1
|
Li Z, Lu Y, Wang L, Shi L, Wang T. Reactive oxygen species-dependent nanomedicine therapeutic modalities for gastric cancer. NANOSCALE ADVANCES 2025; 7:3210-3227. [PMID: 40308560 PMCID: PMC12038724 DOI: 10.1039/d5na00321k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
Reactive oxygen species (ROS) play a double-edged role in gastric cancer (GC). Higher levels of ROS in tumor cells compared to normal cells facilitate tumor progression. Once ROS concentrations rise rapidly to toxic levels, they cause GC cell death, which is instead beneficial for GC treatment. Based on these functions, nano-delivery systems taking the therapeutic advantages of ROS have been widely employed in tumor therapy in recent years, overcoming the drawbacks of conventional drug delivery techniques, such as non-specific systemic effects. In this review, the precise impacts of ROS on GC have been detailed, along with ROS-based nanomedicine therapeutic schemes. These strategies mainly focused on the use of excess ROS in the tumor microenvironment for controlled drug release and a substantial enhancement of ROS concentrations for tumor killing. The challenges and opportunities for the advancement of these anticancer therapies are also emphasized.
Collapse
Affiliation(s)
- Zhiyan Li
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Yanjun Lu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Lulu Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Liuyi Shi
- Yangzhou University Medical College Yangzhou 225001 China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| |
Collapse
|
2
|
Wang X, Liu Y, Jiang Y, Li Q. Tumor-derived exosomes as promising tools for cancer diagnosis and therapy. Front Pharmacol 2025; 16:1596217. [PMID: 40444049 PMCID: PMC12119533 DOI: 10.3389/fphar.2025.1596217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 05/06/2025] [Indexed: 06/02/2025] Open
Abstract
Mounting evidences indicated that cancer cell-derived exosomes (TDEs) contribute to cancer progression and metastasis by reshaping the tumor microenvironment (TME) and interfering immunity response. TDEs contain unique biomolecular cargo, consisting of protein, nucleic acid, and lipids. In recent years, TDEs have been used as potential disease therapeutics and diagnosis biomarkers and prime candidates as delivery tools for cancer treatment. In the present review, we firstly summarized TDEs biogenesis and characteristic. Also, the role of TDEs in cancer cell metastasis and invasiveness, drug resistance, and immunosuppression was mentioned via cell-cell communication. Additionally, we concluded the current strategies for TDE-based cancer therapy, including TDEs inhibition and clearance, usage as therapeutic drug delivery vector and cancer vaccines. Furthermore, combination therapy with engineered TDEs were summarized, such as radiotherapy, photodynamic therapy, photothermal therapy, and sonodynamic therapy. Consequently, the above opens up novel and interesting opportunities for cancer diagnosis and prognosis based on TDEs, which is prospective to accelerate the clinical translation of TDEs for cancer therapy.
Collapse
Affiliation(s)
- Xirui Wang
- Department of Biomedical Engineering, School of Medical Imaging Xuzhou Medical University, Xuzhou, China
| | - Yanfang Liu
- Department of Central Laboratory, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Yaowen Jiang
- Department of Biomedical Engineering, School of Medical Imaging Xuzhou Medical University, Xuzhou, China
| | - Qinghua Li
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Tran NA, Moonshi SS, Lam AK, Lu CT, Vu CQ, Arai S, Ta HT. Nanomaterials in cancer starvation therapy: pioneering advances, therapeutic potential, and clinical challenges. Cancer Metastasis Rev 2025; 44:51. [PMID: 40347350 PMCID: PMC12065774 DOI: 10.1007/s10555-025-10267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Gaining significant attention in recent years, starvation therapy based on the blocking nutrients supply to cancer cells via blood occlusion and metabolic interventions is a promisingly novel approach in cancer treatment. However, there are many crucial obstacles to overcome to achieve effective treatment, for example, poor-targeting delivery, cellular hypoxia, adverse effects, and ineffective monotherapy. The starvation-based multitherapy based on multifunctional nanomaterials can narrow these gaps and pave a promising way for future clinical translation. This review focuses on the progression in nanomaterials-mediated muti-therapeutic modalities based on starvation therapy in recent years and therapeutic limitations that prevent their clinical applications. Moreover, unlike previous reviews that focused on a single aspect of the field, this comprehensive review presents a broader perspective on starvation therapy by summarising advancements across its various therapeutic strategies.
Collapse
Affiliation(s)
- Nam Anh Tran
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Shehzahdi S Moonshi
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cu Tai Lu
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cong Quang Vu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
4
|
Luo X, Zhou Y, Rao K, Xiang J, Ning S, Zhu D, Li G, Chen H. Biomimetic Cascade Nanozyme Catalytic System for the Treatment of Lymph Node Metastasis in Gastric Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411576. [PMID: 40123244 DOI: 10.1002/smll.202411576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/18/2025] [Indexed: 03/25/2025]
Abstract
Lymphatic metastasis of gastric cancer is a challenging issue in clinical practice. Recently, copper single-atom nanozymes (SAZ) have gained tremendous attention due to its superior peroxidase (POD) activity that has good nonocatalytic tumor therapy (NCT) capabilities, and photothermal properties. Therefore, using a high-expressing P-selectin platelet membrane (PM) to encapsulate SAZ and cisplatin is proposed, forming PSC nanoparticles. Due to their exquisite nanoscale size and the unique structure of lymphatic vessels, PSC can highly target cancer cells in invasive primary tumors and metastatic lymph nodes that both highly express CD44. It is noteworthy that cisplatin can simultaneously perform chemotherapy and generate H₂O₂ under the action of NADPH oxidases (NOXs) that further enhance the catalytic activity of SAZ and increase intracellular reactive oxygen species (ROS) production. Both in vitro and vivo experiments have demonstrated the superior targeting and elimination capability of the PCS system in primary and metastatic tumor cells. In addition, transcriptomic analysis reveals that PSC + NIR induced apoptosis in MFC cells. This marks the first proposal of combining single-atom nanozymes and chemotherapy drugs for dual-targeting in gastric cancer and lymphatic metastasis, providing new insights into a challenging clinical issue in the treatment of gastric cancer lymphatic metastasis.
Collapse
Affiliation(s)
- Xi Luo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yingguang Zhou
- Department of Joint Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510900, P. R. China
| | - Kexiang Rao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jingfeng Xiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, P. R. China
| | - Daoming Zhu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Guoxin Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
- Cancer Center of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 102218, P. R. China
| | - Hao Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
5
|
Song G, Zeng C, Li J, Liu J, Zhao J, Liu B, Fan J, Xie H. Exosome-based nanomedicines for digestive system tumors therapy. Nanomedicine (Lond) 2025; 20:1167-1180. [PMID: 40248953 PMCID: PMC12068745 DOI: 10.1080/17435889.2025.2493037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
Digestive system tumors constitute a major subset of malignancies, consistently ranking among the leading causes of mortality globally. Despite limitations inherent in current therapeutic modalities, recent advancements in targeted therapy and drug delivery systems have led to significant improvements in the efficacy of pharmacotherapy for digestive system tumors. In this context, exosomes - naturally occurring nanoscale vesicles - have emerged as promising drug delivery candidates due to their intrinsic molecular transport capabilities, superior biocompatibility, and targeted recognition of tumor cells. The integration of exosomes into cancer therapeutics represents a novel and potentially transformative approach for treating digestive system tumors, which may drive further progress in this field. This review comprehensively examines the sources, loading mechanisms, and therapeutic efficacy of exosomes in the context of digestive system tumor treatment. Furthermore, it discusses the opportunities and challenges associated with exosomes, offering insights into their future role within the therapeutic armamentarium against digestive tumors.
Collapse
Affiliation(s)
- Ge Song
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Chenlu Zeng
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Junru Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Jiajia Liu
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Juanxia Zhao
- Department of Pathology, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, China
| | - Jialong Fan
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Hailong Xie
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Li YR, Wang G, He WT, Liu T. Application of aggregation-induced emission materials in gastrointestinal diseases. World J Gastroenterol 2025; 31:105378. [PMID: 40308804 PMCID: PMC12038521 DOI: 10.3748/wjg.v31.i16.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 04/11/2025] [Indexed: 04/27/2025] Open
Abstract
Aggregation-induced emission (AIE) is a phenomenon characterized by certain fluorescent molecules that exhibit weak or no luminescence in solution but demonstrate significantly enhanced luminescence upon aggregation. Accordingly, AIE materials have successfully addressed the limitations associated with aggregation-caused quenching effects and have made significant progress in the application of various fields of medicine in recent years. At present, the application of AIE materials in gastrointestinal (GI) diseases is mainly in GI imaging, diagnosis and treatment. In this review, we summarize the applications of AIE materials in GI pathogens and GI diseases, including inflammatory bowel disease and GI tumors, and outline combined treatment methods of AIE materials in GI tumor therapy.
Collapse
Affiliation(s)
- Yi-Rong Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Gang Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Wen-Ting He
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University, Lanzhou 730000, Gansu Province, China
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Tao Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University, Lanzhou 730000, Gansu Province, China
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
7
|
Zhang Y, Wu X, Wang K, Tang Y, Lu X, Sun F, Tang H, Chen X, Ning S. Simultaneous Reversal of T Lymphocytes and Cancer Cells Metabolism Via a Biomimetic Heavy-Atom-Free Photosensitizers-Based Combination Therapies to Boost Cancer Photoimmunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416143. [PMID: 40042072 PMCID: PMC12021059 DOI: 10.1002/advs.202416143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Indexed: 04/26/2025]
Abstract
Near-infrared (NIR) activated photosensitizers based on heavy-atom-free have great advantages in photoimmunotherapy, yet the tumor microenvironment often restricts their efficacy. To address this, a NIR-activated heavy-atom-free photosensitizer (named Cy-BF) is developed. Cy-BF is then encapsulated with phospholipids and platelet exosome vesicles to create platelet exosomes vesicles biomimetic and Cy-BF loaded hybrid liposomes (named CHL) Characterized by high phototoxicity, low dark toxicity, and enhanced tumor targeting, CHL demonstrates aggregation-induced broadening of absorption spectra and NIR (760 nm laser) activates photothermal therapy and type I photodynamic therapy. The CHL-mediated phototherapy induces mitochondrial damage and immunogenic cell death in tumor cells, decreases lactate production, and alters the tumor microenvironment by reducing regulatory T cells and increasing CD8+ T cells. To mitigate T cell inhibition by excess lactate, a combination therapy is introduced using lithium carbonate, which repurposes lactate as an energy source for CD8+ T cells, thereby enhancing the effectiveness of CHL-mediated photoimmunotherapy. This combination approach represents a novel strategy for reversing lactate metabolism in both tumor cells and T cells, paving the way for future clinical applications in photoimmunotherapy.
