1
|
Lyu M, Zhang T, Bao Z, Li P, Chen M, Quan H, Wang C, Xia L, Li Y, Tang B. In situ forming AIEgen-alginate hydrogel for remodeling tumor microenvironment to boost FLASH immunoradiotherapy. Biomaterials 2025; 320:123281. [PMID: 40138965 DOI: 10.1016/j.biomaterials.2025.123281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
FLASH radiotherapy, which involves the delivery of an ultra-high radiation dose rate exceeding 40 Gy/s, has emerged as a promising tumor ablation strategy. While this approach generally spares normal tissues, the incomplete killing of tumors may sometimes lead to recurrence due to the immunosuppressive tumor microenvironment (TME). Herein, an aggregation-induced-emission luminogen (AIEgen)-alginate hydrogel was used to sensitize colon cancer via photodynamic therapy (PDT). Flower-like calcium carbonate nanoparticles, doped with an AIEgen termed CQu, were designed and applied as a cocktail with sodium alginate. When exposed to the acidic TME, Ca2+ is released from this structure, resulting in sodium alginate termed FA forming a hydrogel in situ within the TME. This hydrogel also captures high concentrations of CQu in the local TME. Under laser irradiation, the CQu can generate sustained reactive oxygen species (ROS) production, thereby facilitating Ca2+ influx and causing mitochondrial damage. Through a single injection of established FA hydrogel, followed by PDT and FLASH radiotherapy, immunogenic tumor cell death was induced which promoted antitumor immunity, thereby protecting against tumor recurrence while realizing abscopal effect. The results highlight the potential to improve the sensitivity of tumor cells to FLASH radiotherapy through sustained ROS production and Ca2+ overload, thereby yielding optimal immunotherapy outcomes.
Collapse
Affiliation(s)
- Meng Lyu
- Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Tianfu Zhang
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhirong Bao
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Pei Li
- Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Mingzhu Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Hong Quan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Cunchuan Wang
- Clinical Medicine Research Institute, Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| | - Ligang Xia
- Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.
| | - Yang Li
- Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.
| | - Benzhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), Guangdong, 518172, China
| |
Collapse
|
2
|
Sun C, He Q, Yang X, Wang J, Xia D, Xia T, Liao H, Xiong X, Liao Y, Shen H, Sun Q, Yuan Y, He Y, Liu L. A novel NIR-dependent IDO-inhibiting ethosomes treatment melanoma through PTT/PDT/immunotherapy synergy. Colloids Surf B Biointerfaces 2025; 251:114565. [PMID: 39999696 DOI: 10.1016/j.colsurfb.2025.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Phototherapy is a treatment method that uses the characteristics of different bands of light to treat diseases. Tumor immunotherapy, on the other hand, treats tumors by regulating the body's immune system. The combination of phototherapy and immunotherapy can significantly enhance the treatment of melanoma. In this study, we prepared and characterized INEs, a novel ethosome composed of the photosensitizer IR251 and the Indoleamine-2, 3-dioxygenase (IDO) inhibitor NLG919. INEs demonstrated excellent phototherapeutic properties, strong phototoxicity, and a notable ability to inhibit IDO. Under 808 nm laser irradiation, INEs effectively induced immunogenic cell death (ICD) in melanoma cells. In vivo experiments demonstrated that INEs injection into primary tumors triggered ICD, promoted maturation of DC cells, and activated naive T cells, leading to the production of effector T cells (specifically CD4+ and CD8+ T cells) that targeted and killed tumor cells. Both primary and distant tumors were treated simultaneously with favorable biosafety. In conclusion, INEs represent a promising strategy for melanoma treatment by a combination of phototherapy and immunotherapy with high safety. This study provides new insights and a theoretical basis for the clinical treatment of melanoma.
Collapse
Affiliation(s)
- Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Luzhou Key Laboratory of Research and Development of Medical Institution Preparations and Large-scale Health Products, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Qingqing He
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xun Yang
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jianv Wang
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Dengmei Xia
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Tong Xia
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hongye Liao
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yongmei Liao
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hongping Shen
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Luzhou Key Laboratory of Research and Development of Medical Institution Preparations and Large-scale Health Products, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Qin Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Luzhou Key Laboratory of Research and Development of Medical Institution Preparations and Large-scale Health Products, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuan Yuan
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, Luzhou Key Laboratory of Research and Development of Medical Institution Preparations and Large-scale Health Products, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Liao H, Chen M, Liao Z, Luo Y, Chen S, Wang L, Wang Z, Niu C. MnO 2-based nanoparticles remodeling tumor micro-environment to augment sonodynamic immunotherapy against breast cancer. Biomater Sci 2025. [PMID: 40202432 DOI: 10.1039/d5bm00189g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The tumor microenvironment (TME) is characterized by a complex array of factors, including aerobic conditions, high glutathione (GSH) levels, acidic pH, and elevated hydrogen peroxide (H2O2) content, all of which promote cancer progression and contribute to poor prognosis. Fortunately, these challenges can be addressed using MnO2-based nanomaterials. In this study, we have designed and synthesized a Curcumin/MnO2@PLGA@4T1 cell membrane (CMP@4T1m) system aimed at remodelling the TME and enhancing sonodynamic immunotherapy for breast cancer. Through the homologous targeting ability of 4T1m, CMP@4T1m efficiently accumulates at the tumor site. Upon ultrasound irradiation, curcumin (Cur) acts as a sonosensitizer, generating cytotoxic reactive oxygen species (ROS) that induce immunogenic cell death (ICD), activate T-cell responses, and repolarize protumoral M2-like macrophages to antitumoral M1-like macrophages. In the TME, which is mildly acidic and enriched with GSH and H2O2, MnO2 not only oxidizes GSH to glutathione disulfide (GSSG) but also reacts with H2O2 and H+ to produce oxygen, alleviating hypoxia and significantly enhancing the sonodynamic immunotherapy effect. Additionally, Mn2+ generated during this process converts H2O2 into cytotoxic hydroxyl radicals (˙OH). This study thus lays the foundation for advancing cancer nanomedicine, offering a novel approach that integrates TME remodelling with sonodynamic immunotherapy.
Collapse
Affiliation(s)
- Haiqin Liao
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Clinical Research Center for Ultrasound and Treatment in Hunan Province, Hunan 410011, China
| | - Mingyu Chen
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Clinical Research Center for Ultrasound and Treatment in Hunan Province, Hunan 410011, China
| | - Zhipeng Liao
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Clinical Research Center for Ultrasound and Treatment in Hunan Province, Hunan 410011, China
| | - Yi Luo
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Clinical Research Center for Ultrasound and Treatment in Hunan Province, Hunan 410011, China
| | - Sijie Chen
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Clinical Research Center for Ultrasound and Treatment in Hunan Province, Hunan 410011, China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Zhigang Wang
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Chengcheng Niu
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Clinical Research Center for Ultrasound and Treatment in Hunan Province, Hunan 410011, China
| |
Collapse
|
4
|
Cao FL, Zhang ZS, Dong ML, Ning Y, Zhang WH, Mao Y, Young DJ. A high-entropy coordination cage featuring an Au-porphyrin metalloligand for the photodynamic therapy of liver cancer. Chem Commun (Camb) 2025. [PMID: 40200692 DOI: 10.1039/d5cc00750j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
We report a Pd-based hexagonal prismatic coordination cage of Pd-TMPP(Au) featuring a highly entropic ligand combination, viz. H2TMPP, TMPP(Pd), and TMPP(Au) metalloligands to yield double-arrow-shaped polycrystals. Pd-TMPP(Au) exhibits concentration-dependent cytotoxicity against hepatocellular carcinoma cell lines HuH-7, Hep-G2, and PLC/PRF/5, which is augmented by light irradiation.
Collapse
Affiliation(s)
- Feng-Lin Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Ze-Sheng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Meng-Lin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Ye Ning
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yiming Mao
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215028, China.
| | - David J Young
- James Watt School of Engineering, Glasgow University, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
5
|
Xue X, Wang M, Cui J, Yang M, Ma L, Kang R, Tang D, Wang J. Glutathione metabolism in ferroptosis and cancer therapy. Cancer Lett 2025; 621:217697. [PMID: 40189013 DOI: 10.1016/j.canlet.2025.217697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Glutathione (GSH), a non-enzymatic antioxidant in mammalian cells, plays an essential role in maintaining redox balance, mitigating oxidative stress, and preserving cellular homeostasis. Beyond its well-established function in detoxifying reactive oxygen species (ROS), GSH serves as a critical regulator of ferroptosis-an iron-dependent form of cell death marked by excessive lipid peroxidation. Serving as a cofactor for glutathione peroxidase 4 (GPX4), GSH catalyzes the conversion of lipid peroxides into non-toxic lipid alcohols, thereby preventing the accumulation of deleterious lipid oxidation products and halting the spread of oxidative damage. In cancer cells, upregulated GSH synthesis and GPX4 activity contribute to an enhanced antioxidant defense, countering oxidative stress provoked by increased metabolic demands and exposure to therapeutic agents such as chemotherapy, radiotherapy, and immunotherapy. This ability of cancer cells to modulate their ferroptosis susceptibility through GSH metabolism underscores its potential as a therapeutic target. Additionally, GSH influences several key oncogenic and tumor-suppressive signaling pathways, including NFE2L2/NRF2, TP53/p53, NF-κB, Hippo, and mTOR, which collectively regulate responses to oxidative stress, affect metabolic processes, and modulate sensitivity to ferroptosis in cancer cells. This review explores recent advancements in understanding GSH's multifaceted role in ferroptosis, emphasizing its implications for cancer biology and therapeutic interventions.
Collapse
Affiliation(s)
- Xiangfei Xue
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Manyuan Wang
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 200025, China
| | - Jiangtao Cui
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Minying Yang
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 200025, China
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, 75390, USA.
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Pan X, Lin Y, Lin C, Liu S, Lin P, Lin X, He R, Ye Z, Ye J, Zhu G. Enhanced cGAS-STING Activation and Immune Response by LPDAM Platform-Based Lapachone-Chemical-Photothermal Synergistic Therapy for Colorectal Cancer. Adv Healthc Mater 2025; 14:e2403309. [PMID: 40103499 DOI: 10.1002/adhm.202403309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/06/2025] [Indexed: 03/20/2025]
Abstract
The cGAS-STING signaling pathway is a pivotal immune response mechanism that bridges tumor and immune cell interactions. This study describes a multifunctional LPDAM nanoplatform integrating Lapachone, polydopamine (PDA), and Mn2+, which synergistically kills tumor cells and activates the cGAS-STING pathway, thereby inducing DC maturation and T cell activation to achieve potent antitumor immunity. In the tumor microenvironment, Lapachone generates H2O2 via the NAD(P)H:quinone oxidoreductase 1 (NQO1 enzyme), while Mn2+ catalyze H2O2 conversion into •OH through chemodynamic effects (CDT). The photothermal effects (PTT) of PDA further amplify this cascade reaction, producing reactive oxygen species (ROS) that damage tumor mitochondria and release mitochondrial DNA (mtDNA). The released mtDNA activates the cGAS-STING pathway, while Mn2+ enhances the sensitivity of cGAS to mtDNA, leading to robust antitumor immunity. Concurrently, photothermal-induced immunogenic cell death (ICD) promotes dendritic cells (DCs) maturation, further strengthening immune responses. Moreover, Mn2⁺ also serves as a contrast agent for T1-weighted magnetic resonance imaging (MRI), offering precise tumor visualization. This study demonstrates that the LPDAM nanoplatform facilitates Lapachone/CDT/PTT synergistic therapy under MRI guidance, showcasing its potential as an innovative strategy for combined immunotherapy in clinical oncology.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yan Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Songyi Liu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Penghang Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Xiang Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Ruofan He
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - ZiChen Ye
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Zhao S, Qu Z, Wang L, Gu P, Mou J, Yang S, Wu H. An Oxidative Stress Nanoamplifier with Efficient Non-Fenton-Type Hydroxyl Radical Generation and Sulfur Dioxide Release for Synergistic Treatment of Tumor. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16681-16695. [PMID: 40056102 DOI: 10.1021/acsami.5c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Overcoming tumor antioxidant defenses remains a critical challenge for reactive-oxygen-species-mediated tumor therapies. To address this problem, herein, a theranostic nanomedicine designated as CCM@MIB has been elaborately constructed. Homologous cancer cell membrane (CCM) camouflage significantly enhances the selective accumulation of the nanomedicine at tumor sites. In response to the tumor microenvironment (TME), CCM@MIB controllably releases Mn ions and sulfur dioxide (SO2) molecules. The released Mn ions catalyze the self-oxidation of isoniazid to generate highly toxic •OH, while the SO2 produced by benzothiazole sulfinate effectively disrupts tumor antioxidant defense systems. The catalase-like activity endowed by Mn ions and the increased intracellular •O2- level induced by SO2 further promote •OH production. Therefore, such an intellectual combination of non-Fenton-type catalytic therapy and SO2 gas therapy significantly amplifies oxidative stress and efficiently suppresses tumor growth. Additionally, the TME-activated magnetic resonance imaging contrast performance of CCM@MIB is beneficial for guiding antitumor treatment. This considerate strategy designed in our work provides an ingenious paradigm for the development of efficient antitumor therapies.
