindered by poor tissue penetration of external light and adaptive immune resistance. Here, we report an albumin-based chemiexcited photodynamic nanoreactor (CC@HSA/GOX@Z(Arg/1-MT)m) for anticancer therapy. Photosensitizer Ce6 and CPPO were incorporated into the hydrophobic domains of human serum albumin (HSA). High concentration of H2O2 reacts with CPPO to activate Ce6, generating singlet oxygen for immunogenic cell death (ICD) induction. This process fostered an immune-promoting tumor microenvironment, characterized by enhanced intratumoral infiltration of cytotoxic T lymphocytes, and a reduction in immunosuppressive cell infiltration. However, due to persistent stimulation of tumor antigens induced by ICD, the expression of IDO in the tumor was also upregulated. This upregulation contributed to the development of immune tolerance to subsequent treatments and limited the efficacy of immunotherapy. The addition of IDO inhibitor can compensate for this defect. CC@HSA/GOX@Z(Arg/1-MT)m could maintain its immune-promoting effects and alleviate post-treatment immune tolerance induced by elevated IDO expression. These findings demonstrated that the combination of IDO inhibitor and PDT represents a promising strategy for enhancing the immune response and ultimately inhibiting tumor growth.
Collapse
Affiliation(s)
- Kangkang Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yi Su
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wei Zhao
- Puyang People's Hospital, Puyang, China
| | - Hao An
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Huan Qin
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jie Shen
- Puyang People's Hospital, Puyang, China
| | - Min Su
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Weiwei Chen
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Rui Gao
- Qilu Institute of Technology, Jinan, China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunshan Han
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China.
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Chen Y, Huang X, Hu R, Lu E, Luo K, Yan X, Zhang Z, Ma Y, Zhang M, Sha X. Inhalable biomimetic polyunsaturated fatty acid-based nanoreactors for peroxynitrite-augmented ferroptosis potentiate radiotherapy in lung cancer. J Nanobiotechnology 2025; 23:338. [PMID: 40340938 PMCID: PMC12060495 DOI: 10.1186/s12951-025-03409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/19/2025] [Indexed: 05/10/2025] Open
Abstract
The limited efficacy and poor tumor accumulation remain crucial challenges for radiotherapy against lung cancer. To address these limitations, we rationally developed a polyunsaturated fatty acid (PUFA)-based nanoreactor (DHA-N@M) camouflaged with macrophage cell membrane to improve tumoral distribution and achieve peroxynitrite-augment ferroptosis for enhanced radiotherapy against lung cancer. After nebulization, the nanoreactors exhibited superior pulmonary accumulation in orthotopic lung cancer-bearing mice, with 70-fold higher than intravenously injected nanoreactors at 12 h post-administration, and distributed deeply in the tumors. DHA-N@M selectively released nitric oxide (NO) in glutathione (GSH)-enriched tumor cells, with consumption of GSH and subsequent inactivation of glutathione peroxidase 4 (GPX4). Under radiation, NO reacted with radiotherapy-induced reactive oxygen species (ROS) to generate peroxynitrite (ONOO-), resulting in redox homeostasis disruption. Combined with docosahexaenoic acid (DHA)-induced lipid metabolism disruption, overwhelming ferroptosis was induced both in vitro and in vivo. Notably, DHA-N@M mediated ferroptosis-radiotherapy significantly suppressed tumor growth with a 93.91% inhibition in orthotopic lung cancer models. Therefore, this design provides a nebulized ferroptosis-radiotherapy strategy for lung cancer.
Collapse
Affiliation(s)
- Yiting Chen
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Xueli Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Ruining Hu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Enhao Lu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Kuankuan Luo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Xin Yan
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Zhiwen Zhang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Yan Ma
- Department of Pharmacy, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
| | - Minghe Zhang
- Naval Medical Center, Naval Medical University, Shanghai, Shanghai, 200052, China.
| | - Xianyi Sha
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China.
- Quzhou Fudan Institute, 108 Minjiang Avenue, Kecheng District, Quzhou, Zhejiang Province, 324002, China.
| |
Collapse
|
7
|
Hu X, Dou Q, Jiang P, Zhang M, Wang J. Targeting matrix metalloproteinases activating and indoleamine 2,3-dioxygenase suppression for triple-negative breast cancer multimodal therapy. Int J Biol Macromol 2025; 310:143289. [PMID: 40253020 DOI: 10.1016/j.ijbiomac.2025.143289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The dense extracellular matrix (ECM) and immunosuppressive tumor microenvironment represent two major challenges in the treatment of triple-negative breast cancer (TNBC). To address these obstacles, this study has developed a polymer micelle (NTP) for ECM remodeling and mitigation the immune microenvironment, based on activating endogenous matrix metalloproteinases (MMP) and suppression indoleamine 2,3-dioxygenase (IDO). Through self-assembly technology, this micelle effectively incorporates chemotherapy drugs (camptothecin (CPT) and cinnamaldehyde (CA)), reactive oxygen species (ROS) stimulants, nitric oxide (NO) donor and IDO inhibitor (NLG919), where CPT and CA have been reported to help generating ROS mainly in the mitochondrion. The guanidine group of poly-L-arginine (PArg), as an NO donor, can react with ROS to generate NO. The micelles aim to achieve significant therapeutic outcomes through robust drug penetration and anti-tumor immunity in multimodal therapy. They exhibit remarkable tumor tissue penetration ability, facilitating precise targeting of mitochondria and ROS production stimulation. Building upon this therapeutic foundation, the micellar system achieves in situ NO release, which effectively degrades the ECM through the activation of MMPs, while simultaneously promoting tumor cells apoptosis. Furthermore, the encapsulated NLG919 can be released and effectively mitigating the immunosuppressive milieu and triggering anti-tumor immune responses. Experimental results demonstrate that the micelles exhibit significant anti-tumor effects both in vitro and in vivo, accompanied by favorable biocompatibility. This study provides new insights into the application of subcellular targeting drug delivery systems in TNBC treatment, potentially heralding a new breakthrough in TNBC therapy.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China; Pharmaceutical Department, Baoding Second Hospital, Baoding 071051, China
| | - Qingqing Dou
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Peixiao Jiang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Mo Zhang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China.
| | - Jing Wang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
8
|
Zhang X, An M, Zhang J, Zhao Y, Liu Y. Nano-medicine therapy reprogramming metabolic network of tumour microenvironment: new opportunity for cancer therapies. J Drug Target 2024; 32:241-257. [PMID: 38251656 DOI: 10.1080/1061186x.2024.2309565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 01/23/2024]
Abstract
Metabolic heterogeneity is one of the characteristics of tumour cells. In order to adapt to the tumour microenvironment of hypoxia, acidity and nutritional deficiency, tumour cells have undergone extensive metabolic reprogramming. Metabolites involved in tumour cell metabolism are also very different from normal cells, such as a large number of lactate and adenosine. Metabolites play an important role in regulating the whole tumour microenvironment. Taking metabolites as the target, it aims to change the metabolic pattern of tumour cells again, destroy the energy balance it maintains, activate the immune system, and finally kill tumour cells. In this paper, the regulatory effects of metabolites such as lactate, glutamine, arginine, tryptophan, fatty acids and adenosine were reviewed, and the related targeting strategies of nano-medicines were summarised, and the future therapeutic strategies of nano-drugs were discussed. The abnormality of tumour metabolites caused by tumour metabolic remodelling not only changes the energy and material supply of tumour, but also participates in the regulation of tumour-related signal pathways, which plays an important role in the survival, proliferation, invasion and metastasis of tumour cells. Regulating the availability of local metabolites is a new aspect that affects tumour progress. (The graphical abstract is by Figdraw).
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yumeng Zhao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Tang Y, Li Q, Zhou Z, Bai H, Xiao N, Xie J, Li C. Nitric oxide-based multi-synergistic nanomedicine: an emerging therapeutic for anticancer. J Nanobiotechnology 2024; 22:674. [PMID: 39497134 PMCID: PMC11536969 DOI: 10.1186/s12951-024-02929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
Gas therapy has emerged as a promising approach for treating cancer, with gases like NO, H2S, and CO showing positive effects. Among these, NO is considered a key gas molecule with significant potential in stopping cancer progression. However, due to its high reactivity and short half-life, delivering NO directly to tumors is crucial for enhancing cancer treatment. NO-driven nanomedicines (NONs) have been developed to effectively deliver NO donors to tumors, showing great progress in recent years. This review provides an overview of the latest advancements in NO-based cancer nanotherapeutics. It discusses the types of NO donors used in current research, the mechanisms of action behind NO therapy for cancer, and the different delivery systems for NO donors in nanotherapeutics. It also explores the potential of combining NO donors with other treatments for enhanced cancer therapy. Finally, it examines the future prospects and challenges of using NONs in clinical settings for cancer treatment.
Collapse
Affiliation(s)
- Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Qiyu Li
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Ziwei Zhou
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Huayang Bai
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing, 400054, People's Republic of China.
