1
|
Ding XM, Zhang X, Wei XY, Wu RQ, Gu Q, Zhou T. Hypoglycemic and Gut Microbiota-Modulating Effects of Pectin from Citrus aurantium "Changshanhuyou" Residue in Type 2 Diabetes Mellitus Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9088-9102. [PMID: 40191895 DOI: 10.1021/acs.jafc.5c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
To fully utilize the Citrus aurantium "Changshanhuyou" resource, the hypoglycemic effect and mechanisms of action of pectin from Changshanhuyou residue (HYP) were studied. HYP considerably inhibited α-glucosidase, suggesting its potent in vitro hypoglycemic activity. In streptozotocin-induced type 2 diabetes mellitus (T2DM) mice, HYP significantly increased the body weight, survival rate, hexokinase activity, and glycogen content and decreased fasting blood glucose, oral glucose tolerance, liver weight, and glycated serum protein levels. Furthermore, HYP remarkably improved glycolipid metabolism-related indices in both serum and liver, IL-6 and TNF-α levels in serum, and antioxidant enzyme activities in liver. HYP also modulated mRNA expression of the key factors (e.g., Akt, PI3K, IRS2, InsR, GLUT4, G6 Pase, PEPCK, AMPK, GS, and GSK-3β) and increased short chain fatty acid production and abundance of beneficial bacteria. Thus, the underlying hypoglycemic mechanism of HYP may involve the activation of PI3K/Akt, AMPK, and GS/GSK-3β signaling pathways and modulation of gut microbiota composition.
Collapse
Affiliation(s)
- Xi-Min Ding
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Xu Zhang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Xiao-Yi Wei
- Department of Food Science, Faculty of Hospitality Management, Shanghai Business School, Shanghai 200235, PR China
| | - Ru-Qin Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| |
Collapse
|
2
|
Wang Y, Huang G. Preparation, structure and properties of litchi pericarp polysaccharide. Sci Rep 2025; 15:6331. [PMID: 39984581 PMCID: PMC11845498 DOI: 10.1038/s41598-025-90697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/13/2025] [Indexed: 02/23/2025] Open
Abstract
A high purity polysaccharide (UELPP-A1) was isolated from the crude polysaccharide of litchi pericarp (UELPP) by column chromatography, and acetylated polysaccharide (AC-UELPP) was obtained by acetylation modification of the crude polysaccharide of litchi pericarp. The physicochemical properties and in vitro antioxidant activity of UELPP-A1 and AC-UELPP were compared. The C/H on UELPP-A1 was assigned by Congo red test, FTIR, 1D and 2D NMR, and its structural characteristics were characterized. The results showed that the total sugar content of neutral UELPP-A1 was significantly increased to 94.15%, and its structure did not have a triple helix structure. In addition, the in vitro antioxidant activity test showed that both polysaccharides had antioxidant activity in a dose-dependent manner. The enhancement effect of AC-UELPP with the increase of concentration was the most significant (P < 0.05). Among them, the hydroxyl radical scavenging activity was stronger than its reducing ability and superoxide anion radical at the same polysaccharide concentration. Acetylation modification can improve the antioxidant activity of UELPP and has further research value for human health care.
Collapse
Affiliation(s)
- Yijie Wang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
3
|
Liu S, Xiang Y, Xu C, Sun J, Pi Y, Shao JH. Systematic preparation of animal-derived glycosaminoglycans: Research progress and industrial significance. Food Chem 2025; 464:141565. [PMID: 39406132 DOI: 10.1016/j.foodchem.2024.141565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 11/21/2024]
Abstract
Impurities and isomerized polysaccharides affect the analytical accuracy of glycosaminoglycans (GAGs) structure and bioactivity, hindering their application in food and medicine. Preparing homogeneous GAGs components is essential for exploring structure-potency relationships and facilitating industrial production. This review primarily summarizes research on animal-derived GAGs preparation over the past five years, standardizing the preparation process into four operational units: pre-extraction treatment, extraction of crude polysaccharides, refinement of crude polysaccharides, and separation of GAGs components. Analyzed for scientific research and industrial production, the principles and application conditions of traditional means and novel techniques to preparing GAGs are comprehensively emphasized, exploring the effects of different treatments on biological activity and structure. Current challenges and development trends are illuminated. This review aims to lay a foundation for the in-depth study of GAGs structure, bioactivity, and function, providing theoretical references for the comprehensive utilization of animal raw materials and the development of animal polysaccharide deep-processing industries.