Collapse
Affiliation(s)
- Shasha Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Zhonghuan Qu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Likai Wang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Peng Gu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Juan Mou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Shiping Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Huixia Wu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
8
|
Zhuang W, Pan K, Wu J, Liu L, Lv S, Hu J, Shi F, Zhao W, Yu D. Harnessing the power of traceable system C-GAP: homologous-targeting to fire up T-cell immune responses with low-dose irradiation. J Nanobiotechnology 2025; 23:207. [PMID: 40075499 PMCID: PMC11905511 DOI: 10.1186/s12951-025-03281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
While radiotherapy-induced immunogenic cell death (ICD) holds potential for enhancing cancer immunotherapy, the conventional high-dose irradiation often leads to an immunosuppressive microenvironment and systemic toxicity. Therefore, a biomimetic nanoplatform cell membrane coated-nitrogen-doped graphene quantum dots combined with Au nanoparticles (C-GAP) was developed in this study. Firstly, homologous and traceable targeting features of C-GAP enables tumor-selective accumulation, providing reference for the selection of the timing of radiotherapy. Secondly, radiosensitization by C-GAP with Low-dose irradiation (LDI) amplifies reactive oxygen species (ROS) generation to trigger potent ICD. Thirdly, remarkable immune remodeling induced by C-GAP enhances CD8+ T cell infiltration and effector function. Single-cell RNA sequencing revealed that C-GAP-LDI combination upregulates TNF and CCL signaling pathway expression in tumor-infiltrating CD8+ T cells which potentiates tumor eradication. Our findings present a novel approach for safe and effective radioimmunotherapy, where C-GAP sensitized LDI achieves therapeutic enhancement through precise ICD induction and systemic immune activation.
Collapse
Affiliation(s)
- Weijie Zhuang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Kuangwu Pan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
- Department of Stomatology, The Third People's Hospital of Chengdu, Sichuan, China
| | - Jie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Leyi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Shiyu Lv
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Jiajun Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Fangyang Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China.
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China.
| |
Collapse
|
9
|
Wei JR, Lu MY, Wei TH, Fleishman JS, Yu H, Chen XL, Kong XT, Sun SL, Li NG, Yang Y, Ni HW. Overcoming cancer therapy resistance: From drug innovation to therapeutics. Drug Resist Updat 2025; 81:101229. [PMID: 40081221 DOI: 10.1016/j.drup.2025.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
One of the major limitations of cancer therapy is the emergence of drug resistance. This review amis to provide a focused analysis of the multifactorial mechanisms underlying therapy resistance,with an emphasis on actionable insights for developing novel therapeutic strategies. It concisely outlines key factors contributing to therapy resistance, including drug delivery barriers, cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer heterogeneity, tumor microenvironment (TME), genetic mutations, and alterlations in gene expression. Additionally, we explore how tumors evade targeted therapies through pathway-specific mechanisms that restore disrupted signaling pathways. The review critically evaluates innovative strategies designed to sensitize resistant tumor cells, such as targeted protein dedgradation, antibody-drug conjugates, structure-based drug design, allosteric drugs, multitarget drugs, nanomedicine and others We also highlight the importance of understanding the pharmacological actions of these agents and their integration into treatment regimens. By synthesizing current knowledge and identifying gaps in our understanding, this review aims to guide future research and improve patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Jin-Rui Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China; The First Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hui Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiao-Li Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiang-Tu Kong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hai-Wen Ni
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|
10
|
Sahoo SS, Manna D. Nanomaterial-Triggered Ferroptosis and Cuproptosis in Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412462. [PMID: 40018870 DOI: 10.1002/smll.202412462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Cancer remains one of the leading causes of the death of individuals globally. Conventional treatment techniques like chemotherapy and radiation often suffer various drawbacks like toxicity and drug resistance. The study of cell death has been predominantly focused on classical forms like apoptosis, but the role of metal ions in governing controlled cell death is a fascinating and less explored area. Metal-mediated controlled cell death is a process where metal triggers cell death via a unique mechanism. Nanomaterial-based strategies have gained attention for their ability to deliver precise therapeutic agents while also triggering Regulated Cell Death (RCD) mechanisms in cancer cells. The recently discovered metal-mediated controlled cell death techniques like cuproptosis and ferroptosis can be used in cancer treatment as they can be used selectively for the treatment of drug-resistant cancer. Nano material-based delivery system can also be used for the precise delivery of the drug to the targeted sites. In this review, we have given some idea about the mechanism of metal-mediated controlled cell death techniques (ferroptosis and cuproptosis) and how we can initiate controlled cell deaths using nanomaterials for cancer treatment.
Collapse
Affiliation(s)
- Suman Sekhar Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Debasish Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
11
|
Feng JH, Zhang ML, Zou YM, Tang XY, Chen XT, Meng W, Chen M, Li RT, Chen JX. Hollow gold-platinum nanoshells as a delivery platform for Ce6: cascading catalysis for enhanced multimodal therapy in tumor ablation and antitumor immunity. NANOSCALE 2025; 17:5456-5471. [PMID: 39901668 DOI: 10.1039/d4nr04627g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Precious metal nanozymes are renowned for their enzyme-mimicking properties, which can modulate the tumor microenvironment (TME) and enhance treatment. However, their small size often leads to aggregation and their single and limited catalytic potential impedes antitumor and immune-activating capabilities. To address these limitations, we developed a nanocomposite with multiple enzyme activities that synergistically enhances photodynamic and photothermal therapy (PDT and PTT), significantly boosting antitumor efficacy and immune response. Our approach involved using UiO-66-NH2 to facilitate the growth of gold-platinum bimetallic nanozymes, resulting in a core-shell structure of UiO-66-NH2@AuPt (UAuPt). The UiO-66-NH2 was then etched to create hollow gold-platinum bimetallic (HAuPt) nanoshells and further encapsulated with PEG-SH and the photosensitizer Ce6 to form the HAuPt@Ce6-PEG-SH (HCP) nanocomposite. Regarding the HCP nanocomposite, its absorption capability in the near-infrared second (NIR-II) region makes it a suitable photothermal agent for PTT, while Ce6 serves as the active agent for PDT. Furthermore, the gold nanoparticles (Au NPs) and platinum nanoparticles (Pt NPs) exhibit glucose oxidase (GOD)-, catalase (CAT)-, and peroxidase (POD)-like activities. This triple-enzyme activity forms an efficient cascade catalytic system, leading to refined remodeling of the TME and efficient enhancement of PTT and PDT. Moreover, the combination therapy triggers tumor-associated macrophage (TAM) polarization and immunogenic cell death (ICD), which not only promotes dendritic cell (DC) maturation but also stimulates T cell activation and the release of tumor-specific immune factors. This cascade ultimately results in a robust antitumor immune response. The in vitro and in vivo results demonstrated a significant antitumor efficacy and immune response, promising efficient nanozymes for therapeutic advancement.
Collapse
Affiliation(s)
- Jia-Hao Feng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Mei-Lian Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yi-Ming Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Xiao-Yan Tang
- School of Chemistry and Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, China
| | - Xiao-Tong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Wei Meng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Ming Chen
- The People's Hospital of Gaozhou, Gaozhou, Guangdong 525200, China.
| | - Rong-Tian Li
- Department of Clinical Pharmacy, Southern University of Science and Technology Hospital, Shenzhen, Guangdong 518055, China.
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
12
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
13
|
Hu W, Li M, Feng Y, Wang X, Yang S, Gao Y, Jiang D, Lan X. Molecular Imaging for Biomimetic Nanomedicine in Cancer Therapy: Current Insights and Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10231-10245. [PMID: 39878693 DOI: 10.1021/acsami.4c19720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Coating biological membranes onto biomimetic nanocarriers improves biocompatibility, prolongs circulation, and enhances targeted delivery for cancer precision medicine. To better understand the biodistribution profiles of these biomimetic nanosystems, molecular imaging techniques, including optical imaging, radionuclide imaging, magnetic resonance imaging, and ultrasound imaging, have been widely employed for in vivo tracking and dynamic imaging. Here in this review, we delve into the profound role of these imaging modalities in visualizing changes in the tumor microenvironment, particularly in monitoring oxygen consumption and immune response dynamics, highlighting their potential to improve cancer therapies. We also briefly discuss current applications of molecular imaging in synergistic cancer therapies and future perspectives. Finally, we offer insights into the potential of integrating biomimetic nanomedicine with molecular imaging for clinical translation.
Collapse
Affiliation(s)
- Wenzhu Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Yuan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xingyi Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Shaowen Yang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yu Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| |
Collapse
|
14
|
Yang B, Liang H, Xu J, Liu Y, Ma S, Li Y, Wang C. Multi-drug sequential release systems: Construction and application for synergistic tumor treatment. Int J Pharm 2025; 670:125156. [PMID: 39746586 DOI: 10.1016/j.ijpharm.2024.125156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
In tumor treatment, the sequence and timing of drug action have a large influence on therapeutic efficacy. Multi-drug sequential release systems (MDSRS) enable the sequential and/or on-demand release of multiple drugs following the single administration of a therapeutic agent. Several researchers have explored MDSRS, providing fresh strategies for synergistic cancer therapy. This review article first introduces the main characteristics of MDSRS. It then elaborates on the design principles of MDSRS. Subsequently, it summarizes the various structures of carriers used for constructing MDSRS, including core-shell structure, Layer-by-layer structure, Janus structure and hydrogel. Next, through specific examples, the article emphasizes the application of MDSRS in cancer treatment, focusing on their role in remodeling the tumor microenvironment (TME) and enhancing therapeutic effects through multiple mechanisms. Finally, the article discusses the current limitations and challenges of these systems and proposes potential future solutions. Overall, this review underscores the importance of the sequence and timing of drug therapy in cancer treatment, providing valuable theoretical and technical guidance for pharmaceutical research.
Collapse
Affiliation(s)
- Boyuan Yang
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Huijuan Liang
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Jiahao Xu
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Yanchi Liu
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Sha Ma
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Yuqiu Li
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, China.
| |
Collapse
|
15
|
Yu H, Huang Z, Wu J, Zhao Z, Hua Y, Yang Y. Chlorin e6: a promising photosensitizer of anti-tumor and anti-inflammatory effects in PDT. Nanomedicine (Lond) 2025; 20:389-400. [PMID: 39877963 PMCID: PMC11812356 DOI: 10.1080/17435889.2025.2456450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Photodynamic therapy (PDT) involves the activation of photosensitizers (PSs) by visible laser light at the target site to catalyze the production of reactive oxygen species, resulting in tumor cell death and blood vessel closure. The efficacy of PDT depends on the PSs, the amount of oxygen, and the intensity of the excitation laser. PSs have been extensively researched, and great efforts have been made to develop an ideal photosensitizer. Chlorin-e6 is an FDA-approved second-generation PSs that has attracted widespread research interest in the medical field, especially with respect to antitumor and anti-inflammatory activity. Chlorin-e6 possesses the advantages of a large absorption coefficient, high strength, low residue in the body, and relatively high safety and thus has promising application prospects. Here we review the use of chlorin-e6 in PDT and discuss the prospects of further development of this technology.
