1
|
Dang LVP, Pham VH, Nguyen DM, Dinh TT, Nguyen TH, Le TH, Nguyen VL, Vu TP. Elevation of immunoglobulin levels is associated with treatment failure in HIV-infected children in Vietnam. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2019; 11:1-7. [PMID: 30643469 PMCID: PMC6311331 DOI: 10.2147/hiv.s181388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background HIV-infected children suffer from higher levels of treatment failure compared to adults. Immunoactivation, including humoral immunoactivation reflected by increased immunoglobulin levels, is believed to occur early during HIV infection. Therefore, we wanted investigate alteration in immunoglobulin levels in association with treatment response in HIV-infected children. Methods A nested case–control study was conducted using clinical data collected from 68 HIV-infected children enrolled at the National Hospital of Pediatrics, Vietnam. Results The results showed that immunoglobulin levels, CD4 T-cell counts, CD4 T-cell percentage, and HIV load were significantly higher in the treatment-failure group than the treatment-success group at treatment initiation. IgG and IgA levels were negatively correlated with CD4 T-cell counts (P=0.049 and P<0.01, respectively) and positively correlated with HIV load (P=0.04 and P=0.02, respectively). In addition, IgG and IgA levels were independently associated with treatment response, analyzed by Cox regression analysis (HR 1.19 [P=0.049] and HR 1.69 [P<0.01], respectively). Conclusion Elevation of IgA levels occurred early during HIV infection, and might have a prognostic role in treatment response.
Collapse
Affiliation(s)
- Linh Vu Phuong Dang
- Public Health Laboratory, Hanoi University of Public Health, Hanoi, Vietnam,
| | - Viet Hung Pham
- Department of Microbiology, Vietnam National Hospital of Pediatrics, Hanoi, Vietnam
| | - Duc Minh Nguyen
- Department of Geriatrics, National Hospital of Acupuncture, Hanoi, Vietnam
| | - Thanh Thi Dinh
- Public Health Laboratory, Hanoi University of Public Health, Hanoi, Vietnam,
| | - Thu Hoai Nguyen
- Department of Training and Direction Activity, National Geriatric Hospital, Hanoi, Vietnam
| | - Thanh Hai Le
- Department of Emergency, Vietnam National Hospital of Pediatrics, Hanoi, Vietnam
| | - Van Lam Nguyen
- Department of Infectious Disease, Vietnam National Hospital of Pediatrics, Hanoi, Vietnam
| | - Thi Phuong Vu
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam.,Department of Biochemistry, Dinh Tien Hoang Institute of Medicine, Hanoi, Vietnam
| |
Collapse
|
2
|
Londono-Renteria B, Cardenas JC, Troupin A, Colpitts TM. Natural Mosquito-Pathogen Hybrid IgG4 Antibodies in Vector-Borne Diseases: A Hypothesis. Front Immunol 2016; 7:380. [PMID: 27746778 PMCID: PMC5040711 DOI: 10.3389/fimmu.2016.00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022] Open
Abstract
Chronic exposure to antigens may favor the production of IgG4 antibodies over other antibody types. Recent studies have shown that up to a 30% of normal human IgG4 is bi-specific and is able to recognize two antigens of different nature. A requirement for this specificity is the presence of both eliciting antigens in the same time and at the same place where the immune response is induced. During transmission of most vector-borne diseases, the pathogen is delivered to the vertebrate host along with the arthropod saliva during blood feeding and previous studies have shown the existence of IgG4 antibodies against mosquito salivary allergens. However, there is very little ongoing research or information available regarding IgG4 bi-specificity with regard to infectious disease, particularly during immune responses to vector-borne diseases, such as malaria, filariasis, or dengue virus infection. Here, we provide background information and present our hypothesis that IgG4 may not only be a useful tool to measure exposure to infected mosquito bites, but that these bi-specific antibodies may also play an important role in modulation of the immune response against malaria and other vector-borne diseases in endemic settings.
