1
|
Hou L, Wang S, Zhang Y, Yang X, Chen Z, Gao Y, Li W. Targeted discovery of diterpene compounds ostamycins with anti-influenza a viral activity from a deepsea-derived Streptomyces strain. Bioorg Chem 2025; 157:108268. [PMID: 39986106 DOI: 10.1016/j.bioorg.2025.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Heterologous expression of a nonconventional terpene biosynthetic gene cluster from the deepsea-derived Streptomyces amphotericinicus DS22-01 led to the production of a novel cyclic diterpene, ostamycin A (1). Anti-influenza A virus activity evaluation revealed that compound 1 showed significant activity with an IC50 value of 4.72 μM, which was much stronger than that of the positive control ribavirin (IC50 = 20.80 μM). Inspired by its intriguing activity, yield optimization was achieved through a combined approach involving promoter engineering and codon modification in a stepwise manner. This strategy led to a ∼ 13-fold increase in the production of ostamycin A (1), as well as the concurrent accumulation of another novel cyclic diterpene, ostamycin B (2), which also displayed anti-influenza A virus activity with an IC50 value of 195.59 μM. The planar structures and stereochemistry of compounds 1 and 2 were established through extensive MS and NMR spectroscopic analyses together with ECD calculations. Further investigations revealed that compound 1 inhibits the influenza A virus (A/Puerto Rico/8/34) replication by directly targeting the nucleoprotein (NP). These findings highlight compound 1 as a promising lead for the development of novel influenza virus inhibitors.
Collapse
Affiliation(s)
- Lukuan Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Shuyao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Yuanhang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Xue Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Zihui Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou 310024, China.
| | - Yuxuan Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Wenli Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi 712100, China.
| |
Collapse
|
2
|
Mitchell DD, Vreulink JM, Prins A, Le Roes-Hill M. Draft genome dataset of Streptomyces griseoincarnatus strain R-35 isolated from tidal pool sediments. Data Brief 2025; 58:111235. [PMID: 39811529 PMCID: PMC11731734 DOI: 10.1016/j.dib.2024.111235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 01/16/2025] Open
Abstract
The marine isolate, Streptomyces griseoincarnatus strain R-35, was isolated from marine sediments collected from the Glencairn Tidal Pool, Table Mountain National Park, Cape Town, South Africa. The genomic DNA was sequenced using the Ion Torrent GeneStudio™ S5 platform, and the de novo assembly was performed using the SPAdes assembler on the Centre for High Performance Computing (CHPC) Lengau Cluster located at the CSIR, Rosebank, South Africa. The draft genome assembly consisted of 722 contigs totaling 7,625,174 base pairs and a G+C% content of 72.2 mol%. Genome completeness and genome contamination were determined as 99.12% and 0.92%, respectively. Genome annotations performed using the Rapid Annotation with Subsystem Technology (RAST) and the Bacterial and Viral Bioinformatics Resource Centre (BV-BRC) determined the presence of 7996 coding sequences (CDS), 63 transfer RNAs (tRNAs), and six ribosomal RNAs (rRNAs). A total of 2570 hypothetical proteins were assigned, and 5246 proteins were assigned to function. The phylogenomic positioning of S. griseoincarnatus strain R-35 was determined using the Type Strain Genome Server (TYGS) and was found to be related to S. griseoincarnatus JCM 4381T, with a digital DNA-DNA hybridisation (dDDH) value of 84.1%, and an OrthoANIu value of 98.22%. The CARD RGI algorithm on Proksee predicted the presence of 6,107 antimicrobial resistance (AMR) features, 27 biosynthetic gene clusters (BGCs) were predicted using antiSMASH, while 189 carbohydrate-active enzymes (CAZymes) were predicted using dbCAN3. The raw genome sequencing data has been submitted to the National Center for Biotechnology (NCBI) under the BioProject ID PRJNA1129156 (BioSample ID Accession Number: SAMN42145163; Short Read Archive (SRA) Accession: SRR29633055; https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1129156).
Collapse
Affiliation(s)
- Danielle Dana Mitchell
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, Cape Town, 7530, South Africa
| | - Jo-Marie Vreulink
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, Cape Town, 7530, South Africa
| | - Alaric Prins
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, Cape Town, 7530, South Africa
| | - Marilize Le Roes-Hill
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, Cape Town, 7530, South Africa
| |
Collapse
|
3
|
Liu Q, Tao J, Kan L, Zhang Y, Zhang S. Diversity, antibacterial and phytotoxic activities of actinomycetes associated with Periplaneta fuliginosa. PeerJ 2024; 12:e18575. [PMID: 39611011 PMCID: PMC11604042 DOI: 10.7717/peerj.18575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Background Insect-associated actinomycetes represent a potentially rich source for discovering bioactive metabolites. However, the diversity, antibacterial and phytotoxic activities of symbiotic actinomycetes associated with Periplaneta fuliginosa have not yet been conducted. Results A total of 86 strains of actinomycetes were isolated from the cornicles and intestines of both nymphs and adults of P. fuliginosa. Diversity analysis revealed that the isolated strains were preliminarily identified as 17 species from two genera, and the dominant genus was Streptomyces. A total of 36 crude extracts (60%) obtained from the supernatant of the 60 fermented strains exhibited a potent antibacterial activity against at least one tested pathogenic bacterium. Among these active strains, 27 crude extracts (75%) exhibited phytotoxic activity against the radicle of Echinochloa crusgalli. Furthermore, seven known compounds, including methoxynicotine (1), (3Z,6Z)-3-(4-methoxybenzylidene)-6-(2-methylpropyl) piperazine-2,5-dione (2), XR334 (3), 1-hydroxy-4-methoxy-2-naphthoic acid (4), nocapyrone A (5), β-daucosterol (6), and β-sitosterol (7) were isolated from an active rare actinomycete Nocardiopsis sp. ZLC-87 which was isolated from the gut of adult P. fuliginosa. Among them, compound 4 exhibited moderate antibacterial activity against Micrococcus tetragenus, Staphylococcus aureus, Escherichia coli, and Pseudomonas syringae pv. actinidiae with the zone of inhibition (ZOI) of 14.5, 12.0, 12.5, and 13.0 mm at a concentration of 30 μg/disc, respectively, which was weaker than those of gentamicin sulfate (ZOI of 29.5, 19.0, 18.5, and 24.5 mm). In addition, the compound 4 had potent phytotoxic activity against the radicle of E. crusgalli and Abutilon theophrasti with the inhibition rate of 65.25% and 92.68% at the concentration of 100 μg/mL. Conclusion Based on these findings, this study showed that P. fuliginosa-associated actinomycetes held promise for the development of new antibiotic and herbicide resources.
Collapse
Affiliation(s)
- Qihua Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jian Tao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Longhui Kan
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yinglao Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shuxiang Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Hassan SSU, Wu J, Li T, Ye X, Rehman A, Yan S, Jin H. Unlocking marine microbial treasures: new PBP2a-targeted antibiotics elicited by metals and enhanced by RSM-driven transcriptomics and chemoinformatics. Microb Cell Fact 2024; 23:303. [PMID: 39529027 PMCID: PMC11556168 DOI: 10.1186/s12934-024-02573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Elicitation through abiotic stress, including heavy metals, is a new natural product drug discovery technique. In this research, three compounds 1, 2, and 6, were achieved by triggering zinc and nickel on marine Sphingomonas sp. and Streptomyces sp., which were absent in normal culture. Compound 5 was obtained for the first time from marine bacteria. All compounds showed potent antibacterial activity against Staphylococcus aureus and bactericidal effect at 300 µm, but 6 was more active. The potent compound 6 production was further enhanced through response surface methodology by optimizing the condition consisting of nickel 1 mM ions, 20 mg/L sucrose, 30 mg/L salt and culture time 14 days. Under these conditions, the SM-6 production was enhanced with a yield of 6.3 mg/L, which was absent in the normal culture. Further transcriptome analysis of compound 6 unveiled its antibacterial activity on S. aureus by modulating heat shock protein genes, disrupting protein folding and synthesis, and perturbing cellular redox balance, leading to a comprehensive inhibition of normal bacterial growth. In addition, ADMET has shown that all compounds are safe for cardiac and hepatotoxicity. To determine the anti-bacterial mechanism, all compounds were docked with PBP2a and DNA gyrase enzyme, and TLR-4 protein for predicting vaccine construct, and the best docking score was achieved against PBP2a enzyme with the highest score of -10.2 for compound 6. In-silico cloning was carried out to ensure the expression of proteins generated and were cloned using S.aureus as a host. The simulation studies have shown that both SM-6-PBP2a and TLR-4-PBP2a complex are stable with the system. This study presents a new approach to anti-bacterial drug discovery from microorganisms through heavy metals triggering and enhancing the compound production through response surface methodology.
Collapse
Affiliation(s)
- Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - JiaJia Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| | - Xuewei Ye
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Abdur Rehman
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, People's Republic of China
| | - Shikai Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Huizi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
5
|
Ouchene R, Zaatout N, Suzuki MT. An Overview on Nocardiopsis Species Originating From North African Biotopes as a Promising Source of Bioactive Compounds and In Silico Genome Mining Analysis of Three Sequenced Genomes. J Basic Microbiol 2024; 64:e2400046. [PMID: 38934516 DOI: 10.1002/jobm.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Actinobacteria are renowned for their prolific production of diverse bioactive secondary metabolites. In recent years, there has been an increasing focus on exploring "rare" genera within this phylum for biodiscovery purposes, notably the Nocardiopsis genus, which will be the subject of the present study. Recognizing the absence of articles describing the research process of finding bioactive molecules from the genus Nocardiopsis in North African environments. We, therefore, present a historical overview of the discoveries of bioactive molecules of the genus Nocardiopsis originating from the region, highlighting their biological activities and associated reported molecules, providing a snapshot of the current state of the field, and offering insights into future opportunities and challenges for drug discovery. Additionally, we present a genome mining analysis of three genomes deposited in public databases that have been reported to be bioactive. A total of 36 biosynthetic gene clusters (BGCs) were identified, including those known to encode bioactive molecules. Notably, a substantial portion of the BGCs showed little to no similarity to those previously described, suggesting the possibility that the analyzed strains could be potential producers of new compounds. Further research on these genomes is essential to fully uncovering their biotechnological potential. Moving forward, we discuss the experimental designs adopted in the reported studies, as well as new avenues to guide the exploration of the Nocardiopsis genus in North Africa.