Collapse
Affiliation(s)
- Hairong Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ziling Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jiale Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ziming Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yabing Hua
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yihua Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Department of Pharmaceutics, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
16
|
Wang Y, Xu Y, Qu Y, Jin Y, Cao J, Zhan J, Li Z, Chai C, Huang C, Li M. Ferroptosis: A novel cell death modality as a synergistic therapeutic strategy with photodynamic therapy. Photodiagnosis Photodyn Ther 2025; 51:104463. [PMID: 39736368 DOI: 10.1016/j.pdpdt.2024.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Although there has been significant progress in current comprehensive anticancer treatments centered on surgery, postoperative recurrence and tumor metastasis still significantly affect both prognosis and quality of life of the patient. Hence, the development of precisely targeted tumor therapies and exploration of immunotherapy represent additional strategies for tumor treatment. Photodynamic therapy (PDT) is a relatively safe treatment modality that not only induces multiple modes of tumor cell death but also mediates the secondary immunological responses against tumor resistance and metastasis. Ferroptosis, an iron-dependent type of programmed cell death characterized by accumulation of reactive oxygen species and lipid peroxidation products to lethal levels, has emerged as an attractive target trigger for tumor therapies. Recent research has revealed a close association between PDT and ferroptosis, suggesting that combining ferroptosis inducers with PDT could strengthen their synergistic anti-tumor efficiency. Here in this review, we discuss the rationale for combining PDT with ferroptosis inducers and highlight the progress of single-molecule photosensitizers to induce ferroptosis, as well as the applications of photosensitizers combined with other therapeutic drugs for collaborative therapy. Furthermore, given the current research dilemma, we propose potential therapeutic strategies to advance the combined usage of PDT and ferroptosis inducers, providing the basis and guidelines for prospective clinical translation and research directionality with regard to PDT.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiting Xu
- Central Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan 430022, China
| | - Yong Qu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifang Jin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juanmei Cao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Dermatology, First Affiliated Hospital, Shihezi University, Shihezi 832008, China
| | - Jinshan Zhan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhuoxia Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuxing Chai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
17
|
Zhang L, Chen X, Zhou B, Meng W, Zeng H, Chen Y, Huang G, Zhang Y, Wang H, Chen M, Chen J. Cocktail strategy-based nanomedicine: A synergistic cascade of starvation, NIR-II photothermal, and gas therapy for enhanced tumor immunotherapy. Acta Biomater 2025; 193:316-333. [PMID: 39701339 DOI: 10.1016/j.actbio.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024]
Abstract
Immunotherapy has emerged as a highly promising strategy in the realm of cancer treatment, wherein immunogenic cell death (ICD) is considered a potential trigger for anti-tumor immunity by inducing adaptive immunity to dying cell antigens. This process is often accompanied by the exposure, active secretion, or passive release of a large number of damage-associated molecular patterns (DAMPs), which activate dendritic cells (DCs) and enhance their antigen-presenting capacity. Subsequently, it promotes the recruitment and activation of cytotoxic T lymphocytes, ultimately leading to tumor growth inhibition. In addition, polarizing the M2 phenotype of tumor-associated macrophages (TAMs) to the M1 phenotype is another way to activate anti-tumor immunity, which can further enhance the effect of anti-tumor immunotherapy. In this study, we engineered a composite nanoparticle of UiO-66-NH2@Gold nanoshells@GOx-P-Arg (denoted as UGsGP). The gold nano shells in UGsGP exhibit a broad Near-Infrared-II (NIR-II) absorption to give a high photothermal conversion efficiency and achieve photothermal therapy (PTT). The GOx in UGsGP involves the breakdown of glucose, which results in a decrease in ATP levels and an inhibition of HSP90 and HSP70 production, ultimately enhancing the heat sensitivity of the tumor for PTT. In addition, GOx-mediated starvation therapy by glucose exhaustion produces a substantial amount of hydrogen peroxide (H2O2), which can then react with P-Arg to produce intratumoral NO Thus, the synergistic effect of PTT resensitization, the photothermally-enhanced GOx-mediated starvation, and NO-based gas therapy promote the induction of ICD and the polarization of TAMs. The combination therapy exhibits significant antitumor effects both in vitro and in vivo. STATEMENT OF SIGNIFICANCE: (1) Gold nanoshells on the surface of UiO-66-NH2 display a broad absorption spectrum ranging from 900 to 1700 nm, combined with a high photothermal conversion efficiency of 74.0 %, demonstrating their remarkable ability to harness and convert light energy into heat for effective tumor ablation. (2) Under laser irradiation, GOx within the UGsGPs effectively consumes glucose, increasing intratumoral H2O2 levels, which then reacts with P-Arg to produce NO within the tumor. Concurrently, the reduction in ATP levels suppresses HSP90 and HSP70 production, thereby enhancing the tumor's sensitivity to photothermal therapy. (3) The synergistic combination of NO gas therapy, starvation therapy, and PTT promotes ICD induction and TAM polarization, thereby improving the therapeutic outcomes for primary and distant tumors.
Collapse
Affiliation(s)
- Lianying Zhang
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaotong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Maoming 525200, China
| | - Wei Meng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haifeng Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongjian Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guoqin Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yingshan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huimin Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Maoming 525200, China.
| | - Jinxiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
18
|
Xu Y, Wu Y, Zheng X, Wang D, Ni H, Chen W, Wang K. A Smart Nanomedicine Unleashes a Dual Assault of Glucose Starvation and Cuproptosis to Supercharge αPD-L1 Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411378. [PMID: 39632613 PMCID: PMC11775525 DOI: 10.1002/advs.202411378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Combination therapy has become a promising strategy for promoting the outcomes of anti-programmed death ligand-1 (αPD-L1) therapy in lung cancer. Among all, emerging strategies targeting cancer metabolism have shown great potency in treating cancers with immunotherapy. Here, alteration in glucose and copper metabolisms is found to synergistically regulate PD-L1 expression in lung cancer cells. Thus, an intelligent biomimetic nano-delivery system is synthesized by camouflaging lung cancer cell membranes onto glucose oxidase-loaded Cu-LDHs (CMGCL) for cancer metabolism targeted interference. Such novel nanomedicine is able to induce lung cancer cell cuproptosis and PD-L1 upregulation significantly via self-amplified cascade reactions. Meanwhile, with a decent cancer cell membrane coating, CMGCL exhibited great biosafety, tumor-targeted efficiency and anti-tumor effects in LLC lung tumor-bearing mice models. Additionally, a combination of CMGCL can sensitize the therapeutic effects of αPD-L1, substantially promoting tumor inhibition in both subcutaneous and lung metastasis LLC-bearing mice models. Overall, these findings highlight the potential connections between glucose metabolism and cell cuproptosis, offering a promising approach for treating lung cancer by integrating starvation, cuproptosis, and immunotherapy.
Collapse
Affiliation(s)
- Yiming Xu
- Department of Respiratory and Critical Care MedicineCenter for Oncology MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung CancerYiwu322000China
| | - Yuan Wu
- College of JiyangZhejiang A&F UniversityZhuji311800China
| | - Xinjie Zheng
- Department of Respiratory and Critical Care MedicineCenter for Oncology MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung CancerYiwu322000China
| | - Dongxue Wang
- Department of Nuclear MedicineThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150000China
| | - Hangqi Ni
- Department of Respiratory and Critical Care MedicineCenter for Oncology MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung CancerYiwu322000China
| | - Weiyu Chen
- Department of Respiratory and Critical Care MedicineCenter for Oncology MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung CancerYiwu322000China
| | - Kai Wang
- Department of Respiratory and Critical Care MedicineCenter for Oncology MedicineThe Fourth Affiliated Hospital of School of Medicineand International School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung CancerYiwu322000China
| |
Collapse
|
19
|
Wang L, Zhang X, He L, Wei Y, Zhang Y, Wu A, Li J. Iron-Based Nanomaterials for Modulating Tumor Microenvironment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70001. [PMID: 39788569 DOI: 10.1002/wnan.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
Iron-based nanomaterials (IBNMs) have been widely applied in biomedicine applications including magnetic resonance imaging, targeted drug delivery, tumor therapy, and so forth, due to their unique magnetism, excellent biocompatibility, and diverse modalities. Further research on its enormous biomedical potential is still ongoing, and its new features are constantly being tapped and demonstrated. Among them, various types of IBNMs have demonstrated significant cancer therapy capabilities by regulating the tumor microenvironment (TME). In this review, a variety of IBNMs including iron oxide-based nanomaterials (IONMs), iron-based complex conjugates (ICCs), and iron-based single iron atom nanomaterials (ISANMs) will be introduced, and their advantages in regulating TME would also be emphasized. Besides, the recent progress of IBNMs for cancer diagnosis and treatment through the strategy of modulating TME will be summarized, including overcoming hypoxia, modulating acidity, decreasing redox species, and immunoregulation. Finally, the challenges and opportunities in this field are briefly discussed. This review is expected to contribute to the future design and development of next-generation TME-modulate IBNMs for cancer treatment.
Collapse
Affiliation(s)
- Le Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, China
| | - Xiaoting Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, China
| | - Lulu He
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, China
| | - Yuanyuan Wei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, China
| | - Yujie Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, China
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, China
| | - Juan Li
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, China
| |
Collapse
|
20
|
Cao X, Feng N, Huang Q, Liu Y. Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers: From Synthesis to Cancer Therapy and Biomedical Imaging. ACS APPLIED BIO MATERIALS 2024; 7:7965-7986. [PMID: 38382060 DOI: 10.1021/acsabm.3c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Recently, there has been significant interest in nanoscale metal-organic frameworks (NMOFs) characterized by ordered crystal structures and nanoscale coordination polymers (NCPs) featuring amorphous structures. These structures arise from the coordination interactions between inorganic metal ions or clusters and organic ligands. Their advantages, such as the ability to tailor composition and structure, efficiently encapsulate diverse therapeutic or imaging agents within porous frameworks, inherent biodegradability, and surface functionalization capability, position them as promising carriers in the biomedical fields. This review provides an overview of the synthesis and surface modification strategies employed for NMOFs and NCPs, along with their applications in cancer treatment and biological imaging. Finally, future directions and challenges associated with the utilization of NMOFs and NCPs in cancer treatment and diagnosis are also discussed.
Collapse
Affiliation(s)
- Xianghui Cao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Nana Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingqing Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Zou Y, Wu J, Zhang Q, Chen J, Luo X, Qu Y, Xia R, Wang W, Zheng X. Recent advances in cell membrane-coated porphyrin-based nanoscale MOFs for enhanced photodynamic therapy. Front Pharmacol 2024; 15:1505212. [PMID: 39697550 PMCID: PMC11652162 DOI: 10.3389/fphar.2024.1505212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Porphyrins-based nanoscale metal-organic frameworks (nMOFs) has been widely utilized to kills tumor cells by generating cytotoxic reactive oxygen species (ROS). However, porphyrin based nMOFs (por-nMOFs) still face challenges such as rapid immune clearance and weak tumor targeting. Researchers have discovered that using a top-down biomimetic strategy, where nMOFs are coated with cell membranes, can promote long blood circulation, evade the reticuloendothelial system, and improve cancer cell targeting, thereby significantly enhancing the photodynamic therapy (PDT) effect of nMOFs. This review summarizes the recent work on different cell membranes-coated por-nMOFs for enhanced tumor PDT. This review details the changes in physicochemical properties, enhanced homotypic cancer cell-selective endocytosis, improved tumor tissue targeting, and increased cytotoxicity and effective in vivo tumor suppression after the nMOFs are wrapped with cell membranes. Additionally, this review compares the biological functions of various types of cell membranes, including cancer cell membranes, red blood cell membranes, aptamer-modified red blood cell membranes, and hybrid membranes from the fusion of cancer and immune cells. The review highlights the enhanced immunogenic cell death function when using hybrid membranes derived from the fusion of cancer and immune cell membranes. By summarizing the augmented PDT effects and the combined antitumor outcomes with other therapeutic modalities, this review aims to provide new insights into the biomedical applications of por-nMOFs and offer more references for the preclinical application of porphyrin-based photosensitizers.
