1
|
Thottasseri AA, Rajendran V, Ramesh D, Tom AA, Thomas RR, Ray S, Gopan G, Mani M, Kannan T. Targeting Blood-Stage Malaria: Design, Synthesis, Characterization, In Vitro, and In Silico Evaluation of Pyrrolidinodiazenyl Chalcones. Chem Biol Drug Des 2025; 105:e70081. [PMID: 40070234 DOI: 10.1111/cbdd.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/25/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025]
Abstract
Malaria is a pervasive and deadly threat to the global population, and the resources available to treat this disease are limited. There is widespread clinical resistance to the most commonly prescribed antimalarial drugs. To address this issue, we synthesized a range of 4'-pyrrolidinodiazenyl chalcones using a covalent bitherapy approach to study their potential antimalarial properties. We examined the structure-activity relationships of these compounds, which could explain their antimalarial activities. The in vitro blood stage antimalarial activity of the compounds was evaluated against the mixed-blood stage culture (ring, trophozoites and schizonts) of Plasmodium falciparum 3D7, and the 50% inhibitory concentrations (IC50s) ranged from 3.3 to 22.2 μg/mL after 48 h of exposure. Compounds 11, 19, and 22 displayed pronounced IC50 values of 7.6 μg/mL, 6.4 μg/mL, and 3.3 μg/mL, respectively. The in vitro cytotoxicity of the active compounds was evaluated on human-derived Mo7e cells and murine-derived BA/F3 cells. Compounds 11 and 19 were found to be noncytotoxic (> 40 μg/mL), whereas compound 22 displayed cytotoxicity at higher concentrations. Moreover, these compounds exerted negligible hemolytic effects on human RBCs at their active concentrations. Molecular docking of these compounds revealed good hydrophobic and hydrogen bonding interactions with the binding sites of Plasmodium falciparum-dihydrofolate reductase, providing a rationale for their antimalarial activity, which is consistent with the in vitro results.
Collapse
Affiliation(s)
| | - Vinoth Rajendran
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, India
| | - Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Anju Agnes Tom
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Roshiny Roy Thomas
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Sreetama Ray
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Gopika Gopan
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, India
| | - Maheswaran Mani
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, India
| | | |
Collapse
|
2
|
Dahiya L, Kumar R, Baidya ATK, Kumar S, Kumar R, Pawar SV, Yadav AK. Design, synthesis, biological evaluations and in silico studies of N-substituted 2,4-thiazolidinedione derivatives as potential a-glucosidase inhibitors. J Biomol Struct Dyn 2025; 43:997-1014. [PMID: 38079329 DOI: 10.1080/07391102.2023.2291158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/20/2023] [Indexed: 01/01/2025]
Abstract
Diabetes mellitus is considered as one of the principal global health urgencies of the twenty first century. In the present investigation, novel N-substituted 2,4-thiazolidinedione derivatives were designed, synthesized, and characterized by spectral techniques. All the newly synthesized N-substituted 2,4-thiazolidinedione derivatives were tested for in vitro α-glucosidase inhibitory activities and compounds A-12 and A-14 were found to be the most potent which were further subjected to in-vivo disaccharide loading test. The most potent compound was also found to be non-toxic in cytotoxicity studies. Further, docking studies were carried out to investigate the binding mode and key interactions with amino acid residues of α-glucosidase. Molecular dynamic simulations studies for the compounds acarbose, A2, A12, and A14 were done with α-glucosidase protein. Further, ΔG was calculated for acarbose, A2, A12, and A14. In silico studies and absorption, distribution, metabolism, excretion (ADME) prediction studies were also executed to establish the 'druggable' pharmacokinetic profiles. Here, we have developed novel N-substituted TZD analogues with different alkyl groups as α-glucosidase inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lalita Dahiya
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, India
| | - Rajiv Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- Chandigarh College of Pharmacy, Landran, India
| | - Anurag T K Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, India
| | - Sunil Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ashok Kumar Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
3
|
Mohamed HEA, Khalil AT, Hkiri K, Ayaz M, Usman A, Sadiq A, Ullah F, Khan MA, Ullah I, Maaza M. Potential nanomedicinal applications and physicochemical nature of Hyphaene thebaica-reduced nano-samaria. Microsc Res Tech 2024; 87:2829-2841. [PMID: 39007412 DOI: 10.1002/jemt.24654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/03/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Herein we described the biofabrication of samarium oxide nanoparticles (HT-Sm2O3 NPs) by applying the aqueous fruit extract of Hyphaene thebaica was utilized as an eco-friendly chelating agent. The prepared NPs were subjected to various physicochemical properties and potential in biomedical applications. X-ray Diffraction (XRD) pattern revealed sharp peaks that corroborated with the Joint Committee on Powder Diffraction Standards (JCPDS) card no. 00-042-1464. Crystallite size obtained from Debye-Scherrer approximation and Williamson-Hall (W-H) plot was 28.73 and 69.3 nm, respectively. Optical bandgap was calculated by employing Kubelka-Munk (K-M) function and was found to be ~4.58 eV. Raman shift was observed at 121, 351, 424-, and 561 cm-1. Photoluminescence (PL) spectra revealed two major peaks positioned at 360 and 540 nm. The high-resolution transmission electron microscopy (HR-TEM) analysis of HT-Sm2O3 nanoparticles (NPs) showed that they predominantly have spherical to cuboidal shapes. Additionally, the selected area electron diffraction (SAED) pattern presented spotty rings, indicating a high level of crystallinity in these NPs. The potential nanomedicine applications were studied using diverse bioassays using different treatments. The antioxidant activity demonstrated 45.71% ± 1.13% inhibition at 1000 μg/mL. Brine shrimp lethality assay revealed the highest cytotoxicity of 46.67% ± 3.33% at 1000 μg/mL and LC50 value of 1081 μg/mL. HT-Sm2O3 NPs exhibited inhibition of angiogenesis (20.41% ± 1.18%) at of 1000 μg/mL. MTT assay results indicated that HT-Sm2O3 NPs exhibit inhibitory effects on cell lines. Specifically, these NPs showed an IC50 value of 104.6 μg/mL against 3T3 cells. Against MCF-7 cells, the NPs demonstrated an IC50 value of 413.25 μg/mL. Additionally, in the inhibition of acetylcholinesterase (AChE), the newly synthesized NPs showed an IC50 value of 320 μg/mL. The antidiabetic assessment through α-glucosidase and α-amylase inhibition assays revealed, an IC50 value of 380 μg/mL for α-glucosidase and 952 μg/mL for α-amylase was calculated. Overall, our study suggested that the Sm2O3 NPs possess moderate anticancer, cholinesterase inhibition, and antidiabetic potential, however, needs further assessment. RESEARCH HIGHLIGHTS: In this work, nano-samaria is synthesized using an eco-friendly and green approach. The nanoparticles were characterized using techniques such as Raman, HR-TEM, FTIR, DRS, XRD, and so on, and the applications were studied using multiple in vitro bioassays for Diabetes, Alzheimer, and Cancer. The nano-samaria revealed good potential for potential biomedical applications.
Collapse
Affiliation(s)
- Hamza Elsayed Ahmad Mohamed
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, Cape Town, South Africa
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Khaoula Hkiri
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, Cape Town, South Africa
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Assad Usman
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Arif Khan
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Ikram Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Malik Maaza
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, Cape Town, South Africa
| |
Collapse
|
4
|
Mahnashi MH, Ali S, M Alshehri O, Almazni IA, Asiri SA, Sadiq A, Zafar R, Jan MS. Pharmacological evaluations of amide carboxylates as potential anti-Alzheimer agents: anti-radicals, enzyme inhibition, simulation and behavioral studies in animal models. J Biomol Struct Dyn 2024; 42:9249-9268. [PMID: 37642974 DOI: 10.1080/07391102.2023.2251052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Alzheimer's disease (AD) is a neurological disorder that progresses gradually but irreversibly leading to dementia and is difficult to prevent and treat. There is a considerable time window in which the progression of the disease can be intervened. Scientific advances were required to help the researchers to identify the effective methods for the prevention and treatment of disease. This research was designed to investigate potential mediators for the remedy of AD, five new carboxylate amide zinc complexes (AAZ9-AAZ13) were synthesized and characterized by spectroscopic and physicochemical techniques. The biological evaluation was carried out based on the cholinesterase inhibitory mechanism. The preparation methodology provided the effective synthesis of targeted moieties. The in vitro pharmacological activities were evaluated involving AChE/BChE inhibition and antioxidant potential. All synthesized compounds displayed activity against both enzymes in higher or comparable to the standard drug Galantamine, a reversible inhibitor but the results displayed by compound AAZ10 indicated IC50 of 0.0013 µM (AChE) and 0.061 µM (BChE) as high values for dual AChE/BChE inhibition with potent anti-oxidant results. Structure activity relationship (SAR) indicated that the potent activity of compound AAZ10 appeared due to the presence of nitro clusters at the ortho position of an aromatic ring. The potent synthesized compound AAZ10 was also explored for the in-vivo Anti-Alzheimer activity and anti-oxidant activity. Binding approaches of all synthesized compounds were revealed through molecular docking studies concerning binding pockets of enzymes that analyzed the best posture interaction with amino acid (AA) residues providing an appreciable understanding of enzyme inhibitory mechanisms. Results indicate that synthesized zinc (II) amide carboxylates can behave as an effective remedy in the treatment of Alzheimer's disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Osama M Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ibrahim Abdullah Almazni
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Saeed Ahmed Asiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, KP, Pakistan
| | - Rehman Zafar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | | |
Collapse
|
5
|
Iqbal H, Haroon M, Akhtar T, Aktaş A. Design, Synthesis of 3-(Aryl)-1-(2-p-tolylthiazol-4-yl)prop-2-en-1-ones as Alpha(α)-Amylase Inhibitors. Chem Biodivers 2024; 21:e202401021. [PMID: 38954767 DOI: 10.1002/cbdv.202401021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
α-Amylase inhibition is vital in controlling diabetic complications. Herein, we have synthesized a hybrid scaffold based on thiazole-chalcone to access α-amylase inhbition. The proposed structures were verified with spectroscopic techniques (UV-Vis., FT-IR, 1H-, 13C-NMR, and elemental analysis). The synthesized compounds were evaluated for their α-amylase and antioxidant potential. In vitro hemolytic assay was performed to test biocompatibility of all compounds. Among tested compounds, 4 c (IC50=3.8 μM), 4 g (IC50=14.5 μM), and 4 f (IC50=17.1 μM) were found excellent α-amylase inhibitors. However, none of the tested compounds exhibited significant antioxidant activity. All compounds showed less lysis than Triton X-100, but compounds 4 f and 4 h had the least lysis at all tested concentrations and were found to be safe for human erythrocytes. Molecular docking study was performed to evaluate the binding interactions of ligands with human pancreatic α-amylase (HPA). The binding score -8.09 to -8.507 kcal/mol revealed strong binding interactions in the ligand-protein complex. The docking results supplemented the observed α-amylase inhibition and hence augment the scaffold to serve as leads for the antidiabetic drug development.