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Sun M, Wang T, Zhu Y, Ling F, Bai J, Tang C. Gas immnuo-nanomedicines fight cancers. Biomed Pharmacother 2024; 180:117595. [PMID: 39476762 DOI: 10.1016/j.biopha.2024.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/14/2024] Open
Abstract
Certain gas molecules, including hydrogen (H2), nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), oxygen (O2) and sulfur dioxide (SO2) exhibit significant biological functionalities that can modulate the immune response. Strategies pertaining to gas-based immune therapy have garnered considerable attention in recent years. Nevertheless, delivering various gas molecules precisely into tumors, which leads to enhanced anti-tumor immunotherapeutic effect, is still a main challenge. The advent of gas treatment modality with desirable immunotherapeutic efficiency has been made possible by the rapid development of nanotechnology, which even derives the concept of the gas immnuo-nanomedicines (GINMs). In light of the fact, we herein aim to furnish a cutting-edge review on the latest progress of GINMs. The underlying mechanisms of action for several gases utilized in cancer immunotherapy are initially outlined. Additionally, it provides a succinct overview of the current clinical landscape of gas therapy, and introduces GINMs specifically designed for cancer treatment based on immunotherapeutic principles across multiple strategies. Last but not least, we address the challenges and opportunities associated with GINMs, exploring the potential future developments and clinical applications of this innovative approach.
Collapse
Affiliation(s)
- Mengchi Sun
- Huzhou Key Laboratory of Translational Medicine, Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China; College of Art and Science, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Tianye Wang
- Department of General Surgery, The First Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yinmei Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Feng Ling
- Huzhou Key Laboratory of Translational Medicine, Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Jingwen Bai
- College of Art and Science, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Chengwu Tang
- Huzhou Key Laboratory of Translational Medicine, Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China.
| |
Collapse
|
11
|
Kim N, Lee S, Park H, Kim S, Kim YC. Development of an Intracellular Nitric Oxide-Donating Cell-Penetrating Polypeptide as an Immunogenic Cell Death Inducer. ACS APPLIED BIO MATERIALS 2024; 7:6791-6799. [PMID: 39391970 DOI: 10.1021/acsabm.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Recently, nitric oxide (NO) has been shown to induce immunogenic cell death (ICD) in tumor cells through endoplasmic reticulum (ER) stress and mitochondrial outer membrane permeabilization (MOMP). However, NO is unstable, making direct delivery difficult. In this study, we developed a cell-penetrating polypeptide-based NO donor, poly(l-guanidine) (PLG). Given that the guanidine structure can be catalyzed by reactive oxygen species (ROS) to produce NO, helical PLG plays three roles: spontaneous cell penetration, intracellular ROS generation to produce NO, and induction of ICD. The results revealed that helical PLG generates NO inside the cell by self-inducible guanidine oxidation and that NO effectively elicits ICD by ER stress- and MOMP-dependent intertwined mechanisms.
Collapse
Affiliation(s)
- Naeun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Susam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Seohyeon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| |
Collapse
|
12
|
Liu Y, Wu Y, Li Z, Wan D, Pan J. Targeted Drug Delivery Strategies for the Treatment of Hepatocellular Carcinoma. Molecules 2024; 29:4405. [PMID: 39339402 PMCID: PMC11434448 DOI: 10.3390/molecules29184405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent malignant tumors, exhibiting a high incidence rate that presents a substantial threat to human health. The use of sorafenib and lenvatinib, commonly employed as single-agent targeted inhibitors, complicates the treatment process due to the absence of definitive targeting. Nevertheless, the advent of nanotechnology has injected new optimism into the domain of liver cancer therapy. Nanocarriers equipped with active targeting or passive targeting mechanisms have demonstrated the capability to deliver drugs to tumor cells with high efficiency. This approach not only facilitates precise delivery to the affected site but also enables targeted drug release, thereby enhancing therapeutic efficacy. As medical technology progresses, there is an increasing call for innovative treatment modalities, including novel chemotherapeutic agents, gene therapy, phototherapy, immunotherapy, and combinatorial treatments for HCC. These emerging therapies are anticipated to yield improved clinical outcomes for patients, while minimizing systemic toxicity and adverse effects. Consequently, the application of nanotechnology is poised to significantly improve HCC treatment. This review focused on targeted strategies for HCC and the application of nanotechnology in this area.
Collapse
Affiliation(s)
- Yonghui Liu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| | - Yanan Wu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| | - Zijian Li
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Dong Wan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Jie Pan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (Y.L.)
| |
Collapse
|
13
|
Ma S, Zhao H, Zhang H, Li L, Geng J, Yu Q, Zhang C, Diao H, Li S, Liu W, Wu Z. Novel 131-iodine labeled and ultrasound-responsive nitric oxide and reactive oxygen species controlled released nanoplatform for synergistic sonodynamic/nitric oxide/chemodynamic/radionuclide therapy. Bioorg Chem 2024; 150:107593. [PMID: 38971093 DOI: 10.1016/j.bioorg.2024.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) embody excellent potential in cancer therapy. However, as a small molecule, their targeted delivery and precise, controllable release are urgently needed to achieve accurate cancer therapy. In this paper, a novel US-responsive bifunctional molecule (SD) and hyaluronic acid-modified MnO2 nanocarrier was developed, and a US-responsive NO and ROS controlled released nanoplatform was constructed. US can trigger SD to release ROS and NO simultaneously at the tumor site. Thus, SD served as acoustic sensitizer for sonodynamic therapy and NO donor for gas therapy. In the tumor microenvironment, the MnO2 nanocarrier can effectively deplete the highly expressed GSH, and the released Mn2+ can make H2O2 to produce .OH by Fenton-like reaction, which exhibited a strong chemodynamic effect. The high concentration of ROS and NO in cancer cell can induce cancer cell apoptosis ultimately. In addition, toxic ONOO-, which was generated by the reaction of NO and ROS, can effectively cause mitochondrial dysfunction, which induced the apoptosis of tumor cells. The 131I was labeled on the nanoplatform, which exhibited internal radiation therapy for tumor therapy. In -vitro and -vivo experiments showed that the nanoplatform has enhanced biocompatibility, and efficient anti-tumor potential, and it achieves synergistic sonodynamic/NO/chemodynamic/radionuclide therapy for cancer.
Collapse
Affiliation(s)
- Sufang Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Huanhuan Zhao
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Huaiping Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Leyan Li
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Jiamei Geng
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Qiang Yu
- Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Chengwu Zhang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Haipeng Diao
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| | - Wen Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| |
Collapse
|
14
|
Wu D, Chen X, Yao S, He Y, Chen G, Hu X, Chen Y, Lv Z, Yu J, Jin K, Cai Y, Mou X. Platelet Membrane Coated Cu 9S 8-SNAP for Targeting NIR-II Mild Photothermal Enhanced Chemodynamic/Gas Therapy of Triple-Negative Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400919. [PMID: 38639010 DOI: 10.1002/smll.202400919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and uncommon subtype of breast cancer with a poor prognosis. It is crucial to prioritise the creation of a nanotherapeutic method that is highly selective and actively targeting TNBC. This study explores a new nanosystem, Cu9S8-SNAP@PM (C-S@P), composed of Cu9S8-SNAP coated with a platelet membrane (PM). The purpose of this nanosystem is to cure TNBC using multimodal therapy. The utilisation of PM-coated nanoparticles (NPs) enables active targeting, leading to the efficient accumulation of C-S@P within the tumour. The Cu9S8 component within these NPs serves the potential to exert photothermal therapy (PTT) and chemodynamic therapy (CDT). Simultaneously, the S-Nitroso-N-Acetylvanicillamine (SNAP) component enables nitric oxide (NO) gas therapy (GT). Furthermore, when exposed to NIR-II laser light, Cu9S8 not only increases the temperature of the tumour area for PTT, but also boosts CDT and stimulates the release of NO through thermal reactions to improve the effectiveness of GT. Both in vitro and in vivo experimental results validate that C-S@P exhibits minimal side effects and represents a multifunctional nano-drug targeted at tumors for efficient treatment. This approach promises significant potential for TNBC therapy and broader applications in oncology.