Collapse
Affiliation(s)
- Yutao Zou
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu, China
| | - Junjie Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Qiuyun Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Jiayi Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xuanxuan Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yijie Qu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Rui Xia
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
22
|
Ge A, Xiang W, Li Y, Zhao D, Chen J, Daga P, Dai CC, Yang K, Yan Y, Hao M, Zhang B, Xiao W. Broadening horizons: the multifaceted role of ferroptosis in breast cancer. Front Immunol 2024; 15:1455741. [PMID: 39664391 PMCID: PMC11631881 DOI: 10.3389/fimmu.2024.1455741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024] Open
Abstract
Breast cancer poses a serious threat to women's health globally. Current radiotherapy and chemotherapy regimens can induce drug-resistance effects in cancer tissues, such as anti-apoptosis, anti-pyroptosis, and anti-necroptosis, leading to poor clinical outcomes in the treatment of breast cancer. Ferroptosis is a novel programmed cell death modality characterized by iron overload, excessive generation of reactive oxygen species, and membrane lipid peroxidation. The occurrence of ferroptosis results from the imbalance between intracellular peroxidation mechanisms (executive system) and antioxidant mechanisms (defensive system), specifically involving iron metabolism pathways, amino acid metabolism pathways, and lipid metabolism pathways. In recent years, it has been found that ferroptosis is associated with the progression of various diseases, including tumors, hypertension, diabetes, and Alzheimer's disease. Studies have confirmed that triggering ferroptosis in breast cancer cells can significantly inhibit cancer cell proliferation and invasion, and improve cancer cell sensitivity to radiotherapy and chemotherapy, making induction of ferroptosis a potential strategy for the treatment of breast cancer. This paper reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including signaling pathways such as GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, and GCH1-BH4) in breast cancer disease, the latest research progress, and summarizes the research on ferroptosis in breast cancer disease within the framework of metabolism, reactive oxygen biology, and iron biology. The key regulatory factors and mechanisms of ferroptosis in breast cancer disease, as well as important concepts and significant open questions in the field of ferroptosis and related natural compounds, are introduced. It is hoped that future research will make further breakthroughs in the regulatory mechanisms of ferroptosis and the use of ferroptosis in treating breast cancer cells. Meanwhile, natural compounds may also become a new direction for potential drug development targeting ferroptosis in breast cancer treatment. This provides a theoretical basis and opens up a new pathway for research and the development of drugs for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Rheumatology, The First People’s Hospital Changde City, Changde, Hunan, China
| | - Yan Li
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Da Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Pawan Daga
- Department of Internal Medicine, University of Louisville, Louisville, KY, United States
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States
| | - Kailin Yang
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yexing Yan
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | | | - Wei Xiao
- Department of Rheumatology, The First People’s Hospital Changde City, Changde, Hunan, China
| |
Collapse
|
23
|
Liu C, Gao J, Cheng Y, Zhang S, Fu C. Homologous-adhering/targeting cell membrane- and cell-mediated delivery systems: a cancer-catch-cancer strategy in cancer therapy. Regen Biomater 2024; 12:rbae135. [PMID: 39811105 PMCID: PMC11729729 DOI: 10.1093/rb/rbae135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
Low tumor enrichment remains a serious and urgent problem for drug delivery in cancer therapy. Accurate targeting of tumor sites is still a critical aim in cancer therapy. Though there have been a variety of delivery strategies to improve the tumor targeting and enrichment, biological barriers still cause most delivered guests to fail or be excreted before they work. Recently, cell membrane-based systems have attracted a huge amount of attention due to their advantages such as easy access, good biocompatibility and immune escape, which contribute to their biomimetic structures and specific surface proteins. Furthermore, cancer cell membrane-based delivery systems are referred to as homologous-targeting function in which they exhibit significantly high adhesion and internalization to homologous-type tumor sites or cells even though the exact mechanism is not entirely revealed. Here, we summarize the sources and characterizations of cancer cell membrane systems, including reconstructed single or hybrid membrane-based nano-/microcarriers, as well as engineered cancer cells. Additionally, advanced applications of these cancer cell membrane systems in cancer therapy are categorized and summarized according to the components of membranes. The potential factors related to homologous targeting of cancer cell membrane-based systems are also discussed. By discussing the applications, challenges and opportunities, we expect the cancer cell membrane-based homologous-targeting systems to have a far-reaching development in preclinic or clinics.
Collapse
Affiliation(s)
- Chenguang Liu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jingjie Gao
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yuying Cheng
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Shanshan Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Caiyun Fu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
24
|
Zhang Q, Wang X, Chen J, Wu J, Zhou M, Xia R, Wang W, Zheng X, Xie Z. Recent progress of porphyrin metal-organic frameworks for combined photodynamic therapy and hypoxia-activated chemotherapy. Chem Commun (Camb) 2024; 60:13641-13652. [PMID: 39497649 DOI: 10.1039/d4cc04512b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Nanoscale metal-organic frameworks integrated with porphyrins (Por-nMOFs) have emerged as efficient nanoplatforms for photodynamic therapy (PDT), which relies on the conversion of molecular oxygen into cytotoxic singlet oxygen. However, the hypoxic microenvironment within tumors significantly limits the efficacy of PDT. To address this challenge, researchers have explored various strategies to either alter or exploit the hypoxic conditions in tumors. One such strategy involves leveraging the porous structure of Por-nMOFs to load hypoxia-activated prodrugs (HAPs) like tirapazamine (TPZ), thereby utilizing the tumor's intrinsic hypoxic environment to trigger a chemotherapeutic effect that synergizes with PDT. Advances in nanoscience have enabled the development of porphyrin-based nMOFs capable of simultaneously loading both porphyrin photosensitizers and TPZ, ensuring effective release within cancer cells under high-phosphate conditions. The subsequent activation of co-loaded TPZ, by the tumor's own hypoxic microenvironment, and that created during PDT, facilitates a combined PDT and chemotherapy approach. This method not only enhances the suppression of cancer cell proliferation but also improves control over tumor metastasis while mitigating the negative impact of hypoxia on singular Por-nMOFs in PDT. This review summarizes recent advances in Por-nMOFs research, focusing on the design strategies for enhancing water dispersibility, circulatory stability, and targeting specificity through post-synthetic modifications. Additionally, this review highlights the bioapplication of Por-nMOFs by integrating TPZ chemotherapy and other therapeutic modalities to combat hypoxic and metastatic malignancies. We anticipate that this review will inspire further research into Por-nMOFs and advance their application in biomedicine.
Collapse
Affiliation(s)
- Qiuyun Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Xiaohui Wang
- School of Public Health, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Jiayi Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Junjie Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Rui Xia
- School of Public Health, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
25
|
Zhan M, Xu Y, Jia L, Yu H, Wang H, Shen M, Shi X. Biomimetic copper-containing nanogels for imaging-guided tumor chemo-chemodynamic-immunotherapy. Acta Biomater 2024; 189:491-504. [PMID: 39322041 DOI: 10.1016/j.actbio.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Developing multifunctional nanoplatforms to comprehensively modulate the tumor microenvironment and enhance diagnostic and therapeutic outcomes still remains a great challenge. Here, we report the facile construction of a multivariate nanoplatform based on cancer cell membrane (CM)-encapsulated redox-responsive poly(N-vinylcaprolactam) (PVCL) nanogels (NGs) co-loaded with Cu(II) and chemotherapeutic drug toyocamycin (Toy) for magnetic resonance (MR) imaging-guided combination tumor chemodynamic therapy/chemoimmunotherapy. We show that redox-responsive PVCL NGs formed through precipitation polymerization can be aminated, conjugated with 3,4-dihydroxyhydrocinnamic acid for Cu(II) complexation, physically loaded with Toy, and finally camouflaged with CMs. The created ADCT@CM NGs with an average size of 113.0 nm are stable under physiological conditions and can efficiently release Cu(II) and Toy under tumor microenvironment with a high level of glutathione. Meanwhile, the developed NGs are able to enhance cancer cell oxidative stress and endoplasmic reticulum stress by synergizing the effects of chemodynamic therapy mediated by Cu-based Fenton-like reaction and Toy-mediated chemotherapy, thereby triggering significant immunogenic cell death (ICD). In a melanoma mouse model, the NGs show potent immune activation effects to reinforce tumor therapeutic efficacy through ICD induction and immune modulation including high levels of immune cytokine secretion, increased tumor infiltration of CD8+ cytotoxic T cells, and reduced tumor infiltration of regulatory T cells. With the CM coating and Cu(II) loading, the developed NG platform demonstrates homologous tumor targeting and T1-weighted MR imaging, hence providing a general biomimetic NG platform for ICD-facilitated tumor theranostic nanoplatform. STATEMENT OF SIGNIFICANCE: Developing multifunctional nanoplatforms to comprehensively modulate the tumor microenvironment (TME) and enhance theranostic outcomes remains a challenge. Here, a cancer cell membrane (CM)-camouflaged nanoplatform based on aminated poly(N-vinylcaprolactam) nanogels (NGs) co-loaded with Cu(II) and toyocamycin (Toy) was prepared for magnetic resonance (MR) imaging-guided combination tumor chemodynamic therapy/chemoimmunotherapy. The tumor targeting specificity and efficient TME-triggered release of Cu(II) and Toy could enhance tumor cell oxidative stress and endoplasmic reticulum stress by synergizing the effects of chemodynamic therapy mediated by Cu-based Fenton-like reaction and Toy-mediated chemotherapy, respectively, thereby leading to significant immunogenic cell death (ICD) and immune response. With the CM coating and Cu(II) loading, the developed NG platform also demonstrates good T1-weighted tumor MR imaging performance. Hence, this study provides a general biomimetic NG platform for ICD-facilitated tumor theranostics.
Collapse
Affiliation(s)
- Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Liang Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Hongwei Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
26
|
Zou Y, Chen J, Luo X, Qu Y, Zhou M, Xia R, Wang W, Zheng X. Porphyrin-engineered nanoscale metal-organic frameworks: enhancing photodynamic therapy and ferroptosis in oncology. Front Pharmacol 2024; 15:1481168. [PMID: 39512824 PMCID: PMC11541831 DOI: 10.3389/fphar.2024.1481168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Photodynamic therapy and ferroptosis induction have risen as vanguard oncological interventions, distinguished by their precision and ability to target vulnerabilities in cancer cells. Photodynamic therapy's non-invasive profile and selective cytotoxicity complement ferroptosis' unique mode of action, which exploits iron-dependent lipid peroxidation, offering a pathway to overcome chemoresistance with lower systemic impact. The synergism between photodynamic therapy and ferroptosis is underscored by the depletion of glutathione and glutathione peroxidase four inhibitions by photodynamic therapy-induced reactive oxygen species, amplifying lipid peroxidation and enhancing ferroptotic cell death. This synergy presents an opportunity to refine cancer treatment by modulating redox homeostasis. Porphyrin-based nanoscale metal-organic frameworks have unique hybrid structures and exceptional properties. These frameworks can serve as a platform for integrating photodynamic therapy and ferroptosis through carefully designed structures and functions. These nanostructures can be engineered to deliver multiple therapeutic modalities simultaneously, marking a pivotal advance in multimodal cancer therapy. This review synthesizes recent progress in porphyrin-modified nanoscale metal-organic frameworks for combined photodynamic therapy and ferroptosis, delineating the mechanisms that underlie their synergistic effects in a multimodal context. It underscores the potential of porphyrin-based nanoscale metal-organic frameworks as advanced nanocarriers in oncology, propelling the field toward more efficacious and tailored cancer treatments.