Collapse
Affiliation(s)
- Yongjian Zhang
- The Sixth Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000P. R. China
| | - Xiaohong Wu
- The Fourth Affiliated Hospital of Harbin Medical University, NHC and CAMS Key Laboratory of Molecular Probe and Targeted TheranosticsHarbin Medical UniversityHarbinHeilongjiang150001P. R. China
| | - Kaiyuan Wang
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityShenyangLiaoning110016P. R. China
- Departments of Diagnostic RadiologySurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
| | - Yaohan Tang
- Research Center of Nanomedicine TechnologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanning530000P. R. China
| | - Xiuxin Lu
- Research Center of Nanomedicine TechnologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanning530000P. R. China
| | - Fusheng Sun
- The Sixth Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang150000P. R. China
| | - Hua Tang
- Research Center of Nanomedicine TechnologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanning530000P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic RadiologySurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis WayHelios138667Singapore
- Agency for ScienceTechnologyand Research (A*STAR)Institute of Molecular and Cell BiologyProteos, 61 Biopolis DriveSingapore138673Singapore
- Department of Pharmacy and Pharmaceutical SciencesNational University of SingaporeLower Kent Ridge Road, 4 Science Drive 2Singapore117544Singapore
| | - Shipeng Ning
- Research Center of Nanomedicine TechnologyThe Second Affiliated Hospital of Guangxi Medical UniversityNanning530000P. R. China
| |
Collapse
|
8
|
Cao X, Mao L, Tian Y, Yan L, Geng B, Zhou Y, Zhu J. In situ construction of heterojunctions to regulate the biodegradation behavior of copper carriers for tumor-specific cuproptosis-enhanced sono-immunotherapy. J Nanobiotechnology 2025; 23:246. [PMID: 40128745 PMCID: PMC11934600 DOI: 10.1186/s12951-025-03334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Cuproptosis, a novel approach utilizing copper carriers to trigger programmed cell death, exhibits promise for enhancing traditional therapies and activating robust adaptive immune responses. However, the uncontrolled release of Cu ions risks triggering cuproptosis in healthy tissues, potentially causing irreversible damage. To address this, we report on the use of a Cu-MOF (copper metal-organic framework) protective layer to regulate the biodegradation of copper-based nanomaterials. In situ formation of Cu-MOF on Cu2O nanocubes not only stabilizes the material under physiological conditions but also enhances its sonodynamic therapy (SDT) capabilities by establishing a Z-Scheme heterojunction. Upon SDT activation, the targeted Cu ion release at the tumor site triggers a cascade of reactions, generating reactive oxygen species (ROS) via Fenton-like processes and depleting glutathione (GSH). This ROS surge, combined with effective cuproptosis, modulates the immunosuppressive tumor microenvironment, inducing immunogenic cell death to eliminate primary tumors and inhibit metastasis. This study offers a new paradigm for the controlled integration of SDT, chemodynamic therapy (CDT), cuproptosis, and immunotherapy, achieving precise tumor-targeted treatment via controlled copper nanomaterial degradation.
Collapse
Affiliation(s)
- Xiqian Cao
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316004, China
| | - Lingwei Mao
- Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yijun Tian
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Lang Yan
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, 200433, China
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316004, China.
| | - Jiangbo Zhu
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
- Shanghai Key Laboratory of Medical Biodefense, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
9
|
Jiang M, Zhang K, Meng J, Xu L, Liu Y, Wei R. Engineered exosomes in service of tumor immunotherapy: From optimizing tumor-derived exosomes to delivering CRISPR/Cas9 system. Int J Cancer 2025; 156:898-913. [PMID: 39474936 DOI: 10.1002/ijc.35241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 01/07/2025]
Abstract
Exosomes can be modified and designed for various therapeutic goals because of their unique physical and chemical characteristics. Researchers have identified tumor-derived exosomes (TEXs) as significant players in cancer by influencing tumor growth, immune response evasion, angiogeneis, and drug resistance. TEXs promote the production of specific proteins important for cancer progression. Due to their easy accessibility, TEXs are being modified through genetic, drug delivery, membrane, immune system, and chemical alterations to be repurposed as vehicles for delivering drugs to improve cancer treatment outcomes. In the complex in vivo environment, the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) system encounters challenges from degradation, neutralization, and immune responses, emphasizing the need for strategic distribution strategies for effective genome editing. Engineered exosomes present a promising avenue for delivering CRISPR/Cas9 in vivo. In this review, we will explore different techniques for enhancing TEXs using various engineering strategies. Additionally, we will discuss how these exosomes can be incorporated into advanced genetic engineering systems like CRISPR/Cas9 for possible therapeutic uses.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ke Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinfeng Meng
- The First Clinical Medical College, Guangxi Medical University, Nanning
| | - Linhua Xu
- The First Clinical Medical College, Guangxi Medical University, Nanning
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
11
|
Xiao M, Zhang Y, Xing J, Qiao K, Ba Y, Wang X, Gao S, Yuan Z. Ru-Ph Nanozyme-Based Hydrogels for Tumor Chemodynamic Therapy by Enhancing Enzyme Catalytic Efficiency Through Multiple Pathways. Adv Healthc Mater 2025; 14:e2403868. [PMID: 39716831 DOI: 10.1002/adhm.202403868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/05/2024] [Indexed: 12/25/2024]
Abstract
The discovery of nanozymes has opened new possibilities for tumor therapy. However, their reliance on the tumor microenvironment and limited catalytic efficiency hinder broader applications. In this study, ruthenium-phenanthroline nanoparticles (Ru-Phs) are synthesized by combining ruthenium with phenanthroline and subsequently coloaded with the proton pump inhibitor (PPI) pantoprazole into sodium alginate (ALG) to form a Ru-Phs-PPI-ALG hydrogel for in situ tumor therapy. This hydrogel demonstrates excellent chemodynamic properties, forming a gel within tumor tissues and gradually releasing Ru-Phs, which generates highly toxic reactive oxygen species (ROS) via peroxidase-like (POD-like) activity. The inclusion of PPI reduced the intracellular pH of tumor cells, accelerating the Fenton reaction and ROS accumulation. Additionally, the high photothermal conversion efficiency of Ru-Phs-PPI-ALG enables heat generation under near-infrared (NIR) irradiation, which not only disrupts tumor cell structures but also further enhances the POD-like catalytic activity of Ru-Phs. The hydrogel effectively killed 4T1 cells in vitro, and transcriptomic analysis confirms its potent chemodynamic efficacy. In vivo experiments demonstrate significant tumor ablation and excellent biocompatibility. This multipathway strategy to increase enzyme activity and improve chemodynamic effects provides a promising approach for advancing nanozyme applications in tumor therapy.
Collapse
Affiliation(s)
- Min Xiao
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, P. R. China
| | - Yiqun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jianghao Xing
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
| | - Kun Qiao
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, P. R. China
| | - Yuling Ba
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Song Gao
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, P. R. China
| | - Zhennan Yuan
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, P. R. China
| |
Collapse
|
12
|
Li X, Zhong Y, Qi P, Zhu D, Sun C, Wei N, Zhang Y, Wang Z. Platelet membrane biomimetic nanomedicine induces dual glutathione consumption for enhancing cancer radioimmunotherapy. J Pharm Anal 2024; 14:100935. [PMID: 39840397 PMCID: PMC11750268 DOI: 10.1016/j.jpha.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2025] Open
Abstract
Radiotherapy (RT) is one of the most common treatments for cancer. However, intracellular glutathione (GSH) plays a key role in protecting cancer from radiation damage. Herein, we have developed a platelet membrane biomimetic nanomedicine (PMD) that induces double GSH consumption to enhance tumor radioimmunotherapy. This biomimetic nanomedicine consists of an external platelet membrane and internal organic mesoporous silica nanoparticles (MON) loaded with 2-deoxy-D-glucose (2-DG). Thanks to the tumor-targeting ability of the platelet membranes, PMD can target and aggregate to the tumor site, which is internalized by tumor cells. Within tumor cells overexpressing GSH, MON reacts with GSH to degrade and release 2-DG. This step initially depletes the intracellular GSH content. The subsequent release of 2-DG inhibits glycolysis and adenosine triphosphate (ATP) production, ultimately leading to secondary GSH consumption. This nanodrug combines dual GSH depletion, starvation therapy, and RT to promote immunogenic cell death and stimulate the systemic immune response. In the bilateral tumor model in vivo, distal tumor growth was also well suppressed. The proportion of mature dendritic cells (DC) and CD8+ T cells in the mice was increased. This indicates that PMD can promote anti-tumor radioimmunotherapy and has good prospects for clinical application.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, 230031, China
| | - Yang Zhong
- Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, 230031, China
| | - Pengyuan Qi
- Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Daoming Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Chenglong Sun
- Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, 230031, China
| | - Nan Wei
- Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, 230031, China
| | - Yang Zhang
- Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, 230031, China
| | - Zhanggui Wang
- Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, 230031, China
| |
Collapse
|
13
|
Zhang Q, Wang X, Chen J, Wu J, Zhou M, Xia R, Wang W, Zheng X, Xie Z. Recent progress of porphyrin metal-organic frameworks for combined photodynamic therapy and hypoxia-activated chemotherapy. Chem Commun (Camb) 2024; 60:13641-13652. [PMID: 39497649 DOI: 10.1039/d4cc04512b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Nanoscale metal-organic frameworks integrated with porphyrins (Por-nMOFs) have emerged as efficient nanoplatforms for photodynamic therapy (PDT), which relies on the conversion of molecular oxygen into cytotoxic singlet oxygen. However, the hypoxic microenvironment within tumors significantly limits the efficacy of PDT. To address this challenge, researchers have explored various strategies to either alter or exploit the hypoxic conditions in tumors. One such strategy involves leveraging the porous structure of Por-nMOFs to load hypoxia-activated prodrugs (HAPs) like tirapazamine (TPZ), thereby utilizing the tumor's intrinsic hypoxic environment to trigger a chemotherapeutic effect that synergizes with PDT. Advances in nanoscience have enabled the development of porphyrin-based nMOFs capable of simultaneously loading both porphyrin photosensitizers and TPZ, ensuring effective release within cancer cells under high-phosphate conditions. The subsequent activation of co-loaded TPZ, by the tumor's own hypoxic microenvironment, and that created during PDT, facilitates a combined PDT and chemotherapy approach. This method not only enhances the suppression of cancer cell proliferation but also improves control over tumor metastasis while mitigating the negative impact of hypoxia on singular Por-nMOFs in PDT. This review summarizes recent advances in Por-nMOFs research, focusing on the design strategies for enhancing water dispersibility, circulatory stability, and targeting specificity through post-synthetic modifications. Additionally, this review highlights the bioapplication of Por-nMOFs by integrating TPZ chemotherapy and other therapeutic modalities to combat hypoxic and metastatic malignancies. We anticipate that this review will inspire further research into Por-nMOFs and advance their application in biomedicine.