Collapse
Affiliation(s)
- Sinong Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yanpeng Xiang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chang Xu
- Foreign Languages Teaching Department, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jingxin Sun
- College of Food Science & Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yuzhen Pi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Jun-Hua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
4
|
Wang N, Qin J, Chen Z, Wu J, Xiang W. Optimization of Ultrasonic-Assisted Extraction, Characterization and Antioxidant and Immunoregulatory Activities of Arthrospira platensis Polysaccharides. Molecules 2024; 29:4645. [PMID: 39407575 PMCID: PMC11477882 DOI: 10.3390/molecules29194645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
This study aimed to enhance the ultrasonic-assisted extraction (UAE) yield of seawater Arthrospira platensis polysaccharides (APPs) and investigate its structural characteristics and bioactivities. The optimization of UAE achieved a maximum crude polysaccharides yield of 14.78%. The optimal extraction conditions were a liquid-solid ratio of 30.00 mL/g, extraction temperature of 81 °C, ultrasonic power at 92 W and extraction time at 30 min. After purification through cellulose DEAE-52 and Sephadex G-100 columns, two polysaccharide elutions (APP-1 and APP-2) were obtained. APP-2 had stronger antioxidant and immunoregulatory activities than APP-1, thus the characterization of APP-2 was conducted. APP-2 was an acidic polysaccharide consisting of rhamnose, glucose, mannose and glucuronic acid at a ratio of 1.00:24.21:7.63:1.53. It possessed a molecular weight of 72.48 kDa. Additionally, APP-2 had linear and irregular spherical particles and amorphous structures, which contained pyranoid polysaccharides with alpha/beta glycosidic bonds. These findings offered the foundation for APP-2 as an antioxidant and immunomodulator applied in the food, pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Na Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jingyi Qin
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zishuo Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Guangzhou 511466, China
| | - Wenzhou Xiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
5
|
Li S, Cao S, Wang X, Zhang Y, Zhang X, Lu W, Zhu D. Investigating the mechanism of Zn cross-linking of chitin in a mycelium-based leather substitute and its performance evaluation. Int J Biol Macromol 2024; 276:133954. [PMID: 39029834 DOI: 10.1016/j.ijbiomac.2024.133954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Mycelium-based leather substitutes with a three-dimensional reticulated structure have attracted attention owing to the negative environmental impacts of natural and synthetic leather. This study utilised Ganoderma lucidum mycelium to prepare a mycelium-based leather substitute with zinc cross-linking (MF-Zn) and evaluated its physicochemical properties and sensory performance; the conventional Cr3+ tanning method was used as reference. Results demonstrated that Zn2+ and Cr3+ formed cross-links with the -OH and -NHOCH3 groups in the polysaccharides of chitin, while Zn2+ selectively bonded to a fraction of -NH2 groups in cystine and phenylalanine. The mycelium-based leather substitute with Zn cross-linking exhibited impressive tensile strength and tear strength of 7.0 MPa and 16.4 kN/m, respectively, while demonstrating desirable organoleptic properties. The free radical-scavenging capacity of MF-Zn was assessed, revealing a DPPH radical and hydroxyl radical scavenging rates of 39.4% and 52.7%, respectively. By successfully investigating the cross-linking mechanism of mycelial fibres with Zn2+ and obtaining the stabilised mycelium-based leather substitute, this study establishes a fundamental basis for the development of sustainable leather substitutes, meeting the requirements and facilitating significant advancements in low-carbon leather substitute production.