Collapse
Affiliation(s)
- Yutao Zou
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu, China
| | - Jiayi Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xuanxuan Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yijie Qu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Rui Xia
- School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
27
|
Nasr Esfahani F, Karimi S, Jalilian Z, Alavi M, Aziz B, Alhagh Charkhat Gorgich E, Mozafari MR, Taghavi E, Aminnezhad S, Ataei S. Functionalized and Theranostic Lipidic and Tocosomal Drug Delivery Systems: Potentials and Limitations in Cancer Photodynamic Therapy. Adv Pharm Bull 2024; 14:524-536. [PMID: 39494248 PMCID: PMC11530887 DOI: 10.34172/apb.2024.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/09/2024] [Accepted: 03/03/2024] [Indexed: 11/05/2024] Open
Abstract
Photodynamic therapy (PDT) is a multidisciplinary area, which involves photophysics and photochemical sciences and plays an important role in cancer diagnosis and treatment. PDT involves a photo-activable drug called photosensitizer (PS), a specific wavelength of light and cellular compounds to produce toxic oxygen species in a much-localized way to destroy malignant tumors. Despite the various benefits of PDT, some PS-related limitations hinder its use as an ideal treatment option for cancer. To address these limitations (e.g., poor bioavailability, weak permeability, hydrophobicity, and aggregation), lipid-based and vesicular drug delivery systems have been employed. These carrier systems possess the ability to enhance the bioavailability, permeability, and solubility of the drug. Furthermore, they tend to load hydrophobic and lipophilic compounds and can be employed for an efficient and targeted drug delivery. The purpose of this review is to highlight the precise idea of PDT, the limitations of PDT related to PS, and the application of lipidic and tocosomal carriers in PDT for the treatment of various types of cancers. Liposomes, nanoliposomes, solid lipid nanoparticles, vesicular phospholipid gels, exosomes, transferosomes, and tocosomes are presented as commonly-employed vesicular drug carriers. Moreover, the amalgamation of cell-based drug delivery systems (CBDDS) with PDT holds considerable potential as an encouraging avenue in cancer treatment, especially in the context of immunotherapy.
Collapse
Affiliation(s)
- Fahime Nasr Esfahani
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Sahand Karimi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan 6617715175, Iran
| | - Zahra Jalilian
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan 6617715175, Iran
| | - Bushra Aziz
- Department of Physics, Women University of Azad Jammu & Kashmir, Bagh 12500, Azad Kashmir, Pakistan
| | - Enam Alhagh Charkhat Gorgich
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Elham Taghavi
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu (UMT), 21030 Kuala Nerus, Terengganu, Malaysia
| | - Sargol Aminnezhad
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Sara Ataei
- Department of Clinical Pharmacy (Pharmacotherapy), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Zhu L, Ren Y, Dong M, Sun B, Huang J, Chen L, Xia X, Dong X, Zheng C. Ultrasmall Metal TPZ Complexes with Deep Tumor Penetration for Enhancing Radiofrequency Ablation Therapy and Inducing Antitumor Immune Responses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311244. [PMID: 38898764 DOI: 10.1002/smll.202311244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Radiofrequency ablation (RFA) is one of the most common minimally invasive techniques for the treatment of solid tumors, but residual malignant tissues or small satellite lesions after insufficient RFA (iRFA) are difficult to remove, often leading to metastasis and recurrence. Here, Fe-TPZ nanoparticles are designed by metal ion and (TPZ) ligand complexation for synergistic enhancement of RFA residual tumor therapy. Fe-TPZ nanoparticles are cleaved in the acidic microenvironment of the tumor to generate Fe2+ and TPZ. TPZ, an anoxia-dependent drug, is activated in residual tumors and generates free radicals to cause tumor cell death. Elevated Fe2+ undergoes a redox reaction with glutathione (GSH), inducing a strong Fenton effect and promoting the production of the highly toxic hydroxyl radical (•OH). In addition, the ROS/GSH imbalance induced by this treatment promotes immunogenic cell death (ICD), which triggers the release of damage-associated molecular patterns, macrophage polarization, and lymphocyte infiltration, thus triggering a systemic antitumor immune response and noteworthy prevention of tumor metastasis. Overall, this integrated treatment program driven by multiple microenvironment-dependent pathways overcomes the limitations of the RFA monotherapy approach and thus improves tumor prognosis. Furthermore, these findings aim to provide new research ideas for regulating the tumor immune microenvironment.
Collapse
Affiliation(s)
- Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mengna Dong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bo Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jia Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiangwen Xia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiangjun Dong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|
29
|
Wang C, Wu S. Hybrid cell membranes camouflage liposomes containing payloads to improve breast cancer chemo and photodynamic therapy. Biomater Sci 2024; 12:4980-4992. [PMID: 39169828 DOI: 10.1039/d4bm00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The treatment of unresectable locally advanced triple-negative breast cancer (TNBC) and TNBC with metastasis is challenging. Many anticancer drugs, such as doxorubicin, still hinder positive therapeutic outcomes due to severe side effects. Photodynamic therapy (PDT) has an anticancer effect, and combining PDT with chemotherapy may improve breast cancer therapy. The use of cargo-loaded biomimetic PEGylated liposomes for cancer therapy may enhance efficacy and reduce side effects. In this study, liposomes were formulated to accommodate doxorubicin (Dox) and IR780. Breast cancer cells (4T1 cells) and macrophage cell membranes were isolated and camouflaged onto the PEGylated liposomes, creating a new biomimetic platform called Dox-IR780@Lip@Ms. The Dox-IR780@Lip@Ms platform was characterized and tested in vitro and in vivo. The results showed that the Dox-IR780@Lip@Ms had an ovoid shape with a double lamina structure, monodispersity, and uniform distribution. The size was 132.37 ± 1.22 nm, the PDI was 0.044 ± 0.067, and the zeta potential was -9.67 ± 1.08 mV. The encapsulation efficiency of Dox and IR780 in Dox-IR780@Lip@Ms was 89.36% ± 3.07% and 92.34% ± 0.66%, respectively. The release rate of Dox from Dox-IR780@Lip@Ms was good after laser irradiation. At pH 7.4, the release rate of Dox was 23.85% ± 0.62% at 3 h without laser irradiation and 36.62% ± 1.32% at 3.5 h with laser irradiation. At pH 6.5, the release rate of Dox was 32.54% ± 0.32% at 3 h without laser irradiation and 62.79% ± 2.15% at 3.5 h with laser irradiation. The cytotoxicity of IR780@Lip@Ms was lower than that of Dox-IR780@Lip@Ms. The cell uptake and generation of reactive oxygen species of Dox-IR780@Lip@Ms were significant. Dox-IR780@Lip@Ms exhibited immune escaping ability in vitro, homotypic targeting ability to cancer cells, high capability to kill cancer cells after laser irradiation, minimal cardiotoxicity, increased accumulation of Dox and IR780 in the tumor, and an increased anticancer effect in a tumor-bearing animal model. In conclusion, hybrid cell membranes of breast cancer and macrophages camouflaging PEGylated liposomes loaded with Dox and IR780 can significantly improve breast cancer therapy after laser irradiation in murine models.
Collapse
Affiliation(s)
- Chengfang Wang
- The First Affiliated Hospital of Hainan Medical University, Department of Ultrasound, Haikou, Hainan, China.
| | - Size Wu
- The First Affiliated Hospital of Hainan Medical University, Department of Ultrasound, Haikou, Hainan, China.
| |
Collapse
|
30
|
Li MM, Zhang Y, Sun F, Huai MX, Zhang FY, Pan JX, Qu CY, Shen F, Li ZH, Xu LM. Photodynamic Therapy Using RGD-Functionalized Quantum Dots Elicit a Potent Immune Response in a Syngeneic Mouse Model of Pancreatic Cancer. Int J Nanomedicine 2024; 19:9487-9502. [PMID: 39290860 PMCID: PMC11406538 DOI: 10.2147/ijn.s479123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose Photodynamic therapy (PDT) induces anti-tumor immune responses by triggering immunogenic cell death in tumor cells. Previously, we demonstrated that novel QDs-RGD nanoparticles exhibited high efficiency as photosensitizers in the treatment of pancreatic cancer. However, the underlying mechanism of the anti-tumor immune effects induced by the photosensitizer remains unknown. This study assessed the anticancer immune effect of QDs-RGD, as well as the conventional photosensitizer chlorine derivative, YLG-1, for comparison, against pancreatic cancer in support of superior therapeutic efficacy. Methods The pancreatic cancer cell line, Panc02, was used for in vitro studies. C57BL/6 mice bearing pancreatic cancer cell-derived xenografts were generated for in vivo studies to assess the anti-tumor effects of QDs-RGD-PDT and YLG-1-PDT. The immunostimulatory ability of both photosensitizers was examined by measuring the expression of damage-associated molecular patterns (DAMP), such as calreticulin (CRT), assessing dendritic cell (DC) maturation, and analyzing cytokine expression. The specific immunity of QDs-RGD and YLG-1-PDT on distant tumor were determined by combining PDT with anti-CTLA-4 antibody. Results QDs-RGD-PDT and YLG-1-PDT significantly inhibited pancreatic cancer cell growth in a dose- and time-dependent manner. While both photosensitizers significantly promoted CRT release, DC maturation, and interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) expression, QDs-RGD exerted a stronger immunostimulatory effect than YLG-1. Combination treatment with QDs-RGD and CTLA-4 blockade was able to significantly inhibit the growth of distant tumors. Conclusion QDs-RGD is a novel and effective PDT strategy for treating pancreatic tumors by inducing anti-tumor immune responses.
Collapse
Affiliation(s)
- Ming-Ming Li
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yi Zhang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fang Sun
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Man-Xiu Huai
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fei-Yu Zhang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jia-Xing Pan
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Chun-Ying Qu
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Feng Shen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Zheng-Hong Li
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Lei-Ming Xu
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
31
|
Dong S, Huang H, Li J, Li X, Bunu SJ, Yang Y, Zhang Y, Jia Q, Xu Z, Li Y, Zhou H, Li B, Zhu W. Development of ketalized unsaturated saccharides as multifunctional cysteine-targeting covalent warheads. Commun Chem 2024; 7:201. [PMID: 39251816 PMCID: PMC11385544 DOI: 10.1038/s42004-024-01279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
Multi-functional cysteine-targeting covalent warheads possess significant therapeutic potential in medicinal chemistry and chemical biology. Herein, we present novel unsaturated and asymmetric ketone (oxazolinosene) scaffolds that selectively conjugate cysteine residues of peptides and bovine serum albumin under normal physiological conditions. This unsaturated saccharide depletes GSH in NCI-H1299 cells, leading to anti-tumor effects in vitro. The acetyl group of the ketal moiety on the saccharide ring can be converted to other carboxylic acids in a one-pot synthesis. In this way, the loaded acid can be click-released during cysteine conjugation, making the oxazolinosene a potential multifunctional therapeutic agent. The reaction kinetic model for oxazolinosene conjugation to GSH is well established and was used to evaluate oxazolinosene reactivity. The aforementioned oxazolinosenes were stereoselectively synthesized via a one-step reaction of nitriles with saccharides and conveniently converted into a series of α, β-unsaturated ketone N-glycosides as prevalent synthetic building blocks. The reaction mechanisms of oxazolinosene synthesis were investigated through calculations and validated with control experiments. Overall, these oxazolinosenes can be easily synthesized and developed as cysteine-targeted covalent warheads carrying useful click-releasing groups.
Collapse
Affiliation(s)
- Sanfeng Dong
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Hui Huang
- State Key Laboratory of Drug Research, Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jintian Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, China
| | - Xiaomei Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, China
| | - Samuel Jacob Bunu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, China
| | - Yun Yang
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yong Zhang
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qi Jia
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, China
| | - Yingxia Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, China.
| | - Hu Zhou
- State Key Laboratory of Drug Research, Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, China.
- Shanghai Institute of Materia Medica-University of Ottawa Joint Research Center in Systems and Personalized Pharmacology, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Bo Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, China.