Collapse
Affiliation(s)
- Hafsa Iqbal
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur (AJK, 10250, Pakistan
| | - Muhammad Haroon
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH, 45056, USA
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science and Technology (MUST), Mirpur (AJK, 10250, Pakistan
| | - Aydin Aktaş
- Inonu University, Vocational School of Health Service, Malatya, 44280, Türkiye
| |
Collapse
|
6
|
Rauf A, Ibrahim M, Alomar TS, AlMasoud N, Khalil AA, Khan M, Khalid A, Jan MS, Formanowicz D, Quradha MM. Hypoglycemic, anti-inflammatory, and neuroprotective potentials of crude methanolic extract from Acacia nilotica L. - results of an in vitro study. Food Sci Nutr 2024; 12:3483-3491. [PMID: 38726429 PMCID: PMC11077208 DOI: 10.1002/fsn3.4017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 05/12/2024] Open
Abstract
Acacia nilotica L., also known as babul, belonging to the Fabaceae family and the Acacia genus, is typically used for ornamental purposes and also as a medicinal plant found in tropical and subtropical areas. This plant is a rich source of bioactive compounds. The current study aimed to elucidate the hypoglycemic, anti-inflammatory, and neuroprotective potential of A. nilotica's crude methanolic extract. The results of the in vitro antidiabetic assay revealed that methanolic extract of A. nilotica inhibited the enzyme α-glucosidase (IC50: 33 μg mL-1) and α-amylase (IC50: 17 μg mL-1) in a dose-dependent manner. While in the anticholinesterase enzyme inhibitory assay, maximum inhibition was shown by the extract against acetylcholinesterase (AChE) (637.01 μg mL-1) and butyrylcholinesterase (BChE) (491.98 μg mL-1), with the highest percent inhibition of 67.54% and 71.50% at 1000 μg mL-1, respectively. This inhibitory potential was lower as compared to the standard drug Galantamine that exhibited 82.43 and 89.50% inhibition at the same concentration, respectively. Moreover, the methanolic extract of A. nilotica also significantly inhibited the activities of cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) in a concentration-dependent manner. The percent inhibitory activity of 5-LOX and COX-2 ranged from 42.47% to 71.53% and 43.48% to 75.22%, respectively. Furthermore, in silico, in vivo, and clinical investigations must be planned to validate the above-stated bioactivities of A. nilotica.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of ChemistryUniversity of SwabiSwabi, AnbarKhyber PakhtunkhwaPakistan
| | - Muhammad Ibrahim
- Department of ChemistryUniversity of SwabiSwabi, AnbarKhyber PakhtunkhwaPakistan
| | - Taghrid S. Alomar
- Department of Chemistry, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Muneeb Khan
- Department of Human Nutrition and Dietetics, Riphah College of Rehabilitation and Allied Health SciencesRiphah International UniversityLahorePakistan
| | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Muhammad Saeed Jan
- Department of PharmacyBacha Khan UniversityCharsaddaKhyber PakhtunkhwaPakistan
| | - Dorota Formanowicz
- Chair and Department of Medical Chemistry and Laboratory MedicinePoznan University of Medical SciencesPoznanPoland
| | - Mohammed Mansour Quradha
- College of EducationSeiyun UniversitySeiyunHadhramawtYemen
- Pharmacy Department, Medical SciencesAljanad University for Science and TechnologyTaizYemen
| |
Collapse
|
7
|
Alshehri OM, Shabnam M, Asiri SA, Mahnashi MH, Sadiq A, Jan MS. Isolation, invitro, invivo anti-inflammatory, analgesic and antioxidant potential of Habenaria plantegania Lindl. Inflammopharmacology 2024; 32:1353-1369. [PMID: 38334860 DOI: 10.1007/s10787-023-01425-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024]
Abstract
Habenaira plantaginea belong to orchid family which is native to Asia. Members of this family are commonly famous for the cure of pain and inflammation. To date, no research was found on isolation of compounds from this plant for the treatment of inflammation and analgesia nor has been published to our knowledge. The purpose of this study was to evaluate an analgesic, anti-inflammatory and anti-oxidant activity of the isolated compound from the most potent chloroform sub-fraction and the isolated compounds form the habenaria plantaginea. Anti-inflammatory analgesic and antioxidant potential of the various chloroform sub-fractions and isolated compounds from the most potent sub-fraction (HP-1 & HP-1) were screened for their in vitro enzymatic assays. Furthermore, prior to in-vivo investigation, the isolated compounds were subjected for their toxicity study. The potent compound was then examined for acetic acid-induced writhing, hot plate test, carrageenan-induced inflammation assays. Further various phlogistic agents were used for the evaluation of mechanism. In the COX-2 inhibitory assay the chloroform sub fraction Cf-4 demonstrated excellent activity as compared to the other sub-fraction with 92.15% inhibition. The COX-2 enzyme make prostaglandins which are directly involved in inflammation. Likewise against 5-LOX the Cf-4 was the most potent sub-fraction with IC50 3.77 µg/mL. The 5-LOX catalyzes the biosynthesis of leukotrienes which is a group of lipid mediators of inflammation derived from arachidonic acid. Free radicals can induce inflammation through cellular damage while chronic inflammation generates a large number of free radicals, whose eventually lead to inflammation. In antioxidant assays the Cf-4 fraction was displayed excellent results against ABTS, DPPH and H2O2 free radical with 88.88, 77.44, and 65.52% inhibition at highest concentration. Likewise, the compound HP-1 demonstrated 88.81, 89.34 and 80.43% inhibition while compound HP-2 displayed 84.34, 91.52 and 82.34% inhibition against ABTS, DPPH and H2O2 free radical which were comparable to the standard drug ascorbic acid respectively. This study's findings validate the use of this species as traditional use.
Collapse
Affiliation(s)
- Osama M Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Madeeha Shabnam
- Department of Chemistry, Women University Mardan, Mardan, KP, Pakistan
| | - Saeed Ahmed Asiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran, 61441, Saudi Arabia
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara, 18000, KP, Pakistan
| | - Muhammad Saeed Jan
- Department of Pharmacy, Bacha Khan University, Charsadda, 24420, KP, Pakistan.
| |
Collapse
|
8
|
Kothari M, Kannan K, Sahadevan R, Sadhukhan S. Novel molecular hybrids of EGCG and quinoxaline: Potent multi-targeting antidiabetic agents that inhibit α-glucosidase, α-amylase, and oxidative stress. Int J Biol Macromol 2024; 263:130175. [PMID: 38360242 DOI: 10.1016/j.ijbiomac.2024.130175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Diabetes mellitus is a multifactorial disease and its effective therapy often demands several drugs with different modes of action. Herein, we report a rational design and synthesis of multi-targeting novel molecular hybrids comprised of EGCG and quinoxaline derivatives that can effectively inhibit α-glucosidase, α-amylase as well as control oxidative stress by scavenging ROS. The hybrids showed superior inhibition of α-glucosidase along with similar α-amylase inhibition as compared to standard drug, acarbose. Most potent compound, 15c showed an IC50 of 0.50 μM (IC50 of acarbose 190 μM) against α-glucosidase. Kinetics studies with 15c revealed a competitive inhibition against α-glucosidase. Binding affinity of 15c (-9.5 kcal/mol) towards α-glucosidase was significantly higher than acarbose (-7.7 kcal/mol). 15c exhibited remarkably high antioxidant activity (IC50 = 18.84 μM), much better than vitamin C (IC50 = 33.04 μM). Of note, acarbose shows no antioxidant activity. Furthermore, α-amylase activity was effectively inhibited by 15c with an IC50 value of 16.35 μM. No cytotoxicity was observed for 15c (up to 40 μM) in MCF-7 cells. Taken together, we report a series of multi-targeting molecular hybrids capable of inhibiting carbohydrate hydrolysing enzymes as well as reducing oxidative stress, thus representing an advancement towards effective and novel therapeutic approaches for diabetes.
Collapse
Affiliation(s)
- Manan Kothari
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Karthika Kannan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India; Physical & Chemical Biology Laboratory and Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678 623, India.
| |
Collapse
|
9
|
Hernández-Vázquez E, Martínez-Caballero S, Aldana-Torres D, Estrada-Soto S, Nieto-Camacho A. Discovery of dual-action phenolic 4-arylidene-isoquinolinones with antioxidant and α-glucosidase inhibition activities. RSC Med Chem 2024; 15:519-538. [PMID: 38389895 PMCID: PMC10880897 DOI: 10.1039/d3md00585b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/25/2023] [Indexed: 02/24/2024] Open
Abstract
A multicomponent-derived synthesis of arylidene isoquinolinones decorated with phenolic moieties is described. The series demonstrated good DPPH trapping and, in the case of sinapic acid-containing analogs, excellent activity against lipoperoxidation; EPR also demonstrated that one derivative scavenged hydroxyl radicals. In addition, some compounds showed excellent inhibition of α-glucosidase activity and, according to both Lineweaver-Burk plots and molecular docking, they act as non-competitive or mixed inhibitors. In vitro assay also demonstrated that two compounds significantly reduced the plasma glucose levels after sucrose administration. In summary, the studied isoquinolinones become novel compounds with dual action (antioxidant and α-glucosidase inhibition) against diabetes and related metabolic diseases, whose optimization would lead to more potent candidates.
Collapse
Affiliation(s)
- Eduardo Hernández-Vázquez
- Instituto de Química, UNAM, Circuito Exterior S.N Ciudad Universitaria, Coyoacán México CDMX 04510 Mexico
| | - Siseth Martínez-Caballero
- Instituto de Química, UNAM, Circuito Exterior S.N Ciudad Universitaria, Coyoacán México CDMX 04510 Mexico
| | - Diana Aldana-Torres
- Facultad de Farmacia, UAEM Av. Universidad 1001, Col. Chamilpa Cuernavaca Morelos 62209 Mexico
| | - Samuel Estrada-Soto
- Facultad de Farmacia, UAEM Av. Universidad 1001, Col. Chamilpa Cuernavaca Morelos 62209 Mexico
| | - Antonio Nieto-Camacho
- Instituto de Química, UNAM, Circuito Exterior S.N Ciudad Universitaria, Coyoacán México CDMX 04510 Mexico
| |
Collapse
|
10
|
Gupta T, Rani D, Nainwal LM, Badhwar R. Advancement in chiral heterocycles for the antidiabetic activity. Chirality 2024; 36:e23637. [PMID: 38384150 DOI: 10.1002/chir.23637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 02/23/2024]
Abstract
For the synthesis and development of pharmaceuticals, chirality is an important structural component. Chiral heterocyclic compounds have annoyed the interest of synthetic chemists who are working to create useful and efficient techniques for these molecules. As indicated by the expanding number of chiral drugs created in the last two decades, the link between chirality and pharmacological activity has become more important in the pharmaceutical and biopharmaceutical industries. Approximately 65% of currently used drugs are chiral, and many of them are promoted as racemates in many circumstances. There are a growing number of new chiral heterocyclic compounds with important biological properties and intriguing uses in medical chemistry and drug discovery. In this study, we review current breakthroughs in chiral heterocycles and their different physiological activities that have been published in the last year (from 2010 to early 2023). This study focuses on the current trends in the use of chiral heterocycles in drug design and the creation of several powerful and competent candidates for diabetic illnesses.