Collapse
Affiliation(s)
- Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Jenny C Cardenas
- Clinical Laboratory, Hospital Los Patios , Los Patios , Colombia
| | - Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Tonya M Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| |
Collapse
|
3
|
Shan M, Klasse PJ, Banerjee K, Dey AK, Iyer SPN, Dionisio R, Charles D, Campbell-Gardener L, Olson WC, Sanders RW, Moore JP. HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells. PLoS Pathog 2008; 3:e169. [PMID: 17983270 PMCID: PMC2048530 DOI: 10.1371/journal.ppat.0030169] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 09/24/2007] [Indexed: 12/11/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is a vaccine immunogen that can signal via several cell surface receptors. To investigate whether receptor biology could influence immune responses to gp120, we studied its interaction with human, monocyte-derived dendritic cells (MDDCs) in vitro. Gp120 from the HIV-1 strain JR-FL induced IL-10 expression in MDDCs from 62% of donors, via a mannose C-type lectin receptor(s) (MCLR). Gp120 from the strain LAI was also an IL-10 inducer, but gp120 from the strain KNH1144 was not. The mannose-binding protein cyanovirin-N, the 2G12 mAb to a mannose-dependent gp120 epitope, and MCLR-specific mAbs inhibited IL-10 expression, as did enzymatic removal of gp120 mannose moieties, whereas inhibitors of signaling via CD4, CCR5, or CXCR4 were ineffective. Gp120-stimulated IL-10 production correlated with DC-SIGN expression on the cells, and involved the ERK signaling pathway. Gp120-treated MDDCs also responded poorly to maturation stimuli by up-regulating activation markers inefficiently and stimulating allogeneic T cell proliferation only weakly. These adverse reactions to gp120 were MCLR-dependent but independent of IL-10 production. Since such mechanisms might suppress immune responses to Env-containing vaccines, demannosylation may be a way to improve the immunogenicity of gp120 or gp140 proteins. Dendritic cells (DCs) initiate immune responses to pathogens or vaccine antigens. The HIV-1 gp120 envelope glycoprotein is an antigen that is a focus of vaccine design strategies. We have studied how gp120 proteins interact with DCs in cell culture. Certain gp120s stimulate DCs from some, but not all, human donors to produce IL-10, a cytokine that is generally immunosuppressive. In addition, whether or not the DCs produce IL-10, their ability to mature properly when activated is impaired by gp120—the gp120-treated DCs have a reduced ability to stimulate T cell growth when the two cell types are cultured together. These various effects of gp120 are caused by its binding to cell surface receptors of the mannose C-type lectin receptor family, including (but probably not exclusively) one called DC-SIGN. Gp120 binds to these receptors via mannose residues that are present on some of the glycan structures that overlay much of its protein surface. Removing the mannoses by digesting gp120 with a suitable enzyme prevents IL-10 induction and impairment of DC maturation, as does the use of inhibitors of the binding of gp120 to DC-SIGN and similar receptors. This work could help with the design of better HIV-1 vaccines.
Collapse
Affiliation(s)
- Meimei Shan
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Kaustuv Banerjee
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Antu K Dey
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Sai Prasad N Iyer
- Progenics Pharmaceuticals Incorporated, Tarrytown, New York, United States of America
| | - Robert Dionisio
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Dustin Charles
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Lila Campbell-Gardener
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - William C Olson
- Progenics Pharmaceuticals Incorporated, Tarrytown, New York, United States of America
| | - Rogier W Sanders
- Laboratory of Experimental Virology, Department Medical Microbiology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
4
|
Ferraz RM, Arís A, Martínez MA, Villaverde A. High-throughput, functional screening of the anti-HIV-1 humoral response by an enzymatic nanosensor. Mol Immunol 2006; 43:2119-23. [PMID: 16464501 DOI: 10.1016/j.molimm.2005.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/14/2005] [Accepted: 12/23/2005] [Indexed: 11/29/2022]
Abstract
The impact of antibodies on the target's epitope conformation is a major determinant of HIV-1 neutralization and a potential contributor to disease progression. We explore here a conformation-sensitive enzymatic nanosensor for the high-throughput functional screening of human anti-HIV-1 antibodies in sera. When displaying a model epitope from a gp41 immunodominant region (Env residues from 579 to 613), the sensing signal quantitatively distinguishes between adaptive and non-adaptive antibody binding. By using this tool, we have identified IgG4 as the immunoglobulin subpopulation most efficient in the structural modification of the target epitope.
Collapse
Affiliation(s)
- Rosa María Ferraz
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|