Collapse
Affiliation(s)
- Shenglong Li
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shan Cao
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xinde Wang
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yizhi Zhang
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaojing Zhang
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenhui Lu
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Deyi Zhu
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
6
|
Chen Z, Wang C, Su J, Liang G, Tan S, Bi Y, Kong F, Wang Z. Extraction of Pithecellobium clypearia Benth polysaccharides by dual-frequency ultrasound-assisted extraction: Structural characterization, antioxidant, hypoglycemic and anti-hyperlipidemic activities. ULTRASONICS SONOCHEMISTRY 2024; 107:106918. [PMID: 38772313 PMCID: PMC11137586 DOI: 10.1016/j.ultsonch.2024.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
In this research, the extraction process of polysaccharides from Pithecellobium clypearia Benth (PCBPs) was optimized using dual-frequency ultrasound-assisted extraction (DUAE). The biological activities of PCBPs were investigated by in vitro antioxidant, hypoglycemic, and anti-hyperlipidemic assay. High-performance anion-exchange chromatography, high-performance gel permeation chromatography, SEM, UV-Vis spectroscopy, and FT-IR spectra were used to analyze the monosaccharide composition, molecular weight, microscopic morphology, and characteristic structure of PCBPs. The results showed that the maximum extraction rate of PCBPs was 9.90 ± 0.16% when the ultrasonic time was 8 min, the liquid-to-material ratio was 32 mL/g, and the ultrasonic power was 510 W. The PCBPs also possessed excellent in vitro antioxidant, hypoglycemic, and anti-hyperlipidemic activities. In addition, the average molecular weight of PCBPs was 15.07 kDa. PCBPs consisted of rhamnose, arabinose, galactose, glucose, xylose, mannose, and glucuronic acid, with the molar ratios of 11.07%, 18.54%, 48.17%, 10.44%, 4.62%, 4.96%, and 2.20%, respectively. Moreover, the results of SEM showed that PCBPs mainly showed a fine spherical mesh structure. The above studies provided a valuable theoretical basis for the subsequent in-depth study of PCBPs.
Collapse
Affiliation(s)
- Zihao Chen
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Chuanju Wang
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Jiarong Su
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Guixin Liang
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Shaofan Tan
- Guangdong Dongshenglin Pharmaceutical Co., Ltd, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, China; Guangdong Dongshenglin Pharmaceutical Co., Ltd, China; Yunfu Traditional Chinese Medicine Hospital, China.
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Zhong Wang
- Yunfu Traditional Chinese Medicine Hospital, China
| |
Collapse
|
7
|
Zhu Y, Wang H, Zhang T, Zhang X, Zhu C. Characterization, antioxidant activity and in vitro digestion of hawthorn pectin prepared by gradient ethanol precipitation. Int J Biol Macromol 2024; 267:131278. [PMID: 38582459 DOI: 10.1016/j.ijbiomac.2024.131278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/18/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Four modified hawthorn pectin fractions (MHPs), named MHP-30, MHP-50, MHP-70 and MHP-90, were obtained by ultrasonic-assisted pectin methyl esterase modification and gradient ethanol precipitation. The results indicated that all four MHPs were composed of galacturonic acid, galactose, xylose, arabinose, glucose and mannose in different proportions. With the increase of the ethanol concentration, the molecular weight, esterification degree and galacturonic acid content of MHPs all decreased, whereas the arabinose content and branching degree increased. The structural characterization from XRD, SEM, and FT-IR showed that four MHPs exhibited amorphous structure, similar functional groups, diverse surface morphologies. Besides, in vitro antioxidant assays confirmed that MHP-70 and MHP-90 exhibited stronger total antioxidant activities than MHP-30 and MHP-50. The results of simulated saliva-gastrointestinal digestion showed that the molecular weight of MHP-70 and MHP-90 remained stable, yielded small amounts of reducing sugars, and were resistant to digestion in the human upper digestive tract. Overall, MHP-70 and MHP-90 shown great potential as novel natural antioxidants, which are expected to be good carbon sources for the utilization of intestinal microorganisms.