Collapse
Affiliation(s)
- Tinku Gupta
- Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Dimpy Rani
- School of Medical and Allied Sciences, G.D. Goenka University, Haryana, India
| | - Lalit Mohan Nainwal
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, India
| | - Reena Badhwar
- Department of Pharmacy, SGT University, Budhera, Haryana, India
| |
Collapse
|
11
|
Nasimi Doost Azgomi R, Karimi A, Moini Jazani A. The favorable impacts of cardamom on related complications of diabetes: A comprehensive literature systematic review. Diabetes Metab Syndr 2024; 18:102947. [PMID: 38325073 DOI: 10.1016/j.dsx.2024.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND AND AIM Complementary and alternative medicine plays an increasing role in preventing, and regulatory, complications associated with diabetes. There are plenty of polyphenolic compounds found in Elettaria cardamomum (Cardamom) such as luteolin, limonene, pelargonidin, caffeic acid, kaempferol, gallic acid, and quercetin which can be used in many metabolic diseases. METHOD The objective of this systematic review was to appraise evidence from clinical and in vivo studies on the effects of cardamom on inflammation, blood glucose, oxidative stress and dyslipidemia of diabetes mellitus. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements, the present study was carried out. Studies were conducted by searching databases such as EMBASE, Scopus, PubMed, Google Scholar, web of sciences, and Cochrane Library from the commencement until April 2022. RESULTS All available human and animal studies examining the effects of cardamom on diabetes were published in the form of English articles. Finally, only 14 of the 241 articles met the criteria for analysis. Of the 14 articles, 8 were in vivo studies, and 6 were clinical trial studies. Most studies have indicated the beneficial effects of cardamom on insulin resistance, oxidative stress and inflammation. Cardamom also improved dyslipidemia, but had no substantial effect on weight loss. CONCLUSION According to most studies, cardamom supplementation enhanced antioxidant enzyme production and activity in diabetes mellitus and decreased oxidative stress and inflammatory factors. Despite this, the exact mechanism of the disease needs to be identified through more clinical trials.
Collapse
Affiliation(s)
- Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arash Karimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
12
|
Shankar B, Singh T, Kumar B, Arora A, Kumar S, Singh BK. Solvent-free synthesis and in-silico molecular docking study of ( E)-3-(β- C-glycosylmethylidene)- N-aryl/alkyl succinimides. Org Biomol Chem 2023; 21:9398-9409. [PMID: 37982163 DOI: 10.1039/d3ob01252b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Globally, human papillomavirus (HPV) infection is the leading cause of mortality associated with cervical cancer, oral cancer (oropharyngeal), and head and neck squamous cell carcinoma (HNSCC). It is essential to explore anti-cancer drugs against life-threatening HPV infections. Aiming to search for potentially better anticancer agents, a small library of β-C-glycosylated methylidene succinimides have been synthesized under bulk and mechanical grinding conditions using the Wittig olefination reaction. Thus, the reaction of different 2,3,4,6-tetra-O-benzyl-C-glycosyl aldehydes with N-aryl/alkyl maleimides in the presence of PPh3 at 25 °C under bulk and mechanical grinding conditions results in the formation of stereochemically defined (E)-3-(2,3,4,6-tetra-O-benzyl-C-glycosylmethylidene)-N-alkyl/phenyl succinimides, which upon debenzylation with 1 M BCl3 in DCM at -78 °C lead to the synthesis of (E)-3-(C-glycosylmethylidene)-N-alkyl/phenyl succinimides in good to excellent yields. The developed methodology is efficient and environmentally benign because there is no use of organic solvents, and the products are obtained in a stereochemically defined form and in high yields. The aqueous solubility of all synthesized β-C-glycosylated methylidene succinimides makes them potential candidates for the evaluation of their different biological activities. In the present work, the synthesized glycosylated alkylidine succinimides were subjected to an in-silico molecular docking study against the E6 oncoprotein of high-risk type HPV16, which is responsible for the inactivation of the tumor suppressor p53 protein. Analysis of the molecular docking data revealed that the synthesized compounds are effective inhibitors of HPV infection, which is the cause of oral, head and neck, and cervical cancer. In comparison with the positive control 5-FU, an anti-cancer drug used in chemotherapy, more than fifteen compounds were found to be better E6 protein inhibitors.
Collapse
Affiliation(s)
- Bhawani Shankar
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi-110019, India.
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Tejveer Singh
- Department of Zoology, Hansraj College, University of Delhi, Delhi-110007, India
| | - Banty Kumar
- Department of Chemistry, Rajdhani College, University of Delhi, Delhi-110015, India
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
13
|
Nidhar M, Kumar V, Mahapatra A, Gupta P, Yadav BK, Singh RK, Tewari AK. Ligand-based designing of DPP-4 inhibitors via hybridization; synthesis, docking, and biological evaluation of pyridazine-acetohydrazides. Mol Divers 2023; 27:2729-2740. [PMID: 36534357 DOI: 10.1007/s11030-022-10577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
A series of novel pyridazine-acetohydrazide hybrids were designed, synthesized, and evaluated for their in vitro and in vivo antihyperglycemic activity. In this context, pyridazine-acetohydrazides (6a-6p) were synthesized by coupling substituted aldehyde with 2-(5-cyano-6-oxo-3,4-diphenylpyridazine-1-6H-yl) acetohydrazide, which was prepared via the reaction of pyridazine ester with hydrazine hydrate. The molecular docking study was carried out to examine the binding affinities and interaction of designed compounds against the DPP-4 enzyme. Compounds 6e, 6f, 6l, and 6n exhibited interaction with active residue. In silico ADMET properties, and toxicity studies corroborated that compounds were found to have good bioavailability and less toxic. The synthesized compounds were further estimated for in vitro DPP-4 activity. Compounds 6e and 6l were found as the most effective DPP-4 inhibitor in this series with IC50 values (6.48, 8.22 nM) when compared with sitagliptin (13.02 nM). According to the toxicity assay compound, 6l showed very less toxicity at a higher concentration so further selected for the in vivo antihyperglycemic activity.
Collapse
Affiliation(s)
- Manisha Nidhar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vipin Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Archisman Mahapatra
- Molecular Endocrinology and Toxicology Lab (MET Lab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Priya Gupta
- Molecular Endocrinology and Toxicology Lab (MET Lab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Brijesh Kumar Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Rahul Kumar Singh
- Molecular Endocrinology and Toxicology Lab (MET Lab), Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Ashish Kumar Tewari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
14
|
Huneif MA, Fahad S, Abdulwahab A, Alqahtani SM, Mahnashi MH, Nawaz A, Hussain F, Sadiq A. Antidiabetic, Antihyperlipidemic, and Antioxidant Evaluation of Phytosteroids from Notholirion thomsonianum (Royle) Stapf. PLANTS (BASEL, SWITZERLAND) 2023; 12:3591. [PMID: 37896054 PMCID: PMC10609873 DOI: 10.3390/plants12203591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Diabetes mellitus (DM) is a metabolic complication and can pose a serious challenge to human health. DM is the main cause of many life-threatening diseases. Researchers of natural products have been continuously engaged in treating vital diseases in an economical and efficient way. In this research, we extensively used phytosteroids from Notholirion thomsonianum (Royle) Stapf for the treatment of DM. The structures of phytosteroids NtSt01 and NtSt02 were confirmed with gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) analyses. Through in vitro studies including α-glucosidase, α-amylase, and DPPH assays, compound NtSt01 was found to be comparatively potent. An elevated dose of compound NtSt01 was also found to be safe in an experimental study on rats. With a dose of 1.0 mg/kg of NtSt01, the effect on blood glucose levels in rats was observed to be 519 ± 3.98, 413 ± 1.87, 325 ± 1.62, 219 ± 2.87, and 116 ± 1.33 mg/dL on the 1st, 7th, 14th, 21st, and 28th, days, respectively. The in vivo results were compared with those of glibenclamide, which reduced the blood glucose level to 107 ± 2.33 mg/dL on the 28th day. On the 28th day of NtSt01 administration, the average weights of the rats and vital organs (liver, kidney, pancreas, and heart) remained healthy, with a slight increase. The biochemical parameters of the blood, i.e., serum creatinine, blood urea, serum bilirubin, SGPT (or ALT), and serum alkaline phosphatase, of rats treated with NtSt01 remained in the normal ranges. Similarly, the serum cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels also remained within the standard ranges. It is obvious from our overall results that the phytosteroids (specifically NtSt01) had an efficient therapeutic effect on the blood glucose level, protection of vital organs, and blood biochemistry.
Collapse
Affiliation(s)
- Mohammad A. Huneif
- Pediatric Department, Medical College, Najran University, Najran 61441, Saudi Arabia; (M.A.H.); (A.A.); (S.M.A.)
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan;
| | - Alqahtani Abdulwahab
- Pediatric Department, Medical College, Najran University, Najran 61441, Saudi Arabia; (M.A.H.); (A.A.); (S.M.A.)
| | - Seham M. Alqahtani
- Pediatric Department, Medical College, Najran University, Najran 61441, Saudi Arabia; (M.A.H.); (A.A.); (S.M.A.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, KP, Pakistan;
| | - Fida Hussain
- Department of Pharmacy, University of Swabi, Swabi 23561, KP, Pakistan;
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, KP, Pakistan;
| |
Collapse
|
15
|
Ahmed S, Bhat AR, Rahiman AK, Dongre RS, Hasan AH, Niranjan V, C L, Sheikh SA, Jamalis J, Berredjem M, Kawsar SMA. Green synthesis, antibacterial and antifungal evaluation of new thiazolidine-2,4-dione derivatives: molecular dynamic simulation, POM study and identification of antitumor pharmacophore sites. J Biomol Struct Dyn 2023; 42:10635-10651. [PMID: 37768136 DOI: 10.1080/07391102.2023.2258404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
In this study, a series of thiazolidine-2,4-dione derivatives 3a-i were synthesized and evaluated for antibacterial activity against Gram-positive and Gram-negative strains of Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Newly prepared thiazolidine (TZD) derivatives were further screened separately for in vitro antifungal activity against cultures of fungal species, namely, Aspergillus niger, Alternaria brassicicola, Chaetomium murorum, Fusarium oxysporum, Lycopodium sp. and Penicillium notatum. The electron-donating substituents (-OH and -OCH3) and electron-withdrawing substituents (-Cl and -NO2) on the attached arylidene moieties of five-membered heterocyclic ring enhanced the broad spectrum of antimicrobial and antifungal activities. The molecular docking study has revealed that compound 3h strongly interacts with the catalytic residues of the active site of the β-carbonic anhydrase (P. aeruginosa) and has the best docking score. In silico pharmacokinetics studies showed the drug-likeness and non-toxic nature of the synthesized compounds, which indicates the combined antibacterial, antiviral and antitumor pharmacophore sites of the targeted drug. This work demonstrates that potential TZD derivatives bind to different types of bacterial and fungal pathogens for circumventing their activities and opens avenues for the development of newer drug candidates that can target bacterial and fungal pathogens.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| | - Ajmal R Bhat
- Department of Chemistry, RTM Nagpur University, Nagpur, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| | | | - Aso Hameed Hasan
- Department of Chemistry, College of Science, University of Garmian, Kalar, Iraq
| | - Vidya Niranjan
- Department of Biotechnology, R V College of Engineering, Bengaluru, India
| | - Lavanya C
- Department of Biotechnology, R V College of Engineering, Bengaluru, India
| | - S A Sheikh
- Department of Physics, National Institute of Technology, Srinagar, Kashmir, India
| | - Joazaizulfazli Jamalis
- Faculty of Science, Department of Chemistry, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria
| | - Sarkar M A Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| |
Collapse
|
16
|
Ahmed Mohamed HE, Khalil AT, Hkiri K, Ayaz M, Usman A, Sadiq A, Ullah F, Hussain I, Maaza M. Phyto-fabrication of ultrafine nanoscale holmium oxide HT-Ho 2O 3 NPs and their biomedical potential. RSC Adv 2023; 13:27912-27922. [PMID: 37736569 PMCID: PMC10510458 DOI: 10.1039/d3ra05047e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
In this study holmium oxide nanoparticles (Ho2O3 NPs) are fabricated using Hyphaene thebaica extracts as a bioreductant. The XRD pattern of HT-Ho2O3 NPs (product from phyto-reduction) suggested that the nanoparticles are crystalline with no impurities. Scherrer approximation revealed grain sizes of ∼10 nm. The HR-TEM revealed HT-Ho2O3 NPs possessed a quasi-spherical morphology complemented by SEM and the particle sizes were in the range of 6-12 nm. The infrared spectra revealed characteristic Ho-O bonding at ∼603 cm-1. Raman spectra indicated five main peaks positioned at 156 cm-1, 214 cm-1, 328 cm-1, 379 cm-1 and 607 cm-1. Eg (optical bandgap) was found to be 5.1 eV. PL spectra indicated two major peaks at 415 nm and 607 nm. EDS spectra confirmed the elemental presence of holmium (Ho). Spotty rings were obtained during the SAED measurement which indicated crystallinity of HT-Ho2O3 NPs. The HT-Ho2O3 NPs were further analyzed for their antioxidant, anti-angiogenic and cytotoxic properties. The antioxidant potential was moderate i.e., 43.40 ± 0.96% at 1000 μg mL-1 which decreased in a dose dependent manner. Brine shrimp lethality was highest at 1000 μg mL-1 with the LC50 320.4 μg mL-1. Moderate anti-angiogenic potential was observed using in ova CAM assay. MTT bioassay revealed that the HT-Ho2O3 NPs inhibited the 3T3 cells (IC50 67.9 μg mL-1), however, no significant inhibition was observed against MCF-7 cells. α-Amylase and β-glucosidase inhibition revealed that the HT-Ho2O3 NPs can be of use in controlling blood glucose levels. Overall, it can be concluded that biosynthesis using aqueous extracts can be a suitable alternative in finding ecofriendly paradigms for the synthesis of nanoparticles. We suggest extended research into the bioreduced Ho2O3 NPs for establishing their biomedical potential and toxicity.