Collapse
Affiliation(s)
- Danping Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaoyi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Shijie Yao
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yichen He
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Gongning Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaojuan Hu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Yang Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Zhenye Lv
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| |
Collapse
|
15
|
Ye B, Hu W, Yu G, Yang H, Gao B, Ji J, Mao Z, Huang F, Wang W, Ding Y. A Cascade-Amplified Pyroptosis Inducer: Optimizing Oxidative Stress Microenvironment by Self-Supplying Reactive Nitrogen Species Enables Potent Cancer Immunotherapy. ACS NANO 2024; 18:16967-16981. [PMID: 38888082 DOI: 10.1021/acsnano.4c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Selective generation of sufficient pyroptosis inducers at the tumor site without external stimulation holds immense significance for a longer duration of immunotherapy. Here, we report a cascade-amplified pyroptosis inducer CSCCPT/SNAP that utilizes reactive nitrogen species (RNS), self-supplied from the diffusion-controlled reaction between reactive oxygen species (ROS) and nitric oxide (NO) to potentiate pyroptosis and immunotherapy, while both endogenous mitochondrial ROS stimulated by released camptothecin and released NO initiate pyroptosis. Mechanistically, cascade amplification of the antitumor immune response is prompted by the cooperation of ROS and NO and enhanced by RNS with a long lifetime, which could be used as a pyroptosis trigger to effectively compensate for the inherent drawbacks of ROS, resulting in long-lasting pyroptosis for favoring immunotherapy. Tumor growth is efficiently inhibited in mouse melanoma tumors through the facilitation of reactive oxygen/nitrogen species (RONS)-NO synergy. In summary, our therapeutic approach utilizes supramolecular engineering and nanotechnology to integrate ROS producers and NO donors of tumor-specific stimulus responses into a system that guarantees synchronous generation of these two reactive species to elicit pyroptosis-evoked immune response, while using self-supplied RNS as a pyroptosis amplifier. RONS-NO synergy achieves enhanced and sustained pyroptosis and antitumor immune responses for robust cancer immunotherapy.
Collapse
Affiliation(s)
- Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang 310009, China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Bingqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang 310009, China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang 310009, China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang 310009, China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
16
|
Wang K, Chen H, Zheng J, Chen J, Chen Y, Yuan Y. Engineered liposomes targeting hepatic stellate cells overcome pathological barriers and reverse liver fibrosis. J Control Release 2024; 368:219-232. [PMID: 38367862 DOI: 10.1016/j.jconrel.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Dual pathological barriers, including capillarized liver sinusoidal endothelial cells (LSECs) and deposited extracellular matrix (ECM), result in insufficient drug delivery, significantly compromising the anti-fibrosis efficacy. Additionally, excessive reactive oxygen species (ROS) in the hepatic microenvironment are crucial factors contributing to the progression of liver fibrosis. Hence, hyaluronic acid (HA) modified liposomes co-delivering all-trans retinoic acid (RA) and L-arginine (L-arg) were constructed to reverse hepatic fibrosis. By exhibiting exceptional responsiveness to the fibrotic microenvironment, our cleverly constructed liposomes efficiently disrupted the hepatic sinus pathological barrier, leading to enhanced accumulation of liposomes in activated hepatic stellate cells (HSCs) and subsequent induction of HSCs quiescence. Specially, excessive ROS in liver fibrosis promotes the conversion of loaded L-arg to nitric oxide (NO). The ensuing NO serves to reestablish the fenestrae structure of capillarized LSECs, thereby augmenting the likelihood of liposomes reaching the hepatic sinus space. Furthermore, subsequent oxidation of NO by ROS into peroxynitrite activates pro-matrix metalloproteinases into matrix metalloproteinases, which further disrupts the deposited ECM barrier. Consequently, this NO-induced cascade process greatly amplifies the accumulation of liposomes within activated HSCs. More importantly, the released RA could induce quiescence of activated HSCs by significantly downregulating the expression of myosin light chain-2, thereby effectively mitigating excessive collagen synthesis and ultimately leading to the reversal of liver fibrosis. Overall, this integrated systemic strategy has taken a significant step forward in advancing the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Kaili Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Hao Chen
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiani Zheng
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiali Chen
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yixuan Chen
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yue Yuan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
17
|
Wang W, Gao Y, Xu J, Zou T, Yang B, Hu S, Cheng X, Xia Y, Zheng Q. A NRF2 Regulated and the Immunosuppressive Microenvironment Reversed Nanoplatform for Cholangiocarcinoma Photodynamic-Gas Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307143. [PMID: 38308097 PMCID: PMC11005733 DOI: 10.1002/advs.202307143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Photodynamic therapy (PDT) is a minimally invasive and controllable local cancer treatment for cholangiocarcinoma (CCA). However, the efficacy of PDT is hindered by intratumoral hypoxia and the presence of an antioxidant microenvironment. To address these limitations, combining PDT with gas therapy may be a promising strategy to enhance tumor oxygenation. Moreover, the augmentation of oxidative damage induced by PDT and gas therapy can be achieved by inhibiting NRF2, a core regulatory molecule involved in the antioxidant response. In this study, an integrated nanotherapeutic platform called CMArg@Lip, incorporating PDT and gas therapies using ROS-responsive liposomes encapsulating the photosensitizer Ce6, the NO gas-generating agent L-arginine, and the NRF2 inhibitor ML385, is successfully developed. The utilization of CMArg@Lip effectively deals with challenges posed by tumor hypoxia and antioxidant microenvironment, resulting in elevated levels of oxidative damage and subsequent induction of ferroptosis in CCA. Additionally, these findings suggest that CMArg@Lip exhibits notable immunomodulatory effects, including the promotion of immunogenic cell death and facilitation of dendritic cell maturation. Furthermore, it contributes to the anti-tumor function of cytotoxic T lymphocytes through the downregulation of PD-L1 expression in tumor cells and the activation of the STING signaling pathway in myeloid-derived suppressor cells, thereby reprogramming the immunosuppressive microenvironment via various mechanisms.
Collapse
Affiliation(s)
- Weimin Wang
- Department of Hepatobiliary SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Liver Transplant CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yang Gao
- Department of Hepatobiliary SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jianjun Xu
- Liver Transplant CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Tianhao Zou
- Liver Transplant CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bin Yang
- Department of Hepatobiliary SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Liver Transplant CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shaobo Hu
- Department of Hepatobiliary SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Liver Transplant CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiang Cheng
- Department of Digestive Oncology SurgeryCancer CentreUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yun Xia
- Department of General SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Qichang Zheng
- Department of Hepatobiliary SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Liver Transplant CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
18
|
Tian Y, Cheng T, Sun F, Zhou Y, Yuan C, Guo Z, Wang Z. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine. Adv Colloid Interface Sci 2024; 326:103124. [PMID: 38461766 DOI: 10.1016/j.cis.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Nanomedicine has a profound impact on various research domains including drug delivery, diagnostics, theranostics, and regenerative medicine. Nevertheless, the clinical translation of nanomedicines for solid cancer remains limited due to the abundant physiological and pathological barriers in tumor that hinder the intratumoral penetration and distribution of these nanomedicines. In this article, we review the dynamic remodeling of tumor extracellular matrix during the tumor progression, discuss the impact of biophysical obstacles within tumors on the penetration and distribution of nanomedicines within the solid tumor and collect innovative approaches to surmount these obstacles for improving the penetration and accumulation of nanomedicines in tumor. Furthermore, we dissect the challenges and opportunities of the respective approaches, and propose potential avenues for future investigations. The purpose of this review is to provide a perspective guideline on how to effectively enhance the penetration of nanomedicines within tumors using promising methods.
Collapse
Affiliation(s)
- Yachao Tian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Guoru Biotechnology Co., Ltd., Xiangfang District, Harbin City 150030, China; School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
19
|
Zhou Z, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Zhang Y, Xiao P, Zhong X, Yan W. Effects of Nanomaterials on Synthesis and Degradation of the Extracellular Matrix. ACS NANO 2024; 18:7688-7710. [PMID: 38436232 DOI: 10.1021/acsnano.3c09954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.