Collapse
Affiliation(s)
- Qiuyun Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Xiaohui Wang
- School of Public Health, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Jiayi Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Junjie Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Rui Xia
- School of Public Health, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
14
|
Chen Z, Hu F, Xiang J, Zhou X, Wu B, Fan B, Tang H, Liu B, Chen L. Mesoporous Microneedles Enabled Localized Controllable Delivery of Stimulator of Interferon Gene Agonist Nanoexosomes for FLASH Radioimmunotherapy against Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58180-58190. [PMID: 39432387 DOI: 10.1021/acsami.4c09833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The immunosuppressive nature of the tumor microenvironment (TME) contributes to radioresistance, thereby impairing the effectiveness of radiotherapy as a therapeutic intervention. Activation through the stimulator of interferon genes (STING) pathway shows potential in modulating immunogenicity. However, the therapeutic efficacy of STING agonists might be restricted by off-target effects and potential cytotoxicity. In this work, nanoexosomes (EXOs) loaded within porous microneedles were employed for precise delivery of the STING agonist MSA-2 (MEM) to the tumor site. Leveraging the enhanced tumor penetration enabled by microneedles, EXOs can be continually released and accumulate within deep residual tumors. Once internalized, these EXOs release the encapsulated MSA-2, facilitating the activation of the STING pathway upon exposure to ultrahigh dose-rate (FLASH) irradiation. This strategy elevates the type I interferon level, promotes dendric cell maturation, and modulates the immunosuppressive TME, showing efficient antitumor efficacy in both primary/metastatic tumors. Furthermore, the induction of a potent immune response effectively prevented tumor recurrence. The combination of EXO-loaded microneedles with FLASH radiotherapy resulted in minimal systemic side effects, attributed to precise drug delivery and radioprotection conferred by FLASH. Altogether, the strategic design of EXO-loaded microneedles holds promise for enhancing MSA-2 delivery, thereby mitigating the radioresistant tumor microenvironment through STING cascade activation-mediated immunotherapy, consequently optimizing the outcomes of FLASH radiotherapy.
Collapse
Affiliation(s)
- Zhiran Chen
- The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, China
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing 100020, China
| | - Jingfeng Xiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaoxiang Zhou
- The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, China
| | - Bo Wu
- The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, China
| | - Baohang Fan
- Division of Gastrointestinal Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Han Tang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Bin Liu
- Department of Urology China, Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Longyun Chen
- The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, China
| |
Collapse
|
15
|
Qiao K, Pan Y, Zhang S, Shi G, Yang J, Zhang Z, Wang K, Chen X, Ning S. Cold Exposure Therapy Sensitizes Nanodrug-Mediated Radioimmunotherapy of Breast Cancer. ACS NANO 2024; 18:29689-29703. [PMID: 39401104 DOI: 10.1021/acsnano.4c09021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Cold exposure (CE) therapy can quickly induce tumor starvation by brown adipose tissue (BAT) thermogenesis. Exploring the combined antitumor mechanism of CE and traditional therapies (such as radiotherapy (RT)) is exciting and promising. In this study, we investigated the effect of CE in combination with nitric oxide (NO) gas therapy on sensitizing tumors to RT and promoting tumor radio-immunotherapy. We first constructed a liposome (SL) loaded with the NO prodrug S-nitroso-N-acetylpenicillamine (SNAP). When SL is injected, the glutathione (GSH) within the tumor region promotes the release of NO from SNAP. Subsequently, the superoxide anion produced by RT reacts with NO to generate peroxynitrite (ONOO-), which has strong oxidative properties and induces cell death. Meanwhile, the mice were exposed to a CE environment of 4 °C. CE-mediated BAT thermogenesis induced tumor starvation, which led to a decrease in ATP and GSH content within the tumor as well as an improvement in the hypoxic microenvironment and a decrease in myeloid-derived suppressor cells. All of the above have promoted the effectiveness of RT and activated the systemic antitumor immunity. In the bilateral tumor experiment, treatment of the primary tumor inhibited the growth of the distant tumor and promoted the infiltration of CD8+ T cells into the tumor. These findings reveal that the synergy of CE, NO gas therapy, and RT could confer high effective anticancer effects, providing possibilities in personalized cancer treatment.
Collapse
Affiliation(s)
- Kun Qiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - You Pan
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Shiyuan Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Guangfu Shi
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Jinglin Yang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Zhenlin Zhang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| |
Collapse
|
16
|
Chen Z, Liu Z, Zhou Y, Rao K, Lin J, Zhu D, Ning S, Wang H. Bionic aggregation-induced emission photosensitizer for enhanced cancer immunotherapy. Mater Today Bio 2024; 28:101217. [PMID: 39285944 PMCID: PMC11402640 DOI: 10.1016/j.mtbio.2024.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Cold exposure therapy (CE), as an inexpensive method, has shown great potential in cancer therapy. Exploring the combined anti-tumor mechanism of CE and traditional therapies (such as photodynamic therapy (PDT)) is exciting and promising. Here, a bionic aggregation-induced emission photosensitizer system (named THL) is designed for combined CE to enhance anti-tumor immunotherapy. THL inherits the homologous targeting ability of tumor derived exosomes, promoting the enrichment of THL at the tumor site. Under external illumination, THL generates hydroxyl radicals and superoxide anions through type I PDT. In addition, mice are pretreated with cold exposure, which promotes THL mediated PDT and reactive oxygen species (ROS) generation by reducing the production of ATP and GSH in tumor tissue. This combination therapy increases production of ROS within the tumor, inhibits the growth of distant tumors, recurrent and rechallenged tumors and increases the number of cytotoxic CD8+T cells and memory T cells. Compared to PDT alone, combination therapy shows greater advantages in tumor immunotherapy. The combination therapy strategy provides new ideas for cancer immunotherapy.
Collapse
Affiliation(s)
- Zhongxian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yingguang Zhou
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Kexiang Rao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jiaxin Lin
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Daoming Zhu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Hongbin Wang
- The Second Ward of Breast Surgery, Cancer Hospital Affiliated to Harbin Medical University, Harbin, 150000, China
| |
Collapse
|
17
|
Wang S, Xu N, Yu S, Si W, Yang M, Liu Y, Zheng Y, Zhao S, Shi J, Yuan J. Hyaluronic acid-coated porphyrin nanoplatform with oxygen sustained supplying and glutathione depletion for enhancing photodynamic/ion/chemo synergistic cancer treatment. Int J Biol Macromol 2024; 278:134661. [PMID: 39128741 DOI: 10.1016/j.ijbiomac.2024.134661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Hypoxia and high concentration of glutathione (GSH) in tumor seriously hinder the role of reactive oxygen species (ROS) and oxygen-dependence strategy in tumor treatment. In this work, a self-generating oxygen and self-consuming GSH hyaluronic acid (HA)-coated porphyrin nanoplatform (TAPPP@CaO2/Pt(IV)/HA) is established for enhancing photodynamic/ion/chemo targeting synergistic therapy of tumor. During the efforts of ROS production by nanosystems, a GSH consuming strategy is implemented for augmenting ROS-induced oxidative damage for synergetic cancer therapy. CaO2 in the nanosystems is decomposed into O2 and H2O2 in an acidic environment, which alleviates hypoxia and enhances the photodynamic therapy (PDT) effect. Calcium overload causes mitochondria dysfunction and induces apoptosis. Pt (IV) reacts with GSH to produce Pt (II) for chemotherapy and reduce the concentration of GSH, protecting ROS from scavenging for augmenting ROS-induced oxidative damage. In vitro and in vivo results demonstrated the self-generating oxygen and self-consuming GSH strategy can enhance ROS-dependent PDT coupled with ion/chemo synergistic therapy. The proposed strategy not only solves the long-term problem that hypoxia limits therapeutic effect of PDT, but also ameliorates the highly reducing environment of tumors. Thus the preparation of TAPPP@CaO2/Pt(IV)/HA provided a novel strategy for the effective combined therapy of cancers.
Collapse
Affiliation(s)
- Shaochen Wang
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Ningning Xu
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Shuling Yu
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan 475004, People's Republic of China.
| | - Wen Si
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Miaojie Yang
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yu Liu
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yan Zheng
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Shuang Zhao
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan 475004, People's Republic of China.
| | - Jintao Yuan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
18
|
Fang L, Meng Q, Wang J, Tu Y, Qu H, Diao Y, Li W, Wen H, Fang J, Hang L, Ma P, Jiang G. Multifunctional single-component photosensitizers as metal-free ferroptosis inducers for enhanced photodynamic immunotherapy. Acta Biomater 2024; 186:383-395. [PMID: 39069112 DOI: 10.1016/j.actbio.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Immunotherapy can enhance primary tumor efficacy, restrict distant growth, and combat lung metastasis. Unfortunately, it remains challenging to effectively activate the immune response. Here, tertiary butyl, methoxy, and triphenylamine (TPA) were utilized as electron donors to develop multifunctional photosensitizers (PSs). CNTPA-TPA, featuring TPA as the donor (D) and cyano as the acceptor (A), excelled in reactive oxygen species (ROS) generation due to its smaller singlet-triplet energy gap (ΔES-T) and larger spin-orbit coupling constant (SOC). Additionally, cyano groups reacted with glutamate (Glu) and glutathione (GSH), reducing intracellular GSH levels. This not only enhanced PDT efficacy but also triggered redox dyshomeostasis-mediated ferroptosis. The positive effects of photodynamic therapy (PDT) and ferroptosis promoted immunogenic cell death (ICD) and immune activation. By further combining anti-programmed cell death protein ligand-1 (anti-PD-L1) antibody, the powerful treatments of ferroptosis-assisted photodynamic immunotherapy significantly eradicated the primary tumors, inhibited the growth of distant tumors, and suppressed lung metastasis. In this study, a three-pronged approach was realized by single-component CNTPA-TPA, which simultaneously served as metal-free ferroptosis inducers, type-I photosensitizers, and immunologic adjuvants for near-infrared fluorescence imaging (NIR FLI)-guided multimodal phototheranostics of tumor. STATEMENT OF SIGNIFICANCE: (1) CNTPA-TPA shared the smallest singlet-triplet energy gap and the largest spin-orbit coupling constant, which boosted intersystem crossing for efficient type-I photodynamic therapy (PDT); (2) Special reactions between cyano groups with glutamate and glutathione in mild conditions restricted the biosynthesis of intracellular GSH. GSH-depletion efficiently induced glutathione peroxidase 4 inactivation and lipid peroxide, resulting in ferroptosis of tumor cells; (3) The combination treatments of ferroptosis-assisted photodynamic immunotherapy induced by single-component CNTPA-TPA with the participation of anti-PD-L1 antibody resulted in increased T-cell infiltration and profound suppression of both primary and distant tumor growth, as well as lung metastasis.
Collapse
Affiliation(s)
- Laiping Fang
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, School of Medicine, Jinan University, Xingangzhong Road 466, Guangzhou 518037, PR China
| | - Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130012, PR China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Jinan University, Huangpu Avenue West 601, Guangzhou 510632, PR China
| | - Yike Tu
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China
| | - Hong Qu
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China
| | - Yanzhao Diao
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China
| | - Wuming Li
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China
| | - Hua Wen
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China
| | - Jin Fang
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China
| | - Lifeng Hang
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China.