Collapse
Affiliation(s)
- Yiwei Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Haoyu Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Ting Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Xiaoyan Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
8
|
Guo P, Chen M, Wang W, Li Q, Chen X, Liang J, He Y, Wu Y. Exploration of Polysaccharides from Phyllanthus emblica: Isolation, Identification, and Evaluation of Antioxidant and Anti-Glycolipid Metabolism Disorder Activities. Molecules 2024; 29:1751. [PMID: 38675571 PMCID: PMC11052227 DOI: 10.3390/molecules29081751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Phyllanthus emblica is a natural medicinal herb with diverse bioactivities. Certain extracts from this herb have been confirmed to possess anti-glycolipid metabolic disorder activity. To further develop its utility value and explore its potential in combating glycolipid metabolic disorders, we designed a series of experiments to investigate the structure, antioxidant activity, and anti-glycolipid metabolic disorder activity of Phyllanthus emblica polysaccharides. In this study, we extracted and purified polysaccharides from Phyllanthus emblica and thoroughly analyzed their structure using various techniques, including NMR, methylation analysis, and surface-enhanced Raman spectroscopy. We investigated the hypolipidemic and anti-glycolipid metabolism disorder activity of Phyllanthus emblica polysaccharides for the first time utilizing oleic acid (OA) and advanced glycation end products (AGEs) as inducers. Additionally, the antioxidant activity of Phyllanthus emblica polysaccharides was assessed in vitro. These findings lay the groundwork for future investigations into the potential application of Phyllanthus emblica polysaccharides as an intervention for preventing and treating diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanli Wu
- Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
9
|
Chen Y, Song L, Chen P, Liu H, Zhang X. Extraction, Rheological, and Physicochemical Properties of Water-Soluble Polysaccharides with Antioxidant Capacity from Penthorum chinense Pursh. Foods 2023; 12:2335. [PMID: 37372546 DOI: 10.3390/foods12122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/20/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to isolate polysaccharides from Penthorum chinense Pursh and evaluate their rheological characteristics, physicochemical properties, and antioxidant activity. The optimal conditions for the maximal extraction yield of Penthorum chinense Pursh polysaccharides (4.05 ± 0.12%) were determined by employing a single-factor test and response surface methodology which included an extraction time of 3 h, a liquid-solid ratio of 20 mL/g, and three separate extraction times. The rheological experiments showcased that the P. chinense polysaccharides exhibited typical shear-thinning behavior, with their apparent viscosity being influenced by various parameters such as concentration, pH, temperature, salt content, and freeze-thaw. The purified polysaccharides (PCP-100), having an average molecular weight of 1.46 × 106 Da, mainly consisted of glucose (18.99%), arabinose (22.87%), galactose (26.72%), and galacturonic acid (21.89%). Furthermore, the PCP-100 exhibited high thermal stability and displayed an irregular sheet-like morphology. Its superior reducing power and free radical scavenging ability implied its significant antioxidant activity in vitro. Collectively, these findings provide important insights for the future application of P. chinense polysaccharides in the food industry.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Song
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Pei Chen
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiping Liu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaowei Zhang
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
10
|
Yang P, Zhai Y, Ma Y, Mao B, Wang F, Li L, Luan L, Liu Y. Gas chromatography (GC) fingerprinting and immunomodulatory activity of polysaccharide from the rhizome of Menispermum dauricum DC. PeerJ 2022; 10:e13946. [PMID: 36032961 PMCID: PMC9406803 DOI: 10.7717/peerj.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
This research aimed to establish the gas chromatography (GC) fingerprints and examine the immunomodulatory activity of the rhizome of Menispermum dauricum polysaccharides. In this study, the preparation conditions were optimized by the response surface method (RSM). GC is an effective and sensitive technique employed to measure the composition of monosaccharides; the GC fingerprints of total polysaccharides from 10 batches of the rhizome of M. dauricum (tMDP) were established, and chemometrics methods were adopted to examine the differences and similarities of tMDP from distinct regions. The similarity evaluation illustrated that the polysaccharides derived from the rhizome of M. dauricum from different origins were highly similar. The results of principal components analysis (PCA) illustrated that all the tMDPs may be integrated into one group within the 95% confidence interval, but the rhizome of M. dauricum from different origins could also be distinguished in the plot of PCA scores. Then, the major bioactive fraction MDP was purified and obtained by column chromatography. Our previous study showed that MDP exhibited significant immunomodulatory activity, but the mechanism of the in vitro immunomodulatory activity of MDP is unclear. The macrophage activation induced by MDP was abolished when Toll-like receptor 4 (TLR4) signaling was knocked down by the TLR4 inhibitor. Furthermore, western blot analysis illustrated that MDP activated RAW264.7 cells through MAPKs and NFκB pathways induced by TLR4. This research offers a theoretical foundation for quality control and additional study as a potential immunomodulator of MDP.