Collapse
Affiliation(s)
- Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510260, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Yang
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Xiang Y, Chen Q, Nan Y, Liu M, Xiao Z, Yang Y, Zhang J, Ying X, Long X, Wang S, Sun J, Huang Q, Ai K. Nitric Oxide‐Based Nanomedicines for Conquering TME Fortress: Say “NO” to Insufficient Tumor Treatment. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202312092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 01/02/2025]
Abstract
AbstractAlmost all cancer treatments are significantly limited by the strong tumor microenvironment (TME) fortress formed by abnormal vasculature, dense extracellular matrix (ECM), multidrug resistance (MDR) system, and immune “cold” environment. In the huge efforts of dismantling the TME fortress, nitric oxide (NO)‐based nanomedicines are increasingly occupying a central position and have already been identified as super “strong polygonal warriors” to dismantle TME fortress for efficient cancer treatment, benefiting from NO's unique physicochemical properties and extremely fascinating biological effects. However, there is a paucity of systematic review to elaborate on the progress and fundamental mechanism of NO‐based nanomedicines in oncology from this aspect. Herein, the key characteristics of TME fortress and the potential of NO in reprogramming TME are delineated and highlighted. The evolution of NO donors and the advantages of NO‐based nanomedicines are discussed subsequently. Moreover, the latest progress of NO‐based nanomedicines for solid tumors is comprehensively reviewed, including normalizing tumor vasculature, overcoming ECM barrier, reversing MDR, and reactivating the immunosuppression TME. Lastly, the prospects, limitations, and future directions on NO‐based nanomedicines for TME manipulation are discussed to provide new insights into the construction of more applicable anticancer nanomedicines.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Yayun Nan
- Geriatric Medical Center People's Hospital of Ningxia Hui Autonomous Region Yinchuan Ningxia 750002 P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Yuqi Yang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Jinping Zhang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Xingyu Long
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Jian Sun
- College of Pharmacy Xinjiang Medical University Urumqi 830017 P. R. China
| | - Qiong Huang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and Treatment Ministry of Education Xiangya Hospital Central South University Changsha 410078 P. R. China
| |
Collapse
|
21
|
Wang L, Ge K, Duan J, Du X, Zhou G, Ma L, Gao S, Zhang J. A double-gain theranostic nanoplatform based on self-supplying H 2O 2 nanocomposites for synergistic chemodynamic/gas therapy. J Colloid Interface Sci 2024; 654:774-784. [PMID: 37866049 DOI: 10.1016/j.jcis.2023.10.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Chemodynamic therapy (CDT) based on hydroxyl radicals (•OH) to suppress tumor cells is a promising strategy due to its efficacy and safety. Nevertheless, in tumor cells, CDT still faces challenges such as insufficient •OH and weak killing effect of tumor cells under physiological conditions due to inadequate amounts of endogenous hydrogen peroxide (H2O2) and heightened glutathione expression. These challenges limit the therapeutic potential of CDT. To improve the effects of CDT, combination treatment strategies have been developed. Here, we report a rationally designed nanocomposite (CaO2@Cu-LA) with self-supplying H2O2 ability from calcium peroxide, and nitric oxide (NO) generation ability from l-arginine. NO molecules not only exhibit a strong killing effect, but also have the potential to transfer into the more cytotoxic substance peroxynitrite anion by reacting with reactive oxygen species. The results showed that CaO2@Cu-LA could significantly suppress tumor growth by increasing •OH radicals and NO molecules. Taken together, the strategy developed here provides a good application foreground to yield a remarkable synergistic antitumor effect of CDT and NO gas therapy.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
| | - Kun Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China.
| | - Jiaqi Duan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
| | - Xiaomeng Du
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China; College of Basic Medical Science, Hebei University, Baoding 071000, China
| | - Lili Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding 071002, China.
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
22
|
Hu A, Pu Y, Xu N, Yang H, Hu X, Sun R, Jin R, Nie Y. Hierarchically decorated magnetic nanoparticles amplify the oxidative stress and promote the chemodynamic/magnetic hyperthermia/immune therapy. Acta Biomater 2024; 173:457-469. [PMID: 37984631 DOI: 10.1016/j.actbio.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Magnetic nanoparticles (MNPs) are promising in tumor treatments due to their capacity for magnetic hyperthermia therapy (MHT), chemodynamic therapy (CDT), and immuno-related therapies, but still suffer from unsatisfactory tumor inhibition in the clinic. Insufficient hydrogen peroxide supply, glutathione-induced resistance, and high-density extracellular matrix (ECM) are the barriers. Herein, we hierarchically decorated MNPs with disulfide bonds (S-S), dendritic L-arginine (R), and glucose oxidase (GOx) to form a nanosystem (MNPs-SS-R-GOx). Its outer GOx layer not only enhanced the H2O2 supply to produce .OH by Fenton reaction, but also generated stronger oxidants (ONOO-) together with the interfaced R layer. The inner S-S layer consumed glutathione to interdict its reaction with oxidants, thus enhancing CDT effects. Importantly, the generated ONOO- tripled the MMP-9 expression to induce ECM degradation, enabling much deeper penetration of MNPs and benefiting CDT, MHT, and immunotherapy. Finally, the MNPs-SS-R-GOx demonstrated a remarkable 91.7% tumor inhibition in vivo. STATEMENT OF SIGNIFICANCE: Magnetic nanoparticles (MNPs) are a promising tumor therapeutic agent but with limited effectiveness. Our hierarchical MNP design features disulfide bonds (S-S), dendritic L-arginine (R), and glucose oxidase (GOx), which boosts H2O2 supply for ·OH generation in Fenton reactions, produces potent ONOO-, and enhances chemodynamic therapy via glutathione consumption. Moreover, the ONOO- facilitates the upregulation of matrix metalloprotein expression beneficial for extracellular matrix degradation, which in turn enhances the penetration of MNPs and benefits the antitumor CDT/MHT/immuno-related therapy. In vivo experiments have demonstrated an impressive 91.7% inhibition of tumor growth. This hierarchical design offers groundbreaking insights for further advancements in MNP-based tumor therapy. Its implications extend to a broader audience, encompassing those interested in material science, biology, oncology, and beyond.
Collapse
Affiliation(s)
- Ao Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Na Xu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China; Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Huan Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Xueyi Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Ran Sun
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu 610041, PR China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China.
| | - Yu Nie
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
23
|
Li D, Chen X, Dai W, Jin Q, Wang D, Ji J, Tang BZ. Photo-Triggered Cascade Therapy: A NIR-II AIE Luminogen Collaborating with Nitric Oxide Facilitates Efficient Collagen Depletion for Boosting Pancreatic Cancer Phototheranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306476. [PMID: 38157423 DOI: 10.1002/adma.202306476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/05/2023] [Indexed: 01/03/2024]
Abstract
The dense extracellular matrix (ECM) in the pancreatic cancer severely hampers the penetration of nanodrugs, which causes inferior therapeutic efficacy. To address this issue, a multifunctional liposome, namely, Lip-DTI/NO, integrating a type-I photosensitizer DTITBT with glutathione (GSH) or heat-responsive nitric oxide (NO) donor S-nitroso-N-acetyl-D-penicillamine (SNAP) is constructed to deplete the tumor ECM, leading to enhanced drug delivery and consequently improved phototherapy. The loaded DTITBT possesses multiple functions including NIR-II fluorescence imaging, efficient superoxide radical (O2 •- ) generation and excellent photothermal conversion efficiency, making it feasible for precisely pinpointing the tumor in the phototherapy process. Responding to the intracellular overexpressed glutathione or heat produced by photothermal effect of DTITBT, NO can be released from SNAP. Upon 808 nm laser irradiation, Lip-DTI/NO could selectively induce in situ generation of peroxynitrite anion (ONOO- ) in tumor after cascade processes including O2 •- production, GSH or heat-triggered NO release, and rapid reaction between O2 •- and NO. The generated ONOO- could activate the expression of endogenous matrix metalloproteinases which could efficiently digest collagen of tumor ECM, thus facilitating enhanced penetration and accumulation of Lip-DTI/NO in tumor. In vivo evaluation demonstrates the notable therapeutic efficacy via ONOO- -potentiated synergistic photodynamic-photothermal therapies on both subcutaneous and orthotopic pancreatic cancer model.
Collapse
Affiliation(s)
- Dan Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenbin Dai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials College of Material Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
24
|
Xu M, Zha H, Chen J, Lee SMY, Wang Q, Wang R, Zheng Y. "Ice and Fire" Supramolecular Cell-Conjugation Drug Delivery Platform for Deep Tumor Ablation and Boosted Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305287. [PMID: 37547984 DOI: 10.1002/adma.202305287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Cancer recurrence and metastasis are two major challenges in the current clinical therapy. In this work, a novel diketopyrrolopyrrole-based photothermal reagent (DCN) with unique J-aggregation-induced redshift is synthesized to achieve efficient tumor thermal ablation under safe power (0.33 W cm-2 ). Meanwhile, S-nitroso-N-acetylpenicillamine (SNAP) is co-loaded with near-infrared-absorbing DCN in amphiphilic polymers to realize heat-induced massive release of nitric oxide (NO), which can form oxidant peroxynitrite (ONOO- ) to active matrix metalloproteinases (MMPs), thereby degrading the compact tumor extracellular matrix to improve the ablation depth and infiltration of immune cells. Through a facile supramolecular assembly method, the DCN/SNAP nanoparticles are anchored to liquid-nitrogen-frozen cancer cells, achieving enhanced antitumor immune responses and effective inhibition of distant tumors and pulmonary metastases after only one treatment. The safety and effectiveness of this supramolecular cell-conjugation platform are verified by 2D/3D cellular experiments and bilateral tumor model, confirming the thermal-ablation-gas-permeation-antigen-presentation therapeutic mode has promising anticancer prospects.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory, of Quality Research, in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Haidong Zha
- State Key Laboratory, of Quality Research, in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jiamao Chen
- State Key Laboratory, of Quality Research, in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory, of Quality Research, in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Qi Wang
- State Key Laboratory, of Quality Research, in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
- State Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Ruibing Wang
- State Key Laboratory, of Quality Research, in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, 999078, China
| | - Ying Zheng
- State Key Laboratory, of Quality Research, in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, 999078, China
| |
Collapse
|
25
|
Cai J, Hu G, Hu L, Chen J, Chen D, Liu D, Wang X, Hu B, Li C. A CaCO 3-based nanoplatform with sonodynamic and tumor microenvironment activated for combined in vitro cancer therapy. Transl Oncol 2023; 38:101771. [PMID: 37729741 PMCID: PMC10518365 DOI: 10.1016/j.tranon.2023.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
INTRODUCTION Sonodynamic therapy (SDT) has potential clinical applications for cancer therapy, and is yet restricted by complex tumor microenvironmental (TME) factors. Thus, the research problem of TME modulation as well as efficient tumor treatment still needs to be clarified. METHOD In this study, a calcium carbonate (CaCO3) nanoplatform was designed for ultrasound (US) and TME response-triggered, which encapsulated Ag2S and loaded with l-Arg, and further wrapped with RBC/Platelet membrane, named as QD@Ca/ML-Arg. RESULTS Non-invasive US-triggered SDT by Ag2S and acidic environment-responsive drug release were achieved. In vitro experiments validated the efficacy of SDT, Ca-ion interference and nitric oxide (NO) gas therapy as combined therapy for cancer treatment. By means of RNA sequencing, the cancer therapeutic mechanism of SDT in redox-related pathways was elucidated. The immunosuppressive TME was simulated with a M2-macrophage/cancer cell co-culture system to confirm the immune activating effect of immunogenic cell death (ICD). CONCLUSION Accordingly, the potential of QD@Ca/ML-Arg-was demonstrated for in vitro TME modulation, cancer therapeutic efficacy and clinical translation.