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38 Xue Yuan Road, Haidian District, 100191, Beijing, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049, Beijing, China.
| |
Collapse
|
32
|
Maheshwari S, Singh A, Verma A. Ferroptosis: A Frontier in Osteoporosis. Horm Metab Res 2024; 56:625-632. [PMID: 38307092 DOI: 10.1055/a-2230-2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Reduced bone mass and degeneration of the microarchitecture of bone tissue are the hallmarks of osteoporosis, a bone metabolic disease that increases skeletal fragility and fracture susceptibility. Osteoporosis is primarily caused by unbalanced bone remodeling, in which bone synthesis is outpaced by bone resorption caused by osteoclasts. Along with the bone-building vitamins calcium and vitamin D, typical medications for treating osteoporosis include bisphosphonates and calcitonin. The present therapies effectively stop osteoclast activation that is too high, however they come with varying degrees of negative effects. Numerous factors can contribute to osteoporosis, which is characterized by a loss of bone mass and density due to the deterioration of the bone's microstructure, which makes the bone more fragile. As a result, it is a systemic bone condition that makes patients more likely to fracture. Interest in the function of ferroptosis in the pathophysiology of osteoporosis is developing. In this review, we go through the shape of the cell, the fundamental mechanisms of ferroptosis, the relationship between osteoclasts and osteoblasts, the association between ferroptosis and diabetic osteoporosis, steroid-induced osteoporosis, and the relationship between ferroptosis and postmenopausal osteoporosis. The functions of ferroptosis and osteoporosis in cellular function, signaling cascades, pharmacological inhibition, and gene silencing have been better understood thanks to recent advances in biomedical research.
Collapse
Affiliation(s)
- Shubhrat Maheshwari
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- Faculty of Pharmaceutical Sciences, Rama University, Kanpur, India
| | - Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| |
Collapse
|
33
|
Li X, Li Z, Su Y, Zhou J, Li Y, Zhao Q, Yang X, Shi L, Shen L. Carrier-Free Hybrid Nanoparticles for Enhanced Photodynamic Therapy in Oral Carcinoma via Reversal of Hypoxia and Oxidative Resistance. Pharmaceutics 2024; 16:1130. [PMID: 39339168 PMCID: PMC11434982 DOI: 10.3390/pharmaceutics16091130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
In the present work, we pioneered a coordinated self-assembly approach aimed at fabricating carrier-free hybrid nanoparticles to address the inherent challenges of the anaerobic microenvironment and the oxidative resistance induced by reductive glutathione (GSH) in photodynamic therapy (PDT). In these nanoparticles, protoporphyrin IX (PP), HIF-1α inhibitor of N, N'-(2,5-Dichlorosulfonyl) cystamine KC7F2 (KC), and the cofactor Fe3+ present hydrogen bond and coordination interaction. The nanoparticles exhibited efficient cellular uptake by CAL-27 cells, facilitating their accumulation in tumors by enhanced permeability and retention (EPR) effect. Under irradiation at 650 nm, the formation of cytotoxic singlet oxygen (1O2) would be enhanced by the synergy effect on the Fenton reaction of Fe3+ ion and the downregulation of the HIF-1α, leading to the improved PDT efficacy both in vitro and in vivo biological studies. Our work opens a new supramolecular approach to prepare hybrid nanoparticles for effective synergy therapy with PDT against cancer cells.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cleft Palate Speech, Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhiyin Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai 200011, China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jia Zhou
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shang Hai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuxiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qianqian Zhao
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shang Hai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xia Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai 200011, China
| | - Leilei Shi
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingyue Shen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai 200011, China
| |
Collapse
|
34
|
Rajaram J, Mende LK, Kuthati Y. A Review of the Efficacy of Nanomaterial-Based Natural Photosensitizers to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:1120. [PMID: 39339158 PMCID: PMC11434998 DOI: 10.3390/pharmaceutics16091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Natural photosensitizers (PS) are compounds derived from nature, with photodynamic properties. Natural PSs have a similar action to that of commercial PSs, where cancer cell death occurs by necrosis, apoptosis, and autophagy through ROS generation. Natural PSs have garnered great interest over the last few decades because of their high biocompatibility and good photoactivity. Specific wavelengths could cause phytochemicals to produce harmful ROS for photodynamic therapy (PDT). However, natural PSs have some shortcomings, such as reduced solubility and lower uptake, making them less appropriate for PDT. Nanotechnology offers an opportunity to develop suitable carriers for various natural PSs for PDT applications. Various nanoparticles have been developed to improve the outcome with enhanced solubility, optical adsorption, and tumor targeting. Multidrug resistance (MDR) is a phenomenon in which tumor cells develop resistance to a wide range of structurally and functionally unrelated drugs. Over the last decade, several researchers have extensively studied the effect of natural PS-based photodynamic treatment (PDT) on MDR cells. Though the outcomes of clinical trials for natural PSs were inconclusive, significant advancement is still required before PSs can be used as a PDT agent for treating MDR tumors. This review addresses the increasing literature on MDR tumor progression and the efficacy of PDT, emphasizing the importance of developing new nano-based natural PSs in the fight against MDR that have the required features for an MDR tumor photosensitizing regimen.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Lokesh Kumar Mende
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
35
|
Ma C, Cheng Z, Tan H, Wang Y, Sun S, Zhang M, Wang J. Nanomaterials: leading immunogenic cell death-based cancer therapies. Front Immunol 2024; 15:1447817. [PMID: 39185425 PMCID: PMC11341423 DOI: 10.3389/fimmu.2024.1447817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The field of oncology has transformed in recent years, with treatments shifting from traditional surgical resection and radiation therapy to more diverse and customized approaches, one of which is immunotherapy. ICD (immunogenic cell death) belongs to a class of regulatory cell death modalities that reactivate the immune response by facilitating the interaction between apoptotic cells and immune cells and releasing specific signaling molecules, and DAMPs (damage-associated molecular patterns). The inducers of ICD can elevate the expression of specific proteins to optimize the TME (tumor microenvironment). The use of nanotechnology has shown its unique potential. Nanomaterials, due to their tunability, targeting, and biocompatibility, have become powerful tools for drug delivery, immunomodulators, etc., and have shown significant efficacy in clinical trials. In particular, these nanomaterials can effectively activate the ICD, trigger a potent anti-tumor immune response, and maintain long-term tumor suppression. Different types of nanomaterials, such as biological cell membrane-modified nanoparticles, self-assembled nanostructures, metallic nanoparticles, mesoporous materials, and hydrogels, play their respective roles in ICD induction due to their unique structures and mechanisms of action. Therefore, this review will explore the latest advances in the application of these common nanomaterials in tumor ICD induction and discuss how they can provide new strategies and tools for cancer therapy. By gaining a deeper understanding of the mechanism of action of these nanomaterials, researchers can develop more precise and effective therapeutic approaches to improve the prognosis and quality of life of cancer patients. Moreover, these strategies hold the promise to overcome resistance to conventional therapies, minimize side effects, and lead to more personalized treatment regimens, ultimately benefiting cancer treatment.
Collapse
Affiliation(s)
- Changyu Ma
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Beijing, China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Haotian Tan
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Beijing, China
| | - Yihan Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical College, Peking University Health Science Center, Beijing, China
| | - Shuzhan Sun
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical College, Peking University Health Science Center, Beijing, China
| | - Mingxiao Zhang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Jianfeng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
36
|
An N, Tang S, Wang Y, Luan J, Shi Y, Gao M, Guo C. FeP-Based Nanotheranostic Platform for Enhanced Phototherapy/Ferroptosis/Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309940. [PMID: 38534030 DOI: 10.1002/smll.202309940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Ferroptosis is an iron-dependent and lipid peroxides (LPO)-overloaded programmed damage cell death, induced by glutathione (GSH) depletion and glutathione peroxide 4 (GPX4) inactivation. However, the inadequacy of endogenous iron and reactive oxygen species (ROS) restricts the efficacy of ferroptosis. To overcome this obstacle, a near-infrared photo-responsive FeP@PEG NPs is fabricated. Exogenous iron pool can enhance the effect of ferroptosis via the depletion of GSH and further regulate GPX4 inactivation. Generation of ·OH derived from the Fenton reaction is proved by increased accumulation of lipid peroxides. The heat generated by photothermal therapy and ROS generated by photodynamic therapy can enhance cell apoptosis under near-infrared (NIR-808 nm) irradiation, as evidenced by mitochondrial dysfunction and further accumulation of lipid peroxide content. FeP@PEG NPs can significantly inhibit the growth of several types of cancer cells in vitro and in vivo, which is validated by theoretical and experimental results. Meanwhile, FeP@PEG NPs show excellent T2-weighted magnetic resonance imaging (MRI) property. In summary, the FeP-based nanotheranostic platform for enhanced phototherapy/ferroptosis/chemodynamic therapy provides a reliable opportunity for clinical cancer theranostics.
Collapse
Affiliation(s)
- Na An
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shuanglong Tang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuwei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jing Luan
- The HIT Center for Life Science, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ying Shi
- Magnetic Resonance Department of the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Minghui Gao
- The HIT Center for Life Science, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Chongshen Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
37
|
Zhuge X, Tang R, Jiang Y, Lin L, Xi D, Yang H. A multifunctional nanoplatform for chemotherapy and nanocatalytic synergistic cancer therapy achieved by amplified lipid peroxidation. Acta Biomater 2024; 184:419-430. [PMID: 38936754 DOI: 10.1016/j.actbio.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Traditional cancer chemotherapy suffers from low efficacy and severe side effects, limiting its use as a first-line treatment. To address this issue, we investigated a novel way to induce lipid peroxidation (LPO), which plays an essential role in ferroptosis and may be useful against cancer cells and tumors. In this study, a pH-responsive synergistic cancer therapy nanoplatform was prepared using CaCO3 co-loaded with oleanolic acid (OA) and lipoxygenase (LOX), resulting in the formation OLCaP NP. This nanoplatform exhibited good drug release properties in an acidic tumor environment owing to the presence of CaCO3. As a result of acidic stimulation at tumor sites, the OLCaP NP released OA and LOX. OA, a chemotherapeutic drug with anticancer activity, is already known to promote the apoptosis of cancer cells, and LOX is a natural enzyme that catalyzes the oxidation of polyunsaturated fatty acids, leading to the accumulation of lipid peroxides and promoting the apoptosis of cancer cells. More importantly, OA upregulated the expression of acyl-coenzyme A synthetase long-chain family member 4 (ACSL4), which promoted enzyme-mediated LPO. Based on our combined chemotherapy and nanocatalytic therapy, the OLCaP NP not only had remarkable antitumor ability but also upregulated ACSL4 expression, allowing further amplification of LPO to inhibit tumor growth. These findings demonstrate the potential of this nanoplatform to enhance the therapeutic efficacy against tumors by inducing oxidative stress and disrupting lipid metabolism, highlighting its clinical potential for improved cancer treatment. STATEMENT OF SIGNIFICANCE: This study presents a novel nanoplatform that combines oleanolic acid (OA), a chemotherapeutic drug, and lipoxygenase (LOX), which oxidizes polyunsaturated fatty acids to trigger apoptosis, for targeted cancer therapy. Unlike traditional treatments, our nanoplatform exhibits pH-responsive drug release, specifically in acidic tumor environments. This innovation enhances the therapeutic effects of OA and LOX, upregulating acyl-CoA synthetase long-chain family member 4 expression and amplifying lipid peroxidation to promote tumor cell apoptosis. Our findings significantly advance the existing literature by demonstrating a synergistic approach that combines chemotherapy and nanocatalytic therapy. The scientific impact of this work lies in its potential to improve cancer treatment efficacy and specificity, offering a promising strategy for clinical applications and future research in cancer therapy.