Collapse
Affiliation(s)
- Rima Ouchene
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Sorbonne Université, Paris, France
| | - Nawel Zaatout
- Faculty of Natural and Life Sciences, University of Batna, Batna, Algeria
| | - Marcelino T Suzuki
- CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Bello KE, Irekeola AA, Alshehri AA. Streptomyces isolate SOM013, a potential agent against microbial resistance and gastric ulcers. Saudi Pharm J 2024; 32:102101. [PMID: 38799000 PMCID: PMC11127256 DOI: 10.1016/j.jsps.2024.102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
The menace of microbial resistance and re-emerging disease is still a problem for healthcare givers globally, and the need for newer sources of potent antibiotics has become paramount. This study investigated the antimicrobial and antiulcer activities of Streptomyces isolate SOM013. Streptomyces isolates were cultivated and purified following standard microbiological protocols. Secondary metabolites were recovered and characterized from Streptomyces isolate SOM013 via broth fermentation and extraction. Varying concentrations (0.5 mg/mL, 0.025 mg/mL and 0.0125 mg/mL) of the SOM013 extract were used for antimicrobial screening against resistant bacteria and medically important fungi (methicillin-resistant Escherichia coli, Oxacillin resistant Helicobacter pylori, Shigella spp, extended broad-spectrum resistant Pseudomonas aeruginosa, Streptococcus spp, Campylobacter spp, Candida albicans, Aspergillus niger, and Aspergillus flavus). The antiulcer activity of the SOM013 was also examined in a methanol-induced gastric ulcer animal model. A total of 23 Streptomyces spp were recovered from the study. Methanolic extract of the SOM013 isolates was more potent across the clinical test microorganisms compared to water extract. The antimicrobial activity was dose dependent, with methanolic extract at 0.05 g/mL displaying the highest zone of inhibition (18.8 ± 0.3 mm) when tested against extended broad-spectrum resistant Pseudomonas aeruginosa. Further, the extract's ulcer index and protection efficacy were significant as the concentration increased (P < 0.01). SOM013 isolate has a moderate antimicrobial and high antiulcer activity worthy of pharmacological exploration.
Collapse
Affiliation(s)
- Kizito Eneye Bello
- Department of Microbiology, Faculty of Natural Science, Kogi State (Prince Abubakar Audu) University, Anyigba, PMB 1008, Anyigba, Kogi State, Nigeria
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara, Nigeria
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran, Saudi Arabia
- Health research center, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| |
Collapse
|
7
|
Nugraha AP, Sibero MT, Farabi K, Surboyo MDC, Ernawati DS, Ahmad Noor TNEBT. Marine Ascomycetes Extract Antifungal Susceptibility against Candida spp. Isolates from Oral Candidiasis HIV/AIDS Patient: An In Vitro Study. Eur J Dent 2024; 18:624-631. [PMID: 38387624 PMCID: PMC11132786 DOI: 10.1055/s-0043-1768466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE The etiology of oral candidiasis (OC) was Candida albicans, C. krusei, C. dubliniensis, C. tropicalis that are frequently found in human immunodeficiency virus/ acquired immunodeficiency syndrome (HIV/AIDS) patients. Marine ascomycetes (MA) have been widely reported as an important producer of various antibiotic compounds. However, there is limited study of antifungal compounds from MA against Candida species. The aim of this study was to investigate the antifungal susceptibility of MA against Candida spp. isolates from OC HIV/AIDS patient. MATERIALS AND METHODS Trichoderma sp. is a sponge-associated fungus collected from Karimunjawa National Park, Central Java, Indonesia. The validation of C. albicans, C. krusei, C. dubliniensis, C. tropicalis. was done by ChromAgar. This study was true experimental with post-test only control group design; the sample was four replications for each group. Nystatin administration (K +), the golden standard antifungal drug, was used. The minimum fungicidal concentration (MFC), minimum inhibitory concentration (MIC), and diffusion zone methods were done. Analysis of variance difference test, and post-hoc Tukey's honest significant different were done to analyze the significant different between groups (p ≤ 0.05). RESULTS The MFC and MIC of MA against C. albicans, C. krusei, C. dubliniensis, and C. tropicalis were found at 12.5%. In addition, the greatest diffusion zone of MA against C. albicans, C. krusei, C. dubliniensis, and C. tropicalis was found at 12.5%. There is no appreciable difference in antifungal activity between K + and 12.5% of MA extract (p ≥ 0.05). CONCLUSION Concentration of 12.5% MA extract has antifungal susceptibility against Candida spp. isolates from OC HIV/AIDS patient.
Collapse
Affiliation(s)
- Alexander Patera Nugraha
- Department of Orthodontic, Faculty of Dental Medicine - Universitas Airlangga, Surabaya, Indonesia
- Immunology Study Programme, Postgraduate School, Universitas Airlangga, Surabaya, Indonesia
| | - Mada Triandala Sibero
- Department of Marine Science, Fac. of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
| | | | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine - Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
8
|
Sivakumar A, Suresh V, Sethuraman S, Sivaperumal P. Biosynthesis of Zinc Nanoparticles From Actinobacterium Streptomyces Species and Their Biological Potential. Cureus 2024; 16:e54124. [PMID: 38487111 PMCID: PMC10938190 DOI: 10.7759/cureus.54124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND In today's world, antibiotic-resistant microorganisms are a major concern. There is solid evidence that metal nanoparticles (NPs) tend to have antimicrobial properties. The most effective substitute for antibiotic resistance is the incorporation of metal NPs. The antibacterial properties of NPs are currently being explored and shown to be successful. Zinc (Zn) NPs that are biosynthesized from marine Actinobacterium proved to be more biocompatible, bioactive, and affordable. Aim: This study aims to investigate the synthesis of ZnNPs from Actinobacterium Streptomyces species and their antimicrobial effects against gram-positive and gram-negative bacteria. MATERIALS AND METHODS The current study uses natural, considerably safer processes to synthesize ZnNPs from marine Actinobacteria with little to no negative side effects. It involves sample collection, identification, and isolation of Actinobacterium Streptomyces species. The isolated sample was air-dried, and extracts of ZnNPs were taken. Among the isolates from marine sediment, two Actinobacteria that generate bioactive secondary metabolites-Streptomyces species (MOSEL-ME28) and Rhodococcus rhodochrous (MOSEL-ME29)-were selected for extracellular synthesis of ZnNPs. The antimicrobial activity of the biosynthesized ZnNPs from marine Actinobacteria was analyzed against Staphylococcus (MRSA), Klebsiella pneumoniae, and Streptococcus mutans. The results were statistically analyzed and graphs were created. RESULTS ZnNPs obtained from Actinobacterium Streptomyces species exhibited antimicrobial effects against Staphylococcus (MRSA), Klebsiella, and Streptococcus mutans. At 280 nm wavelength, analysis of the UV spectrum showed a notable absorbance value of 1.8. The antibacterial efficacy against Staphylococcus MRSA, Klebsiella species, and Streptococcus mutans was assessed by measuring the zone of inhibition in diameter. The zones of inhibition were 8, 8, and 7 mm on the evaluation for Streptococcus mutans, S. aureus, and Klebsiella species, respectively, at a dose of 75 μg/mL. When the dosage was increased to 100 μg/mL, the inhibition zones were found to be 9.5, 9, and 7.5 mm for the respective bacterial strains. CONCLUSION ZnNPs are biosynthesized from marine Actinobacterium Streptomyces species in this research study. They have a significant antimicrobial activity against both gram-positive and negative bacteria. This indicates that ZnNPs have enormous antimicrobial potential and have an extensive spectrum of applications. However, clinical trials must be completed before it can be used safely on patients.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Vasugi Suresh
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sathya Sethuraman
- Dentistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Pitchiah Sivaperumal
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
9
|
Tunvongvinis T, Jaitrong W, Samung Y, Tanasupawat S, Phongsopitanun W. Diversity and antimicrobial activity of the tropical ant-derived actinomycetes isolated from Thailand. AIMS Microbiol 2024; 10:68-82. [PMID: 38525037 PMCID: PMC10955170 DOI: 10.3934/microbiol.2024005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 03/26/2024] Open
Abstract
Antibiotic resistance is one of the most important global healthcare challenges and is responsible for the mortality of millions of people worldwide every year. It is a crisis attributed to misuse of antibiotics and a lack of new drug development. Actinomycetes constitute a group of Gram-positive bacteria known for their distinctive high guanine-cytosine (G+C) content in their genomic DNA. These microorganisms are widely recognized for their capability to generate a wide range of secondary metabolites with diverse biological activities. These versatile microorganisms are ubiquitous in diverse ecosystems, including soil, freshwater, marine sediments, and within the bodies of insects. A recent study has demonstrated that social insects, such as ants, host a diverse array of these bacteria. In this study, we involved the isolation and characterization of a total of 72 actinomycete strains obtained from 18 distinct ant species collected from various regions across Thailand. Utilizing 16S rRNA gene analysis, these isolated actinomycetes were classified into four distinct genera: Amycolatopsis (2 isolates), Micromonospora (1 isolate), Nocardia (8 isolates), and Streptomyces (61 isolates). Among the Streptomyces strains, 23 isolates exhibited antimicrobial activity against a panel of Gram-positive bacteria, including Bacillus subtilis ATCC 6633, Staphylococcus epidermidis ATCC 12228, Staphylococcus aureus ATCC 25923, Kocuria rhizophila ATCC 9341, and Methicillin-resistant Staphylococcus aureus (MRSA) DMST 20646. Additionally, two isolates displayed antifungal activity against Candida albicans TISTR 5554. Based on 16S rRNA gene sequence similarity studies, these two isolates, ODS25 and ODS28, were demonstrated to be closely related to Streptomyces lusitanus NBRC 13464T (98.07%) and Streptomyces haliclonae DSM 41970T (97.28%), respectively. The level of 16S rRNA gene sequence similarity below 98.65% cutoff indicates its potential as a novel actinomycete species. These findings underscore the potential of actinomycetes sourced from ants as a valuable reservoir of novel antimicrobials.