Collapse
Affiliation(s)
- Hamze Elsayed Ahmed Mohamed
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa Pretoria South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS Cape Town South Africa
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution Peshawar 25000 KP Pakistan
| | - Khaoula Hkiri
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa Pretoria South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS Cape Town South Africa
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of biological sciences, University of Malakand Chakdara 18000 Dir (L), KPK Pakistan
| | - Assad Usman
- Department of Pharmacy, Faculty of biological sciences, University of Malakand Chakdara 18000 Dir (L), KPK Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of biological sciences, University of Malakand Chakdara 18000 Dir (L), KPK Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of biological sciences, University of Malakand Chakdara 18000 Dir (L), KPK Pakistan
| | - Ishtiaq Hussain
- Department of Pharmaceutical sciences Pak Austria fachhachole Mang haripur Pakistan
| | - Malik Maaza
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa Pretoria South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS Cape Town South Africa
| |
Collapse
|
17
|
Poyraz S, Döndaş HA, Döndaş NY, Sansano JM. Recent insights about pyrrolidine core skeletons in pharmacology. Front Pharmacol 2023; 14:1239658. [PMID: 37745071 PMCID: PMC10512268 DOI: 10.3389/fphar.2023.1239658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 09/26/2023] Open
Abstract
To overcome numerous health disorders, heterocyclic structures of synthetic or natural origin are utilized, and notably, the emergence of various side effects of existing drugs used for treatment or the resistance of disease-causing microorganisms renders drugs ineffective. Therefore, the discovery of potential therapeutic agents that utilize different modes of action is of utmost significance to circumvent these constraints. Pyrrolidines, pyrrolidine-alkaloids, and pyrrolidine-based hybrid molecules are present in many natural products and pharmacologically important agents. Their key roles in pharmacotherapy make them a versatile scaffold for designing and developing novel biologically active compounds and drug candidates. This review aims to provide an overview of recent advancements (especially during 2015-2023) in the exploration of pyrrolidine derivatives, emphasizing their significance as fundamental components of the skeletal structure. In contrast to previous reviews that have predominantly focused on a singular biological activity associated with these molecules, this review consolidates findings from various investigations encompassing a wide range of important activities (antimicrobial, antiviral, anticancer, anti-inflammatory, anticonvulsant, cholinesterase inhibition, and carbonic anhydrase inhibition) exhibited by pyrrolidine derivatives. This study is also anticipated to serve as a valuable resource for drug research and development endeavors, offering significant insights and guidance.
Collapse
Affiliation(s)
- Samet Poyraz
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Adana, Türkiye
| | - H. Ali Döndaş
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Çukurova University, Adana, Türkiye
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Adana, Türkiye
| | | | - José M. Sansano
- Department of Organic Chemistry, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Instituto de Síntesis Orgánica (ISO), University of Alicante, Alicante, Spain
| |
Collapse
|
18
|
Zelelew D, Endale M, Melaku Y, Geremew T, Eswaramoorthy R, Tufa LT, Choi Y, Lee J. Ultrasonic-Assisted Synthesis of Heterocyclic Curcumin Analogs as Antidiabetic, Antibacterial, and Antioxidant Agents Combined with in vitro and in silico Studies. Adv Appl Bioinform Chem 2023; 16:61-91. [PMID: 37533689 PMCID: PMC10392906 DOI: 10.2147/aabc.s403413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023] Open
Abstract
Background Heterocyclic analogs of curcumin have a wide range of therapeutic potential and the ability to control the activity of a variety of metabolic enzymes. Methods 1H-NMR and 13C-NMR spectroscopic techniques were used to determine the structures of synthesized compounds. The agar disc diffusion method and α-amylase inhibition assay were used to examine the antibacterial and anti-diabetic potential of the compounds against α-amylase enzyme inhibitory activity, respectively. DPPH-free radical scavenging and lipid peroxidation inhibition assays were used to assess the in vitro antioxidant potential. Results and Discussion In this work, nine heterocyclic analogs derived from curcumin precursors under ultrasonic irradiation were synthesized in excellent yields (81.4-93.7%) with improved reaction time. Results of antibacterial activities revealed that compounds 8, and 11 displayed mean inhibition zone of 13.00±0.57, and 19.66±00 mm, respectively, compared to amoxicillin (12.87±1.41 mm) at 500 μg/mL against E. coli, while compounds 8, 11 and 16 displayed mean inhibition zone of 17.67±0.57, 14.33±0.57 and 23.33±00 mm, respectively, compared to amoxicillin (13.75±1.83 mm) at 500 μg/mL against P. aeruginosa. Compound 11 displayed a mean inhibition zone of 11.33±0.57 mm compared to amoxicillin (10.75±1.83 mm) at 500 μg/mL against S. aureus. Compound 11 displayed higher binding affinities of -7.5 and -8.3 Kcal/mol with penicillin-binding proteins (PBPs) and β-lactamases producing bacterial strains, compared to amoxicillin (-7.2 and -7.9 Kcal/mol, respectively), these results are in good agreement with the in vitro antibacterial activities. In vitro antidiabetic potential on α-amylase enzyme revealed that compounds 11 (IC50=7.59 µg/mL) and 16 (IC50=4.08 µg/mL) have higher inhibitory activities than acarbose (IC50=8.0 µg/mL). Compound 8 showed promising antioxidant inhibition efficacy of DPPH (IC50 = 2.44 g/mL) compared to ascorbic acid (IC50=1.24 g/mL), while compound 16 revealed 89.9±20.42% inhibition of peroxide generation showing its potential in reducing the development of lipid peroxides. In silico molecular docking analysis, results are in good agreement with in vitro biological activity. In silico ADMET profiles suggested the adequate oral drug-likeness potential of the compounds without adverse effects. Conclusion According to our findings, both biological activities and in silico computational studies results demonstrated that compounds 8, 11, and 16 are promising α-amylase inhibitors and antibacterial agents against E. coli, P. aeruginosa, and S. aureus, whereas compound 8 was found to be a promising antioxidant agent.
Collapse
Affiliation(s)
- Demis Zelelew
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Milkyas Endale
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Yadessa Melaku
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Teshome Geremew
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | | | - Lemma Teshome Tufa
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Youngeun Choi
- Department of Chemistry, Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
19
|
Li M, Li L, Lu L, Xu X, Hu J, Peng JB. Anti-α-Glucosidase, SAR Analysis, and Mechanism Investigation of Indolo[1,2-b]isoquinoline Derivatives. Molecules 2023; 28:5282. [PMID: 37446942 DOI: 10.3390/molecules28135282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
To find potential α-glucosidase inhibitors, indolo[1,2-b]isoquinoline derivatives (1-20) were screened for their α-glucosidase inhibitory effects. All derivatives presented potential α-glucosidase inhibitory effects with IC50 values of 3.44 ± 0.36~41.24 ± 0.26 μM compared to the positive control acarbose (IC50 value: 640.57 ± 5.13 μM). In particular, compound 11 displayed the strongest anti-α-glucosidase activity, being ~186 times stronger than acarbose. Kinetic studies found that compounds 9, 11, 13, 18, and 19 were all reversible mix-type inhibitors. The 3D fluorescence spectra and CD spectra results revealed that the interaction between compounds 9, 11, 13, 18, and 19 and α-glucosidase changed the conformational changes of α-glucosidase. Molecular docking and molecular dynamics simulation results indicated the interaction between compounds and α-glucosidase. In addition, cell cytotoxicity and drug-like properties of compound 11 were also investigated.
Collapse
Affiliation(s)
- Mengyue Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Lin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Li Lu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
20
|
Mehmood H, Akhtar T, Haroon M, Shah M, Rashid U, Woodward S. Synthesis of hydrazinylthiazole carboxylates: a mechanistic approach for treatment of diabetes and its complications. Future Med Chem 2023; 15:1149-1165. [PMID: 37551660 DOI: 10.4155/fmc-2023-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Aim: The deaths of thousands of people and millions affected by diabetes mellitus triggered us to look for alternative possible solutions to cure diabetes and its complications. Materials & methods: A series of hydrazinylthiazole carboxylates (3a-n) was prepared by cyclocondensation reaction of thiosemicarbazones with ethyl 2-chloroacetoacetate. These compounds were screened for antidiabetic potential through α-amylase inhibition, antiglycation and antioxidant assays. Results & conclusion: Most of the compounds exhibited a promising antidiabetic property. Compounds 3e and 3h showed excellent α-amylase and glycation inhibition properties. The hemolytic assay indicated that all compounds are biocompatible. Docking studies carried out on α-amylase target showed correlation between in vitro inhibition and binding energy.