Collapse
Affiliation(s)
- Xiao Zhuge
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong 276005, China
| | - Ruping Tang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Shandong 276005, China
| | - Yao Jiang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Shandong 276005, China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Life Science, Linyi University, Shandong 276005, China.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
38
|
Zhang P, Cheng M, Levi-Kalisman Y, Raviv U, Xu Y, Han J, Dou H. Macromolecular Nano-Assemblies for Enhancing the Effect of Oxygen-Dependent Photodynamic Therapy Against Hypoxic Tumors. Chemistry 2024; 30:e202401700. [PMID: 38797874 DOI: 10.1002/chem.202401700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
In oxygen (O2)-dependent photodynamic therapy (PDT), photosensitizers absorb light energy, which is then transferred to ambient O2 and subsequently generates cytotoxic singlet oxygen (1O2). Therefore, the availability of O2 and the utilization efficiency of generated 1O2 are two significant factors that influence the effectiveness of PDT. However, tumor microenvironments (TMEs) characterized by hypoxia and limited utilization efficiency of 1O2 resulting from its short half-life and short diffusion distance significantly restrict the applicability of PDT for hypoxic tumors. To address these challenges, numerous macromolecular nano-assemblies (MNAs) have been designed to relieve hypoxia, utilize hypoxia or enhance the utilization efficiency of 1O2. Herein, we provide a comprehensive review on recent advancements achieved with MNAs in enhancing the effectiveness of O2-dependent PDT against hypoxic tumors.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Meng Cheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, 9190401, Givat Ram, Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, 9190401, Givat Ram, Jerusalem, Israel
| | - Yichun Xu
- Shanghai Biochip Co. Ltd. and National Engineering Center for Biochip at Shanghai, 151 Libing Road, 201203, Shanghai, China
| | - Junsong Han
- Shanghai Biochip Co. Ltd. and National Engineering Center for Biochip at Shanghai, 151 Libing Road, 201203, Shanghai, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
39
|
Biglione C, Hidalgo T, Horcajada P. Nanoscaled metal-organic frameworks: charting a transformative path for cancer therapeutics and beyond. Drug Deliv Transl Res 2024; 14:2041-2045. [PMID: 38755501 DOI: 10.1007/s13346-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Through this inspirational note, we would like to highlight the potential of nanoscaled metal-organic frameworks within the biomedical field. The unique properties of these materials that make them promising candidates for new nanomedicines are assessed here as well as the progression reached so far for combinational cancer therapies and theranostic, along with its most recent advances in nanomedicine. Finally, the perspective and challenges of these materials within this field is discussed.
Collapse
Affiliation(s)
- Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935, Madrid, Spain
| | - Tania Hidalgo
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935, Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935, Madrid, Spain
| |
Collapse
|
40
|
Wang J, Liang S, Chen S, Ma T, Chen M, Niu C, Leng Y, Wang L. Bacterial outer membrane vesicle-cancer cell hybrid membrane-coated nanoparticles for sonodynamic therapy in the treatment of breast cancer bone metastasis. J Nanobiotechnology 2024; 22:328. [PMID: 38858780 PMCID: PMC11165797 DOI: 10.1186/s12951-024-02619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Breast cancer bone metastasis is a terminal-stage disease and is typically treated with radiotherapy and chemotherapy, which causes severe side effects and limited effectiveness. To improve this, Sonodynamic therapy may be a more safe and effective approach in the future. Bacterial outer membrane vesicles (OMV) have excellent immune-regulating properties, including modulating macrophage polarization, promoting DC cell maturation, and enhancing anti-tumor effects. Combining OMV with Sonodynamic therapy can result in synergetic anti-tumor effects. Therefore, we constructed multifunctional nanoparticles for treating breast cancer bone metastasis. We fused breast cancer cell membranes and bacterial outer membrane vesicles to form a hybrid membrane (HM) and then encapsulated IR780-loaded PLGA with HM to produce the nanoparticles, IR780@PLGA@HM, which had tumor targeting, immune regulating, and Sonodynamic abilities. Experiments showed that the IR780@PLGA@HM nanoparticles had good biocompatibility, effectively targeted to 4T1 tumors, promoted macrophage type I polarization and DC cells activation, strengthened anti-tumor inflammatory factors expression, and presented the ability to effectively kill tumors both in vitro and in vivo, which showed a promising therapeutic effect on breast cancer bone metastasis. Therefore, the nanoparticles we constructed provided a new strategy for effectively treating breast cancer bone metastasis.
Collapse
Affiliation(s)
- Jiahao Wang
- The School of Medicine, Nankai University, Tianjin, 300071, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, China
| | - Tianliang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Leng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha, China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, Hunan, 410008, China.
| |
Collapse
|
41
|
Zhang T, Bai L, You R, Yang M, Chen Q, Cheng Y, Qian Z, Wang Y, Liu Y. Homologous-targeting biomimetic nanoparticles co-loaded with melittin and a photosensitizer for the combination therapy of triple negative breast cancer. J Mater Chem B 2024; 12:5465-5478. [PMID: 38742364 DOI: 10.1039/d3tb02919k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Melittin (Mel) is considered a promising candidate drug for the treatment of triple negative breast cancer (TNBC) due to its various antitumor effects. However, its clinical application is hampered by notable limitations, including hemolytic activity, rapid clearance, and a lack of tumor selectivity. Here, we designed novel biomimetic nanoparticles based on homologous tumor cell membranes and poly(lactic-co-glycolic acid) (PLGA)/poly(beta-aminoester) (PBAE), denoted MDM@TPP, which efficiently coloaded the cytolytic peptide Mel and the photosensitizer mTHPC. Both in vitro and in vivo, the MDM@TPP nanoparticles effectively mitigated the acute toxicity of melittin and exhibited strong TNBC targeting ability due to the homologous targeting effect of the tumor cell membrane. Under laser irradiation, the MDM@TPP nanoparticles showed excellent photodynamic performance and thus accelerated the release of Mel by disrupting cell membrane integrity. Moreover, Mel combined with photodynamic therapy (PDT) can synergistically kill tumor cells and induce significant immunogenic cell death, thereby stimulating the maturation of dendritic cells (DCs). In 4T1 tumor-bearing mice, MDM@TPP nanoparticles effectively inhibited the growth and metastasis of primary tumors and finally prevented tumor recurrence by improving the immune response.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin 300192, China
| | - Liya Bai
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Ran You
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Meng Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Qian Chen
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Yuanyuan Cheng
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Zhanyin Qian
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Yinsong Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Yuanyuan Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
42
|
Hu X, Zhang M, Quan C, Ren S, Chen W, Wang J. ROS-responsive and triple-synergistic mitochondria-targeted polymer micelles for efficient induction of ICD in tumor therapeutics. Bioact Mater 2024; 36:490-507. [PMID: 39055351 PMCID: PMC11269796 DOI: 10.1016/j.bioactmat.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Immunogenic cell death (ICD) represents a modality of apoptosis distinguished by the emanation of an array of damage-related molecular signals. This mechanism introduces a novel concept in the field of contemporary tumor immunotherapy. The inception of reactive oxygen species (ROS) within tumor cells stands as the essential prerequisite and foundation for ICD induction. The formulation of highly efficacious photodynamic therapy (PDT) nanomedicines for the successful induction of ICD is an area of significant scientific inquiry. In this work, we devised a ROS-responsive and triple-synergistic mitochondria-targeted polymer micelle (CAT/CPT-TPP/PEG-Ce6, CTC) that operates with multistage amplification of ROS to achieve the potent induction of ICD. Utilizing an "all-in-one" strategy, we direct both the PDT and chemotherapeutic units to the mitochondria. Concurrently, a multistage cyclical amplification that caused by triple synergy strategy stimulates continuous, stable, and adequate ROS generation (domino effect) within the mitochondria of cells. Conclusively, influenced by ROS, tumor cell-induced ICD is effectively activated, remodeling immunogenicity, and enhancing the therapeutic impact of PDT when synergized with chemotherapy. Empirical evidence from in vitro study substantiates that CTC micelles can efficiently provoke ICD, catalyzing CRT translocation, the liberation of HMGB1 and ATP. Furthermore, animal trials corroborate that polymer micelles, following tail vein injection, can induce ICD, accumulate effectively within tumor tissues, and markedly inhibit tumor growth subsequent to laser irradiation. Finally, transcriptome analysis was carried out to evaluate the changes in tumor genome induced by CTC micelles. This work demonstrates a novel strategy to improve combination immunotherapy using nanotechnology.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Cuilu Quan
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Saisai Ren
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, No.361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| |
Collapse
|
43
|
Cao C, Lu Y, Pan X, Lin Y, Fan S, Niu J, Lin S, Tan H, Wang Y, Cui S, Liu Y. Time and Space Dual-Blockade Strategy for Highly Invasive Nature of Triple-Negative Breast Cancer in Enhanced Sonodynamic Therapy Based on Fe-MOF Nanoplatforms. Adv Healthc Mater 2024; 13:e2304249. [PMID: 38325812 DOI: 10.1002/adhm.202304249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Triple-negative breast cancer (TNBC), due to its high malignant degree and strong invasion ability, leads to poor prognosis and easy recurrence, so effectively curbing the invasion of TNBC is the key to obtaining the ideal therapeutic effect. Herein, a therapeutic strategy is developed that curbs high invasions of TNBC by inhibiting cell physiological activity and disrupting tumor cell structural function to achieve the time and space dual-blockade. The time blockade is caused by the breakthrough of the tumor-reducing blockade based on the ferroptosis process and the oxidation-toxic free radicals generated by enhanced sonodynamic therapy (SDT). Meanwhile, alkyl radicals from 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) and 1O2 attacked the organelles of tumor cells under ultrasound (US), reducing the physiological activity of the cells. The attack of free radicals on the cytoskeleton, especially on the proteins of F-actin and its assembly pathway, achieves precise space blockade of TNBC. The damage to the cytoskeleton and the suppression of the repair process leads to a significant decline in the ability of tumor cells to metastasize and invade other organs. In summary, the FTM@AM nanoplatforms have a highly effective killing and invasion inhibition effect on invasive TNBC mediated by ultrasound, showcasing promising clinical transformation potential.
Collapse
Affiliation(s)
- Cheng Cao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yi Lu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xinni Pan
- Department of radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Yuwan Lin
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Shanshan Fan
- Department of radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shujing Lin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Haisong Tan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - You Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Shengsheng Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
44
|
Wang X, Feng JH, Zeng CM, Zhang ZS, Cao FL, Zhang WH, Chen JX, Young DJ. [Fe IIICl(TMPPH 2)][Fe IIICl 4] 2: A Stand-Alone Molecular Nanomedicine That Induces High Cytotoxicity by Ferroptosis. Molecules 2024; 29:2495. [PMID: 38893373 PMCID: PMC11173869 DOI: 10.3390/molecules29112495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Developing clinically meaningful nanomedicines for cancer therapy requires the drugs to be effective, safe, simple, cheap, and easy to store. In the present work, we report that a simple cationic Fe(III)-rich salt of [FeIIICl(TMPPH2)][FeIIICl4]2 (Fe-TMPP) exhibits a superior anticancer performance on a broad spectrum of cancer cell lines, including breast, colorectal cancer, liver, pancreatic, prostate, and gastric cancers, with half maximal inhibitory concentration (IC50) values in the range of 0.098-3.97 μM (0.066-2.68 μg mL-1), comparable to the best-reported medicines. Fe-TMPP can form stand-alone nanoparticles in water without the need for extra surface modification or organic-solvent-assisted antisolvent precipitation. Critically, Fe-TMPP is TME-responsive (TME = tumor microenvironment), and can only elicit its function in the TME with overexpressed H2O2, converting H2O2 to the cytotoxic •OH to oxidize the phospholipid of the cancer cell membrane, causing ferroptosis, a programmed cell death process of cancer cells.
Collapse
Affiliation(s)
- Xiao Wang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (X.W.); (C.-M.Z.); (Z.-S.Z.); (F.-L.C.)
| | - Jia-Hao Feng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Chun-Mei Zeng
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (X.W.); (C.-M.Z.); (Z.-S.Z.); (F.-L.C.)
| | - Ze-Sheng Zhang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (X.W.); (C.-M.Z.); (Z.-S.Z.); (F.-L.C.)
| | - Feng-Lin Cao
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (X.W.); (C.-M.Z.); (Z.-S.Z.); (F.-L.C.)