Collapse
Affiliation(s)
- Tuangrat Tunvongvinis
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences. Chulalongkorn University, Bangkok 10330, Thailand
| | - Weeyawat Jaitrong
- Office of Natural Science Research, National Science Museum, 39, Moo 3, Khlong 5, Khlong Luang, Pathum Thani 12120, Thailand
| | - Yudthana Samung
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences. Chulalongkorn University, Bangkok 10330, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences. Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products and Nanoparticles Research Units (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Le Loarer A, Dufossé L, Bignon J, Frédérich M, Ledoux A, Fouillaud M, Gauvin-Bialecki A. OSMAC Method to Assess Impact of Culture Parameters on Metabolomic Diversity and Biological Activity of Marine-Derived Actinobacteria. Mar Drugs 2023; 22:23. [PMID: 38248648 PMCID: PMC10817652 DOI: 10.3390/md22010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Actinobacteria are known for their production of bioactive specialized metabolites, but they are still under-exploited. This study uses the "One Strain Many Compounds" (OSMAC) method to explore the potential of three preselected marine-derived actinobacteria: Salinispora arenicola (SH-78) and two Micromonospora sp. strains (SH-82 and SH-57). Various parameters, including the duration of the culture and the nature of the growth medium, were modified to assess their impact on the production of specialized metabolites. This approach involved a characterization based on chemical analysis completed with the construction of molecular networks and biological testing to evaluate cytotoxic and antiplasmodial activities. The results indicated that the influence of culture parameters depended on the studied species and also varied in relation with the microbial metabolites targeted. However, common favorable parameters could be observed for all strains such as an increase in the duration of the culture or the use of the A1 medium. For Micromonospora sp. SH-82, the solid A1 medium culture over 21 days favored a greater chemical diversity. A rise in the antiplasmodial activity was observed with this culture duration, with a IC50 twice as low as for the 14-day culture. Micromonospora sp. SH-57 produced more diverse natural products in liquid culture, with approximately 54% of nodes from the molecular network specifically linked to the type of culture support. Enhanced biological activities were also observed with specific sets of parameters. Finally, for Salinispora arenicola SH-78, liquid culture allowed a greater diversity of metabolites, but intensity variations were specifically observed for some metabolites under other conditions. Notably, compounds related to staurosporine were more abundant in solid culture. Consequently, in the range of the chosen parameters, optimal conditions to enhance metabolic diversity and biological activities in these three marine-derived actinobacteria were identified, paving the way for future isolation works.
Collapse
Affiliation(s)
- Alexandre Le Loarer
- Laboratory of Chemistry and Biotechnology of Natural Products, Faculty of Sciences and Technology, University of La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 09, 97744 Saint-Denis, France; (A.L.L.); (L.D.); (M.F.)
| | - Laurent Dufossé
- Laboratory of Chemistry and Biotechnology of Natural Products, Faculty of Sciences and Technology, University of La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 09, 97744 Saint-Denis, France; (A.L.L.); (L.D.); (M.F.)
| | - Jérôme Bignon
- Institute of Chemistry of Natural Substances (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France;
| | - Michel Frédérich
- Pharmacognosy Laboratory, Department of Pharmacy, Centre Interfacultaire de Recherche sur le Médicament (CIRM), University of Liège, Campus du Sart-Tilman, Quartier Hôpital, Avenue Hippocrate, 15, B36, 4000 Liege, Belgium; (M.F.); (A.L.)
| | - Allison Ledoux
- Pharmacognosy Laboratory, Department of Pharmacy, Centre Interfacultaire de Recherche sur le Médicament (CIRM), University of Liège, Campus du Sart-Tilman, Quartier Hôpital, Avenue Hippocrate, 15, B36, 4000 Liege, Belgium; (M.F.); (A.L.)
| | - Mireille Fouillaud
- Laboratory of Chemistry and Biotechnology of Natural Products, Faculty of Sciences and Technology, University of La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 09, 97744 Saint-Denis, France; (A.L.L.); (L.D.); (M.F.)
| | - Anne Gauvin-Bialecki
- Laboratory of Chemistry and Biotechnology of Natural Products, Faculty of Sciences and Technology, University of La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 09, 97744 Saint-Denis, France; (A.L.L.); (L.D.); (M.F.)
| |
Collapse
|
11
|
Bettadj FZY, Benchouk W. Computer-aided analysis for identification of novel analogues of ketoprofen based on molecular docking, ADMET, drug-likeness and DFT studies for the treatment of inflammation. J Biomol Struct Dyn 2023; 41:9915-9930. [PMID: 36444967 DOI: 10.1080/07391102.2022.2148750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022]
Abstract
Computer-based drug design is increasingly used in strategies for discovering new molecules for therapeutic purposes. The targeted drug is ketoprofen (KTP), which belongs to the family of non-steroidal anti-inflammatory drugs, which are widely used for the treatment of pain, fever, inflammation and certain types of cancers. In an attempt to rationalize the search for 72 new potential anti-inflammatory compounds on the COX-2 enzyme, we carried out an in silico protocol that successfully combines molecular docking towards COX-2 receptor (5F1A), ADMET pharmacokinetic parameters, drug-likeness rules and molecular electrostatic potential (MEP). It was found that six of the compounds analyzed satisfy with the associated values to physico-chemical properties as key evaluation parameters for the drug-likeness and demonstrate a hydrophobic character which makes their solubility in aqueous media difficult and easy in lipids. All the compounds presented good ADMET profile and they showed an interaction with the amino acids responsible for anti-inflammatory activity of the COX-2 isoenzyme. The calculation of the MEP of the six analogues reveals new preferential sites involving the formation of new bonds. Consequently, this result allowed us to understand the origin of the potential increase in the anti-inflammatory activity of the candidates. Finally, it was obtained that six compounds have a binding mode, binding energy, and stability in the active site of COX-2 like the reference drug ketoprofen, suggesting that these compounds could become a powerful candidate in the inhibition of the COX-2 enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatima Zohra Yasmine Bettadj
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, Tlemcen, Algeria
| | - Wafaa Benchouk
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
12
|
Kaur T, Khanna K, Sharma S, Manhas RK. Mechanistic insights into the role of actinobacteria as potential biocontrol candidates against fungal phytopathogens. J Basic Microbiol 2023; 63:1196-1218. [PMID: 37208796 DOI: 10.1002/jobm.202300027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023]
Abstract
Worldwide mounting demand for better food production to nurture exasperating population emphasizes on reduced crop losses. The incidence of pathogens into the agricultural fields has tend to dwindle plethora of cereal, vegetable, and other fodder crops. This, in turn, has seriously impacted the economic losses on global scale. Apart from this, it is quite challenging to feed the posterity in the coming decades. To counteract this problem, various agrochemicals have been commercialized in the market that no doubt shows positive results but along with adversely affecting the ecosystem. Therefore, the excessive ill-fated use of agrochemicals to combat the plant pests and diseases highlights that alternatives to chemical pesticides are need of the hour. In recent days, management of plant diseases using plant-beneficial microbes is gaining interest as safer and potent alternatives to replace chemically based pesticides. Among these beneficial microbes, actinobacteria especially streptomycetes play considerable role in combating plant diseases along with promoting the plant growth and development along with their productivity and yield. The mechanisms exhibited by actinobacteria include antibiosis (antimicrobial compounds and hydrolytic enzymes), mycoparasitism, nutrient competition, and induction of resistance in plants. Thus, in cognizance with potential of actinobacteria as potent biocontrol agents, this review summarizes role of actinobacteria and the multifarious mechanisms exhibited by actinobacteria for commercial applications.
Collapse
Affiliation(s)
- Talwinder Kaur
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kanika Khanna
- Department of Microbiology, DAV University, Jalandhar, Punjab, India
| | - Sonika Sharma
- Faculty of Agricultural Sciences, Jalandhar, Punjab, India
| | - Rajesh K Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
13
|
Muhammad I, Hassan SSU, Xu WJ, Tu GL, Yu HJ, Xiao X, Yan SK, Jin HZ, Bungau S. An extensive pharmacological evaluation of novel anti-nociceptive and IL-6 targeted anti-inflammatory guaiane-type sesquiterpenoids from Cinnamomum migao H. W. Li through in-depth in-vitro, ADMET, and molecular docking studies. Biomed Pharmacother 2023; 164:114946. [PMID: 37257229 DOI: 10.1016/j.biopha.2023.114946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
Guaiane-type sesquiterpenoids are most prevalent in the genus Cinnamomum. Hence this study investigates the structures, anti-nociceptive and IL-6 targeted anti-inflammatory potential of three novels C-14 guaiane-type sesquiterpenoids and two new monoterpenoids, isolated from Cinnamomum migao. The structures were precisely confirmed and characterized through the modern chromatographic and spectroscopic techniques of HRESIMS, 1D NMR, 2D NMR, experimental circular dichroism (ECD), and calculated (ECD). Novel sesquiterpenoids 1 and 2 exhibited significant anti-inflammatory activities against the NO production and pro-inflammatory cytokines. Their IC50 values were determined as 9.52 and 13.42 μΜ against IL-6 mRNA, respectively. Similarly, subcutaneous injection of n-BuT and EA extracts showed a dose-dependent suppression of formalin-induced tonic biting/licking responses during the tonic antinociceptive phase. Furthermore, absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of guaiane-type sesquiterpenoids 1 and 2 displayed that both compounds have a high level of GIT absorption, with a high zone of safety for cardiac and hepatotoxicity and no inhibition of cytochromes. In addition, molecular docking and simulation studies strengthen the anti-inflammatory potential of sesquiterpene 2 which showed a good binding affinity with IL-6 protein. Overall the inclusive results showed that the extracts and newly isolated guaiane-type sesquiterpenoids from C. migao will provide new evidence for the traditional use of this species to treat inflammation and nociception.