Collapse
Affiliation(s)
- Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science & Technology (MUST), Mirpur (AJK), 10250, Pakistan
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science & Technology (MUST), Mirpur (AJK), 10250, Pakistan
| | - Muhammad Haroon
- Department of Chemistry, Mirpur University of Science & Technology (MUST), Mirpur (AJK), 10250, Pakistan
- Department of Chemistry & Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056, USA
| | - Muhammad Shah
- Department of Chemistry, Comsat University, Abbottabad, 22060, Pakistan
| | - Umer Rashid
- Department of Chemistry, Comsat University, Abbottabad, 22060, Pakistan
| | - Simon Woodward
- GSK, Carbon Neutral Laboratories for Sustainable Chemistry, University Park Nottingham, NG7 2RD, UK
| |
Collapse
|
21
|
Shah M, Jan MS, Sadiq A, Khan S, Rashid U. SAR and lead optimization of (Z)-5-(4-hydroxy-3-methoxybenzylidene)-3-(2-morpholinoacetyl)thiazolidine-2,4-dione as a potential multi-target antidiabetic agent. Eur J Med Chem 2023; 258:115591. [PMID: 37393789 DOI: 10.1016/j.ejmech.2023.115591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
In case of metabolic disorder like Diabetes mellitus (DM), a number of key enzymes are abnormally expressed and hence they might be excellent targets for antidiabetic drug design. Multi-target design strategy has recently attracted great attention to treat challenging diseases. We have previously reported a vanillin-thiazolidine-2,4-dione hybrid 3 as multitarget inhibitor of α-glucosidase, α-amylase, PTP-1B and DPP-4. The reported compound predominantly exhibited good in-vitro DPP-4 inhibition only. Current research describes the goal to optimize an early lead compound. The efforts were focused on enhancing the capability of manipulating multiple pathways at the same time for the treatment of diabetes. The central 5-benzylidinethiazolidine-2,4-dione for Lead compound (Z)-5-(4-hydroxy-3-methoxybenzylidene)-3-(2-morpholinoacetyl)thiazolidine-2,4-dione (Z-HMMTD) was left unchanged. While East and West moieties were altered by the introduction of different building blocks conceived by using a number of rounds of predictive docking studies performed on X-ray crystal structures of four target enzymes. This systematic SAR led to the syntheses of new potent multi-target antidiabetic compounds 47-49 and 55-57 with many fold increase in the in-vitro potency compared to Z-HMMTD. The potent compounds showed good in-vitro and in-vivo safety profile. Compound 56 emerged excellent as glucose-uptake promotor via hemi diaphragm of the rat. Moreover, the compounds demonstrated antidiabetic activity in STZ-induced diabetic animal model.
Collapse
Affiliation(s)
- Muhammad Shah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Muhammad Saeed Jan
- Department of Pharmacy, Bacha Khan University, 24420, Charsadda, KPK, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, 18000, Chakdara, KP, Pakistan
| | - Sara Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan.
| |
Collapse
|
22
|
Khan I, Rehman W, Rahim F, Hussain R, Khan S, Rasheed L, Alanazi MM, Alanazi AS, Abdellattif MH. Synthesis and In Vitro α-Amylase and α-Glucosidase Dual Inhibitory Activities of 1,2,4-Triazole-Bearing bis-Hydrazone Derivatives and Their Molecular Docking Study. ACS OMEGA 2023; 8:22508-22522. [PMID: 37396210 PMCID: PMC10308562 DOI: 10.1021/acsomega.3c00702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023]
Abstract
There is an increasing prevalence of diabetes mellitus throughout the world, and new compounds are necessary to combat this. The currently available antidiabetic therapies are long-term complicated and side effect-prone, and this has led to a demand for more affordable and more effective methods of tackling diabetes. Research is focused on finding alternative medicinal remedies with significant antidiabetic efficacy as well as low adverse effects. In this research work, we have focused our efforts to synthesize a series of 1,2,4-triazole-based bis-hydrazones and evaluated their antidiabetic properties. In addition, the precise structures of the synthesized derivatives were confirmed with the help of various spectroscopic techniques including 1H-NMR, 13C-NMR, and HREI-MS. To find the antidiabetic potentials of the synthesized compounds, in vitro α-glucosidase and α-amylase inhibitory activities were characterized using acarbose as the reference standard. From structure-activity (SAR) analysis, it was confirmed that any variation found in inhibitory activities of both α-amylase and α-glucosidase enzymes was due to the different substitution patterns of the substituent(s) at variable positions of both aryl rings A and B. The results of the antidiabetic assay were very encouraging and showed moderate to good inhibitory potentials with IC50 values ranging from 0.70 ± 0.05 to 35.70 ± 0.80 μM (α-amylase) and 1.10 ± 0.05 to 30.40 ± 0.70 μM (α-glucosidase). The obtained results were compared to those of the standard acarbose drug (IC50 = 10.30 ± 0.20 μM for α-amylase and IC50 = 9.80 ± 0.20 μM for α-glucosidase). Specifically, compounds 17, 15, and 16 were found to be significantly active with IC50 values of 0.70 ± 0.05, 1.80 ± 0.10, and 2.10 ± 0.10 μM against α-amylase and 1.10 ± 0.05, 1.50 ± 0.05, and 1.70 ± 0.10 μM against α-glucosidase, respectively. These findings reveal that triazole-containing bis-hydrazones act as α-amylase and α-glucosidase inhibitors, which help develop novel therapeutics for treating type-II diabetes mellitus and can act as lead molecules in drug discovery as potential antidiabetic agents.
Collapse
Affiliation(s)
- Imran Khan
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Wajid Rehman
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Fazal Rahim
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Rafaqat Hussain
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Shoaib Khan
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Liaqat Rasheed
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Mohammed M. Alanazi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ashwag S. Alanazi
- Department
of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P. O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Magda H. Abdellattif
- Department
of Chemistry, College of Sciences, Taif
University, P. O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
23
|
Nidhar M, Kumar V, Mahapatra A, Gupta P, Yadav P, Sonker P, Kumar A, Mishra S, Singh RK, Tewari AK. Lead modification via computational studies: Synthesis of pyrazole-containing β-amino carbonyls for the treatment of type 2 diabetes. Chem Biol Drug Des 2023; 101:638-649. [PMID: 36271321 DOI: 10.1111/cbdd.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/27/2022] [Accepted: 10/16/2022] [Indexed: 11/28/2022]
Abstract
This article describes studies on the design, synthesis, and biological evaluation of pyrazole-containing β-amino carbonyl compounds (5a-5q) as DPP-4 inhibitors and anti-diabetic agents. In contrast, mannich reactions went smoothly with bismuth nitrate (Bi (NO3 )3 ) catalyst in the presence of ethanol and produced pyrazole-containing β-amino carbonyl compounds in good yield. Molecular docking studies of designed derivatives with DPP-4 enzyme (PDB: 2OLE), compounds 5d, 5h, 5j, and 5k showed excellent interaction. 3D QSAR and pharmacophoric model studies were also carried out. ADMET parameters, pharmacokinetic properties, and in vivo toxicity studies further confirmed that all the designed compounds were found to have good bioavailability and were less toxic. Further, these compounds were evaluated as enzyme-based in vitro DPP-4 inhibitory activity, and 5d, 5h, 5i, 5j, and 5k exhibited IC50 toward DPP-4 enzyme of 10.52, 10.41, 5.55, 4.16, and 7.5 nM, respectively. The most potent compound, 5j, was further selected for in vivo anti-diabetic activity using an STZ-induced diabetic mice model, and 5j showed a significant diabetic control effect.
Collapse
Affiliation(s)
- Manisha Nidhar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vipin Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Archisman Mahapatra
- Department of Zoology, Molecular Endocrinology and Toxicology Lab (MET Lab), Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Priya Gupta
- Department of Zoology, Molecular Endocrinology and Toxicology Lab (MET Lab), Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Priyanka Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Priyanka Sonker
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Akhilesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shweta Mishra
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore, Madhya Pradesh, India
| | - Rahul Kumar Singh
- Department of Zoology, Molecular Endocrinology and Toxicology Lab (MET Lab), Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Kumar Tewari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
24
|
Mohamed HEA, Khalil AT, Hkiri K, Ayaz M, Abbasi JA, Sadiq A, Ullah F, Nawaz A, Ullah I, Maaza M. Physicochemical and nanomedicine applications of phyto-reduced erbium oxide (Er 2O 3) nanoparticles. AMB Express 2023; 13:24. [PMID: 36840788 PMCID: PMC9968365 DOI: 10.1186/s13568-023-01527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
Hyphaene thebaica fruits were used for the fabrication of spherical erbium oxide nanoparticles (HT-Er2O3 NPS) using a one-step simple bioreduction process. XRD pattern revealed a highly crystalline and pure phase with crystallite size of ~ 7.5 nm, whereas, the W-H plot revealed crystallite size of 11 nm. FTIR spectra revealed characteristic Er-O atomic vibrations in the fingerprint region. Bandgap was obtained as 5.25 eV using K-M function. The physicochemical and morphological nature was established using Raman spectroscopy, reflectance spectroscopy, SAED and HR-TEM. HT-Er2O3 NPS were further evaluated for antidiabetic potential in mice using in-vivo and in-vitro bioassays. The synthesized HT-Er2O3 NPS were screened for in vitro anti-diabetic potentials against α-glucosidase enzyme and α-amylase enzyme and their antioxidant potential was evaluated using DPPH free radical assay. A dose dependent inhibition was obtained against α-glucosidase (IC50 12 μg/mL) and α-amylase (IC50 78 μg/mL) while good DPPH free radical scavenging potential (IC50 78 μg mL-1) is reported. At 1000 μg/mL, the HT-Er2O3 NPS revealed 90.30% and 92.30% inhibition of α-amylase and α-glucosidase enzymes. HT-Er2O3 NPs treated groups were observed to have better glycemic control in diabetic animals (503.66 ± 5.92*** on day 0 and 185.66 ± 2.60*** on day 21) when compared with positive control glibenclamide treated group. Further, HT-Er2O3 NPS therapy for 21 days caused a considerable effect on serum total lipids, cholesterol, triglycerides, HDL and LDL as compared to untreated diabetic group. In conclusion, our preliminary findings on HT-Er2O3 NPS revealed considerable antidiabetic potential and thus can be an effective candidate for controlling the post-prandial hyperglycemia. However, further studies are encouraged especially taking into consideration the toxicity aspects of the nanomaterial.
Collapse
Affiliation(s)
- Hamza Elsayed Ahmad Mohamed
- grid.412801.e0000 0004 0610 3238UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa ,grid.462638.d0000 0001 0696 719XNanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, 25000 KP, Pakistan.
| | - Khaoula Hkiri
- grid.412801.e0000 0004 0610 3238UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa ,grid.462638.d0000 0001 0696 719XNanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000, Pakistan.
| | - Jamil Anwar Abbasi
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Abdul Sadiq
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Farhat Ullah
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Asif Nawaz
- grid.440567.40000 0004 0607 0608Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), KPK, Chakdara, 18000 Pakistan
| | - Ikram Ullah
- grid.440530.60000 0004 0609 1900Department of Biotechnology & Genetic Engineering, Hazara University Mansehra, Mansehra, KP Pakistan
| | - Malik Maaza
- grid.412801.e0000 0004 0610 3238UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa ,grid.462638.d0000 0001 0696 719XNanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS, Cape Town, South Africa
| |
Collapse
|
25
|
Mahnashi MH, Alam W, Huneif MA, Abdulwahab A, Alzahrani MJ, Alshaibari KS, Rashid U, Sadiq A, Jan MS. Exploration of Succinimide Derivative as a Multi-Target, Anti-Diabetic Agent: In Vitro and In Vivo Approaches. Molecules 2023; 28:molecules28041589. [PMID: 36838577 PMCID: PMC9964140 DOI: 10.3390/molecules28041589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Diabetes mellitus (DM) is counted among one of the leading challenges in the recent era, and it is a life-threatening disorder. Compound 4-hydroxy 3-methoxy phenylacetone (compound 1) was previously isolated from Polygonum aviculare. This compound was reacted with N-benzylmaleimide to synthesize the targeted compound 3. The purpose of this research is to exhibit our developed compound 3's ability to concurrently inhibit many targets that are responsible for hyperglycemia. Compound 3 was capable of inhibiting α-amylase, α-glucosidase, and protein tyrosine phosphatase 1 B. Even so, outstanding in vitro inhibition was shown by the compound against dipeptidyl peptidase-4 (DPP-4) with an IC50 value of 0.07 µM. Additionally, by using DPPH in the antioxidant activity, it exhibited good antioxidant potential. Similarly, in the in vivo activity, the experimental mice proved to be safe by treatment with compound 3. After 21 days of examination, the compound 3 activity pattern was found to be effective in experimental mice. Compound 3 decreased the excess peak of total triglycerides, total cholesterol, AST, ALT, ALP, LDL, BUN, and creatinine in the STZ-induced diabetic mice. Likewise, the histopathology of the kidneys, liver, and pancreas of the treated animals was also evaluated. Overall, the succinimde moiety, such as compound 3, can affect several targets simultaneously, and, finally, we were successful in synthesizing a multi-targeted preclinical therapy.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Mohammed A. Huneif
- Pediatric Department, Medical College, Najran University, Najran 55461, Saudi Arabia
| | - Alqahtani Abdulwahab
- Pediatric Department, Medical College, Najran University, Najran 55461, Saudi Arabia
| | | | - Khaled S. Alshaibari
- Pediatric Department, Medical College, Najran University, Najran 55461, Saudi Arabia
| | - Umar Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan
- Correspondence: (A.S.); (M.S.J.)