Collapse
Affiliation(s)
- Pei Yang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Zhai
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yan Ma
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Beibei Mao
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengshan Wang
- School of Pharmaceutical Sciences, Shandong University, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, National Glycoengineering Research Center, Jinan, China
| | - Li Li
- Sishui Siheyuan Culture and Tourism Development Company, Ltd, Sishui, China
| | - Lijuan Luan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Yang Y, Yin X, Zhang D, Zhang B, Lu J, Wang X. Structural Characteristics, Antioxidant, and Immunostimulatory Activities of an Acidic Polysaccharide from Raspberry Pulp. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144385. [PMID: 35889258 PMCID: PMC9318036 DOI: 10.3390/molecules27144385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
The extraction and characterization of new bioactive plant-derived polysaccharides with the potential for use as functional foods and medicine have attracted much attention. In the present study, A novel acidic polysaccharide (RPP-3a) with a weight-average molecular weight (Mw) of 88,997 Da was isolated from the raspberry pulp. RPP-3a was composed of rhamnose, arabinose, galactose, glucose, mannose, and galacturonic acid at a molar ratio of 13.1:28.6:16.8:1.4:6.2:33.9. Structural analysis suggested that the RPP-3a backbone was composed of repeating units of →4)-β-Galp-(1→3,4)-α-Rhap-(1→[4)-α-GalAp-(1→4)-α-GalAp-(1→]n with branches at the C-4 position of rhamnose. The side chain of RPP-3a, containing two branch levels, was comprised of α-Araf-(1→, →5)-α-Araf-(1→, →3,5)-α-Araf-(1→, →3)-β-Galp-(1→, →3,6)-β-Galp-(1→, →4)-β-Glcp-(1→, and →2,6)-α-Manp-1→ residues. RPP-3a exhibited moderate reducing power and strong hydroxyl and superoxide anion radical scavenging abilities. RPP-3a significantly promoted the viability of RAW264.7 macrophages by increasing the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) at both the expression and transcriptional levels. In summary, the immunostimulatory and antioxidant activities make RPP-3a a viable candidate as a health-beneficial functional dietary supplement.
Collapse
Affiliation(s)
- Yongjing Yang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (X.Y.); (D.Z.); (B.Z.); (J.L.); (X.W.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence:
| | - Xingxing Yin
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (X.Y.); (D.Z.); (B.Z.); (J.L.); (X.W.)
| | - Dejun Zhang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (X.Y.); (D.Z.); (B.Z.); (J.L.); (X.W.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Benyin Zhang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (X.Y.); (D.Z.); (B.Z.); (J.L.); (X.W.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jie Lu
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (X.Y.); (D.Z.); (B.Z.); (J.L.); (X.W.)
| | - Xuehong Wang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (X.Y.); (D.Z.); (B.Z.); (J.L.); (X.W.)