Collapse
Affiliation(s)
- Ishaq Muhammad
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China; Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China; Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wen-Jing Xu
- Guizhou Jingcheng Pharmaceutical Co., Ltd., Guiyang 550200, PR China
| | - Guo-Li Tu
- Guizhou Jingcheng Pharmaceutical Co., Ltd., Guiyang 550200, PR China
| | - Hua-Jun Yu
- Guizhou Jingcheng Pharmaceutical Co., Ltd., Guiyang 550200, PR China
| | - Xue Xiao
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Shi-Kai Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China; Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Hui-Zi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China; Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania
| |
Collapse
|
14
|
Biological Evaluation, Phytochemical Screening, and Fabrication of Indigofera Linifolia Leaves Extract-Loaded Nanoparticles. Molecules 2022; 27:molecules27154707. [PMID: 35897890 PMCID: PMC9369860 DOI: 10.3390/molecules27154707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Indigofera linifolia is a medicinally important plant, and by virtue of its rich phytochemical composition, this plant is widely used as essential component in traditional medication systems. Due to its wide range of medicinal applications, the extract-loaded chitosan (Ext+Ch), extract-loaded PEG (Ext+PEG), and extract-loaded locust bean gum (Ext+LGB) nanoparticles (NPs) were prepared in the present study. The prepared NPs were then evaluated for their antibacterial, antioxidant, and antidiabetic potentials. Antibacterial activities of the crude extract and the synthesized NPs were performed following standard procedures reported in the literature. The antioxidant capabilities of extract and NPs were evaluated using DPPH free radical scavenging assay. The antidiabetic potential of the samples was evaluated against α-amylase and α-glucosidase. Ext+PEG NPs showed more potent antibacterial activity against the selected strains of bacteria with the highest activity against Escherichia coli. The lowest antibacterial potential was observed for Ext+LGB NPs. The Ext+LGB NPs IC50 value of 39 μg/mL was found to be the most potent inhibitor of DPPH free radicals. Ext+LGB NPs showed a greater extent of inhibition against α-glucosidase and α-amylase with an IC50 of 83 and 78 μg/mL, whereas for the standard acarbose the IC50 values recorded against the mentioned enzymes were 69 and 74 μg/mL, respectively. A high concentration of phenolics and flavonoids in the crude extract was confirmed through TPC and TFC tests, HPLC profiling, and GC–MS analysis. It was considered that the observed antibacterial, antidiabetic, and antioxidant potential might be due the presence of these phenolics and flavonoids detected. The plant could thus be considered as a potential candidate to be used as a remedy of the mentioned health complications. However, further research in this regard is needed to isolate the exact responsible compounds of the observed biological potentials exhibited by the crude extract. Further, toxicity and pharmacological evaluations in animal models are also needed to establish the safety or toxicity profile of the plant.
Collapse
|
15
|
Rahman MM, Islam MR, Shohag S, Hossain ME, Shah M, Shuvo SK, Khan H, Chowdhury MAR, Bulbul IJ, Hossain MS, Sultana S, Ahmed M, Akhtar MF, Saleem A, Rahman MH. Multifaceted role of natural sources for COVID-19 pandemic as marine drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46527-46550. [PMID: 35507224 PMCID: PMC9065247 DOI: 10.1007/s11356-022-20328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/14/2022] [Indexed: 05/05/2023]
Abstract
COVID-19, which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread over the world, posing a global health concern. The ongoing epidemic has necessitated the development of novel drugs and potential therapies for patients infected with SARS-CoV-2. Advances in vaccination and medication development, no preventative vaccinations, or viable therapeutics against SARS-CoV-2 infection have been developed to date. As a result, additional research is needed in order to find a long-term solution to this devastating condition. Clinical studies are being conducted to determine the efficacy of bioactive compounds retrieved or synthesized from marine species starting material. The present study focuses on the anti-SARS-CoV-2 potential of marine-derived phytochemicals, which has been investigated utilizing in in silico, in vitro, and in vivo models to determine their effectiveness. Marine-derived biologically active substances, such as flavonoids, tannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, and lipids, can affect SARS-CoV-2 during the viral particle's penetration and entry into the cell, replication of the viral nucleic acid, and virion release from the cell; they can also act on the host's cellular targets. COVID-19 has been proven to be resistant to several contaminants produced from marine resources. This paper gives an overview and summary of the various marine resources as marine drugs and their potential for treating SARS-CoV-2. We discussed at numerous natural compounds as marine drugs generated from natural sources for treating COVID-19 and controlling the current pandemic scenario.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Gopalganj, Bangladesh
| | - Md Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Hosneara Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | | | - Israt Jahan Bulbul
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea.
| |
Collapse
|
16
|
Ouchene R, Stien D, Segret J, Kecha M, Rodrigues AMS, Veckerlé C, Suzuki MT. Integrated Metabolomic, Molecular Networking, and Genome Mining Analyses Uncover Novel Angucyclines From Streptomyces sp. RO-S4 Strain Isolated From Bejaia Bay, Algeria. Front Microbiol 2022; 13:906161. [PMID: 35814649 PMCID: PMC9260717 DOI: 10.3389/fmicb.2022.906161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Multi-omic approaches have recently made big strides toward the effective exploration of microorganisms, accelerating the discovery of new bioactive compounds. We combined metabolomic, molecular networking, and genomic-based approaches to investigate the metabolic potential of the Streptomyces sp. RO-S4 strain isolated from the polluted waters of Bejaia Bay in Algeria. Antagonistic assays against methicillin-resistant Staphylococcus aureus with RO-S4 organic extracts showed an inhibition zone of 20 mm by using the agar diffusion method, and its minimum inhibitory concentration was 16 μg/ml. A molecular network was created using GNPS and annotated through the comparison of MS/MS spectra against several databases. The predominant compounds in the RO-S4 extract belonged to the angucycline family. Three compounds were annotated as known metabolites, while all the others were putatively new to Science. Notably, all compounds had fridamycin-like aglycones, and several of them had a lactonized D ring analogous to that of urdamycin L. The whole genome of Streptomyces RO-S4 was sequenced to identify the biosynthetic gene cluster (BGC) linked to these angucyclines, which yielded a draft genome of 7,497,846 bp with 72.4% G+C content. Subsequently, a genome mining analysis revealed 19 putative biosynthetic gene clusters, including a grincamycin-like BGC with high similarity to that of Streptomyces sp. CZN-748, that was previously reported to also produce mostly open fridamycin-like aglycones. As the ring-opening process leading to these compounds is still not defined, we performed a comparative analysis with other angucycline BGCs and advanced some hypotheses to explain the ring-opening and lactonization, possibly linked to the uncoupling between the activity of GcnE and GcnM homologs in the RO-S4 strain. The combination of metabolomic and genomic approaches greatly improved the interpretation of the metabolic potential of the RO-S4 strain.
Collapse
Affiliation(s)
- Rima Ouchene
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650, Banyuls-sur-mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650, Banyuls-sur-mer, France
- *Correspondence: Didier Stien
| | - Juliette Segret
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650, Banyuls-sur-mer, France
| | - Mouloud Kecha
- Laboratoire de Microbiologie Appliquée (LMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Alice M. S. Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650, Banyuls-sur-mer, France
| | - Carole Veckerlé
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650, Banyuls-sur-mer, France
| | - Marcelino T. Suzuki
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650, Banyuls-sur-mer, France
- Marcelino T. Suzuki
| |
Collapse
|
17
|
Steven R, Humaira Z, Natanael Y, Dwivany FM, Trinugroho JP, Dwijayanti A, Kristianti T, Tallei TE, Emran TB, Jeon H, Alhumaydhi FA, Radjasa OK, Kim B. Marine Microbial-Derived Resource Exploration: Uncovering the Hidden Potential of Marine Carotenoids. Mar Drugs 2022; 20:352. [PMID: 35736155 PMCID: PMC9229179 DOI: 10.3390/md20060352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Microbes in marine ecosystems are known to produce secondary metabolites. One of which are carotenoids, which have numerous industrial applications, hence their demand will continue to grow. This review highlights the recent research on natural carotenoids produced by marine microorganisms. We discuss the most recent screening approaches for discovering carotenoids, using in vitro methods such as culture-dependent and culture-independent screening, as well as in silico methods, using secondary metabolite Biosynthetic Gene Clusters (smBGCs), which involves the use of various rule-based and machine-learning-based bioinformatics tools. Following that, various carotenoids are addressed, along with their biological activities and metabolic processes involved in carotenoids biosynthesis. Finally, we cover the application of carotenoids in health and pharmaceutical industries, current carotenoids production system, and potential use of synthetic biology in carotenoids production.
Collapse
Affiliation(s)
- Ray Steven
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Zalfa Humaira
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Yosua Natanael
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Fenny M. Dwivany
- Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung 40132, Indonesia; (R.S.); (Z.H.); (Y.N.)
| | - Joko P. Trinugroho
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW72AZ, UK;
| | - Ari Dwijayanti
- CNRS@CREATE Ltd., 1 Create Way, #08-01 Create Tower, Singapore 138602, Singapore;
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Heewon Jeon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Seoul 02447, Korea;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Ocky Karna Radjasa
- Oceanography Research Center, The Earth Sciences and Maritime Research Organization, National Research and Innovation Agency, North Jakarta 14430, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong, Seoul 02447, Korea;
| |
Collapse
|
18
|
Khalil MA, El-Shanshoury AERR, Alghamdi MA, Sun J, Ali SS. Streptomyces catenulae as a Novel Marine Actinobacterium Mediated Silver Nanoparticles: Characterization, Biological Activities, and Proposed Mechanism of Antibacterial Action. Front Microbiol 2022; 13:833154. [PMID: 35572675 PMCID: PMC9095859 DOI: 10.3389/fmicb.2022.833154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Biosynthesized silver nanoparticles (Bio-SNPs) were synthesized from the marine actinobacterium strain Streptomyces catenulae M2 and characterized using a variety of techniques, including UV–vis spectrum, fourier transform infrared spectroscopy (FTIR), energy dispersive x-ray (EDX), transmission electron microscopy (TEM), dynamic light scattering (DLS), surface-enhanced Raman spectroscopy (SERS), and zeta potential. The antibacterial activity of Bio-SNPs alone and in combination with antibiotic was evaluated using a microtiter-dilution resazurin assay against multidrug-resistant (MDR) bacteria. Bio-SNPs’ minimum inhibitory concentration (MIC) against bacterial strains was determined. To assess the synergistic effect of Bio-SNPs in combination with antibiotics, the Fractional Inhibitory Concentration Index (FICI) was calculated. While the safety of Bio-SNPs in biomedical applications is dependent on their use, the in vitro cytotoxicity of Bio-SNPs on normal human epithelial colon cells (NCM460) and human colorectal adenocarcinoma cells (CaCo2) were evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay and cell lactate dehydrogenase (LDH) release. The presence of Bio-SNPs was revealed by UV–vis spectroscopy, which revealed a peak in the Surface Plasmon Resonance (SPR) spectrum at 439.5 nm. Bio-SNPs were spherical in shape and small in size (average 33 nm by TEM, 58.8 nm by DLS), with good stability (−30 mV) and the presence of capping agents. Bio-SNPs had MIC values ranging from 2 to 64 μg/ml against the bacteria tested. The MIC for P. aeruginosa was the lowest (2 μg/ml). Antibiotics have been shown to have a significant synergistic effect when combined with Bio-SNPs against tested bacteria. Bio-SNPs exhibited dose-dependent cytotoxicity against NCM460 and CaCo2 cancer cells, with the latter exhibiting far greater toxicity than the former. NCM460 and CaCo2 cell viability decreased from 99.3 to 95.7% and 92.3 to 61.8%, respectively, whereas LDH leakage increased from 200 to 215 nmol/ml and 261 to 730 nmol/ml, respectively. The half inhibitory concentrations (IC50) for NCM460 and CaCo2 cancer cells were 79.46 and 10.41 μg/ml and 89.4 and 19.3 μg/ml, respectively. Bio-SNPs were found to be biocompatible and to have anti-inflammatory activity. Bio-SNPs are highly appealing for future nanomedicine applications due to their antibacterial and biocompatible properties and their inherent “green” and simple manufacturing.