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130012, PR China.
| | - Guihua Jiang
- Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Xingangzhong Road 466, Guangzhou 518037, PR China.
| |
Collapse
|
19
|
Tian Y, He X, Yuan Y, Zhang S, Wang C, Dong J, Liu Z, Jing H. TME-Responsive Nanoplatform with Glutathione Depletion for Enhanced Tumor-Specific Mild Photothermal/Gene/Ferroptosis Synergistic Therapy. Int J Nanomedicine 2024; 19:9145-9160. [PMID: 39258005 PMCID: PMC11386068 DOI: 10.2147/ijn.s475698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Background Triple negative breast cancer (TNBC) is one of the worst prognosis types of breast cancer that urgently needs effective therapy methods. However, cancer is a complicated disease that usually requires multiple treatment modalities. Methods A tumor microenvironment (TME)-responsive PFC/TRIM37@Fe-TA@HA (abbreviated as PTFTH) nanoplatform was constructed by coating Fe3+ and tannic acid (TA) on the surface of TRIM37-siRNA loaded phase-transition perfluorocarbon (PFC) nanodroplets and further modifying them with hyaluronic acid (HA) to achieve tumor-specific mild photothermal/gene/ferroptosis synergistic therapy (MPTT/GT/ Ferroptosis) in vitro. Once internalized into tumor cells through CD44 receptor-mediated active targeting, the HA shell of PTFTH would be preliminarily disassembled by hyaluronidase (HAase) to expose the Fe-TA metal-phenolic networks (MPNs), which would further degrade in response to an acidic lysosomal environment, leading to HAase/pH dual-responsive release of Fe3+ and PFC/TRIM37. Results PTFTH showed good biocompatibility in vitro. On the one hand, the released Fe3+ could deplete the overexpressed glutathione (GSH) through redox reactions and produce Fe2+, which in turn converts endogenous H2O2 into highly cytotoxic hydroxyl radicals (•OH) for chemodynamic therapy (CDT). On the other hand, the local hyperthermia generated by PTFTH under 808 nm laser irradiation could not only improve CDT efficacy through accelerating the Fe2+-mediated Fenton reaction, but also enhance TRIM37-siRNA delivery for gene therapy (GT). The consumption of GSH and accumulation of •OH synergistically augmented intracellular oxidative stress, resulting in substantial tumor cell ferroptosis. Moreover, PTFTH possessed outstanding contrast enhanced ultrasound (CEUS), photoacoustic imaging (PAI) and magnetic resonance imaging (MRI) ability. Conclusion This PTFTH based multiple-mode therapeutic strategy has successfully achieved a synergistic anticancer effect in vitro and has the potential to be translated into clinical application for tumor therapy in future.
Collapse
Affiliation(s)
- Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Xiang He
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Yanchi Yuan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Shijie Zhang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Jialin Dong
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China
| |
Collapse
|
20
|
Liu Y, Chen G, You X, Wang X. Cuproptosis Nanomedicine: Clinical challenges and opportunities for anti-tumor therapy. CHEMICAL ENGINEERING JOURNAL 2024; 495:153373. [DOI: 10.1016/j.cej.2024.153373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
|
21
|
Guo X, Tang B, Wu Q, Zhong W, Gong Q, Ling S, Jiao L, Jiang X, Hao E. NIR-Absorbing Tetraphenylethene-Containing bisBODIPY Nanoplatforms Demonstrate Effective Lysosome-Targeting and Combinational Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41916-41926. [PMID: 39082069 DOI: 10.1021/acsami.4c09211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Photosensitizer-based phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), offer safe treatment modalities for tumor ablation with spatiotemporal precision. After photons are absorbed, PDT creates localized chemical damage by generating reactive oxygen species (ROS), while PTT induces localized thermal damage. However, PDT still faces hypoxic tumor challenges, while PTT encounters issues related to heat resistance and potential overheating. The combination of PDT and PTT shows great potential as an effective anticancer strategy. By targeting lysosomes with carefully designed phototherapeutic reagents for combined phototherapy, rapid dysfunction and cell death in cancer cells can be induced, showing promise for cancer treatment. Herein, two α-α-linked bisBODIPYs with tetraphenylethene (TPE) moieties are designed and synthesized. These TPE-substituted bisBODIPYs expand the absorption into NIR range (λmaxabs/λmaxem ∼ 740/810 nm) and confer aggregation-induced emission (AIE) activity (λmaxem ∼ 912 nm). Moreover, these bisBODIPYs self-assemble with surfactant F-127 into nanoparticles (NPs), which efficiently generate ROS (1O2 and •OH) in both solution and cellular environments and demonstrate superior photothermal conversion efficiencies (η ∼ 68.3%) along with exceptional photothermal stability. More importantly, these NPs showed lysosomal targeting and remarkable tumor ablation in cellular and murine models, indicating their potential in precision tumor therapy.
Collapse
Affiliation(s)
- Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Bing Tang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wenhua Zhong
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery; The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
| | - Qingbao Gong
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery; The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery; The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery; The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
22
|
Mazahir F, Yadav AK. Recent progress in engineered extracellular vesicles and their biomedical applications. Life Sci 2024; 350:122747. [PMID: 38797364 DOI: 10.1016/j.lfs.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
AIMS To present the recent update on the isolation, engineering techniques for extracellular vesicles, limitations associated with different isolation techniques, different biomedical applications, and challenges of engineered extracellular vesicles for the benefit of researchers from academic, industry, etc. MATERIALS AND METHODS: Peer-reviewed articles from most recognized journals were collected, and presented information was analyzed to discuss collection, chemical, electroporation, cellular, and membrane surface engineering to design extracellular vesicles for various therapeutic applications. In addition, we present the applications and limitations of techniques for the collection of extracellular vesicles. KEY FINDINGS There is a need for isolation techniques with the gold standard. However, advanced extracellular vesicle isolation techniques showed improved recovery, and purity of extracellular vesicles. Tumor therapy is a major part of the therapy section that illustrates the role of engineered extracellular vesicles in synergetic therapy such as phototherapy, theragnostic, and delivery of genetic materials. In addition, extracellular vesicles have shown their potential in the treatment of retinal disorders, neurodegenerative disease, tuberculosis, osteoporosis, inflammatory bowel disease, vaccine production, and wound healing. SIGNIFICANCE Engineered extracellular vesicles can deliver cargo to the specific cells, elicit an immune response and could be used for the development of the vaccines in the future. However, the progress is at the initial stage. Overall, this review will provide a comprehensive understanding and could serve as a reference for researchers in the clinical translation of engineered extracellular vesicles in different biomedical fields.
Collapse
Affiliation(s)
- Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Raebareli, A Transit Campus, Bijnor-Sisendi Road, Bijnor, Lucknow-226002, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Raebareli, A Transit Campus, Bijnor-Sisendi Road, Bijnor, Lucknow-226002, India.
| |
Collapse
|
23
|
Kang W, Xu Z, Lu H, Liu S, Li J, Ding C, Lu Y. Advances in biomimetic nanomaterial delivery systems: harnessing nature's inspiration for targeted drug delivery. J Mater Chem B 2024; 12:7001-7019. [PMID: 38919030 DOI: 10.1039/d4tb00565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The properties of nanomaterials make them promising and advantageous for use in drug delivery systems, but challenges arise from the immune system's recognition of exogenous nanoparticles, leading to their clearance and reduced targeting efficiency. Drawing inspiration from nature, this paper explores biomimetic strategies to transform recognizable nanomaterials into a "camouflaged state." The focal point of this paper is the exploration of bionic nanoparticles, with a focus on cell membrane-coated nanoparticles. These biomimetic structures, particularly those mimicking red blood cells (RBCs), white blood cells (WBCs), platelets, and cancer cells, demonstrate enhanced drug delivery efficiency and prolonged circulation. This article underscores the versatility of these biomimetic structures across diverse diseases and explores the use of hybrid cell membrane-coated nanoparticles as a contemporary trend. This review also investigated exosomes and protein bionic nanoparticles, emphasizing their potential for specific targeting, immune evasion, and improved therapeutic outcomes. We expect that this continued development based on biomimetic nanomaterials will contribute to the efficiency and safety of disease treatment.
Collapse
Affiliation(s)
- Weiqi Kang
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Zhe Xu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Haiying Lu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Siwei Liu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yongping Lu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| |
Collapse
|
24
|
Yi J, Liu L, Gao W, Zeng J, Chen Y, Pang E, Lan M, Yu C. Advances and perspectives in phototherapy-based combination therapy for cancer treatment. J Mater Chem B 2024; 12:6285-6304. [PMID: 38895829 DOI: 10.1039/d4tb00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT), has the advantages of spatiotemporal selectivity, non-invasiveness, and negligible drug resistance. Phototherapy has been approved for treating superficial epidermal tumors. However, its therapeutic efficacy is limited by the hypoxic tumor microenvironment and the highly expressed heat shock protein. Moreover, poor tissue penetration and focused irradiation laser region in phototherapy make treating deep tissues and metastatic tumors challenging. Combination therapy strategies, which integrate the advantages of each treatment and overcome their disadvantages, can significantly improve the therapeutic efficacy. Recently, many combination therapy strategies have been reported. Our study summarizes the strategies used for combining phototherapy with other cancer treatments such as chemotherapy, immunotherapy, sonodynamic therapy, gas therapy, starvation therapy, and chemodynamic therapy. Some research cases were selected to analyze the combination therapy effect, delivery platform feature, and synergetic anticancer mechanisms. Moreover, additional research cases are summarized in the tables. This review provides strong evidence that phototherapy-based combination strategies can enhance the anticancer effect compared with phototherapy alone. Additionally, the challenges and future perspectives associated with these combinational therapies are discussed.