Collapse
Affiliation(s)
- Jiale Cai
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine Beijing, Beihang University, Beijing 100191, China
| | - Guiping Hu
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine Beijing, Beihang University, Beijing 100191, China
| | - Lihua Hu
- Department of Cardiology, Peking University First Hospital, Beijing 100034, China
| | - Junge Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine Beijing, Beihang University, Beijing 100191, China
| | - Dan Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine Beijing, Beihang University, Beijing 100191, China
| | - Dan Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine Beijing, Beihang University, Beijing 100191, China
| | - Xiaolei Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine Beijing, Beihang University, Beijing 100191, China
| | - Boxian Hu
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine Beijing, Beihang University, Beijing 100191, China
| | - Cheng Li
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine Beijing, Beihang University, Beijing 100191, China.
| |
Collapse
|
26
|
Zou Y, Zhang H, Zhang Y, Wu Y, Cheng J, Jia D, Liu C, Chen H, Zhang Y, Yu Q. A near-infrared light-triggered nano-domino system for efficient biofilm eradication: Activation of dispersing and killing functions by generating nitric oxide and peroxynitrite via cascade reactions. Acta Biomater 2023; 170:389-400. [PMID: 37625678 DOI: 10.1016/j.actbio.2023.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
One of the serious threats to global public health is the bacterial biofilm, which results in numerous persistent and recurrent infections. Herein, we proposed a near-infrared (NIR) light-triggered "nano-domino" system with "dispersing and killing" functionality for biofilm eradication. The nanoplatform was fabricated by the self-assembly of chitosan conjugated with L-arginine (L-Arg, a natural nitric oxide (NO) donor) and indocyanine green (ICG, a phototherapy agent). Using an NIR irradiation "trigger", a series of reactive oxygen species (ROS) including singlet oxygen (1O2), hydrogen peroxide (H2O2), and superoxide anions (·O2-), as well as heat were generated from ICG aggregates. Subsequently, 1O2 and H2O2 catalyzed L-Arg to produce NO, which dispersed the biofilm and reacted with ·O2- to form peroxynitrite to kill bacteria with ROS collaboratively. Meanwhile, the generated heat increased the permeability of bacterial membranes, aggravating the damage to biofilm bacteria. The experiments on biofilm eradication demonstrated that this "nano-domino" system was capable to eradicate over 99.99% of biofilms formed by Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa under 5-min NIR irradiation. Notably, these integrated benefits allowed the system to promote the healing of MRSA biofilm-infected wounds in vivo with negligible toxicity. Overall, this reported NIR-triggered "nano-domino" system holds great promise for addressing the difficulties associated with bacterial biofilm eradication. STATEMENT OF SIGNIFICANCE: Novel agents for biofilm eradication are urgently needed due to the alarming rise in antimicrobial resistance to conventional antibiotics and the critical shortage of new drugs. In this study, we created a nano-domino system that uses near-infrared (NIR) light as a trigger to eradicate mature biofilms. In response to a short-term NIR irradiation, the proposed nanoplatform could generate nitric oxide and peroxynitrite to disperse the biofilm and kill the bacteria inside, respectively, leading to efficient eradication of Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa biofilms with minimal cytotoxicity. The findings, therefore, indicate that this nanoplatform with enhanced antibiofilm performance might provide a reliable and promising solution to biofilm-related problems.
Collapse
Affiliation(s)
- Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Haixin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yuheng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yan Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jingjing Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Dongxu Jia
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Chunxia Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, PR China.
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
27
|
Du H, Meng S, Geng M, Zhao P, Gong L, Zheng X, Li X, Yuan Z, Yang H, Zhao Y, Dai L. Detachable MOF-Based Core/Shell Nanoreactor for Cancer Dual-Starvation Therapy With Reversing Glucose and Glutamine Metabolisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303253. [PMID: 37330663 DOI: 10.1002/smll.202303253] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/19/2023] [Indexed: 06/19/2023]
Abstract
Tumor-dependent glucose and glutamine metabolisms are essential for maintaining survival, while the accordingly metabolic suppressive therapy is limited by the compensatory metabolism and inefficient delivery efficiency. Herein, a functional metal-organic framework (MOF)-based nanosystem composed of the weakly acidic tumor microenvironment-activated detachable shell and reactive oxygen species (ROS)-responsive disassembled MOF nanoreactor core is designed to co-load glycolysis and glutamine metabolism inhibitors glucose oxidase (GOD) and bis-2-(5-phenylacetmido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES) for tumor dual-starvation therapy. The nanosystem excitingly improves tumor penetration and cellular uptake efficiency via integrating the pH-responsive size reduction and charge reversal and ROS-sensitive MOF disintegration and drug release strategy. Furthermore, the degradation of MOF and cargoes release can be self-amplified via additional self-generation H2 O2 mediated by GOD. Last, the released GOD and BPTES collaboratively cut off the energy supply of tumors and induce significant mitochondrial damage and cell cycle arrest via simultaneous restriction of glycolysis and compensatory glutamine metabolism pathways, consequently realizing the remarkable triple negative breast cancer killing effect in vivo with good biosafety via the dual starvation therapy.
Collapse
Affiliation(s)
- Huiping Du
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Siyu Meng
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Meijuan Geng
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Pan Zhao
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Liyang Gong
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xinmin Zheng
- School of Life Science, Northwestern Polytechnical University, Xian, 710072, China
| | - Xiang Li
- School of Life Science, Northwestern Polytechnical University, Xian, 710072, China
| | - Zhang Yuan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hui Yang
- School of Life Science, Northwestern Polytechnical University, Xian, 710072, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Liangliang Dai
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
28
|
Wang X, Zhu L, Zhou J, Zhao L, Li J, Liu C. Drug-loaded hybrid hydrogels for sonodynamic-chemodyanmic therapy and tumor metastasis suppression. Front Bioeng Biotechnol 2023; 11:1281157. [PMID: 37790250 PMCID: PMC10544978 DOI: 10.3389/fbioe.2023.1281157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction: Although various therapies have been adopted to treat cancer, metastasis of tumor cells still is a big challenge that compromises therapeutic benefits. Methods: We herein report an injectable drug-loaded hybrid hydrogel that can achieve sonodynamic therapy (SDT) and chemodyanmic therapy (CDT) combined action and suppression of tumor metastasis. This alginate (ALG)-based hydrogel (termed as AMPS) contains manganese dioxide (MnO2) nanoparticles as the CDT agents, an organic polymer as the sonosensitizer, and a SIS3 drug as metastasis inhibitor. Results: AMPS is formed via the chelation of ALG by Ca2+ in tumor microenvironment, in which MnO2 nanoparticles mediate CDT via Fenton-like reaction and the organic polymers enable SDT under ultrasound (US) irradiation by generating singlet oxygen (1O2), allowing for combinational action of CDT and SDT. In addition, SIS3 is released from AMPS hydrogels to inhibit the metastasis of tumor cells. As such, the AMPS enables a combinational action of SDT and CDT to greatly inhibit the growths of subcutaneous tumors in living mice and also completely suppress the tumor metastasis in lungs and livers. Conclusion: This study thus offers a hybrid hydrogel platform for combinational therapy and metastasis suppression simultaneously.