Collapse
Affiliation(s)
- Maha A Khalil
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Maha A Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia.,Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sameh S Ali
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, Egypt.,Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
19
|
Shi S, Cui L, Zhang K, Zeng Q, Li Q, Ma L, Long L, Tian X. Streptomyces marincola sp. nov., a Novel Marine Actinomycete, and Its Biosynthetic Potential of Bioactive Natural Products. Front Microbiol 2022; 13:860308. [PMID: 35572650 PMCID: PMC9096227 DOI: 10.3389/fmicb.2022.860308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/24/2022] [Indexed: 12/28/2022] Open
Abstract
Marine actinomycetes are an important source of antibiotics, but many of them are yet to be explored in terms of taxonomy, ecology, and functional activity. In this study, two marine actinobacterial strains, designated SCSIO 64649T and SCSIO 03032, were isolated, and the potential for bioactive natural product discovery was evaluated based on genome mining, compound detection, and antimicrobial activity. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain SCSIO 64649T formed a single clade with SCSIO 03032 (similarity 99.5%) and sister clades with the species Streptomyces specialis DSM 41924T (97.1%) and Streptomyces manganisoli MK44T (96.8%). The whole genome size of strain SCSIO 64649T was 6.63 Mbp with a 73.6% G + C content. The average nucleotide identity and digital DNA–DNA hybridization between strain SCSIO 64649T and its closest related species were well below the thresholds recommended for species delineation. Therefore, according to the results of polyphasic taxonomy analysis, the strains SCSIO 64649T and SCSIO 03032 are proposed to represent a novel species named Streptomyces marincola sp. nov. Furthermore, strains SCSIO 64649T and 03032 encode 37 putative biosynthetic gene clusters, and in silico analysis revealed that this new species has a high potential to produce unique natural products, such as a novel polyene polyketide compounds, two mayamycin analogs, and a series of post-translationally modified peptides. In addition, other important bioactive natural products, such as heronamide F, piericidin A1, and spiroindimicin A, were also detected in strain SCSIO 64649T. Finally, this new species’ metabolic crude extract showed a strong antimicrobial activity. Thanks to the integration of all these analyses, this study demonstrates that the novel species Streptomyces marincola has a unique and novel secondary metabolite biosynthetic potential that not only is beneficial to possible marine hosts but that could also be exploited for industrial applications.
Collapse
Affiliation(s)
- Songbiao Shi
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Linqing Cui
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kun Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zeng
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qinglian Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xinpeng Tian
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
20
|
Zhang Y, Xu H, Wang L, Liu R, Fu L, Lin K. Unique bacterial communities and potential function along the vertical gradient in the deepest marine blue hole. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:911-927. [PMID: 34490729 DOI: 10.1111/1758-2229.13001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 05/27/2023]
Abstract
The Sansha Yongle Blue Hole is the deepest blue hole in the world discovered so far, while its great potential and values have not been fully exploited regarding microbial communities. A large-scale sampling was performed at different depths (0-270 m) inside the blue hole. Based on high-throughput sequencing, the diversity and richness of bacterial communities were relatively higher in oxic and euphotic layer, and at depths of 180-230 m in anoxic layer. Proteobacteria was dominant with mean relative abundance of 64.7%. As the representative genera, Thiomicrospira and Arcobacter were detected with higher abundances up to 96.1% and 31.5% in the anaerobic environment. Principal co-ordinates analysis, one-way ANOVA and network analysis highlighted the distinctive species at different depths. Correlation analysis illustrated the significant correlations between the bacteria and environmental elements of dissolved oxygen, temperature, salinity, pH, sulphur and nutrient. Phylogenetic analysis indicated that the microbial ecosystem was characterized with infrequent and unidentified microorganisms in the deep layer. This research revealed the unique microbial ecosystem and potential functions in regulating ecosystem productivity and cycling of carbon, sulphur and nitrogen. Comprehensive and long-term investigations in the Sansha Blue Hole should be taken to conserve the peculiar ecosystem.
Collapse
Affiliation(s)
- Yuxuan Zhang
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huitao Xu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liping Wang
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ruizhi Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Liang Fu
- Sansha Trackline Institute of Coral Reef Environment Protection, Sansha, 571400, China
| | - Kuixuan Lin
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
21
|
Cui Y, Gao J, Zhang D, Li D, Dai H, Wang Z, Zhao Y. Responses of performance, antibiotic resistance genes and bacterial communities of partial nitrification system to polyamide microplastics. BIORESOURCE TECHNOLOGY 2021; 341:125767. [PMID: 34419884 DOI: 10.1016/j.biortech.2021.125767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Polyamide (PA), a prevalent microplastics (MPs), is often collected from wastewater treatment plants. However, the responses of partial nitrification system to PA MPs are unclear. The short-term and long-term effect of PA MPs on the partial nitrification system was slight, but the ammonia oxidation rate decreased slowly with the increase of PA MPs concentration. Meantime, the PA MPs addition could decrease the microbial diversity, alter microbial community structure of the system and facilitate the propagation of antibiotic resistance genes (ARGs) including fabI, intI1 and Tn916/1545. Correlation analysis and network analysis indicated that Ferruginibacter, Hyphomicrobium, Terrimonas, Brevundimonas and Plasticicumulans in the system might be the dominant hosts of ARGs. In addition, oligotyping analysis indicated not all oligotypes of the relevant genus showed positive correlation with ARGs. In general, PA MPs had almost no effect on performance but altered community structure and increased ARGs spread risk of the partial nitrification system.
Collapse
Affiliation(s)
- Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Da Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
22
|
Abstract
Bacteria of the genus Streptomyces produce a very large number of secondary metabolites, many of which are of vital importance to modern medicine. There is great interest in the discovery of novel pharmaceutical compounds derived from strepomycetes, since novel antibiotics, anticancer and compounds for treating other conditions are urgently needed. Greece, as proven by recent research, possesses microbial reservoirs with a high diversity of Streptomyces populations, which provide a rich pool of strains with potential pharmaceutical value. This review examines the compounds of pharmaceutical interest that have been derived from Greek Streptomyces isolates. The compounds reported in the literature include antibiotics, antitumor compounds, biofilm inhibitors, antiparasitics, bacterial toxin production inhibitors and antioxidants. The streptomycete biodiversity of Greek environments remains relatively unexamined and is therefore a very promising resource for potential novel pharmaceuticals.
Collapse
|
23
|
Ghiciuc CM, Vicovan AG, Stafie CS, Antoniu SA, Postolache P. Marine-Derived Compounds for the Potential Treatment of Glucocorticoid Resistance in Severe Asthma. Mar Drugs 2021; 19:586. [PMID: 34822457 PMCID: PMC8620935 DOI: 10.3390/md19110586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
One of the challenges to the management of severe asthma is the poor therapeutic response to treatment with glucocorticosteroids. Compounds derived from marine sources have received increasing interest in recent years due to their prominent biologically active properties for biomedical applications, as well as their sustainability and safety for drug development. Based on the pathobiological features associated with glucocorticoid resistance in severe asthma, many studies have already described many glucocorticoid resistance mechanisms as potential therapeutic targets. On the other hand, in the last decade, many studies described the potentially anti-inflammatory effects of marine-derived biologically active compounds. Analyzing the underlying anti-inflammatory mechanisms of action for these marine-derived biologically active compounds, we observed some of the targeted pathogenic molecular mechanisms similar to those described in glucocorticoid (GC) resistant asthma. This article gathers the marine-derived compounds targeting pathogenic molecular mechanism involved in GC resistant asthma and provides a basis for the development of effective marine-derived drugs.
Collapse
Affiliation(s)
- Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Gheorghe Vicovan
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iasi, Romania
| | - Celina Silvia Stafie
- Department of Preventive Medicine and Interdisciplinarity—Family Medicine Discipline, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Sabina Antonela Antoniu
- Department of Medicine II—Palliative Care Nursing, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Paraschiva Postolache
- Department of Medicine I—Pulmonary Rehabilitation Clinic, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
24
|
Shams Ul Hassan S, Abbas SQ, Hassan M, Jin HZ. Computational Exploration of Anti-Cancer Potential of Guaiane Dimers from Xylopia vielana by Targeting B-Raf Kinase Using Chemo-Informatics, Molecular Docking and MD Simulation Studies. Anticancer Agents Med Chem 2021; 22:731-746. [PMID: 34645380 DOI: 10.2174/1871520621666211013115500] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products from herbs are prolific to display robust anticancer activities. OBJECTIVES In the current study, B-Raf kinase protein (PDB: 3OG7), a potent target for melanoma, was tested against two guaiane-type sesquiterpene dimers, xylopin E-F, obtained from Xylopia vielana. METHODS In this work, a systematic in silico study using ADMET analysis, bioactivity score forecasts, molecular docking, and its simulations were conducted to understand compounds' pharmacological properties. RESULTS During ADMET predictions of both the compounds, Xylopin E-F has displayed a safer profile in hepatotoxicity, cytochrome inhibition, and only xylopin F displayed as non-cardiotoxic compared to FDA approved drug vemurafenib. Both the compounds were proceeded to molecular docking experiments using Autodock docking software and both the compounds Xylopin E-F have displayed higher binding potential with -11.5Kcal/mol energy compared to control vemurafenib -10.2 Kcal/mol. All the compounds were further evaluated for their MD simulations and their molecular interactions with the B-Raf kinase complex displayed precise interactions with the active gorge of the enzyme by hydrogen bonding. CONCLUSIONS Overall, xylopin F had a better profile relative to xylopin E and vemurafenib, and these findings indicated that this bio-molecule could be used as an anti-melanoma agent and as a possible anticancer drug in the future. Therefore, this is a systematic optimized in silico approach to creating an anticancer pathway for guaiane dimers against the backdrop of its potential for future drug development.