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China; (X.W.); (C.-M.Z.); (Z.-S.Z.); (F.-L.C.)
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - David J. Young
- Glasgow College UESTC, University of Electronic Science and Technology of China, Chengdu 611731, China;
| |
Collapse
|
45
|
Zeng CM, Luo SY, Wang X, Cao FL, Zhang ZS, Zhang WH, Dai CL, Young DJ. A Porphyrin-Based 3D Metal-Organic Framework Featuring [Cu 8Cl 6] 10+ Cluster Secondary Building Units: Synthesis, Structure Elucidation, Anion Exchange, and Peroxidase-Like Activity. Chem Asian J 2024; 19:e202400237. [PMID: 38563626 DOI: 10.1002/asia.202400237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Herein, we report a rare example of cationic three-dimensional (3D) metal-organic framework (MOF) of [Cu5Cl3(TMPP)]Cl5 ⋅ xSol (denoted as Cu-TMPP; H2TMPP=meso-tetrakis (6-methylpyridin-3-yl) porphyrin; xSol=encapsulated solvates) supported by [Cu8Cl6]10+ cluster secondary building units (SBUs) wherein the eight faces of the Cl--based octahedron are capped by eight Cu2+. Surface-area analysis indicated that Cu-TMPP features a mesoporous structure and its solvate-like Cl- counterions can be exchanged by BF4 -, PF6 -, and NO3 -. The polyvinylpyrrolidone (PVP) coated Cu-TMPP (denoted as Cu-TMPP-PVP) demonstrated good ROS generating ability, producing ⋅OH in the absence of light (peroxidase-like activity) and 1O2 on light irradiation (650 nm; 25 mW cm-2). This work highlights the potential of Cu-TMPP as a functional carrier of anionic guests such as drugs, for the combination therapy of cancer and other diseases.
Collapse
Affiliation(s)
- Chun-Mei Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Song-Yu Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng-Lin Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ze-Sheng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chun-Lei Dai
- Department of Cardiothoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - David J Young
- Glasgow College UESTC, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
46
|
Zhang J, Li M, Liu M, Yu Q, Ge D, Zhang J. Metal-Organic Framework Nanomaterials as a Medicine for Catalytic Tumor Therapy: Recent Advances. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:797. [PMID: 38727391 PMCID: PMC11085591 DOI: 10.3390/nano14090797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Nanomaterials, with unique physical, chemical, and biocompatible properties, have attracted significant attention as an emerging active platform in cancer diagnosis and treatment. Amongst them, metal-organic framework (MOF) nanostructures are particularly promising as a nanomedicine due to their exceptional surface functionalities, adsorption properties, and organo-inorganic hybrid characteristics. Furthermore, when bioactive substances are integrated into the structure of MOFs, these materials can be used as anti-tumor agents with superior performance compared to traditional nanomaterials. In this review, we highlight the most recent advances in MOFs-based materials for tumor therapy, including their application in cancer treatment and the underlying mechanisms.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meiyu Li
- School of Life Science, Jiangsu University, Zhenjiang 212013, China;
| | - Maosong Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qian Yu
- School of Life Science, Jiangsu University, Zhenjiang 212013, China;
| | - Dengfeng Ge
- Shengli Oilfield Central Hospital, 31 Ji’nan Rd, Dongying 257034, China;
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
47
|
Wang Y, Wang J, Ye R, Jin Q, Yin F, Liu N, Wang Y, Zhang Q, Gao T, Zhao Y. Cancer Cell-Mimicking Prussian Blue Nanoplatform for Synergistic Mild Photothermal/Chemotherapy via Heat Shock Protein Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38624164 DOI: 10.1021/acsami.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Combined mild-temperature photothermal/chemotherapy has emerged as a highly promising modality for tumor therapy. However, its therapeutic efficacy is drastically compromised by the heat-induced overexpression of heat shock proteins (HSPs) by the cells, which resist heat stress and apoptosis. The purpose of this study was to downregulate HSPs and enhance the mild-temperature photothermal/chemotherapy effect. In detail, the colon cancer cell membrane (CT26M)-camouflaged HSP90 inhibitor ganetespib and the chemotherapeutic agent doxorubicin (DOX)-coloaded hollow mesoporous Prussian blue (HMPB) nanoplatform (named PGDM) were designed for synergistic mild photothermal/chemotherapy via HSP inhibition. In addition to being a photothermal agent with a high efficiency of photothermal conversion (24.13%), HMPB offers a hollow hole that can be filled with drugs. Concurrently, the cancer cell membrane camouflaging enhances tumor accumulation through a homologous targeting mechanism and gives the nanoplatform the potential to evade the immune system. When exposed to NIR radiation, HMPB's photothermal action (44 °C) not only causes tumor cells to undergo apoptosis but also causes ganetespib to be released on demand. This inhibits the formation of HSP90, which enhances the mild photothermal/chemotherapy effect. The results confirmed that the combined treatment regimen of mild photothermal therapy (PTT) and chemotherapy showed a better therapeutic efficacy than the individual treatment methods. Therefore, this multimodal nanoparticle can advance the development of drugs for the treatment of malignancies, such as colon cancer, and has prospects for clinical application.
Collapse
Affiliation(s)
- Yun Wang
- Department of Gastroenterology, Jiamusi Central Hospital, Jiamus 154003, P. R. China
- Department of Internal Medicine, School of Clinical Medicine, Jiamusi University, Jiamusi 154007, P. R. China
| | - Jinling Wang
- Department of Emergency and Critical Care Center, The Second Affiliated Hospital of Guangdong Medical University, No.12 Minyou Road, Xiashan, Zhanjiang, Guangdong 524003, P. R. China
| | - Roumei Ye
- Department of Pharmacy, Medical College of Guangxi University, Nanning 530004, P. R. China
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, P. R. China
| | - Fengyue Yin
- Department of Pharmacy, Medical College of Guangxi University, Nanning 530004, P. R. China
| | - Nian Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, P. R. China
| | - Yubo Wang
- Department of Biomedical Engineering, Medical College of Guangxi University, Nanning 530004, P. R. China
| | - Quan Zhang
- Department of Gastroenterology, Jiamusi Central Hospital, Jiamus 154003, P. R. China
- Department of Internal Medicine, School of Clinical Medicine, Jiamusi University, Jiamusi 154007, P. R. China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Yilin Zhao
- Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, Xiamen 361004, P. R. China
| |
Collapse
|
48
|
Song Y, Xu X, Wang Z, Zhao Y. Metal-Organic Framework-Based Nanomedicines for Ferroptotic Cancer Therapy. Adv Healthc Mater 2024; 13:e2303533. [PMID: 38221753 DOI: 10.1002/adhm.202303533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/28/2023] [Indexed: 01/16/2024]
Abstract
As an iron-dependent, non-apoptosis, regulated cell death (RCD) modality, ferroptosis has gained growing attention for cancer therapy. With the development of nanomaterials in the biomedical field, ferroptotic cancer nanomedicine is extensively investigated. Amongst various nanomaterials, metal-organic frameworks (MOFs) are hybridized porous materials consisting of metal ions or clusters bridged by organic linkers. The superior properties of MOFs, such as high porosity and cargo loading, ease of surface modification, and good biocompatibility, make them appealing in inducing or sensitizing ferroptotic cell death. There are remarkable achievements in the field of MOF-based ferroptosis cancer therapy. However, this topic is not reviewed. This review will introduce the fundamentals of MOF and ferroptosis machinery, summarize the recent progress of MOF-based ferroptotic anticancer drug delivery, discuss the benefits and problems of MOFs as vehicles and sensitizers for cancer ferroptosis, and provide the perspective on future research direction on this promising field.
Collapse
Affiliation(s)
- Yue Song
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Tianjin University, Tianjin, 300072, China
| | - Xinran Xu
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University Affiliated Maternity Hospital, Tianjin, 300100, China
| | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Tianjin University, Tianjin, 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
49
|
Tai Y, Chen Z, Luo T, Luo B, Deng C, Lu Z, Wen S, Wang J. MOF@COF Nanocapsules Enhance Soft Tissue Sarcoma Treatment: Synergistic Effects of Photodynamic Therapy and PARP Inhibition on Tumor Growth Suppression and Immune Response Activation. Adv Healthc Mater 2024; 13:e2303911. [PMID: 38215731 DOI: 10.1002/adhm.202303911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Soft tissue sarcomas (STS) are highly malignant tumors with limited treatment options owing to their heterogeneity and resistance to conventional therapies. Photodynamic therapy (PDT) and poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have shown potential for STS treatment, with PDT being effective for sarcomas located on the extremities and body surface and PARPi targeting defects in homologous recombination repair. To address the limitations of PDT and harness the potential of PARPi, herein, a novel therapeutic approach for STS treatment combining nanocapsules bearing integrated metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), i.e., MOF@COF, with PDT and PARPi is proposed. Nanocapsules are designed, referred to as ZTN@COF@poloxamer, which contain a Zr-based MOF and tetrakis (4-carbethoxyphenyl) porphyrin as a photosensitizer, are coated with a COF to improve the sensitizing properties, and are loaded with niraparib to inhibit DNA repair. Experiments demonstrate that this new nanocapsules treatment significantly inhibits STS growth, promotes tumor cell apoptosis, exhibits high antitumor activity with minimal side effects, activates the immune response of the tumor, and inhibits lung metastasis in vivo. Therefore, MOF@COF nanocapsules combined with PARPi offer a promising approach for STS treatment, with the potential to enhance the efficacy of PDT and prevent tumor recurrence.
Collapse
Affiliation(s)
- Yi Tai
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Zhihao Chen
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Tianqi Luo
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Chuangzhong Deng
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Zhenhai Lu
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Jin Wang
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| |
Collapse
|
50
|
Liu Z, Lu T, Qian R, Wang Z, Qi R, Zhang Z. Exploiting Nanotechnology for Drug Delivery: Advancing the Anti-Cancer Effects of Autophagy-Modulating Compounds in Traditional Chinese Medicine. Int J Nanomedicine 2024; 19:2507-2528. [PMID: 38495752 PMCID: PMC10944250 DOI: 10.2147/ijn.s455407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Background Cancer continues to be a prominent issue in the field of medicine, as demonstrated by recent studies emphasizing the significant role of autophagy in the development of cancer. Traditional Chinese Medicine (TCM) provides a variety of anti-tumor agents capable of regulating autophagy. However, the clinical application of autophagy-modulating compounds derived from TCM is impeded by their restricted water solubility and bioavailability. To overcome this challenge, the utilization of nanotechnology has been suggested as a potential solution. Nonetheless, the current body of literature on nanoparticles delivering TCM-derived autophagy-modulating anti-tumor compounds for cancer treatment is limited, lacking comprehensive summaries and detailed descriptions. Methods Up to November 2023, a comprehensive research study was conducted to gather relevant data using a variety of databases, including PubMed, ScienceDirect, Springer Link, Web of Science, and CNKI. The keywords utilized in this investigation included "autophagy", "nanoparticles", "traditional Chinese medicine" and "anticancer". Results This review provides a comprehensive analysis of the potential of nanotechnology in overcoming delivery challenges and enhancing the anti-cancer properties of autophagy-modulating compounds in TCM. The evaluation is based on a synthesis of different classes of autophagy-modulating compounds in TCM, their mechanisms of action in cancer treatment, and their potential benefits as reported in various scholarly sources. The findings indicate that nanotechnology shows potential in enhancing the availability of autophagy-modulating agents in TCM, thereby opening up a plethora of potential therapeutic avenues. Conclusion Nanotechnology has the potential to enhance the anti-tumor efficacy of autophagy-modulating compounds in traditional TCM, through regulation of autophagy.
Collapse
Affiliation(s)
- Zixian Liu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Tianming Lu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Ruoning Qian
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Zian Wang
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Zhengguang Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| |
Collapse
|