Collapse
Affiliation(s)
- Xiaoying Wang
- Office of Hospital Infection and Disease Control and Prevention, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyun Zhu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Jianhui Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingchao Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Zhang J, Gu B, Wu S, Liu L, Gao Y, Yao Y, Yang D, Du J, Yang C. M1 Macrophage-Biomimetic Targeted Nanoparticles Containing Oxygen Self-Supplied Enzyme for Enhancing the Chemotherapy. Pharmaceutics 2023; 15:2243. [PMID: 37765212 PMCID: PMC10534656 DOI: 10.3390/pharmaceutics15092243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Tumor hypoxia is considered one of the key causes of the ineffectiveness of various strategies for cancer treatment, and the non-specific effects of chemotherapy drugs on tumor treatment often lead to systemic toxicity. Thus, we designed M1 macrophage-biomimetic-targeted nanoparticles (DOX/CAT@PLGA-M1) which contain oxygen self-supplied enzyme (catalase, CAT) and chemo-therapeutic drug (doxorubicin, DOX). The particle size of DOX/CAT@PLGA-M1 was 202.32 ± 2.27 nm (PDI < 0.3). DOX/CAT@PLGA-M1 exhibited a characteristic core-shell bilayer membrane structure. The CAT activity of DOX/CAT@PLGA-M1 was 1000 (U/mL), which indicated that the formation of NPs did not significantly affect its enzymatic activity. And in vitro drug release showed that the cumulative release rate of DOX/CAT@PLGA-M1 was enhanced from 26.93% to 50.10% in the release medium of hydrogen peroxide, which was attributed to the reaction of CAT in the NPs. DOX/CAT@PLGA-M1 displayed a significantly higher uptake in 4T1 cells, because VCAM-1 in tumor cells interacted with specific integrin (α4 and β1), and thereby achieved tumor sites. And the tumor volume of the DOX/CAT@PLGA-M1 group was significantly reduced (0.22 cm3), which further proved the active targeting effect of the M1 macrophage membrane. Above all, a novel multifunctional nano-therapy was developed which improved tumor hypoxia and obtained tumor targeting activity.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Bing Gu
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Shimiao Wu
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Lin Liu
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| | - Ying Gao
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| | - Yucen Yao
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Degong Yang
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| | - Juan Du
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
| | - Chunrong Yang
- Department of Pharmacognosy, College of Pharmacy, Jiamusi University, Jiamusi 154007, China; (J.Z.); (B.G.); (S.W.); (Y.Y.)
- Department of Pharmacy, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (L.L.); (Y.G.)
| |
Collapse
|
30
|
Li Y, Feng M, Guo T, Wang Z, Zhao Y. Tailored Beta-Lapachone Nanomedicines for Cancer-Specific Therapy. Adv Healthc Mater 2023; 12:e2300349. [PMID: 36970948 DOI: 10.1002/adhm.202300349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Nanotechnology shows the power to improve efficacy and reduce the adverse effects of anticancer agents. As a quinone-containing compound, beta-lapachone (LAP) is widely employed for targeted anticancer therapy under hypoxia. The principal mechanism of LAP-mediated cytotoxicity is believed due to the continuous generation of reactive oxygen species with the aid of NAD(P)H: quinone oxidoreductase 1 (NQO1). The cancer selectivity of LAP relies on the difference between NQO1 expression in tumors and that in healthy organs. Despite this, the clinical translation of LAP faces the problem of narrow therapeutic window that is challenging for dose regimen design. Herein, the multifaceted anticancer mechanism of LAP is briefly introduced, the advance of nanocarriers for LAP delivery is reviewed, and the combinational delivery approaches to enhance LAP potency in recent years are summarized. The mechanisms by which nanosystems boost LAP efficacy, including tumor targeting, cellular uptake enhancement, controlled cargo release, enhanced Fenton or Fenton-like reaction, and multidrug synergism, are also presented. The problems of LAP anticancer nanomedicines and the prospective solutions are discussed. The current review may help to unlock the potential of cancer-specific LAP therapy and speed up its clinical translation.
Collapse
Affiliation(s)
- Yaru Li
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Meiyu Feng
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Tao Guo
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Zheng Wang
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
31
|
Manikandan DB, Arumugam M, Sridhar A, Perumalsamy B, Ramasamy T. Sustainable fabrication of hybrid silver-copper nanocomposites (Ag-CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. ENVIRONMENTAL RESEARCH 2023; 228:115867. [PMID: 37044164 DOI: 10.1016/j.envres.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a sustainable fabrication of hybrid silver-copper oxide nanocomposites (Ag-CuO NCs) was accomplished utilizing Ocimum americanum L. by one pot green chemistry method. The multifarious biological and environmental applications of the green fabricated Ag-CuO NCs were evaluated through their antibacterial, anticancer, dye degradation, and microalgae growth inhibition activities. The morphological features of the surface functionalized hybrid Ag-CuO NCs were confirmed by FE-SEM and HR-TEM techniques. The surface plasmon resonance λmax peak appeared at 441.56 nm. The average hydrodynamic size distribution of synthesized nanocomposite was 69.80 nm. Zeta potential analysis of Ag-CuO NCs confirmed its remarkable stability at -21.5 mV. XRD and XPS techniques validated the crystalline structure and electron binding affinity of NCs, respectively. The Ag-CuO NCs demonstrated excellent inhibitory activity against Vibrio cholerae (19.93 ± 0.29 mm) at 100 μg/mL. Anticancer efficacy of Ag-CuO NCs was investigated against the A549 lung cancer cell line, and Ag-CuO NCs exhibited outstanding antiproliferative activity with a low IC50 of 2.8 ± 0.05 μg/mL. Furthermore, staining and comet assays substantiated that the Ag-CuO NCs hindered the progression of the A549 cells and induced apoptosis as a result of cell cycle arrest at the G0/G1 phase. Concerning the environmental applications, the Ag-CuO NCs displayed efficient photocatalytic activity against eosin yellow degradation up to 80.94% under sunlight irradiation. Microalgae can be used as an early bio-indicator/prediction of environmental contaminants and toxic substances. The treatment of the Ag-CuO NCs on the growth of marine microalgae Tetraselmis suecica demonstrated the dose and time-dependent growth reduction and variations in the chlorophyll content. Therefore, the efficient multifunctional properties of hybrid Ag-CuO NCs could be exploited as a regime against infective diseases and cancer. Further, the findings of our investigation witness the remarkable scope and potency of Ag-CuO NCs for environmental applications.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
32
|
Yao M, Zhang G, Shao D, Ding S, Li L, Li H, Zhou C, Luo B, Lu L. Preparation of chitin/MXene/poly(L-arginine) composite aerogel spheres for specific adsorption of bilirubin. Int J Biol Macromol 2023:125140. [PMID: 37270125 DOI: 10.1016/j.ijbiomac.2023.125140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Currently, hemoperfusion is clinically the most rapid and effective treatment for removing toxins from the blood. The core of hemoperfusion is the sorbent inside the hemoperfusion device. Due to the complex composition of the blood, adsorbents tend to adsorb substances such as proteins in the blood (non-specific adsorption) while adsorbing toxins. Hyperbilirubinemia is caused by excessive levels of bilirubin in the human blood, causing irreversible damage to the patient's brain and nervous system, and even leading to death. High adsorption and high biocompatibility adsorbents with specific bilirubin adsorption are urgently needed to treat hyperbilirubinemia. Herein, poly(L-arginine) (PLA) which can specifically adsorb bilirubin, was introduced into chitin/MXene (Ch/MX) composite aerogel spheres. Ch/MX/PLA prepared by supercritical CO2 technology had higher mechanical properties than Ch/MX and can withstand 50,000 times its own weight. The in vitro simulated hemoperfusion test showed that the adsorption capacity of Ch/MX/PLA was as high as 596.31 mg/g, which was 15.38 % higher than that of Ch/MX. Binary and ternary competitive adsorption tests showed that Ch/MX/PLA also had good adsorption capacity in the presence of a variety of interfering molecules. In addition, hemolysis rate testing and CCK-8 testing confirmed that Ch/MX/PLA had better biocompatibility and hemocompatibility. Ch/MX/PLA can meet the required properties of clinical hemoperfusion sorbents and has the ability to produce mass production. It has good application potential in the clinical treatment of hyperbilirubinemia.
Collapse
Affiliation(s)
- Mengru Yao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Guiyin Zhang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Danchun Shao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Shan Ding
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Lihua Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Hong Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Binghong Luo
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Lu Lu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
33
|
Wang C, Tian G, Yu X, Zhang X. Recent Advances in Functional Nanomaterials for Catalytic Generation of Nitric Oxide: A Mini Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207261. [PMID: 36808830 DOI: 10.1002/smll.202207261] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Indexed: 05/18/2023]
Abstract
As a gaseous second messenger, nitric oxide (NO) plays an important role in a series of signal pathways. Research on the NO regulation for various disease treatments has aroused wide concern. However, the lack of accurate, controllable, and persistent release of NO has significantly limited the application of NO therapy. Profiting from the booming development of advanced nanotechnology, a mass of nanomaterials with the properties of controllable release have been developed to seek new and effective NO nano-delivery approaches. Nano-delivery systems that generate NO through catalytic reactions exhibit unique superiority in terms of precise and persistent release of NO. Although certain achievements have been made in the catalytically active NO delivery nanomaterials, some basic but critical issues, such as the concept of design, are of low attention. Herein, an overview of the generation of NO through catalytic reactions and the design principles of related nanomaterials are summarized. Then, the nanomaterials that generate NO through catalytic reactions are classified. Finally, the bottlenecks and perspectives are also discussed in depth for the future development of catalytical NO generation nanomaterials.