Collapse
Affiliation(s)
- Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240. China
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar. Pakistan
| | - Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore. Pakistan
| | - Hui-Zi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240. China
| |
Collapse
|
25
|
Zhang Z, Zhou T, Yang T, Fukaya K, Harunari E, Saito S, Yamada K, Imada C, Urabe D, Igarashi Y. Nomimicins B-D, new tetronate-class polyketides from a marine-derived actinomycete of the genus Actinomadura. Beilstein J Org Chem 2021; 17:2194-2202. [PMID: 34497672 PMCID: PMC8404215 DOI: 10.3762/bjoc.17.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023] Open
Abstract
Three new tetronate-class polyketides, nomimicins B, C, and D, along with nomimicin, hereafter named nomimicin A, were isolated from the culture extract of Actinomadura sp. AKA43 collected from floating particles in the deep-sea water of Sagami Bay, Japan. The structures of nomimicins B, C, and D were elucidated through the interpretation of NMR and MS analytical data, and the absolute configuration was determined by combination of NOESY/ROESY and ECD analyses. Nomimicins B, C, and D showed antimicrobial activity against Gram-positive bacteria, Kocuria rhizophila and Bacillus subtilis, with MIC values in the range of 6.5 to 12.5 μg/mL. Nomimicins B and C also displayed cytotoxicity against P388 murine leukemia cells with IC50 values of 33 and 89 μM, respectively.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tao Zhou
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Taehui Yang
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Keisuke Fukaya
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shun Saito
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Katsuhisa Yamada
- DHC Corporation, 2-7-1 Minami-Azabu, Minato-ku, Tokyo 106-8571, Japan
| | - Chiaki Imada
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Daisuke Urabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
26
|
Sabido EM, Tenebro CP, Trono DJVL, Vicera CVB, Leonida SFL, Maybay JJWB, Reyes-Salarda R, Amago DS, Aguadera AMV, Octaviano MC, Saludes JP, Dalisay DS. Insights into the Variation in Bioactivities of Closely Related Streptomyces Strains from Marine Sediments of the Visayan Sea against ESKAPE and Ovarian Cancer. Mar Drugs 2021; 19:md19080441. [PMID: 34436280 PMCID: PMC8399204 DOI: 10.3390/md19080441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
Abstract
Marine sediments host diverse actinomycetes that serve as a source of new natural products to combat infectious diseases and cancer. Here, we report the biodiversity, bioactivities against ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) and ovarian cancer, and metabolites variation among culturable actinomycetes isolated from the marine sediments of Visayan Sea, Philippines. We identified 15 Streptomyces species based on a 16S rRNA gene sequence analysis. The crude extracts of 10 Streptomyces species have inhibited the growth of ESKAPE pathogens with minimum inhibitory concentration (MIC) values ranging from 0.312 mg/mL to 20 mg/mL depending on the strain and pathogens targeted. Additionally, ten crude extracts have antiproliferative activity against A2780 human ovarian carcinoma at 2 mg/mL. To highlight, we observed that four phylogenetically identical Streptomyces albogriseolus strains demonstrated variation in antibiotic and anticancer activities. These strains harbored type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes in their genomes, implying that their bioactivity is independent of the polymerase chain reaction (PCR)-detected bio-synthetic gene clusters (BGCs) in this study. Metabolite profiling revealed that the taxonomically identical strains produced core and strain-specific metabolites. Thus, the chemical diversity among these strains influences the variation observed in their biological activities. This study expanded our knowledge on the potential of marine-derived Streptomyces residing from the unexplored regions of the Visayan Sea as a source of small molecules against ESKAPE pathogens and cancer. It also highlights that Streptomyces species strains produce unique strain-specific secondary metabolites; thus, offering new chemical space for natural product discovery.
Collapse
Affiliation(s)
- Edna M. Sabido
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
| | - Dana Joanne Von L. Trono
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
| | - Carmela Vannette B. Vicera
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
| | - Sheeny Fane L. Leonida
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Jose Jeffrey Wayne B. Maybay
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Rikka Reyes-Salarda
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
- Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
| | - Diana S. Amago
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Angelica Marie V. Aguadera
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - May C. Octaviano
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Jonel P. Saludes
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
- Tuklas Lunas Development Center, University of San Agustin, Iloilo City 5000, Philippines
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (PCHRD), Bicutan, Taguig City 1631, Philippines
- Correspondence: (J.P.S.); (D.S.D.); Tel.: +63-33-503-6887 (J.P.S.); +63-33-501-0350 (D.S.D.)
| | - Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
- Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
- Tuklas Lunas Development Center, University of San Agustin, Iloilo City 5000, Philippines
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (PCHRD), Bicutan, Taguig City 1631, Philippines
- Correspondence: (J.P.S.); (D.S.D.); Tel.: +63-33-503-6887 (J.P.S.); +63-33-501-0350 (D.S.D.)
| |
Collapse
|
27
|
Chen RW, He YQ, Cui LQ, Li C, Shi SB, Long LJ, Tian XP. Diversity and Distribution of Uncultured and Cultured Gaiellales and Rubrobacterales in South China Sea Sediments. Front Microbiol 2021; 12:657072. [PMID: 34220745 PMCID: PMC8248818 DOI: 10.3389/fmicb.2021.657072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023] Open
Abstract
Actinobacteria are ubiquitous in marine ecosystems, and they are regarded as an important, underexplored, potential pharmaceutical resource. The orders Gaiellales and Rubrobacterales are deep taxonomic lineages of the phylum Actinobacteria, both are represented by a single genus and contain only a few species. Although they have been detected frequently by high-throughput sequencing, their functions and characteristics in marine habitats remain unknown due to the lack of indigenous phenotypes. Here, we investigated the status of the orders in South China Sea (SCS) sediments using culture-independent and culture-dependent methods. Gaiellales is the second-most abundant order of Actinobacteria and was widely distributed in SCS sediments at water depths of 42-4,280 m, and four novel marine representatives in this group were successfully cultured. Rubrobacterales was present at low abundance in energy-limited marine habitats. An isolation strategy for Rubrobacterales from marine samples was proposed, and a total of 138 mesophilic Rubrobacterales strains were isolated under conditions of light and culture time combined with high-salinity or low-nutrient media. Marine representatives recovered in this study formed branches with a complex evolutionary history in the phylogenetic tree. Overall, the data indicate that both Gaiellales and Rubrobacterales can adapt to and survive in extreme deep-sea environments. This study lays the groundwork for further analysis of the distribution and diversity of the orders Gaiellales and Rubrobacterales in the ocean and provides a specific culture strategy for each group. The results open a window for further research on the ecological roles of the two orders in marine ecosystems.
Collapse
Affiliation(s)
- Rou-Wen Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Qiu He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lin-Qing Cui
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Song-Biao Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Juan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xin-Peng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
28
|
Rong X, Jiang L, Qu M, Hassan SSU, Liu Z. Enhancing Therapeutic Efficacy of Donepezil by Combined Therapy: A Comprehensive Review. Curr Pharm Des 2021; 27:332-344. [PMID: 33100197 DOI: 10.2174/1381612826666201023144836] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/19/2020] [Indexed: 11/22/2022]
Abstract
Combination therapy involving different therapeutic strategies mostly provides more rapid and effective results as compared to monotherapy in diverse areas of clinical practice. The most worldwide famous acetylcholinesterase inhibitor (AChEIs) donepezil for its dominant role in Alzheimer's disease (AD) has also attracted the attention of many pharmaceuticals due to its promising pharmacological potencies such as neuroprotective, muscle relaxant, and sleep inducer. Recently, a combination of donepezil with other agents has displayed better desirable results in managing several disorders, including the most common Alzheimer's disease (AD). This study involves all the data regarding the therapeutic effect of donepezil in its combination with other agents and explains its therapeutic targets and mode of action. Furthermore, this review also puts light on the current status of donepezil with other agents in clinical trials. The combination therapy of donepezil with symptomatic relief drugs and disease-modifying agents opens a new road for treating multiple pathological disorders. To the best of our knowledge, this is the first report encircling all the pharmacologic effects of donepezil in its combination therapy with other agents and their current status in clinical trials.
Collapse
Affiliation(s)
- Xi Rong
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Liwei Jiang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, China
| | - Meijie Qu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zongchao Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| |
Collapse
|
29
|
Daniotti S, Re I. Marine Biotechnology: Challenges and Development Market Trends for the Enhancement of Biotic Resources in Industrial Pharmaceutical and Food Applications. A Statistical Analysis of Scientific Literature and Business Models. Mar Drugs 2021; 19:61. [PMID: 33530360 PMCID: PMC7912129 DOI: 10.3390/md19020061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Biotechnology is an essential tool for the sustainable exploitation of marine resources, although the full development of their potential is complicated by a series of cognitive and technological limitations. Thanks to an innovative systematic approach that combines the meta-analysis of 620 articles produced worldwide with 29 high TRL (Technology Readiness Level) European funded projects, the study provides an assessment of the growth prospects of blue biotechnologies, with a focus on pharmaceutical and food applications, and the most promising technologies to overcome the main challenges in the commercialization of marine products. The results show a positive development trend, with publications more than doubled from 2010 (36) to 2019 (70). Biochemical and molecular characterization, with 150 studies, is the most widely used technology. However, the emerging technologies in basic research are omics technologies, pharmacological analysis and bioinformatics, which have doubled the number of publications in the last five years. On the other hand, technologies for optimizing the conditions of cultivation, harvesting and extraction are central to most business models with immediate commercial exploitation (65% of high-TRL selected projects), especially in food and nutraceutical applications. This research offers a starting point for future research to overcome all those obstacles that restrict the marketing of products derived from organisms.
Collapse
|
30
|
Jose PA, Maharshi A, Jha B. Actinobacteria in natural products research: Progress and prospects. Microbiol Res 2021; 246:126708. [PMID: 33529791 DOI: 10.1016/j.micres.2021.126708] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022]
Abstract
Actinobacteria are well-recognised biosynthetic factories that produce an extensive spectrum of secondary metabolites. Recent genomic insights seem to impact the exploitation of these metabolically versatile bacteria in several aspects. Notably, from the isolation of novel taxa to the discovery of new compounds, different approaches evolve at a steady pace. Here, we systematically discuss the enduring importance of Actinobacteria in the field of drug discovery, the current focus of isolation efforts targeting bioactive Actinobacteria from diverse sources, recent discoveries of novel compounds with different bioactivities, and the relative employment of different strategies in the search for novel compounds. Ultimately, we highlight notable progress that will have profound impacts on future quests for secondary metabolites of Actinobacteria.