Collapse
Affiliation(s)
- Jianing Yi
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Luyao Liu
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
| | - Wenjie Gao
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Jie Zeng
- Department of Breast and Thyroid Gland Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
| | - Yongzhi Chen
- Department of Hepatobiliary surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - E Pang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
25
|
Hushmandi K, Saadat SH, Raei M, Aref AR, Reiter RJ, Nabavi N, Taheriazam A, Hashemi M. The science of exosomes: Understanding their formation, capture, and role in cellular communication. Pathol Res Pract 2024; 259:155388. [PMID: 38850846 DOI: 10.1016/j.prp.2024.155388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Extracellular vesicles (EVs) serve as a crucial method for transferring information among cells, which is vital in multicellular organisms. Among these vesicles, exosomes are notable for their small size, ranging from 20 to 150 nm, and their role in cell-to-cell communication. They carry lipids, proteins, and nucleic acids between cells. The creation of exosomes begins with the inward budding of the cell membrane, which then encapsulates various macromolecules as cargo. Once filled, exosomes are released into the extracellular space and taken up by target cells via endocytosis and similar processes. The composition of exosomal cargo varies, encompassing diverse macromolecules with specific functions. Because of their significant roles, exosomes have been isolated from various cell types, including cancer cells, endothelial cells, macrophages, and mesenchymal cells, with the aim of harnessing them for therapeutic applications. Exosomes influence cellular metabolism, and regulate lipid, glucose, and glutamine pathways. Their role in pathogenesis is determined by their cargo, which can manipulate processes such as apoptosis, proliferation, inflammation, migration, and other molecular pathways in recipient cells. Non-coding RNA transcripts, a common type of cargo, play a pivotal role in regulating disease progression. Exosomes are implicated in numerous biological and pathological processes, including inflammation, cancer, cardiovascular diseases, diabetes, wound healing, and ischemic-reperfusion injury. As a result, they hold significant potential in the treatment of both cancerous and non-cancerous conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
26
|
Zhao W, Wang L, Zhang M, Liu Z, Wu C, Pan X, Huang Z, Lu C, Quan G. Photodynamic therapy for cancer: mechanisms, photosensitizers, nanocarriers, and clinical studies. MedComm (Beijing) 2024; 5:e603. [PMID: 38911063 PMCID: PMC11193138 DOI: 10.1002/mco2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Photodynamic therapy (PDT) is a temporally and spatially precisely controllable, noninvasive, and potentially highly efficient method of phototherapy. The three components of PDT primarily include photosensitizers, oxygen, and light. PDT employs specific wavelengths of light to active photosensitizers at the tumor site, generating reactive oxygen species that are fatal to tumor cells. Nevertheless, traditional photosensitizers have disadvantages such as poor water solubility, severe oxygen-dependency, and low targetability, and the light is difficult to penetrate the deep tumor tissue, which remains the toughest task in the application of PDT in the clinic. Here, we systematically summarize the development and the molecular mechanisms of photosensitizers, and the challenges of PDT in tumor management, highlighting the advantages of nanocarriers-based PDT against cancer. The development of third generation photosensitizers has opened up new horizons in PDT, and the cooperation between nanocarriers and PDT has attained satisfactory achievements. Finally, the clinical studies of PDT are discussed. Overall, we present an overview and our perspective of PDT in the field of tumor management, and we believe this work will provide a new insight into tumor-based PDT.
Collapse
Affiliation(s)
- Wanchen Zhao
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Liqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Meihong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Zhiqi Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Xin Pan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
27
|
Yang S, Shi L. Efficacy and safety of proton pump inhibitors on cardiovascular events and inflammatory factors in patients with upper gastrointestinal bleeding undergoing dual antiplatelet therapy. Inflammopharmacology 2024; 32:1999-2006. [PMID: 38642222 DOI: 10.1007/s10787-024-01467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND This work evaluated the effects of proton pump inhibitors (PPIs) on cardiovascular events (CVEs) and inflammatory factors in patients with upper gastrointestinal bleeding (UGIB) undergoing dual antiplatelet therapy (DAPT) after percutaneous coronary intervention. Clinical data from these patients were analysis, intending to provide relevant theoretical evidence for clinical practice. MATERIALS AND METHODS Data of 166 patients who underwent percutaneous coronary intervention and developed UGIB while on DAPT at The First People' Hospital of Linping District from April 2021 to April 2023 were retrospectively analyzed. The patients were rolled into two groups: those who received PPI treatment and those who did not, namely, PPI and non-PPI group, respectively. Furthermore, occurrence of CVEs and the levels of inflammatory factors of patients in all groups were statistically analyzed. RESULTS In patients with UGIB, melena is a common presentation. The incidence of CVE in the PPI group showed no statistically significant difference compared to the control group, and there was no significant variance observed in the distribution of CVE incidence among different PPIs. However, levels of C-reactive protein (CRP) and tumor necrosis factor-alpha (TNF-α) were significantly lower in the PPI group compared to the non-PPI group (P < 0.05). CONCLUSION Melena was the most frequent clinical manifestation in UGIB patients. The use of PPIs did not increase the risk of CVEs, and different PPI drugs did not affect the occurrence of CVEs. Furthermore, PPIs lowered CRP and TNF-α levels in serum of these patients.
Collapse
Affiliation(s)
- Shuting Yang
- Department of Emergency, The First People' Hospital of Linping Dstrict, Zhejiang Province, Hangzhou, 311199, China
| | - Linni Shi
- Department of Gastroenterology, Xinchang People's Hospital, Zhejiang Province, Shaoxing, 312500, China.
| |
Collapse
|
28
|
Wang H, Wang Y, Liu H, Li X, Sun C, Pang Z, Zhang B, Hu Y. Ruxolitinib-loaded cytokine nanosponge alleviated the cytokine storm and dampened macrophage overactivation for the treatment of hemophagocytic lymphohistiocytosis. Int J Pharm 2024; 657:124127. [PMID: 38621611 DOI: 10.1016/j.ijpharm.2024.124127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening clinical syndrome characterized by a positive feedback loop between cytokine storm and macrophages and lymphocytes overactivation, which could serve as a valid therapeutic target for HLH treatment. In this study, the clinically extensively used JAK1/2 inhibitor ruxolitinib was encapsulated into macrophage membrane-coated nanoparticles (M@NP-R) with high drug-loading efficiency for targeted HLH treatment. In vitro and in vivo studies demonstrated that M@NP-R not only efficiently adsorbed extracellular proinflammation cytokines, like IFN-γ and IL-6 to alleviate the cytokine storm, but also effectively dampened macrophage activation and proliferation by intracellular JAK/STAT signaling pathway inhibition. M@NP-R treatment significantly ameliorated the clinical and laboratory manifestations of HLH in mouse models, including trilineage cytopenia, hypercytokinemia, organomegaly, hepatorenal dysfunction, and tissue inflammation. Importantly, M@NP-R significantly enhanced the survival of the lethal HLH mice. Altogether, M@NP-R successfully blocked the positive feedback loop between the cytokine storm and macrophage overactivation by depleting extracellular inflammatory cytokines and inhibiting the intracellular JAK/STAT signaling pathway, both of which worked synergistically in HLH treatment. As ruxolitinib has already been extensively used in clinics with favorable safety, and M@NP is biodegradable and highly biocompatible, M@NP-R has good prospects for clinical translation.
Collapse
Affiliation(s)
- Honglan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education
| | - Yiwei Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education
| | - Huiwen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education
| | - Xuejing Li
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China.
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education.
| |
Collapse
|
29
|
Shojaeian A, Naeimi Torshizi SR, Parsapasand MS, Amjad ZS, Khezrian A, Alibakhshi A, Yun F, Baghaei K, Amini R, Pecic S. Harnessing exosomes in theranostic applications: advancements and insights in gastrointestinal cancer research. Discov Oncol 2024; 15:162. [PMID: 38743146 PMCID: PMC11093943 DOI: 10.1007/s12672-024-01024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Exosomes are small extracellular vesicles (30-150 nm) that are formed by endocytosis containing complex RNA as well as protein structures and are vital in intercellular communication and can be used in gene therapy and drug delivery. According to the cell sources of origin and the environmental conditions they are exposed to, these nanovesicles are very heterogeneous and dynamic in terms of content (cargo), size and membrane composition. Exosomes are released under physiological and pathological conditions and influence the pathogenesis of cancers through various mechanisms, including angiogenesis, metastasis, immune dysregulation, drug resistance, and tumor growth/development. Gastrointestinal cancer is one of the deadliest types of cancer in humans and can involve organs e.g., the esophagus and stomach, or others such as the liver, pancreas, small intestine, and colon. Early diagnosis is very important in this field because the overall survival of patients is low due to diagnosis in late stages and recurrence. Also, various therapeutic strategies have failed and there is an unmet need for the new therapeutic agents. Exosomes can become promising candidates in gastrointestinal cancers as biomarkers and therapeutic agents due to their lower immunity and passing the main physiological barriers. In this work, we provide a general overview of exosomes, their biogenesis and biological functions. In addition, we discuss the potential of exosomes to serve as biomarkers, agents in cancer treatment, drug delivery systems, and effective vaccines in immunotherapy, with an emphasis on gastrointestinal cancers.
Collapse
Affiliation(s)
- Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - S R Naeimi Torshizi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Sadat Parsapasand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Sobhi Amjad
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Khezrian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Alibakhshi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faye Yun
- Department of Chemistry and Biochemistry, California State University, Fullerton, USA
| | - Kaveh Baghaei
- Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, USA.
| |
Collapse
|
30
|
Aslam F, Naeem A, Munir E, Ashraf HJ, Ali B, Qammar B, Farooq M, Ullah S, Jawad S. Effects of Proton Pump Inhibitors on Cardiovascular Events and Inflammatory Factors in Patients With Upper Gastrointestinal Bleeding Undergoing Dual Antiplatelet Therapy. Cureus 2024; 16:e59925. [PMID: 38854272 PMCID: PMC11161665 DOI: 10.7759/cureus.59925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Dual antiplatelet therapy (DAPT), vital post-percutaneous coronary intervention (PCI) to prevent cardiovascular events (CVEs) via aspirin and P2Y12 receptor antagonists, faces controversy when combined with proton pump inhibitors (PPIs) due to potential impacts on bleeding risk and antiplatelet efficacy, prompting the need for further research to determine optimal co-administration practices. This work evaluated the effects of PPIs on CVEs and inflammatory factors in patients with upper gastrointestinal bleeding (UGIB) undergoing DAPT after PCI. MATERIALS AND METHODS The data of 166 patients who underwent PCI and developed UGIB while on DAPT from April 2021 to April 2023 were retrospectively analyzed. The patients were rolled into two groups: those who received PPI treatment and those who did not, namely, the PPI and non-PPI group, respectively. Clinical data from these patients was analyzed, intending to provide relevant theoretical evidence for clinical practice. Furthermore, the occurrence of CVEs and the levels of inflammatory factors of patients in all groups were statistically analyzed. RESULTS Melena was the most common clinical symptom observed in all UGIB patients. The incidence of CVEs in the PPI group was not greatly different from that in the non-PPI group (P>0.05). The distribution of CVEs occurrence among different PPI drugs also exhibited no obvious difference (P>0.05). The PPI group exhibited greatly lower C-reactive protein (CRP) and tumor necrosis factor α (TNF-α) based on the non-PPI group (P<0.05). CONCLUSION Melena was the most frequent clinical manifestation in UGIB patients. The use of PPIs did not increase the risk of CVEs, and different PPI drugs did not affect the occurrence of CVEs. Furthermore, PPIs lowered CRP and TNF-α levels in serum of these patients.