Collapse
Affiliation(s)
- Chengyan Wang
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Gan Tian
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, 401329, P. R. China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Xiao Zhang
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
- Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, P. R. China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, 401329, P. R. China
| |
Collapse
|
34
|
Han Y, Luo C, Quan Z, Li H, Sun S, Xu Y. New "Destruction Seek to Survive" Strategy Based on a Serum Albumin Assembly with a Squaraine Molecule for the Detection of Peroxynitrite. Anal Chem 2023; 95:7278-7285. [PMID: 37115498 DOI: 10.1021/acs.analchem.3c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Peroxynitrite (ONOO-), a kind of active nitrogen species, plays an important role in biological systems. Overproduction of ONOO- is closely related to the pathogenesis of many diseases. Therefore, it is necessary to quantify intracellular ONOO- for differentiating health and disease states. Fluorescent probes with near-infrared (NIR) fluorescence can detect ONOO- with high sensitivity and selectivity. However, there is an inevitable problem that many NIR fluorophores are easily oxidized by ONOO- to give a false-negative result. To avoid this problem, herein, we ingeniously propose a "destruction to seek to survive" strategy to detect ONOO-. Two NIR squaraine (SQ) dyes were connected together to form a fluorescent probe (SQDC). This method utilizes the destructive effect of peroxynitrite on one of the SQ moieties of SQDC to eliminate the steric hindrance, enabling the other "survived" SQ segment to enter the hydrophobic cavity of bovine serum albumin (BSA) via the well-known host-guest interactions. The encapsulation of albumin protects the "survived" SQ from further attack of ONOO-. As a result, a NIR fluorescence turn-on response coming from the host-guest interaction between BSA and the "survived" SQ escaped from SQDC was found, which can be used for the detection of ONOO-. The assembly of SQDC mixed with BSA can be located in mitochondria to detect endogenous and exogenous ONOO- sensitively in living cells. As a proof-of-concept method, it is envisioned that this novel detection strategy with a simple assembly would become a powerful means for the detection of ONOO- when employing NIR fluorophores.
Collapse
Affiliation(s)
- Ying Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Canxia Luo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Zongyan Quan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
35
|
Chang M, Wang M, Liu Y, Liu M, Kheraif AAA, Ma P, Zhao Y, Lin J. Dendritic Plasmonic CuPt Alloys for Closed-Loop Multimode Cancer Therapy with Remarkably Enhanced Efficacy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206423. [PMID: 36567272 DOI: 10.1002/smll.202206423] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The outcome of laser-triggered plasmons-induced phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is significantly limited by the hypoxic tumor microenvironment and the upregulation of heat shock proteins (HSPs) in response to heat stress. Mitochondria, the biological battery of cells, can serve as an important breakthrough to overcome these obstacles. Herein, dendritic triangular pyramidal plasmonic CuPt alloys loaded with heat-sensitive NO donor N, N'-di-sec-butyl-N, N'-dinitroso-1,4-phenylenediamine (BNN) is developed. Under 808 nm laser irradiation, plasmonic CuPt can generate superoxide anion free radicals (·O2 - ) and heat simultaneously. The heat generated can then trigger the release of NO gas, which not only enables gas therapy but also damages the mitochondrial respiratory chain. Impaired mitochondrial respiration leads to reduced oxygen consumption and insufficient intracellular ATP supply, which effectively alleviates tumor hypoxia and undermines the synthesis of HSPs, in turn boosting plasmonic CuPt-based PDT and mild PTT. Additionally, the generated NO and ·O2 - can react to form more cytotoxic peroxynitrite (ONOO- ). This work describes a plasmonic CuPt@BNN (CPB) triggered closed-loop NO gas, free radicals, and mild photothermal therapy strategy that is highly effective at reciprocally promoting antitumor outcomes.
Collapse
Affiliation(s)
- Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Man Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yuhui Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, P. R. China
| | - Min Liu
- Department of Periodontology, Stomatological Hospital, Jilin University, Changchun, 130021, P. R. China
| | - Abdulaziz A Al Kheraif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
36
|
Li H, Luo Q, Zhang H, Ma X, Gu Z, Gong Q, Luo K. Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and clinical translation. Chem Soc Rev 2023; 52:47-96. [PMID: 36427082 DOI: 10.1039/d2cs00437b] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cancer radio-immunotherapy, integrating external/internal radiation therapy with immuno-oncology treatments, emerges in the current management of cancer. A growing number of pre-clinical studies and clinical trials have recently validated the synergistic antitumor effect of radio-immunotherapy, far beyond the "abscopal effect", but it suffers from a low response rate and toxicity issues. To this end, nanomedicines with an optimized design have been introduced to improve cancer radio-immunotherapy. Specifically, these nanomedicines are elegantly prepared by incorporating tumor antigens, immuno- or radio-regulators, or biomarker-specific imaging agents into the corresponding optimized nanoformulations. Moreover, they contribute to inducing various biological effects, such as generating in situ vaccination, promoting immunogenic cell death, overcoming radiation resistance, reversing immunosuppression, as well as pre-stratifying patients and assessing therapeutic response or therapy-induced toxicity. Overall, this review aims to provide a comprehensive landscape of nanomedicine-assisted radio-immunotherapy. The underlying working principles and the corresponding design strategies for these nanomedicines are elaborated by following the concept of "from bench to clinic". Their state-of-the-art applications, concerns over their clinical translation, along with perspectives are covered.
Collapse
Affiliation(s)
- Haonan Li
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiang Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Xuelei Ma
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Zhongwei Gu
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China.
| | - Qiyong Gong
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Kui Luo
- Department of Radiology, Department of Biotherapy, Huaxi MR Research Center (HMRRC), Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China. .,Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| |
Collapse
|
37
|
Chen B, Zhang X, Cheng L, Chen X, Tang J, Zhang P, Wang C, Liu J. Surface programmed bacteria as photo-controlled NO generator for tumor immunological and gas therapy. J Control Release 2023; 353:889-902. [PMID: 36528194 DOI: 10.1016/j.jconrel.2022.12.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
The use of bacteria as living vehicles has attracted increasing attentions in tumor therapy field. The combination of functional materials with bacteria dramatically facilitates the antitumor effect. Here, we presented a rationally designed living system formed by programmed Escherichia Coli MG1655 cells (Ec) and black phosphorus (BP) nanoparticles (NPs). The bacteria were genetically engineered to express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), via an outer membrane YiaT protein (Ec-T). The Ec-T cells were associated with BP NPs on their surface to acquire BP@Ec-T. The designed living system could transfer the photoelectrons produced by BP NPs after laser irradiation and triggered the reductive metabolism of nitrate to nitric oxide for the in situ release at tumor sites, facilitating the therapeutic efficacy and the polarization of tumor associated macrophages to M1 phenotype. Meanwhile, the generation of reactive oxygen species induced the immunogenic cell death to further improve the antitumor efficacy. Additionally, the living system enhanced the immunological effect by promoting the apoptosis of tumor cells, activating the effect of T lymphocytes and releasing the pro-inflammatory cytokines. The integration of BP NPs, MG1655 cells and TRAIL led to an effective tumor therapy. Our work established an approach for the multifunctional antitumor living therapy.
Collapse
Affiliation(s)
- Baizhu Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Xiaoge Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Lili Cheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Xiaomei Chen
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Peng Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Chen Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China.
| |
Collapse
|
38
|
Wang J, Zhang W, Xie Z, Wang X, Luo Y, Jiang W, Liu Y, Wang Z, Ran H, Song W, Guo D. Magnetic Nanodroplets for Enhanced Deep Penetration of Solid Tumors and Simultaneous Magnetothermal-Sensitized Immunotherapy against Tumor Proliferation and Metastasis. Adv Healthc Mater 2022; 11:e2201399. [PMID: 36165612 DOI: 10.1002/adhm.202201399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/17/2022] [Indexed: 01/28/2023]
Abstract
The central cells of solid tumors are more proliferative and metastatic than the marginal cells. Therefore, more intelligent strategies for targeting cells with deep spatial distributions in solid tumors remain to be explored. In this work, a biocompatible nanotheranostic agent with a lipid membrane-coated, Fe3 O4 and perfluoropentane (PFP)-loaded, cRGD peptide (specifically targeting the integrin αvβ3 receptor)-grafted, magnetic nanodroplets (MNDs) is developed. The MNDs exhibit excellent magnetothermal conversion and controllable magnetic hyperthermia (MHT) through alternating magnetic field regulation. Furthermore, MHT-mediated magnetic droplet vaporization (MDV) induces the expansion of the MNDs to transform them into ultrasonic microbubbles, increasing the permeability of tissue and the cell membrane via the ultrasound-targeted microbubble destruction (UTMD) technique and thereby promoting the deep penetration of MNDs in solid tumors. More importantly, MHT not only causes apoptotic damage by downregulating the expression of the HSP70, cyclin D1, and Bcl-2 proteins in tumor cells but also improves the response rate to T-cell-related immunotherapy by upregulating PD-L1 expression in tumor cells, thus inhibiting the growth of both primary and metastatic tumors. Overall, this work introduces a distinct application of nanoultrasonic biomedicine in cancer therapy and provides an attractive immunotherapy strategy for preventing the proliferation and metastasis of deeply distributed cells in solid tumors.