Collapse
Affiliation(s)
- Polpass Arul Jose
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India.
| | - Anjisha Maharshi
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, India.
| |
Collapse
|
31
|
Diversity and Bioactive Potential of Actinobacteria Isolated from a Coastal Marine Sediment in Northern Portugal. Microorganisms 2020; 8:microorganisms8111691. [PMID: 33143202 PMCID: PMC7692593 DOI: 10.3390/microorganisms8111691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
Natural compounds have had increasing applications in the biotechnological sector, with a large fraction of these substances being channeled to the pharmaceutical industry due to their important pharmacological properties. The discovery of new bioactive molecules with novel mechanisms of action constitutes a promising solution for the design of alternative therapeutic solutions. Actinobacteria are a large group of morphologically and physiologically diverse bacteria well known for their production of biotechnologically relevant compounds. The Portuguese coast is scantly explored in terms of Actinobacteria diversity and respective bioactive potential, offering a good opportunity to find new Actinobacteria taxa and bioactive natural products. In this study, we investigated the Actinobacteria diversity associated with a sediment sample collected from the intertidal zone of a beach in northern Portugal, through a cultivation-dependent approach, and screened its antimicrobial and cytotoxic potential. A total of 52 Actinobacteria strains were recovered from the marine sediment, with the largest fraction of the isolates belonging to the genus Micromonospora. Bioactivity screening assays identified crude extracts of six Streptomyces strains active against C. albicans, exhibiting minimum inhibition concentration (MIC) values in the range of 3.90-125 μg mL-1. Twenty-five Actinobacteria crude extracts (obtained from strains of the genera Micromonospora, Streptomyces and Actinomadura) exhibited significant effects on the viability of at least one tested cancer cell line (breast ductal carcinoma T-47D and liver hepatocellular carcinoma HepG2). The Actinobacteria extracts demonstrating activity in the antimicrobial and/or cytotoxic assays were subjected to metabolomic analysis (Mass spectrometry (MS)-based dereplication and molecular networking analyses), indicating the presence of four clusters that may represent new natural products. The results obtained demonstrate the importance of bioprospecting underexplored environments, like the Portuguese coast, for enhancing the discovery of new natural products, and call attention to the relevance of preserving the natural genetic diversity of coastal environments.
Collapse
|
32
|
Chemically Diverse and Biologically Active Secondary Metabolites from Marine Phylum chlorophyta. Mar Drugs 2020; 18:md18100493. [PMID: 32993146 PMCID: PMC7601752 DOI: 10.3390/md18100493] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
For a long time, algal chemistry from terrestrial to marine or freshwater bodies, especially chlorophytes, has fascinated numerous investigators to develop new drugs in the nutraceutical and pharmaceutical industries. As such, chlorophytes comprise a diverse structural class of secondary metabolites, having functional groups that are specific to a particular source. All bioactive compounds of chlorophyte are of great interest due to their supplemental/nutritional/pharmacological activities. In this review, a detailed description of the chemical diversity of compounds encompassing alkaloids, terpenes, steroids, fatty acids and glycerides, their subclasses and their structures are discussed. These promising natural products have efficiency in developing new drugs necessary in the treatment of various deadly pathologies (cancer, HIV, SARS-CoV-2, several inflammations, etc.). Marine chlorophyte, therefore, is portrayed as a pivotal treasure in the case of drugs having marine provenience. It is a domain of research expected to probe novel pharmaceutically or nutraceutically important secondary metabolites resulting from marine Chlorophyta. In this regard, our review aims to compile the isolated secondary metabolites having diverse chemical structures from chlorophytes (like Caulerpa ssp., Ulva ssp., Tydemania ssp., Penicillus ssp., Codium ssp., Capsosiphon ssp., Avrainvillea ssp.), their biological properties, applications and possible mode of action.
Collapse
|
33
|
Marine Sediment-Derived Streptomyces Strain Produces Angucycline Antibiotics against Multidrug-Resistant Staphylococcus aureus Harboring SCCmec Type 1 Gene. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Philippine archipelago is geographically positioned in the tropics with rich areas of marine biodiversity. Its marine sediments harbor actinomycetes that exhibit antibacterial activity. Screening of actinomycetes isolated from marine sediments collected near the coast of Islas de Gigantes, Iloilo showed one isolate that exhibited high activity against the multidrug-resistant Staphylococcus aureus (MRSA) strain carrying the Staphylococcal Cassette Chromosome mec (SCCmec) type 1 gene, a biomarker for drug resistance. The isolate was identified as Streptomyces sp. strain DSD011 based on its 16s rRNA and protein-coding genes (atpD, recA, rpoB, and trpB) sequences, and was found to be a new species of salt-tolerant marine Streptomyces. Further, the strain harbors both non-ribosomal peptide synthetase (NRPS) and type II polyketide synthase (PKS) in its genome. The targeted chromatographic isolation and chemical investigations by Liquid Chromatography Mass Spectrometry-Time of Flight (LCMS-TOF), tandem mass spectrometry (MS/MS), and Global Natural Product Social molecular networking (GNPS) of the antibiotics produced by the strain afforded the two polycyclic aromatic polyketide angucycline glycosides, fridamycin A (1) and fridamycin D (2), which are products of type II PKS biosynthesis. Compounds 1 and 2 displayed antibacterial activity against MRSA with minimum inhibitory concentration (MIC) of 500 μg/mL and 62.5 μg/mL, respectively. These results suggest that the underexplored marine sediments near the coast of Islas de Gigantes, Iloilo offer access to undiscovered Streptomyces species that are invaluable sources of antibiotic leads.
Collapse
|
34
|
Hassan SSU, Zhang WD, Jin HZ, Basha SH, Priya SVSS. In-silico anti-inflammatory potential of guaiane dimers from Xylopia vielana targeting COX-2. J Biomol Struct Dyn 2020; 40:484-498. [PMID: 32876526 DOI: 10.1080/07391102.2020.1815579] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural products of herbal origin are prodigious to display diverse pharmacological activities. In the present study, five guaiane-type sesquiterpene dimers, xylopidimers A - E (1-5), isolated from Xylopia vielana species were tested against COX-2 protein target (PDB: 1CX2), a potent target for anti-inflammatory agents. To better understand the pharmacological properties of all these compounds, in this work, a systemic in silico study was performed on xylopidimers A-E using molecular docking, ADMET analysis and MD simulations. During ADMET predictions the two compounds xylopidimer C, D displayed best results as compared to others. The compound xylopidimer C was further evaluated for its MD simulations and its molecular interactions with COX2 complex showed clear interactions with active gorge of the enzyme through hydrogen bonding as well as hydrophobic contacts. The xylopidimer C has shown the best binding potential with -10.57Kcal/mol energy with 17.92 nano molar of predicted inhibition constant better than Ibuprofen and Felbinac. These findings provide enough significant information for designing and developing novel targeted base anti-inflammatory drugs from guaiane dimers.
Collapse
Affiliation(s)
- Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China.,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wei-Dong Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China.,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Hui-Zi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China.,Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | | | - S V S Sasi Priya
- Innovative Informatica Technologies, Hyderabad, India.,Department of Pharmaceutical chemistry, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, India
| |
Collapse
|
35
|
Xie Y, Chen J, Wang B, Chen T, Chen J, Zhang Y, Liu X, Chen Q. Activation and enhancement of caerulomycin A biosynthesis in marine-derived Actinoalloteichus sp. AHMU CJ021 by combinatorial genome mining strategies. Microb Cell Fact 2020; 19:159. [PMID: 32762690 PMCID: PMC7412835 DOI: 10.1186/s12934-020-01418-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background Activation of silent biosynthetic gene clusters (BGCs) in marine-derived actinomycete strains is a feasible strategy to discover bioactive natural products. Actinoalloteichus sp. AHMU CJ021, isolated from the seashore, was shown to contain an intact but silent caerulomycin A (CRM A) BGC-cam in its genome. Thus, a genome mining work was preformed to activate the strain’s production of CRM A, an immunosuppressive drug lead with diverse bioactivities. Results To well activate the expression of cam, ribosome engineering was adopted to treat the wild type Actinoalloteichus sp. AHMU CJ021. The initial mutant strain XC-11G with gentamycin resistance and CRM A production titer of 42.51 ± 4.22 mg/L was selected from all generated mutant strains by gene expression comparison of the essential biosynthetic gene-camE. The titer of CRM A production was then improved by two strain breeding methods via UV mutagenesis and cofactor engineering-directed increase of intracellular riboflavin, which finally generated the optimal mutant strain XC-11GUR with a CRM A production titer of 113.91 ± 7.58 mg/L. Subsequently, this titer of strain XC-11GUR was improved to 618.61 ± 16.29 mg/L through medium optimization together with further adjustment derived from response surface methodology. In terms of this 14.6 folds increase in the titer of CRM A compared to the initial value, strain XC-GUR could be a well alternative strain for CRM A development. Conclusions Our results had constructed an ideal CRM A producer. More importantly, our efforts also had demonstrated the effectiveness of abovementioned combinatorial strategies, which is applicable to the genome mining of bioactive natural products from abundant actinomycetes strains.
Collapse
Affiliation(s)
- Yunchang Xie
- Key Laboratory of Functional Small Organic Molecule Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jiawen Chen
- Key Laboratory of Functional Small Organic Molecule Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Bo Wang
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen, 518120, China
| | - Tai Chen
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen, 518120, China
| | - Junyu Chen
- Key Laboratory of Functional Small Organic Molecule Ministry of Education and Jiangxi's Key Laboratory of Green Chemistry, Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Yuan Zhang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Qi Chen
- School of Life Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
36
|
Sarveswari HB, Kalimuthu S, Shanmugam K, Neelakantan P, Solomon AP. Exploration of Anti-infectives From Mangrove-Derived Micromonospora sp. RMA46 to Combat Vibrio cholerae Pathogenesis. Front Microbiol 2020; 11:1393. [PMID: 32765430 PMCID: PMC7381277 DOI: 10.3389/fmicb.2020.01393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
Vibrio cholerae, the etiological agent of cholera, employs quorum sensing (QS) pathways to control the expression of virulence factors, including the production of cholera toxin and biofilm formation. Acquired antibiotic resistance in V. cholerae draws attention to the development of novel therapeutics that counteract virulence, rather than the viability of the pathogen. In this context, we explored the anti-infective potential of rare marine Actinobacteria (RMA) from a mangrove ecosystem. Here, we report the effects of Micromonospora sp. RMA46 against V. cholerae in vitro. The RMA46 organic extract was non-bactericidal to V. cholerae cells and non-cytotoxic to macrophage RAW264.7 cell lines. RMA46 inhibited the formation of V. cholerae biofilms and downregulated the QS global switches LuxO and HapR, as well as other virulence genes including ct, tcp, and hapA. In silico molecular docking simulation of RMA46 ethyl acetate extract with LuxO and HapR revealed that 2-methoxy-4-vinylphenol and hexahydro-3-(phenylmethyl)-pyrrolo[1,2-a]pyrazine-1,4-dione could interact with the active sites of LuxO and HapR and potentially inhibit them. This study highlights Micromonospora sp. RMA46 as a potential source of anti-infectives against V. cholerae.