Collapse
Affiliation(s)
- Farhan Aslam
- Orthopedics, Sir Ganga Ram Hospital, Lahore, PAK
| | - Afaq Naeem
- Internal Medicine, Shalamar Hospital, Lahore, PAK
| | - Emad Munir
- Cardiology, Shalamar Hospital, Lahore, PAK
| | | | - Bilawal Ali
- Internal Medicine, DHQ Teaching Hospital, Dera Ghazi Khan, PAK
| | - Bilal Qammar
- Internal Medicine, Shalamar Hospital, Lahore, PAK
| | - Maham Farooq
- Public Health Practices and Administration, Institute of Public Health, Lahore, PAK
| | - Sami Ullah
- Internal Medicine, Shalamar Hospital, Lahore, PAK
| | - Sumbal Jawad
- Medicine, DHQ Teaching Hospital, Gujranwala, PAK
| |
Collapse
|
31
|
Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Recent Advances in Reprogramming Strategy of Tumor Microenvironment for Rejuvenating Photosensitizers-Mediated Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305708. [PMID: 38018311 DOI: 10.1002/smll.202305708] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Indexed: 11/30/2023]
Abstract
Photodynamic therapy (PDT) has recently been considered a potential tumor therapy due to its time-space specificity and non-invasive advantages. PDT can not only directly kill tumor cells by using cytotoxic reactive oxygen species but also induce an anti-tumor immune response by causing immunogenic cell death of tumor cells. Although it exhibits a promising prospect in treating tumors, there are still many problems to be solved in its practical application. Tumor hypoxia and immunosuppressive microenvironment seriously affect the efficacy of PDT. The hypoxic and immunosuppressive microenvironment is mainly due to the abnormal vascular matrix around the tumor, its abnormal metabolism, and the influence of various immunosuppressive-related cells and their expressed molecules. Thus, reprogramming the tumor microenvironment (TME) is of great significance for rejuvenating PDT. This article reviews the latest strategies for rejuvenating PDT, from regulating tumor vascular matrix, interfering with tumor cell metabolism, and reprogramming immunosuppressive related cells and factors to reverse tumor hypoxia and immunosuppressive microenvironment. These strategies provide valuable information for a better understanding of the significance of TME in PDT and also guide the development of the next-generation multifunctional nanoplatforms for PDT.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
32
|
Zou J, Li Z, Zhu Y, Tao Y, You Q, Cao F, Wu Q, Wu M, Cheng J, Zhu J, Chen X. pH/GSH dual responsive nanosystem for nitric oxide generation enhanced type I photodynamic therapy. Bioact Mater 2024; 34:414-421. [PMID: 38292411 PMCID: PMC10825229 DOI: 10.1016/j.bioactmat.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/08/2023] [Accepted: 12/25/2023] [Indexed: 02/01/2024] Open
Abstract
Tumor hypoxia diminishes the effectiveness of traditional type II photodynamic therapy (PDT) due to oxygen consumption. Type I PDT, which can operate independently of oxygen, is a viable option for treating hypoxic tumors. In this study, we have designed and synthesized JSK@PEG-IR820 NPs that are responsive to the tumor microenvironment (TME) to enhance type I PDT through glutathione (GSH) depletion. Our approach aims to expand the sources of therapeutic benefits by promoting the generation of superoxide radicals (O2-.) while minimizing their consumption. The diisopropyl group within PEG-IR820 serves a dual purpose: it functions as a pH sensor for the disassembly of the NPs to release JSK and enhances intermolecular electron transfer to IR820, facilitating efficient O2-. generation. Simultaneously, the release of JSK leads to GSH depletion, resulting in the generation of nitric oxide (NO). This, in turn, contributes to the formation of highly cytotoxic peroxynitrite (ONOO-.), thereby enhancing the therapeutic efficacy of these NPs. NIR-II fluorescence imaging guided therapy has achieved successful tumor eradication with the assistance of laser therapy.
Collapse
Affiliation(s)
- Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Zheng Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yang Zhu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yucen Tao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Qinghe Wu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Min Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, PR China
| | - Junjie Cheng
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Department of Chemistry Center for Bioanalytical Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Jianwei Zhu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, PR China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
33
|
Li R, He M, Cui Y, Ji X, Zhang L, Lan X, Wang L, Han Z, Xiao H. Silver-palladium bimetallic nanoparticles stabilized by elm pod polysaccharide with peroxidase-like properties for glutathione detection and photothermal anti-tumor ability. Int J Biol Macromol 2024; 264:130673. [PMID: 38458290 DOI: 10.1016/j.ijbiomac.2024.130673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Noble metal nanoparticles show good application prospects in biosensors and anti-tumor drug research. Herein, the near-spherical silver‑palladium bimetallic nanoparticles supported by elm pod polysaccharide (EPP-AgPd1.5 NPs) were prepared by using the elm pod polysaccharide (EPP). EPP acts as a stabilizer and reducing agent due to its water solubility and weak reducing ability. The particle size of EPP-AgPd1.5 NPs was 33.6 ± 5.5 nm. In addition, EPP-AgPd1.5 NPs had peroxidase-like activity to catalyze 3,3',5,5'-tetramethylbenzidine (TMB) to oxidized TMB by catalyzing H2O2 to OH. Based on the peroxidase-like activity of EPP-AgPd1.5 NPs, a method for detecting glutathione was established, and the detection limit and linear range of glutathione concentration were 0.279 μM and 0-400 μM, respectively. More importantly, the photothermal conversion efficiency of EPP-AgPd1.5 NPs reached 39.7 %, and their inhibition rate in HeLa cells reached 69.9 %. Silver‑palladium bimetallic nanoparticles stabilized by EPP had good performance in glutathione detection and anti-tumor drugs.
Collapse
Affiliation(s)
- Ruyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Mengmeng He
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Yanshuai Cui
- Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Xianbing Ji
- Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Lu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Xifan Lan
- First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| | - Zengsheng Han
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Haiyan Xiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
34
|
Salehi A. A novel therapeutic strategy: the significance of exosomal miRNAs in acute myeloid leukemia. Med Oncol 2024; 41:62. [PMID: 38253748 DOI: 10.1007/s12032-023-02286-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Acute myeloid leukemia (AML) is a fast-growing blood cancer that interferes with the normal growth of blood cells in the bone marrow and blood. It is characterized by its unpredictable outlook and high death rate. The main treatment for AML is chemotherapy, but this often results in drug resistance and the possibility of the disease returning. For this reason, new biomarkers are necessary to diagnose, predict, and treat this disease. Research has demonstrated that cells responsible for AML release exosomes that interact with the disease's microenvironment. These exosomes have significant roles in promoting leukemia growth, suppressing normal hematopoiesis, facilitating angiogenesis, and contributing to drug resistance in AML. Further investigations have shown that these exosomes contain miRNAs, which are transferred to target cells and have functional roles. Biomarkers are utilized to assess various aspects of tumor cell behavior, including proliferation, apoptosis, angiogenesis, changes in the microenvironment, transfer of drug resistance, and stability in serum and blood plasma. In this research, we showed that exosomal miRNAs and exosomes have the potential to be used as indicators for detecting various phases of AML and can aid in its medical treatment. Furthermore, they can be specifically targeted for therapeutic purposes in addressing this condition.
Collapse
Affiliation(s)
- Ali Salehi
- Department of Cellular and Molecular Biology, Faculty of New Science and Technology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
35
|
Li X, Peng X, Li Y, Wei S, He G, Liu J, Li X, Yang S, Li D, Lin W, Fang J, Yang L, Li H. Glutamine addiction in tumor cell: oncogene regulation and clinical treatment. Cell Commun Signal 2024; 22:12. [PMID: 38172980 PMCID: PMC10763057 DOI: 10.1186/s12964-023-01449-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
After undergoing metabolic reprogramming, tumor cells consume additional glutamine to produce amino acids, nucleotides, fatty acids, and other substances to facilitate their unlimited proliferation. As such, the metabolism of glutamine is intricately linked to the survival and progression of cancer cells. Consequently, targeting the glutamine metabolism presents a promising strategy to inhibit growth of tumor cell and cancer development. This review describes glutamine uptake, metabolism, and transport in tumor cells and its pivotal role in biosynthesis of amino acids, fatty acids, nucleotides, and more. Furthermore, we have also summarized the impact of oncogenes like C-MYC, KRAS, HIF, and p53 on the regulation of glutamine metabolism and the mechanisms through which glutamine triggers mTORC1 activation. In addition, role of different anti-cancer agents in targeting glutamine metabolism has been described and their prospective applications are assessed.
Collapse
Affiliation(s)
- Xian Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Dai Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Weikai Lin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
36
|
Liu X, Lu Y, Li X, Luo L, You J. Nanoplatform-enhanced photodynamic therapy for the induction of immunogenic cell death. J Control Release 2024; 365:1058-1073. [PMID: 38056695 DOI: 10.1016/j.jconrel.2023.11.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
As an efficient, non-invasive, low-side-effect, and highly selective cancer therapy, photodynamic therapy (PDT) is used to treat various malignant tumors. However, the inefficiency of dealing with deep tumors and metastatic lesions highly limits the use of PDT. Immunogenic cell death (ICD) is a particular form of tumor cell death that could elicit a tumor-special immune response, leading to a systemic anti-tumor effect and providing therapeutic benefits for metastatic lesions. In this regard, it is crucial to enhance the ability of PDT to induce ICD. Luckily, advanced nanotechnology created many promising ways to improve the immunogenicity of PDT and achieve photoimmunotherapy. This review summarizes the emerging strategies for triggering immunogenic cell death via nanoplatform-enhanced PDT, with particular emphasis on their advantages in photoimmunotherapy. We highlight the nanoplatforms classified according to the basic principles of photodynamic therapy and immunogenic cell death, which provides a valuable reference for the design of nanoplatform for photoimmunotherapy. In addition, we also discuss the current situation and prospect of nano-based photoimmunotherapy in clinical studies.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310006, P. R. China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, P. R. China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China.
| |
Collapse
|
37
|
Yang Z, Liu H, Zhang X, Lv Y, Fu Z, Zhao S, Liu M, Zhang ST, Yang B. Photo-Responsive Dynamic Organic Room-Temperature Phosphorescence Materials Based on a Functional Unit Combination Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306784. [PMID: 37781967 DOI: 10.1002/adma.202306784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/19/2023] [Indexed: 10/03/2023]
Abstract
A rational molecular design strategy facilitates the development of a purely organic room-temperature phosphorescence (RTP) material system with precisely regulated luminescence properties, which surely promotes its functional integration and intelligent application. Here, a functional unit combination strategy is proposed to design novel RTP molecules combining a folding unit with diverse luminescent cores. The different luminescent cores are mainly responsible for tunable RTP properties, while the folding unit contributes to the spin-orbit coupling (SOC) enhancement, which makes the RTP material design as workable as the building block principle. By this strategy, a series of color/lifetime-tunable RTP materials is achieved with unique photo-responsive RTP enhancement when subjected to UV irradiation, which expands their application scenarios in reusable privacy tags, advanced "4D" encryption, and phase separation analysis of blended polymers. This work suggests a simple and effective strategy to design purely organic RTP materials with tunable color and lifetime, and also provides new application options for photo-responsive dynamic RTP materials.