| |
Collapse
|
12
|
Structural characterization and biological activities of a new polysaccharide isolated from Morchella Sextelata. Glycoconj J 2022; 39:369-380. [PMID: 35416638 DOI: 10.1007/s10719-022-10058-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 03/23/2022] [Indexed: 12/17/2022]
Abstract
Morchella is the famous medicinal fungi in the ascomycetes. In this study, a new water-soluble polysaccharide (MSP-3-1) with an average molecular weight of 2.35 × 107 Da was extracted and purified from fruiting bodies of cultivated M. Sextelata. The structural characterization and biological activities of purified polysaccharide was further investigated. The results indicated that MSP-3-1 was mainly a α-glucan, mainly consisting of mannose (Man), glucose (Glc) and galactose (Gal) in a ratio of 5.10: 91.39: 3.51. Its surface morphology exhibited irregular lamellar structures with small voids. And the particle size analysis showed that MSP-3-1 was the homogeneous nanoparticle in water solution. Furthermore, the antioxidant activity analysis showed that MSP-3-1 possessed certain scavenging activity against hydroxyl radicals, DPPH radicals and ABTS radicals in a dose-dependent manner. Immunological tests suggested that MSP-3-1 could significantly promote the proliferation, phagocytosis and nitric oxide (NO) production of macrophage RAW264.7. Thus, our results will provide a theoretical basis for the development and utilization of Morchella Sextelata polysaccharides as an immunmodulatory component in functional foods.
Collapse
|
13
|
Yang Y, Yin X, Zhang D, Lu J, Wang X. Isolation, Structural Characterization and Macrophage Activation Activity of an Acidic Polysaccharide from Raspberry Pulp. Molecules 2022; 27:molecules27051674. [PMID: 35268775 PMCID: PMC8911918 DOI: 10.3390/molecules27051674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/17/2022] Open
Abstract
The discovery of safe and effective plant polysaccharides with immunomodulatory effects has become a research hotspot. Raspberry is an essential commercial fruit and is widely distributed, cultivated, and consumed worldwide. In the present study, a homogeneous acidic polysaccharide (RPP-2a), with a weight-average molecular weight (Mw) of 55582 Da, was isolated from the pulp of raspberries through DEAE-Sepharose Fast Flow and Sephadex G-200 chromatography. RPP-2a consisted of rhamnose, arabinose, galactose, glucose, xylose, galacturonic acid and glucuronic acid, with a molar ratio of 15.4:9.6:7.6:3.2:9.1:54.3:0.8. The results of Fourier transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometer (GC-MS), 1D-, and 2D-nuclear magnetic resonance (NMR) analyses suggested that the backbone of RPP-2a was primarily composed of →2)-α-L-Rhap-(1→, →2,4)-α-L-Rhap-(1→, →4)-α-D-GalAp-(1→, and →3,4)-α-D-Glcp-(1→ sugar moieties, with side chains of α-L-Araf-(1→, α-L-Arap-(1→, and β-D-Galp-(1→3)-β-D-Galp-(1→ residues linked to the O-4 band of rhamnose and O-3 band of glucose residues. Furthermore, RPP-2a exhibited significant macrophage activation activity by increasing the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and the expression of inducible nitric oxide synthase (iNOS) and cytokines at the transcriptional level in RAW264.7 cells. Overall, the results indicate that RPP-2a can be utilized as a potential natural immune-enhancing agent.
Collapse
Affiliation(s)
- Yongjing Yang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (X.Y.); (D.Z.); (J.L.); (X.W.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence:
| | - Xingxing Yin
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (X.Y.); (D.Z.); (J.L.); (X.W.)
| | - Dejun Zhang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (X.Y.); (D.Z.); (J.L.); (X.W.)
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jie Lu
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (X.Y.); (D.Z.); (J.L.); (X.W.)
| | - Xuehong Wang
- College of Ecological and Environmental Engineering, Qinghai University, Xining 810016, China; (X.Y.); (D.Z.); (J.L.); (X.W.)
| |
Collapse
|