| | - Muhammad Saeed Jan
- Department of Pharmacy, Bacha Khan University, Charsadda 24420, Pakistan
- Correspondence: (A.S.); (M.S.J.)
| |
Collapse
|
26
|
Design, synthesis, and molecular modeling of heterodimer and inhibitors of α-amylase as hypoglycemic agents. Mol Divers 2023; 27:209-222. [PMID: 35357619 DOI: 10.1007/s11030-022-10414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/18/2022] [Indexed: 02/08/2023]
Abstract
A series of rosiglitazone-based heterodimers were designed and synthesized, and their α-amylase and antioxidant activity was evaluated. The binding mode of the compounds at the active site of PPARγ and α-amylase enzyme was explored using MolDock docking method. In molecular docking studies against crystal structure of PPARγ (PDB code: 1FM6), compounds 10 and 13 showed interaction with amino acids Arg379, Asp379, Asn385, Ala387, Glu388, Val389, Glu390, and Lys438. Docking results of α-amylase enzyme (PDB code: 5EOF) with compounds 10 and 13 showed excellent interaction with amino acids Ala169, Lys172, Asp173, Tyr174, Val175, Arg176, and Lys178. Depending on the docking score, the designed compounds were selectively prioritized for synthesis. All synthesized compounds were subjected to in vitro α-amylase activity and antioxidant activity. Compounds 10 and 13 were to possess higher potency than acarbose, and most of the compounds showed antioxidant activity. Additionally, the most active compound 10 was evaluated for in vivo anti-diabetic activity.
Collapse
|
27
|
Recent developments in synthetic α-glucosidase inhibitors: A comprehensive review with structural and molecular insight. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
28
|
New Succinimide-Thiazolidinedione Hybrids as Multitarget Antidiabetic Agents: Design, Synthesis, Bioevaluation, and Molecular Modelling Studies. Molecules 2023; 28:molecules28031207. [PMID: 36770873 PMCID: PMC9918900 DOI: 10.3390/molecules28031207] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder majorly arising from the pathophysiology of the pancreas manifested as a decline in the insulin production or the tissue's resistance to the insulin. In this research, we have rationally designed and synthesized new succinimide-thiazolidinedione hybrids for the management of DM. In a multistep reaction, we were able to synthesize five new derivatives (10a-e). All the compounds were new containing a different substitution pattern on the N-atom of the succinimide ring. Initially, all the compounds were tested against the in vitro α-glucosidase, α-amylase, PTP1B, and DPP4 targets. In all of these targets, the compound 10d was observed to be the most potential antidiabetic agent. Based on this, the antidiabetic activity of the compound 10d was further investigated in experimental animals, which overall gave us encouraging results. The molecular docking studies of the compound 10d was also performed against the target enzymes α-glucosidase, α-amylase, PTP1B, and DPP4 using MOE. Overall, we observed that we have explored a new class of compounds as potential antidiabetic agents.
Collapse
|
29
|
Synthesis, Characterization, and Pharmacokinetic Studies of Thiazolidine-2,4-Dione Derivatives. J CHEM-NY 2023. [DOI: 10.1155/2023/9462176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Various derivatives of thiazolidine-2,4-dione (C1–C5) were designed and synthesized by chemical reaction with 4-nitrobenzaldehyde using Knoevenagel reaction conditions which results in the reduction of nitro group to amine and further modification results in target compounds. The chemical structures of all the 2,4-thiazolidinedione derivatives have been elucidated by 1H and 13C NMR spectroscopy. These compounds were further characterized by in silico ADME (absorption, distribution, metabolism, and excretion) studies. The pharmacokinetic properties were assessed by SwissADME software. The in silico ADME (absorption, distribution, metabolism, and excretion) assessment reveals that all derivatives (C1 to C5) have 5 to 7 rotatable bonds. Lipophilicity and water solubility showed that C1, C2, and C4 are water soluble except for C3 and C5 which are moderately soluble. All the compounds have high GI absorption except C3. None of the derivatives are blood-brain barrier permeant. Drug metabolism of TZDs derivatives showed that C3 was identified as an inhibitor of CYP2C9 and C5 as an inhibitor of CYP1A2 and CYP2C19. Drug likeness properties indicate that C1 has only one violation of the Ghose rule while C3 has violations in the Ghose and Egan rules. The in silico pharmacokinetic studies revealed high GI absorption and the inability to pass blood-brain barrier which can be further assessed by in vitro and in vivo antihyperglycemic activity. This study will contribute to providing TZDs derivatives with an improved pharmacokinetic profile and decreased toxicity.
Collapse
|
30
|
Dash R, Biswal J, Yadav M, Sharma T, Mohapatra S, Prusty SK. Novel atorvastatin-curcumin conjugate nanogel, a selective COX2 inhibitor with enhanced biopharmaceutical profile: Design, synthesis, in silco, in vitro, and in vivo investigation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
31
|
Zafar R, Shahid K, Wilson LD, Fahid M, Sartaj M, Waseem W, Saeed Jan M, Zubair M, Irfan A, Ullah S, Sadiq A. Organotin (IV) complexes with sulphonyl hydrazide moiety. Design, synthesis, characterization, docking studies, cytotoxic and anti-leishmanial activity. J Biomol Struct Dyn 2022; 40:12336-12346. [PMID: 34459711 DOI: 10.1080/07391102.2021.1970625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Due to a lack of therapeutic options for the pathological condition of leishmaniasis, which is characterized by polymorphic lesions and skin surface infections, Leishmania genus parasites damaged dermis and mucosa. There was a need to synthesize and characterize some new complexes. This study evaluated the biological activities preferably anti-Leishmanial activity of organotin (IV) containing sulphonyl hydrazide derivatives. A series of six new organotin (IV) complexes 1-6 labeled as R2SnL2; R = Methyl (1), Butyl (2), Phenyl (3) and R3SnL; R = Methyl (4), Butyl (5), Phenyl (6) has been synthesized as reflux method derived from N'- (2,4-dinitrophenyl)-4-methylphenylsulfonylhydrazide (L). All compounds were characterized through FT-IR, 1HNMR, 13CNMR, and elemental analysis. Structural analysis confirms the formation of six complexes (1-6). All derivatives have been screened for their pharmacological activities. Interestingly, compound 1 showed promising activity against leishmania promastigotes with low cytotoxicity. All results were further elaborated through docking studies performed on leishmania donovoni synthetase PDB: ID 3QW3 that acts as an essential building block for the viability of Leishmania promastigotes. This research effectively synthesized sulphonyl hydrazide ligand and its six new organotin (IV) derivatives, which were tested for biological properties such as antibacterial, anti-fungal, anti-oxidant, and ideally anti-leishmanial activity and cytotoxicity. Studies have confirmed that these compounds have the potency to be a good candidate against leishmaniasis. Computational studies were carried out to recognize the binding affinities for leishmania donovoni synthetase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rehman Zafar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Khadija Shahid
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Muhammad Fahid
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Majid Sartaj
- Department of Civil Engineering, Colonel by Hall (CBY), University of Ottawa, ON, Canada
| | - Wajeeha Waseem
- Department of Basic Medical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Saeed Jan
- Department of Pharmacy, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sami Ullah
- Department of Chemistry, University of Lahore, Sargodha, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
32
|
Phytochemistry, anti-diabetic and antioxidant potentials of Allium consanguineum Kunth. BMC Complement Med Ther 2022; 22:154. [PMID: 35698061 PMCID: PMC9190144 DOI: 10.1186/s12906-022-03639-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/03/2022] [Indexed: 11/26/2022] Open
Abstract
Aim The study was planned to investigate the phytochemicals, antidiabetic and antioxidant studies of A. consanguineum. Methods The preliminary studies were performed on crude extract and different solvent fractions. Based on the potency, the chloroform fraction was semi-purified to phyto-fractions CHF-1 – 5. Furthermore, CHF-3 was subjected to isolation of pure compounds using column chromatography. The α-glucosidase, α-amylase and antioxidant assays (DPPH, ABTS, H2O2) were performed on all samples. The in-vivo experiments on compounds 1 and 2 were also performed using oral glucose tolerance test. Docking studies were performed on α-glucosidase and α-amylase targets. Results Among all fractions, the chloroform fraction exhibited excellent activities profile giving IC50 values of 824, 55, 117, 58 and 85 μg/ml against α-glucosidase, α-amylase, DPPH, ABTS and H2O2 targets respectively. Among the five semi-purified chloroform phyto-fractions (CHF-1-5), CHF-3 was the leading fraction in activities giving IC50 values of 85.54, 61.19 and 26.58 μg/ml against α-glucosidase, α-amylase and DPPH respectively. Based on the overall potency and physical amount of CHF-3, it was subjected to purification to get compounds 1 and 2. The two compounds were also found potent in in-vitro activities. The observed IC50 values for compound 1 were 7.93, 28.01 and 6.19 μg/ml against α-glucosidase, α-amylase and DPPH respectively. Similarly, the compound 2 exhibited IC50 of 14.63, 24.82 and 7.654 μg/ml against α-glucosidase, α-amylase and DPPH respectively. Compounds 1 and 2 were potent in decreasing the blood glucose levels in experimental animals. Compounds 1 and 2 also showed interactions with the respective enzymes with molecular docking. Conclusions We can conclude that A. Consanguineum is a rich source of natural antidiabetic agents. Bioguided isolation of compound 1 and 2 showed potential inhibitions in all tested in-vitro antidiabetic targets. Further, both the compounds were also able to decrease the blood glucose levels in experimental animals.