Collapse
Affiliation(s)
- Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Xiangyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Yingbo Lv
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Zhiyuan Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Shuaiqiang Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Meng Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
38
|
Chen H, Luo X, Cai W, Wang S, Xiang J, Liu Z, Zhu D. Biomimetic Copper-Doped Polypyrrole Nanoparticles for Enhanced Cancer Low-Temperature Photothermal Therapy. Int J Nanomedicine 2023; 18:7533-7541. [PMID: 38106449 PMCID: PMC10725643 DOI: 10.2147/ijn.s428344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Photothermal therapy (PTT) has a significant potential for its application in precision tumour therapy. However, PTT-induced hyperthermia may damage healthy tissues and trigger the expression of heat shock proteins (HSPs), thereby compromising the long-term therapeutic efficacy of PTT. Methods In this study, a biomimetic drug delivery system comprising CuP nanozymes as the inner core and platelet membrane (PM) as the outer shell was successfully developed for administering synergistic chemodynamic therapy and mild PTT. PM is encapsulated on CuP to form this biomimetic nanoparticle (PM-coated CuP nanoparticles, PC). PC possesses peroxidase (POD) activity, can facilitate the conversion of hydrogen peroxide into ·OH, thereby inhibiting the expression of HSPs. Results Upon exposure to low-power laser irradiation (0.5 W/cm2, 1064 nm), PC can convert near-infrared II laser energy into heat energy, thereby enabling the administration of enhanced mild PTT. In vitro and in vivo experiments have demonstrated that this synergistic approach can induce over 90% tumour eradication with favourable biocompatibility. Discussion PC exhibits high efficacy and biocompatibility, making it a promising candidate for future applications.
Collapse
Affiliation(s)
- Hao Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Xi Luo
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Wei Cai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Shile Wang
- Academy of Medical Sciences, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Jingfeng Xiang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Daoming Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Department of Electronic Science and Technology, School of Physics and Technology, Wuhan University, Wuhan, 430072, People’s Republic of China
| |
Collapse
|
39
|
Yang L, Dong S, Gai S, Yang D, Ding H, Feng L, Yang G, Rehman Z, Yang P. Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes. NANO-MICRO LETTERS 2023; 16:28. [PMID: 37989794 PMCID: PMC10663430 DOI: 10.1007/s40820-023-01224-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/23/2023] [Indexed: 11/23/2023]
Abstract
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007, nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity, low cost, mild reaction conditions, good stability, and suitable for large-scale production. Recently, with the cross fusion of nanomedicine and nanocatalysis, nanozyme-based theranostic strategies attract great attention, since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects. Thus, various nanozymes have been developed and used for tumor therapy. In this review, more than 270 research articles are discussed systematically to present progress in the past five years. First, the discovery and development of nanozymes are summarized. Second, classification and catalytic mechanism of nanozymes are discussed. Third, activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory, machine learning, biomimetic and chemical design. Then, synergistic theranostic strategy of nanozymes are introduced. Finally, current challenges and future prospects of nanozymes used for tumor theranostic are outlined, including selectivity, biosafety, repeatability and stability, in-depth catalytic mechanism, predicting and evaluating activities.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Guixin Yang
- Key Laboratory of Green Chemical Engineering and Technology of Heilongjiang Province, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| |
Collapse
|
40
|
Hu J, Zhu J, Chai J, Zhao Y, Luan J, Wang Y. Application of exosomes as nanocarriers in cancer therapy. J Mater Chem B 2023; 11:10595-10612. [PMID: 37927220 DOI: 10.1039/d3tb01991h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Cancer remains the most common lethal disease in the world. Although the treatment choices for cancer are still limited, significant progress has been made over the past few years. By improving targeted drug therapy, drug delivery systems promoted the therapeutic effects of anti-cancer medications. Exosome is a kind of natural nanoscale delivery system with natural substance transport properties, good biocompatibility, and high tumor targeting, which shows great potential in drug carriers, thereby providing novel strategies for cancer therapy. In this review, we present the formation, distribution, and characteristics of exosomes. Besides, extraction and isolation techniques are discussed. We focus on the recent progress and application of exosomes in cancer therapy in four aspects: exosome-mediated gene therapy, chemotherapy, photothermal therapy, and combination therapy. The current challenges and future developments of exosome-mediated cancer therapy are also discussed. Finally, the latest advances in the application of exosomes as drug delivery carriers in cancer therapy are summarized, which provide practical value and guidance for the development of cancer therapy.
Collapse
Affiliation(s)
- Jiawei Hu
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yudie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
41
|
Zhu J, Cai H, Xu C, Wang W, Song X, Li B, Shen Y, Dong X. Acidity-Responsive Nanoreactors Destructed "Warburg Effect" for Toxic-Acidosis and Starvation Synergistic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304058. [PMID: 37475522 DOI: 10.1002/smll.202304058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Indexed: 07/22/2023]
Abstract
"Warburg Effect" shows that most tumor cells rely on aerobic glycolysis for energy supply, leading to malignant energy deprivation and an "internal alkaline external acid" tumor microenvironment. Destructing the "Warburg Effect" is an effective approach to inhibit tumor progression. Herein, an acidity-responsive nanoreactor (Au@CaP-Flu@HA) is fabricated for toxic acidosis and starvation synergistic therapy. In the nanoreactor, the fluvastatin (Flu) could reduce lactate efflux by inhibiting the lactate-proton transporter (monocarboxylate transporters, MCT4), resulting in intracellular lactate accumulation. Meanwhile, the glucose oxidase-mimic Au-nanocomposite consumes glucose to induce cell starvation accompanied by gluconic acid production, coupling with lactate to exacerbate toxic acidosis. Also, the up-regulated autophagic energy supply of tumor cells under energy deprivation and hypoxia aggravation is blocked by autophagy inhibitor CaP. Cellular dysfunction under pHi acidification and impaired Adenosine Triphosphate (ATP) synthesis under starvation synergistically promote tumor cell apoptosis. Both in vitro and in vivo studies demonstrate that this combinational approach of toxic-acidosis/starvation therapy could effectively destruct the "Warburg Effect" to inhibit tumor growth and anti-metastatic effects.
Collapse
Affiliation(s)
- Jiawei Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Hao Cai
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Chengshuang Xu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Buhong Li
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Yi Shen
- MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
42
|
Lucchetti D, Colella F, Artemi G, Haque S, Sgambato A, Pellicano R, Fagoonee S. Smart nano-sized extracellular vesicles for cancer therapy: Potential theranostic applications in gastrointestinal tumors. Crit Rev Oncol Hematol 2023; 191:104121. [PMID: 37690633 DOI: 10.1016/j.critrevonc.2023.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/27/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Extracellular vesicles (EVs) have gained tremendous interest in the search for next-generation therapeutics for the treatment of a range of pathologies, including cancer, especially due to their small size, biomolecular cargo, ability to mediate intercellular communication, high physicochemical stability, low immunogenicity and biocompatibility. The theranostic potential of EVs have been enhanced by adopting several strategies such as genetic or metabolic engineering, parental cell modification or direct functionalization to incorporate therapeutic compounds into these nanoplatforms. The smart nano-sized EVs indeed offer huge opportunities in the field of cancer, and current research is set at overcoming the existing pitfalls. Smart EVs are already being applied in the clinics despite the challenges faced. We provide, herein, an update on the technologies employed for EV functionalization in order to achieve optimal tumor cell targeting and EV tracking in vivo with bio-imaging modalities, as well as the preclinical and clinical studies making use of these modified EVs, in the context of gastrointestinal tumors.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filomena Colella
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Giulia Artemi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
| | - Alessandro Sgambato
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Rinaldo Pellicano
- Gastroenterology Unit, Città della salute e della Scienza Hospital, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| |
Collapse
|
43
|
Xi Y, Shen Y, Chen L, Tan L, Shen W, Niu X. Exosome-mediated metabolic reprogramming: Implications in esophageal carcinoma progression and tumor microenvironment remodeling. Cytokine Growth Factor Rev 2023; 73:78-92. [PMID: 37696716 DOI: 10.1016/j.cytogfr.2023.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Esophageal carcinoma is among the most fatal malignancies with increasing incidence globally. Tumor onset and progression can be driven by metabolic reprogramming, especially during esophageal carcinoma development. Exosomes, a subset of extracellular vesicles, display an average size of ∼100 nanometers, containing multifarious components (nucleic acids, proteins, lipids, etc.). An increasing number of studies have shown that exosomes are capable of transferring molecules with biological functions into recipient cells, which play crucial roles in esophageal carcinoma progression and tumor microenvironment that is a highly heterogeneous ecosystem through rewriting the metabolic processes in tumor cells and environmental stromal cells. The review introduces the reprogramming of glucose, lipid, amino acid, mitochondrial metabolism in esophageal carcinoma, and summarize current pharmaceutical agents targeting such aberrant metabolism rewiring. We also comprehensively overview the biogenesis and release of exosomes, and recent advances of exosomal cargoes and functions in esophageal carcinoma and their promising clinical application. Moreover, we discuss how exosomes trigger tumor growth, metastasis, drug resistance, and immunosuppression as well as tumor microenvironment remodeling through focusing on their capacity to transfer materials between cells or between cells and tissues and modulate metabolic reprogramming, thus providing a theoretical reference for the design potential pharmaceutical agents targeting these mechanisms. Altogether, our review attempts to fully understand the significance of exosome-based metabolic rewriting in esophageal carcinoma progression and remodeling of the tumor microenvironment, bringing novel insights into the prevention and treatment of esophageal carcinoma in the future.
Collapse
Affiliation(s)
- Yong Xi
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China; Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yaxing Shen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lijie Chen
- School of Medicine, Xiamen University, Xiamen 361102, Fujian, China; China Medical University, Shenyang 110122, Liaoning, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| | - Xing Niu
- China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
44
|
Pourali G, Zafari N, Fiuji H, Batra J, Nazari E, Khazaei M, Hassanian SM, Vahabi M, Kiani M, Ghayour-Mobarhan M, Peters GJ, Ferns GA, Lam AKY, Giovannetti E, Avan A. Extracellular vesicles: Emerging mediators of cell communication in gastrointestinal cancers exhibiting metabolic abnormalities. Cytokine Growth Factor Rev 2023; 73:101-113. [PMID: 37573251 DOI: 10.1016/j.cytogfr.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
There is a complex interaction between pro-tumoural and anti-tumoural networks in the tumour microenvironment (TME). Throughout tumourigenesis, communication between malignant cells and various cells of the TME contributes to metabolic reprogramming. Tumour Dysregulation of metabolic pathways offer an evolutional advantage in the TME and enhance the tumour progression, invasiveness, and metastasis. Therefore, understanding these interactions within the TME is crucial for the development of innovative cancer treatments. Extracellular vesicles (EVs) serve as carriers of various materials that include microRNAs, proteins, and lipids that play a vital role in the communication between tumour cells and non-tumour cells. EVs are actively involved in the metabolic reprogramming process. This review summarized recent findings regarding the involvement of EVs in the metabolic reprogramming of various cells in the TME of gastrointestinal cancers. Additionally, we highlight identified microRNAs involved in the reprogramming process in this group of cancers and explained the abnormal tumour metabolism targeted by exosomal cargos as well as the novel potential therapeutic approaches.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands
| | - Jyotsna Batra
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Center for genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
| | - Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahrou Vahabi
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands
| | - MohammadAli Kiani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; Professor In Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Alfred King-Yin Lam
- Pathology, School of Medicine and Dentistry, Gold Coast campus, Griffith University, Gold Coast, QLD 4222, Australia
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam U.M.C., VU. University Medical Center (VUMC), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq,; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
45
|
Zhou Z, Zhang S, Xue N. Research progress of cancer cell membrane coated nanoparticles for the diagnosis and therapy of breast cancer. Front Oncol 2023; 13:1270407. [PMID: 37781205 PMCID: PMC10539574 DOI: 10.3389/fonc.2023.1270407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Nanoparticles (NPs) disguised in the cell membrane are a new type of biomimetic platform. Due to their ability to simulate the unique biological functions of membrane-derived cells, they have become one of the hotspots of research at home and abroad. The tumor-specific antigen antibody carried by breast cancer cell membranes can modify nanoparticles to have homologous tumor targeting. Therefore, nanoparticles wrapped in cancer cell membranes have been widely used in research on the diagnosis and treatment of breast cancer. This article reviews the current situation, prospects, advantages and limitations of nanoparticles modified by cancer cell membranes in the treatment and diagnosis of breast cancer.