Collapse
Affiliation(s)
- Junrui Wang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Wenli Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zhuoyan Xie
- Department of Ultrasound, Chongqing People's Hospital, Chongqing, 400014, P. R. China
| | - Xingyue Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441053, P. R. China
| | - Ying Luo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weixi Jiang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weixiang Song
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
39
|
Pan M, Hu D, Yuan L, Yu Y, Li Y, Qian Z. Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharm Sin B 2022. [PMID: 37521874 PMCID: PMC10372842 DOI: 10.1016/j.apsb.2022.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging noninvasive treatment modality that utilizes low-frequency and low-intensity ultrasound (US) to trigger sensitizers to kill tumor cells with reactive oxygen species (ROS). Although SDT has attracted much attention for its properties including high tumor specificity and deep tissue penetration, its anticancer efficacy is still far from satisfactory. As a result, new strategies such as gas-assisted therapy have been proposed to further promote the effectiveness of SDT. In this review, the mechanisms of SDT and gas-assisted SDT are first summarized. Then, the applications of gas-assisted SDT for cancer therapy are introduced and categorized by gas types. Next, therapeutic systems for SDT that can realize real-time imaging are further presented. Finally, the challenges and perspectives of gas-assisted SDT for future clinical applications are discussed.
Collapse
|
40
|
On-demand therapeutic delivery of hydrogen sulfide aided by biomolecules. J Control Release 2022; 352:586-599. [PMID: 36328076 DOI: 10.1016/j.jconrel.2022.10.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Hydrogen sulfide (H2S), known as the third gasotransmitter, exerts various physiological functions including cardiac protection, angiogenesis, anti-inflammatory, and anti-cancer capability. Given its promising therapeutic potential as well as severe perniciousness if improper use, the sustained and tunable H2S delivery systems are highly required for H2S-based gas therapy with enhanced bioactivity and reduced side effects. To this end, a series of stimuli-responsive compounds capable of releasing H2S (termed H2S donors) have been designed over the past two decades to mimic the endogenous generation of H2S and elucidate the biological functions. Further to improve the stability of H2S donors and achieve the targeted delivery, various delivery systems have been constructed. In this review, we focus on the recent advances of an emerging subset, biomolecular-based H2S delivery systems, which combine H2S donors with biomolecular vectors including polysaccharide, peptide, and protein. We demonstrated their basic structures, building strategies, and therapeutic applications respectively to unfold their inherent merits endued by biomolecules including biocompatibility, biodegradability as well as expansibility. The varied development potentials of biomolecular-based H2S delivery systems based on their specific properties are also discussed. At the end, brief future outlooks and upcoming challenges are presented as well.
Collapse
|
41
|
Li Y, Yoon B, Dey A, Nguyen VQ, Park JH. Recent progress in nitric oxide-generating nanomedicine for cancer therapy. J Control Release 2022; 352:179-198. [PMID: 36228954 DOI: 10.1016/j.jconrel.2022.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Nitric oxide (NO) is an endogenous, multipotent biological signaling molecule that participates in several physiological processes. Recently, exogenous supplementation of tumor tissues with NO has emerged as a potential anticancer therapy. In particular, it induces synergistic effects with other conventional therapies (such as chemo-, radio-, and photodynamic therapies) by regulating the activity of P-glycoprotein, acting as a vascular relaxant to relieve tumor hypoxia, and participating in the metabolism of reactive oxygen species. However, NO is highly reactive, and its half-life is relatively short after generation. Meanwhile, NO-induced anticancer activity is dose-dependent. Therefore, the targeted delivery of NO to the tumor is required for better therapeutic effects. In the past decade, NO-generating nanomedicines (NONs), which enable sustained and specific NO release in tumor tissues, have been developed for enhanced cancer therapy. This review describes the recent efforts and preclinical achievements in the development of NON-based cancer therapies. The chemical structures employed in the fabrication of NONs are summarized, and the strategies involved in NON-based cancer therapies are elaborated.
Collapse
Affiliation(s)
- Yuce Li
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Been Yoon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Anup Dey
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
42
|
Dai W, Deng Y, Chen X, Huang Y, Hu H, Jin Q, Tang Z, Ji J. A mitochondria-targeted supramolecular nanoplatform for peroxynitrite-potentiated oxidative therapy of orthotopic hepatoma. Biomaterials 2022; 290:121854. [DOI: 10.1016/j.biomaterials.2022.121854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022]
|
43
|
Probes and nano-delivery systems targeting NAD(P)H:quinone oxidoreductase 1: a mini-review. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
44
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
45
|
Hou X, Zhong D, Chen H, Gu Z, Gong Q, Ma X, Zhang H, Zhu H, Luo K. Recent advances in hyaluronic acid-based nanomedicines: Preparation and application in cancer therapy. Carbohydr Polym 2022; 292:119662. [PMID: 35725165 DOI: 10.1016/j.carbpol.2022.119662] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
|
46
|
Shi M, Zhang J, Wang Y, Han Y, Zhao X, Hu H, Qiao M, Chen D. Blockage of the IDO1 pathway by charge-switchable nanoparticles amplifies immunogenic cell death for enhanced cancer immunotherapy. Acta Biomater 2022; 150:353-366. [PMID: 35843594 DOI: 10.1016/j.actbio.2022.07.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/15/2022] [Accepted: 07/10/2022] [Indexed: 02/08/2023]
Abstract
Immunosuppressive tumor microenvironment (ITM), poor immunogenicity and low tumor penetration markedly reduce the tumor immunotherapy capability. To address these hurdles, we successfully engineered acidity-triggered nanoparticles (NPs) with size-reduction and charge-switchable to boost tumor immunotherapy based on indoleamine 2,3-dioxygenase 1 siRNA (IDO1 siRNA) and immunogenic cell death (ICD). The NPs significantly augmented tumor penetrating ability and improved cellular uptake via the detachment of 2,3-dimethylmaleic anhydride grafted poly(ethylene glycol)-poly(L-lysine) copolymer (mPEG-PLL-DMA, PLM) from large-sized NPs with a negative charge. Subsequently, the NPs with a positive charge and small size rapidly escaped from the lysosomes and released mitoxantrone (MIT) and IDO1 siRNA. The antitumor immune response of IDO1 siRNA and MIT provided good antitumor capability through enhancing DCs maturation, improving numbers of CTLs and downregulating the level of Tregs in tumor tissues. In summary, the results demonstrated that charge-switchable NPs based on blockage of the IDO1 pathway and ICD activation induce an efficient antitumor immune response, thus showing high potential for treating primary/distant tumor and reducing metastasis. STATEMENT OF SIGNIFICANCE: Acidity-triggered nanoparticles (NPs) with size-reduction and charge-switchable to boost tumor immunotherapy based on indoleamine 2,3-dioxygenase 1 siRNA (IDO1 siRNA) and immunogenic cell death (ICD) were engineered. NPs augmented tumor penetrating ability and improved cellular uptake via the detachment of mPEG-PLL-DMA (PLM) from large-sized MIT/siR-PLM/PPA NPs with negative charge to expose miniature and positively charged MIT/siR-PPA NPs. The NPs rapidly escaped from the lysosome and sequentially released mitoxantrone (MIT) and IDO1 siRNA. The antitumor immune synergistic effect of inhibiting the IDO1 pathway by IDO1 siRNA and inducting ICD by MIT provided dramatic antitumor capability through enhancing DCs maturation, improving numbers of CTLs and downregulating the level of Tregs in tumor tissues. And the NPs revealed a promising pathway against aggressive and difficult-to-treat cancers.
Collapse
Affiliation(s)
- Menghao Shi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jiulong Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yu Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yanyan Han
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiuli Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Haiyang Hu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Mingxi Qiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Dawei Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
47
|
Abstract
Diabetes has become one of the most prevalent endocrine and metabolic diseases that threaten human health, and it is accompanied by serious complications. Therefore, it is vital and pressing to develop novel strategies or tools for prewarning and therapy of diabetes and its complications. Fluorescent probes have been widely applied in the detection of diabetes due to the fact of their attractive advantages. In this report, we comprehensively summarize the recent progress and development of fluorescent probes in detecting the changes in the various biomolecules in diabetes and its complications. We also discuss the design of fluorescent probes for monitoring diabetes in detail. We expect this review will provide new ideas for the development of fluorescent probes suitable for the prewarning and therapy of diabetes in future clinical transformation and application.
Collapse
|