Collapse
|
33
|
Islam MS, Al-Majid AM, Sholkamy EN, Yousuf S, Ayaz M, Nawaz A, Wadood A, Rehman AU, Verma VP, Bari A, Haukka M, Soliman SM, Barakat A. Synthesis, molecular docking and enzyme inhibitory approaches of some new chalcones engrafted pyrazole as potential antialzheimer, antidiabetic and antioxidant agents. J Mol Struct 2022; 1269:133843. [DOI: 10.1016/j.molstruc.2022.133843] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Metre TV, Kodasi B, Bayannavar PK, Bheemayya L, Nadoni VB, Hoolageri SR, Shettar AK, Joshi SD, Kumbar VM, Kamble RR. Coumarin-4-yl‐1,2,3‐triazol‐4-yl-methyl-thiazolidine-2,4-diones: Synthesis, Glucose uptake activity and Cytotoxic Evaluation. Bioorg Chem 2022; 130:106235. [DOI: 10.1016/j.bioorg.2022.106235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
35
|
New synthetic quinaldine conjugates: Assessment of their anti-cholinesterase, anti-tyrosinase and cytotoxic activities, and molecular docking analysis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Hajlaoui A, Assel A, Lazrag H, Bouajila J, Harrath AH, Jannet HB, Romdhane A. Design, Synthesis and biological evaluation of novel benzopyran derivatives as potential α-amylase inhibitors: An Investigation by Experimental and Computational Studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Succinimide Derivatives as Antioxidant Anticholinesterases, Anti-α-Amylase, and Anti-α-Glucosidase: In Vitro and In Silico Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6726438. [PMID: 35942378 PMCID: PMC9356783 DOI: 10.1155/2022/6726438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
Based on the diverse pharmacological potency and the structural features of succinimide, this research considered to synthesize succinimide derivatives. Moreover, these compounds were estimated for their biological potential in terms of anti-diabetic, anti-cholinesterase, and anti-oxidant capacities. The compounds were synthesized through Michael addition of various ketones to N-aryl maleimides. Similarly, the MOE software was used for the molecular docking study to explore the binding mode of the potent compounds against different enzymes. In the anti-cholinesterase activity, the compounds MSJ2 and MSJ10 exhibited outstanding activity against acetylcholinesterase (AChE), i.e., 91.90, 93.20%, and against butyrylcholinesterase (BChE), i.e., 97.30, 91.36% inhibitory potentials, respectively. The compounds MSJ9 and MSJ10 exhibited prominent α-glucosidase inhibitory potentials, i.e., 87.63 and 89.37 with IC50 value of 32 and 28.04 μM, respectively. Moreover, the compounds MSJ2 and MSJ10 revealed significant scavenging activity against DPPH free radicals with IC50 values of 2.59 and 2.52, while against ABTS displayed excellent scavenging potential with IC50 values 7.32 and 3.29 μM, respectively. The tentative results are added with molecular docking studies in the active sites of enzymes to predict the theoretical protein-ligand binding modes. Further detailed mechanism-based studies in animal models are essential for the in vivo evaluation of the potent compound.
Collapse
|
38
|
Anti-Inflammatory Potentials of β-Ketoester Derivatives of N-Ary Succinimides: In Vitro, In Vivo, and Molecular Docking Studies. J CHEM-NY 2022. [DOI: 10.1155/2022/8040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation, being a well-known and complex pathological condition, is always a challenge to the human health. This research work was designed for a rationale-based anti-inflammatory study on β-ketoester derivatives of N-ary succinimides. The compounds (A–D) were synthesized by organocatalytic Michael addition. The compounds were initially screened for in vitro 5-lipoxygenase (5-LOX) and cyclooxygenase (COX-2) assays. For the in vivo activity, carrageenan-induced paw edema and arachidonic acid-induced ear edema tests were used. Furthermore, different in vivo pathways such as prostaglandins E2, histamine, leukotriene, and bradykinin were studied. The results were supported with molecular docking studies. Among the compounds, D (ethyl 1-(1-benzyl-2,5-dioxopyrrolidin-3-yl)-2-oxocyclohexane-1-carboxylate) at a concentration of 1000 μg/ml showed significant inhibitory effects of 83.67% and 78.12% against COX-2 and 5-LOX in comparison to celecoxib and zileuton, respectively. Similarly, compound D also showed excellent in vivo anti-inflammatory potential. Amongst all the compounds, D demonstrated excellent (55.92 ± 2.95%) anti-inflammatory potential at maximum tested dose (100 mg/kg) which accomplished the highest significance at 4 h following the carrageenan insertion and stayed considerable (
) till the 5th hour of test sample injection. Compound D also exhibited excellent percent inhibition (63.81 ± 2.24%) at the highest dose in arachidonic acid-induced ear inflammation. On the basis of in vivo and in vitro results, compound D was subjected to various inflammation-causing agents such as histamine, prostaglandins E2, bradykinin, and leukotriene via the mouse paw edema test. Compound D revealed moderate effect (28.10 ± 1.64%) against histamine-induced paw edema while nonsignificant result (9.72 ± 3.125%) was marked for the bradykinin pathway. Compound D showed significance against edematogenic consequence of prostaglandin E2 (56.28–72.03%) and leukotriene (55.13 ± 2.25%) induced inflammation. In summary, our findings recommended that compound D possesses double acting anti-inflammatory properties inhibiting both COX and LOX pathways. Binding orientations and energy values computed via docking simulations support the results of the experimental in vitro evaluation.
Collapse
|
39
|
Khan A, Pervaiz A, Ansari B, Ullah R, Shah SMM, Khan H, Saeed Jan M, Hussain F, Ijaz Khan M, Albadrani GM, Altyar AE, Abdel-Daim MM. Phytochemical Profiling, Anti-Inflammatory, Anti-Oxidant and In-Silico Approach of Cornus macrophylla Bioss (Bark). Molecules 2022; 27:4081. [PMID: 35807324 PMCID: PMC9268425 DOI: 10.3390/molecules27134081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
The objective of the current study was to evaluate the phytochemical and pharmacological potential of the Cornus macrophylla. C. macrophylla belongs to the family Cornaceae. It is locally known as khadang and is used for the treatment of different diseases such as analgesic, tonic, diuretic, malaria, inflammation, allergy, infections, cancer, diabetes, and lipid peroxidative. The crude extract and different fractions of C. macrophyll were evaluated by gas chromatography and mass spectroscopy (GC-MS), which identified the most potent bioactive phytochemicals. The antioxidant ability of C. macrophylla was studied by 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) and 1,1 diphenyl-2-picryl-hydrazyl (DPPH) methods. The crude and subsequent fractions of the C. macrophylla were also tested against anti-inflammatory enzymes using COX-2 (Cyclooxygenase-2) and 5-LOX (5-lipoxygenase) assays. The molecular docking was carried out using molecular operating environment (MOE) software. The GC-MS study of C. macrophylla confirmed forty-eight compounds in ethyl acetate (Et.AC) fraction and revealed that the Et.AC fraction was the most active fraction. The antioxidant ability of the Et.AC fraction showed an IC50 values of 09.54 μg/mL and 7.8 μg/mL against ABTS and DPPH assay respectively. Among all the fractions of C. macrophylla, Et.AC showed excellent activity against COX-2 and 5-LOX enzyme. The observed IC50 values were 93.35 μg/mL against COX-2 and 75.64 μg/mL for 5-LOX respectively. Molecular docking studies supported these in vitro results and confirmed the anti-inflammatory potential of C. macrophylla. C. macrophylla has promising potential as a source for the development of new drugs against inflammation in the future.
Collapse
Affiliation(s)
- Ali Khan
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Aini Pervaiz
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Bushra Ansari
- Departement of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; (B.A.); (H.K.)
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Syed Muhammad Mukarram Shah
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Haroon Khan
- Departement of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; (B.A.); (H.K.)
| | - Muhammad Saeed Jan
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Fida Hussain
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Mohammad Ijaz Khan
- Department of Pharmacy, University of Swabi, Ambar 94640, Pakistan; (A.K.); (A.P.); (M.S.J.); (F.H.); (M.I.K.)
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ahmed E. Altyar
- Department Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Pharmacy Program, Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
40
|
Impact of Molecular Symmetry/Asymmetry on Insulin-Sensitizing Treatments for Type 2 Diabetes. Symmetry (Basel) 2022. [DOI: 10.3390/sym14061240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although the advantages and disadvantages of asymmetrical thiazolidinediones as insulin-sensitizers have been well-studied, the relevance of symmetry and asymmetry for thiazolidinediones and biguanides has scarcely been explored. Regarding symmetrical molecules, only one thiazolidinedione and no biguanides have been evaluated and proposed as an antihyperglycemic agent for treating type 2 diabetes. Since molecular structure defines physicochemical, pharmacological, and toxicological properties, it is important to gain greater insights into poorly investigated patterns. For example, compounds with intrinsic antioxidant properties commonly have low toxicity. Additionally, the molecular symmetry and asymmetry of ligands are each associated with affinity for certain types of receptors. An advantageous response obtained in one therapeutic application may imply a poor or even adverse effect in another. Within the context of general patterns, each compound must be assessed individually. The current review aimed to summarize the available evidence for the advantages and disadvantages of utilizing symmetrical and asymmetrical thiazolidinediones and biguanides as insulin sensitizers in patients with type 2 diabetes. Other applications of these same compounds are also examined as well as the various uses of additional symmetrical molecules. More research is needed to exploit the potential of symmetrical molecules as insulin sensitizers.
Collapse
|
41
|
Huneif MA, Alshehri DB, Alshaibari KS, Dammaj MZ, Mahnashi MH, Majid SU, Javed MA, Ahmad S, Rashid U, Sadiq A. Design, synthesis and bioevaluation of new vanillin hybrid as multitarget inhibitor of α-glucosidase, α-amylase, PTP-1B and DPP4 for the treatment of type-II diabetes. Biomed Pharmacother 2022; 150:113038. [PMID: 35658208 DOI: 10.1016/j.biopha.2022.113038] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023] Open
Abstract
Diabetes mellitus (DM) is a real challenge to the recent era and is one of the major diseases for initiating life-threatening disorders. In current research, a compound was designed by combining vanillin, thiazolidinedione and morpholine. The goal of our designed work is to demonstrate the ability of our design compound (9) to modulate more than one target responsible for hyperglycemia at the same time. The synthesized compound was able to show good to moderate inhibition potential against α-glucosidase, α-amylase and protein tyrosine phosphatase 1B. However, it exhibited excellent in-vitro inhibition of Dipeptidyl peptidase-4 (DPP-4) with IC50 value of 0.09 µM. Antioxidant activity by using DPPH assay also showed its good antioxidant potential. In in-vivo experiments, the compound 9 was proved to be safe in experimental mice. The activity profile of the compound was observed for 21 days which showed that the compound was also effective in experimental mice. Binding orientations and Interactions with key amino acid residues of the selected targets were also studied by using docking studies. Overall, we were successful in synthesizing multitarget preclinical therapeutic by combining three pharmacophoric moieties into a single chemical entity that can modulate more than one target at the same time.
Collapse
Affiliation(s)
- Mohammed A Huneif
- Pediatric Department, Medical College, Najran University, Najran, Saudi Arabia.
| | | | - Khaled S Alshaibari
- Pediatric Department, Medical College, Najran University, Najran, Saudi Arabia.
| | - Mayasa Z Dammaj
- Pediatric Department, Medical College, Najran University, Najran, Saudi Arabia.
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia.
| | - Safi Ullah Majid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| | - Muhammad Aamir Javed
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| | - Sajjad Ahmad
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan.
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060 Abbottabad, Pakistan.