Collapse
Affiliation(s)
| | - Shengmin Zhang
- Department of Ultrasound Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Nianyu Xue
- Department of Ultrasound Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
46
|
Du S, Guan Y, Xie A, Yan Z, Gao S, Li W, Rao L, Chen X, Chen T. Extracellular vesicles: a rising star for therapeutics and drug delivery. J Nanobiotechnology 2023; 21:231. [PMID: 37475025 PMCID: PMC10360328 DOI: 10.1186/s12951-023-01973-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, natural, cell-derived vesicles that contain the same nucleic acids, proteins, and lipids as their source cells. Thus, they can serve as natural carriers for therapeutic agents and drugs, and have many advantages over conventional nanocarriers, including their low immunogenicity, good biocompatibility, natural blood-brain barrier penetration, and capacity for gene delivery. This review first introduces the classification of EVs and then discusses several currently popular methods for isolating and purifying EVs, EVs-mediated drug delivery, and the functionalization of EVs as carriers. Thereby, it provides new avenues for the development of EVs-based therapeutic strategies in different fields of medicine. Finally, it highlights some challenges and future perspectives with regard to the clinical application of EVs.
Collapse
Affiliation(s)
- Shuang Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Yucheng Guan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Aihua Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Zhao Yan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Sijia Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 6007, N22, Taipa, 999078, Macau SAR, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Room 6007, N22, Taipa, 999078, Macau SAR, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China.
| |
Collapse
|
47
|
Qiao K, Luo C, Huang R, Xiang J, Pan Y, Zhang S, Jiang C, Ding S, Yang H, Huang Y, Ning S. Ultrasound Triggered Tumor Metabolism Suppressor Induces Tumor Starvation for Enhanced Sonodynamic Immunotherapy of Breast Cancer. Int J Nanomedicine 2023; 18:3801-3811. [PMID: 37457803 PMCID: PMC10349352 DOI: 10.2147/ijn.s413543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Sonodynamic therapy (SDT) as an emerging tumor treatment gained wide attention. However, tumor vascular destruction and oxygen depletion in SDT process may lead to further hypoxia. This may lead to enhanced glycolysis, lactate accumulation, and immunosuppression. Methods A glycolysis inhibitor (3PO) loaded and PEG modified black phosphorus nanosheets (BO) is constructed for potent starvation therapy and efficient immune activation. Results Under ultrasound irradiation, the BO can produce ROS to destroy tumors and tumor blood vessels and lead to further hypoxia and nutrients block. Then, the released 3PO inhibits tumor glycolysis and prevents the hypoxia-induced glycolysis and lactate accumulation. Both SDT and 3PO can cut off the source of lactic acid, as well as achieve antitumor starvation therapy through the blockade of the adenosine triphosphate (ATP) supply. In addition, the combination of starvation treatment and SDT further facilitates dendritic cells (DC) maturation, promotes antigen presentation by DCs, and eventually propagates the antitumor immunity and inhibition of abscopal tumor growth. Conclusion This is the first time that combines SDT with inhibition of glycolysis, achieving admirable tumor treatment and decreasing adverse events caused by SDT process and that has caused good immune activation. Our system provides a new idea for the future design of anti-tumor nanomedicines.
Collapse
Affiliation(s)
- Kun Qiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, People’s Republic of China
| | - Cheng Luo
- Department of Anesthesiology, The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530000, People’s Republic of China
| | - Rong Huang
- Guangxi Medical University Cancer Hospital, Nanning, 530000, People’s Republic of China
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Nanning, 530000, People’s Republic of China
| | - Jingfeng Xiang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - You Pan
- Guangxi Medical University Cancer Hospital, Nanning, 530000, People’s Republic of China
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Nanning, 530000, People’s Republic of China
| | - Shiyuan Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, People’s Republic of China
| | - Cong Jiang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, People’s Republic of China
| | - Shuaijie Ding
- Department of Gastrointestinal Surgery & Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People’s Republic of China
| | - Huawei Yang
- Guangxi Medical University Cancer Hospital, Nanning, 530000, People’s Republic of China
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Nanning, 530000, People’s Republic of China
| | - Yuanxi Huang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, People’s Republic of China
| | - Shipeng Ning
- Guangxi Medical University Cancer Hospital, Nanning, 530000, People’s Republic of China
- Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Nanning, 530000, People’s Republic of China
| |
Collapse
|
48
|
Fu X, Song J, Yan W, Downs BM, Wang W, Li J. The biological function of tumor-derived extracellular vesicles on metabolism. Cell Commun Signal 2023; 21:150. [PMID: 37349803 PMCID: PMC10286389 DOI: 10.1186/s12964-023-01111-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/24/2023] [Indexed: 06/24/2023] Open
Abstract
Multiple studies have shown that extracellular vesicles (EVs) play a key role in the process of information transfer and material transport between cells. EVs are classified into different types according to their sizes, which includes the class of exosomes. In comparison to normal EVs, tumor-derived EVs (TDEs) have both altered components and quantities of contents. TDEs have been shown to help facilitate an environment conducive to the occurrence and development of tumor by regulation of glucose, lipids and amino acids. Furthermore, TDEs can also affect the host metabolism and immune system. EVs have been shown to have multiple clinically useful properties, including the use of TDEs as biomarkers for the early diagnosis of diseases and using the transport properties of exosomes for drug delivery. Targeting the key bioactive cargoes of exosomes could be applied to provide new strategies for the treatment of tumors. In this review, we summarize the finding of studies focused on measuring the effects of TDE on tumor-related microenvironment and systemic metabolism. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Junlong Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Wei Yan
- School of Life Science, Wuhan University, Wuhan, 430072 Hubei China
| | - Bradley M. Downs
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Juanjuan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| |
Collapse
|
49
|
Meng X, Wang L, Zhao N, Zhao D, Shen Y, Yao Y, Jing W, Man S, Dai Y, Zhao Y. Stimuli-responsive cancer nanomedicines inhibit glycolysis and impair redox homeostasis. Acta Biomater 2023:S1742-7061(23)00341-0. [PMID: 37343908 DOI: 10.1016/j.actbio.2023.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
The solid tumors are characterized with oxidative stress and metabolic reprogramming, which has been independently used for targeted tumor monotherapy. However, the potential of targeting metabolism-redox circuit in tumor therapy has long been neglected. Herein, we report a hybrid nanocarrier for concurrent targeting of glycolysis and redox balance in the current work. The nanocarriers are made of pH- and ATP-responsive zeolitic imidazolate framework (ZIF-8) as the porous core that was further coated with poloxamer 407 as the steric stabilizer. Two active cargos, glucose oxidase (GOx) and 3-bromopyruvate (3-BrPA) were co-loaded in the core of nanocarrier. GOx is well-known for its ability of producing hydrogen peroxide at the expense of glucose and oxygen. 3-BrPA can reduce oxygen and glucose consumption through glycolysis, which sensitized cancer cells to GOx-induced apoptosis. At the cellular level, the hybrid nanocarrier significantly impaired the redox balance in the liver hepatocellular carcinoma cell line (HepG2), as evidenced by the depletion of glutathione and boost of reactive oxygen species. The potency of hybrid nanocarrier in terms of suppressing HepG2 cell energy metabolism was proven by the exhaustion of ATP. As a consequence, cell viability was greatly reduced. The in vivo efficacy of hybrid nanocarriers was demonstrated in HepG2 tumor-bearing mice. The current work presents an approach of targeting metabolism-redox circuit for tumor treatment, which may enrich the available anti-tumor strategies. STATEMENT OF SIGNIFICANCE: Metabolic alterations and elevated reactive oxygen species (ROS) are two characteristics of cancer. The metabolic patterns of cancer cells are elaborately reprogrammed to enable the rapid propagation of cancer cells. However, the potential of targeting the metabolism-redox circuit in anti-tumor therapy has long been neglected. As a proof-of-concept, we report an engineered stimuli-responsive nanomedicine that can eradicate cancer cells via cooperative glycolysis inhibition and redox impairment. The current work presents an approach of targeting the metabolism-redox circuit for tumor treatment, which may enrich the available anti-tumor strategies.
Collapse
Affiliation(s)
- Xuan Meng
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Lin Wang
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ning Zhao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Delong Zhao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yongli Shen
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yuan Yao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Wenjie Jing
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yujie Dai
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
50
|
Wang L, Wang D, Ye Z, Xu J. Engineering Extracellular Vesicles as Delivery Systems in Therapeutic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300552. [PMID: 37080941 PMCID: PMC10265081 DOI: 10.1002/advs.202300552] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Extracellular vesicles (EVs) are transport vesicles secreted by living cells and released into the extracellular environment. Recent studies have shown that EVs serve as "messengers" in intercellular and inter-organismal communication, in both normal and pathological processes. EVs, as natural nanocarriers, can deliver bioactivators in therapy with their endogenous transport properties. This review article describes the engineering EVs of sources, isolation method, cargo loading, boosting approach, and adjustable targeting of EVs. Furthermore, the review summarizes the recent progress made in EV-based delivery systems applications, including cancer, cardiovascular diseases, liver, kidney, nervous system diseases, and COVID-19 and emphasizes the obstacles and challenges of EV-based therapies and possible strategies.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Di Wang
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| | - Jianbin Xu
- Department of Orthopedic Surgerythe Second Affiliated HospitalZhejiang University School of MedicineHangzhou CityZhejiang Province310009P. R. China
- Orthopedics Research Institute of Zhejiang UniversityHangzhou CityZhejiang Province310009P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceHangzhou CityZhejiang Province310009P. R. China
| |
Collapse
|