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan.
| |
Collapse
|
42
|
α-Glucosidase, α-Amylase and Antioxidant Evaluations of Isolated Bioactives from Wild Strawberry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113444. [PMID: 35684382 PMCID: PMC9182347 DOI: 10.3390/molecules27113444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/28/2022]
Abstract
Diabetes mellitus is a metabolic disorder and is a global challenge to the current medicinal chemists and pharmacologists. This research has been designed to isolate and evaluate antidiabetic bioactives from Fragaria indica. The crude extracts, semi-purified and pure bioactives have been used in all in vitro assays. The in vitro α-glucosidase, α-amylase and DPPH free radical activities have been performed on all plant samples. The initial activities showed that ethyl acetate (Fi.EtAc) was the potent fraction in all the assays. This fraction was initially semi-purified to obtain Fi.EtAc 1–3. Among the semi-purified fractions, Fi.EtAc 2 was dominant, exhibiting potent IC50 values in all the in vitro assays. Based on the potency and availability of materials, Fi.EtAc 2 was subjected to further purification to obtain compounds 1 (2,4-dichloro-6-hydroxy-3,5-dimethoxytoluene) and 2 (2-methyl-6-(4-methylphenyl)-2-hepten-4-one). The two isolated compounds were characterized by mass and NMR analyses. The compounds 1 and 2 showed excellent inhibitions against α-glucosidase (21.45 for 1 and 15.03 for 2 μg/mL), α-amylase (17.65 and 16.56 μg/mL) and DPPH free radicals (7.62 and 14.30 μg/mL). Our study provides baseline research for the antidiabetic bioactives exploration from Fragaria indica. The bioactive compounds can be evaluated in animals-based antidiabetic activity in future.
Collapse
|
43
|
3-(((1 S,3 S)-3-(( R)-Hydroxy(4-(trifluoromethyl)phenyl)methyl)-4-oxocyclohexyl)methyl)pentane-2,4-dione: Design and Synthesis of New Stereopure Multi-Target Antidiabetic Agent. Molecules 2022; 27:molecules27103265. [PMID: 35630740 PMCID: PMC9146474 DOI: 10.3390/molecules27103265] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022] Open
Abstract
The chiral drug candidates have more effective binding affinities for their specific protein or receptor site for the onset of pharmacological action. Achieving all carbon stereopure compounds is not trivial in chemical synthesis. However, with the development of asymmetric organocatalysis, the synthesis of certain vital chiral drug candidates is now possible. In this research, we have synthesized 3-(((1S,3S)-3-((R)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-4-oxocyclohexyl)methyl)pentane-2,4-dione (S,S,R-5) and have evaluated it potential as multi-target antidiabetic agent. The stereopure compound S,S,R-5 was synthesized with a 99:1 enantiomeric ratio. The synthesized compound gave encouraging results against all in vitro antidiabetic targets, exhibiting IC50 values of 6.28, 4.58, 0.91, and 2.36 in α-glucosidase, α-amylase, PTP1B, and DPPH targets, respectively. The molecular docking shows the binding of the compound in homology models of the respective enzymes. In conclusion, we have synthesized a new chiral molecule (S,S,R-5). The compound proved to be a potential inhibitor of the tested antidiabetic targets. With the observed results and molecular docking, it is evident that S,S,R-5 is a potential multitarget antidiabetic agent. Our study laid the baseline for the animal-based studies of this compound in antidiabetic confirmation.
Collapse
|
44
|
Pervaiz A, Jan MS, Hassan Shah SM, Khan A, Zafar R, Ansari B, Shahid M, Hussain F, Ijaz Khan M, Zeb A, Mukarram Shah SM. Comparative in-vitro anti-inflammatory, anticholinesterase and antidiabetic evaluation: computational and kinetic assessment of succinimides cyano-acetate derivatives. J Biomol Struct Dyn 2022:1-14. [PMID: 35507043 DOI: 10.1080/07391102.2022.2069862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022]
Abstract
This research was planned to synthesize cyano-acetate derivatives of succinimide and evaluate its comparative biological efficacy as anti-inflammatory, anti-cholinesterase and anti-diabetic, which was further validated by molecular docking studies. The three cyano-acetate derivatives of succinimide including compound 23 Methyl 2-cyano-2-(2,5-dioxopyrrolidin-3-yl)acetate, compound 31 Methyl 2-cyano-2-(1-methyl-2,5-dioxopyrrolidin-3-yl)acetate and compound 44 Methyl 2-cyano-2-(1-ethyl-2,5-dioxopyrrolidin-3-yl) acetate were synthesized. The mentioned compounds were checked for in vitro anti-inflammatory, anti-cholinesterase and anti-diabetic (α-amylase inhibition) activity. To validate the in vitro results, computational studies were carried out using molecular operating environment to analyse the BE, i.e. binding energies of all synthesized compounds against the respective enzymes. The Compounds 23, 31, 44 exhibited anti-inflammatory via inhibiting COX-2 (IC50 value of 204.08, 68.60 and 50.93 µM, respectively), COX-1 (IC50 value of 287, 185, and 143 µM, respectively) and 5-LOX (IC50 value of 138, 50.76 and 20, 87 µM respectively). They exhibited choline-mimetic potential, such as compound 23, 31 and 44 inhibited AChE enzyme (IC50 value of 240, 174, and 134 µM, respectively) and BChE enzyme (IC50 value of 203, 134 and 97 µM, respectively). The Compounds 23, 31, 44 exhibited anti-diabetic effect via inhibiting α-amylase enzyme (IC50 values of 250, 106 and 60 µM, respectively). Molecular docking studies revealed that the synthesized compounds have good binding affinity in the binding pockets of AChE, BChE, COX-2, 5-LOX and α-amylase enzyme and showed high binding energies. The synthesized succinimide derivatives, i.e. compound 23, 31, 44 showed marked inhibitory activities against cyclooxygenase, lipoxygenase, α-amylase and cholinesterase enzymes. Among these three, compound 44 and 31 showed strong anti-inflammatory and anti-diabetic activity while they displayed moderate anti-cholinesterase activity supported by molecular docking results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aini Pervaiz
- Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan
| | | | | | - Ali Khan
- Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan
| | - Rehman Zafar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Bushra Ansari
- Department of Pharmacy, Abdul Wali Khan University, Mardan, KP, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KP, Pakistan
| | - Fida Hussain
- Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan
| | | | - Anwar Zeb
- Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan
| | | |
Collapse
|
45
|
Juszczak M, Kluska M, Kosińska A, Rudolf B, Woźniak K. Antioxidant Activity of Ruthenium Cyclopentadienyl Complexes Bearing Succinimidato and Phthalimidato Ligands. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092803. [PMID: 35566156 PMCID: PMC9101797 DOI: 10.3390/molecules27092803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022]
Abstract
In these studies, we investigated the antioxidant activity of three ruthenium cyclopentadienyl complexes bearing different imidato ligands: (η5-cyclopentadienyl)Ru(CO)2-N-methoxysuccinimidato (1), (η5-cyclopentadienyl)Ru(CO)2-N-ethoxysuccinimidato (2), and (η5-cyclopentadienyl)Ru(CO)2-N-phthalimidato (3). We studied the effects of ruthenium complexes 1–3 at a low concentration of 50 µM on the viability and the cell cycle of peripheral blood mononuclear cells (PBMCs) and HL-60 leukemic cells exposed to oxidative stress induced by hydrogen peroxide (H2O2). Moreover, we examined the influence of these complexes on DNA oxidative damage, the level of reactive oxygen species (ROS), and superoxide dismutase (SOD) activity. We have observed that ruthenium complexes 1–3 increase the viability of both normal and cancer cells decreased by H2O2 and also alter the HL-60 cell cycle arrested by H2O2 in the sub-G1 phase. In addition, we have shown that ruthenium complexes reduce the levels of ROS and oxidative DNA damage in both cell types. They also restore SOD activity reduced by H2O2. Our results indicate that ruthenium complexes 1–3 bearing succinimidato and phthalimidato ligands have antioxidant activity without cytotoxic effect at low concentrations. For this reason, the ruthenium complexes studied by us should be considered interesting molecules with clinical potential that require further detailed research.
Collapse
Affiliation(s)
- Michał Juszczak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.J.); (M.K.)
| | - Magdalena Kluska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.J.); (M.K.)
| | - Aneta Kosińska
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Lodz, Poland; (A.K.); (B.R.)
| | - Bogna Rudolf
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Lodz, Poland; (A.K.); (B.R.)
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (M.J.); (M.K.)
- Correspondence:
| |
Collapse
|
46
|
Synthesis, Antioxidant, and Antidiabetic Activities of Ketone Derivatives of Succinimide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1445604. [PMID: 35388310 PMCID: PMC8979682 DOI: 10.1155/2022/1445604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 01/11/2023]
Abstract
The prevalence of diabetes mellitus is persistently increasing globally creating a serious public health affliction. Diabetes mellitus is categorized into two major types designated as type I and Type II. Type I diabetes mellitus is characterized by complete lack of secretion of insulin, while Type II diabetes mellitus is the resistance of peripheral tissues to the action of insulin and inadequate compensatory secretion of insulin. Chronic hyperglycemia associated with diabetes causes failure of cardiovascular system, nervous system, kidneys, and eyes. At present, different types of drugs are used for the management of diabetes, but each of them is associated with more or less serious side effects. Therefore, we need to develop new therapeutic agents that have better efficacy and safety profile. In this study, three ketone derivatives of succinimides were synthesized based on Michael addition and characterized using NMR. All the synthesized compounds were checked for their in vitro α-amylase and α-glucosidase inhibitory activities. Further the synthesized compounds were also explored for their antioxidant activities, i.e, DPPH and ABTS assays. Based on the in vitro results, the synthesized compounds were further evaluated for in vivo antidiabetic activity. The synthesized compounds were (2-oxocyclohexyl)-1-phenylpyrrolidine-2,5-dione (BW1), benzyl-3-(2-oxocyclohexyl) pyrrolidine-2,5-dione (BW2), and (4-bromophenyl)-3-(2-oxocyclohexyl) pyrrolidine-2,5-dione (BW3). BW1 showed the highest inhibitory activity for DPPH causing 83.03 ± 0.48 at 500 μg/ml with IC50 value of 10.84 μg/ml and highest inhibitory activity for ABTS causing 78.35 ± 0.23 at 500 μg/ml with IC50 value of 9.40 μg/ml against ascorbic acid used as standard. BW1 also exhibited the highest activity against α-amylase and α-glucosidase inhibition causing 81.60 ± 0.00 at concentrations of 500 μg/ml with IC50 value of 13.90 μg/ml and 89.08 ± 1.04 at concentrations of 500 μg/ml with IC50 value of 10.49 μg/ml, respectively, against the standard drug acarbose.
Collapse
|
47
|
Nidhar M, Khanam S, Sonker P, Gupta P, Mahapatra A, Patil S, Yadav BK, Singh RK, Kumar Tewari A. Click inspired novel pyrazole-triazole-persulfonimide & pyrazole-triazole-aryl derivatives; Design, synthesis, DPP-4 inhibitor with potential anti-diabetic agents. Bioorg Chem 2022; 120:105586. [DOI: 10.1016/j.bioorg.2021.105586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/06/2023]
|
48
|
Saleem F, Kanwal, Mohammed Khan K, Chigurupati S, Andriani Y, Solangi M, Hameed S, Abdel Monem Abdel Hafez A, Begum F, Arif Lodhi M, Taha M, Rahim F, Tengku Muhammad TSB, Perveen S. Dicyanoanilines as potential and dual inhibitors of α-amylase and α-glucosidase enzymes: Synthesis, characterization, in vitro, in silico, and kinetics studies. ARAB J CHEM 2022; 15:103651. [DOI: 10.1016/j.arabjc.2021.103651] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
49
|
Nidhar M, Sonker P, Sharma VP, Kumar S, Tewari AK. Design, synthesis and in-silico & in vitro enzymatic inhibition assays of pyrazole-chalcone derivatives as dual inhibitors of α-amylase & DPP-4 enzyme. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01985-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Sazali Hamzah A, Fazli Mohammat M, Wibowo A, Shaameri Z, Nur Ain Abdul Rashid F, Hidayah Pungot N. Five-Membered Nitrogen Heterocycles as New Lead Compounds in Drug Discovery. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|