Collapse
Affiliation(s)
- Hema Bhagavathi Sarveswari
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Shanthini Kalimuthu
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | | | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
37
|
New Napyradiomycin Analogues from Streptomyces sp. Strain CA-271078. Mar Drugs 2019; 18:md18010022. [PMID: 31888028 PMCID: PMC7024253 DOI: 10.3390/md18010022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 01/07/2023] Open
Abstract
As part of our continuing efforts to discover new bioactive compounds from microbial sources, a reinvestigation of extracts of scaled-up cultures of the marine-derived Streptomyces sp. strain CA-271078 resulted in the isolation and structural elucidation of four new napyradiomycins (1-3, 5). The known napyradiomycin SC (4), whose structural details had not been previously described in detail, and another ten related known compounds (6-15). The structures of the new napyradiomycins were characterized by HRMS and 1D- and 2D-NMR spectroscopies and their relative configurations were established through a combination of molecular modelling with nOe and coupling constants NMR analysis. The absolute configuration of each compound is also proposed based on biosynthetic arguments and the comparison of specific rotation data with those of related compounds. Among the new compounds, 1 was determined to be the first non-halogenated member of napyradiomycin A series containing a functionalized prenyl side chain, while 2-4 harbor in their structures the characteristic chloro-cyclohexane ring of the napyradiomycin B series. Remarkably, compound 5 displays an unprecedented 14-membered cyclic ether ring between the prenyl side chain and the chromophore, thus representing the first member of a new class of napyradiomycins that we have designated as napyradiomycin D1. Anti-infective and cytotoxic properties for all isolated compounds were evaluated against a set of pathogenic microorganisms and the HepG2 cell line, respectively. Among the new compounds, napyradiomycin D1 exhibited significant growth-inhibitory activity against methicillin-resistant Staphylococcus aureus, Mycobacterium tuberculosis, and HepG2.
Collapse
|
38
|
Brocaeloid D, a novel compound isolated from a wheat pathogenic fungus, Microdochium majus 99049. Synth Syst Biotechnol 2019; 4:173-179. [PMID: 31667367 PMCID: PMC6807035 DOI: 10.1016/j.synbio.2019.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 11/23/2022] Open
Abstract
Microbes serve as the most important resource for drug discovery. During our screening for bioactive compounds from our natural products library, a pathogenic fungus, Microdochium majus strain 99049, from wheat was selected for further investigation. A new alkaloid named brocaeloid D (1), together with six previously characterized compounds (2–7) were identified. Compound 1 belongs to 4-oxoquinoline with C-2 reversed prenylation and a succinimide substructure. All the structures of these newly isolated compounds were determined by different means in spectroscopic experiments. The absolute configurations of 1 was further deduced from comparison of its CD spectrum with that of known compound 2. The bioactivities of these identified compounds were evaluated against several pathogenic microorganisms and cancer cell lines. Compounds 1–5 showed activity against HUH-7 human hepatoma cells with IC50 values of 80 μg/mL. Compound 6 showed mild activity against HeLa cells (IC50 = 51.9 μg/mL), weak anti-MTB activity (MIC = 80 μg/mL), and moderate anti-MRSA activity (MIC = 25 μg/mL), and compound 7 showed weak anti-MRSA activity (MIC = 100 μg/mL).
Collapse
|
39
|
Myronovskyi M, Luzhetskyy A. Heterologous production of small molecules in the optimized Streptomyces hosts. Nat Prod Rep 2019; 36:1281-1294. [PMID: 31453623 DOI: 10.1039/c9np00023b] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Time span of literature covered: 2010-2018The genome mining of streptomycetes has revealed their great biosynthetic potential to produce novel natural products. One of the most promising exploitation routes of this biosynthetic potential is the refactoring and heterologous expression of corresponding biosynthetic gene clusters in a panel of specifically selected and optimized chassis strains. This article will review selected recent reports on heterologous production of natural products in streptomycetes. In the first part, the importance of heterologous production for drug discovery will be discussed. In the second part, the review will discuss recently developed genetic control elements (such as promoters, ribosome binding sites, terminators) and their application to achieve successful heterologous expression of biosynthetic gene clusters. Finally, the most widely used Streptomyces hosts for heterologous expression of biosynthetic gene clusters will be compared in detail. The article will be of interest to natural product chemists, molecular biologists, pharmacists and all individuals working in the natural products drug discovery field.
Collapse
Affiliation(s)
| | - Andriy Luzhetskyy
- Saarland University, Department Pharmacy, Saarbrücken, Germany and Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.
| |
Collapse
|
40
|
Cyclic tetrapeptides from the marine strain Streptomyces sp. PNM-161a with activity against rice and yam phytopathogens. J Antibiot (Tokyo) 2019; 72:744-751. [PMID: 31243345 DOI: 10.1038/s41429-019-0201-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 05/29/2019] [Accepted: 06/08/2019] [Indexed: 11/08/2022]
Abstract
Two cyclotetrapeptides, henceforth named Provipeptides A (1) and B (2), along with five known diketopiperazines (3-7) were isolated from the liquid culture of marine Streptomyces sp. 161a recovered from a sample of sea grass Bryopsis sp. The structures of cyclotetrapeptides and diketopiperazines (DKPs) were established by 1D and 2D NMR data, MS, and by comparison with literature data. The absolute stereochemistry of compounds cyclo-(L-Pro-L-Leu-D-Pro-L-Phe) 1 and cyclo-(-Pro-Ile-Pro-Phe) 2 was established by the Marfey's method. Compound 1 showed antibacterial activity against rice phytopathogenic strains Burkholderia glumae (MIC = 1.1 mM) and Burkholderia gladioli (MIC = 0.068 mM), compound 2 was active only against B. glumae (MIC = 1.1 mM), and DKP cyclo-[L-Pro-L-Leu] 5 showed to be active against B. gladioli (MIC = 0.3 mM) and B. glumae (MIC = 2.4 mM). Compounds 1 and 2 showed 65% and 50% inhibition of Colletotrichum gloeosporioides (yam pathogen) conidia germination, respectively at a concentration of 1.1 mM.
Collapse
|
41
|
Ziko L, Adel M, Malash MN, Siam R. Insights into Red Sea Brine Pool Specialized Metabolism Gene Clusters Encoding Potential Metabolites for Biotechnological Applications and Extremophile Survival. Mar Drugs 2019; 17:md17050273. [PMID: 31071993 PMCID: PMC6562949 DOI: 10.3390/md17050273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
The recent rise in antibiotic and chemotherapeutic resistance necessitates the search for novel drugs. Potential therapeutics can be produced by specialized metabolism gene clusters (SMGCs). We mined for SMGCs in metagenomic samples from Atlantis II Deep, Discovery Deep and Kebrit Deep Red Sea brine pools. Shotgun sequence assembly and secondary metabolite analysis shell (antiSMASH) screening unraveled 2751 Red Sea brine SMGCs, pertaining to 28 classes. Predicted categorization of the SMGC products included those (1) commonly abundant in microbes (saccharides, fatty acids, aryl polyenes, acyl-homoserine lactones), (2) with antibacterial and/or anticancer effects (terpenes, ribosomal peptides, non-ribosomal peptides, polyketides, phosphonates) and (3) with miscellaneous roles conferring adaptation to the environment/special structure/unknown function (polyunsaturated fatty acids, ectoine, ladderane, others). Saccharide (80.49%) and putative (7.46%) SMGCs were the most abundant. Selected Red Sea brine pool sites had distinct SMGC profiles, e.g., for bacteriocins and ectoine. Top promising candidates, SMs with pharmaceutical applications, were addressed. Prolific SM-producing phyla (Proteobacteria, Actinobacteria, Cyanobacteria), were ubiquitously detected. Sites harboring the largest numbers of bacterial and archaeal phyla, had the most SMGCs. Our results suggest that the Red Sea brine niche constitutes a rich biological mine, with the predicted SMs aiding extremophile survival and adaptation.
Collapse
Affiliation(s)
- Laila Ziko
- Graduate Program of Biotechnology, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
| | - Mustafa Adel
- Graduate Program of Biotechnology, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
- Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
| | - Mohamed N Malash
- Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt.
| | - Rania Siam
- Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
| |
Collapse
|
42
|
Girão M, Ribeiro I, Ribeiro T, Azevedo IC, Pereira F, Urbatzka R, Leão PN, Carvalho MF. Actinobacteria Isolated From Laminaria ochroleuca: A Source of New Bioactive Compounds. Front Microbiol 2019; 10:683. [PMID: 31024480 PMCID: PMC6465344 DOI: 10.3389/fmicb.2019.00683] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/19/2019] [Indexed: 01/04/2023] Open
Abstract
Nature is the major reservoir of biologically active molecules. The urgent need of finding novel molecules for pharmaceutical application is prompting the research of underexplored environments, such as marine ecosystems. Here, we investigated cultivable actinobacteria associated with the macroalgae Laminaria ochroleuca and assessed their potential to produce compounds with antimicrobial or anticancer activities. A specimen of L. ochroleuca was collected in a rocky shore in northern Portugal, and fragments of tissues from different parts of the macroalgae (holdfast, stipe, and blades) were surface sterilized and plated in three culture media selective for actinobacteria. A total of 90 actinobacterial strains were isolated, most of which affiliated with the genus Streptomyces. Isolates associated with the genera Isoptericola, Rhodococcus, Nonomuraeae, Nocardiopsis, Microbispora, and Microbacterium were also obtained. Organic extracts from the isolates were tested for their antimicrobial activity using the agar-based disk diffusion method, followed by determination of minimum inhibitory concentration (MIC) values. Forty-five isolates inhibited the growth of Candida albicans and/or Staphylococcus aureus, with MIC values ranging from <0.5 to 1000 μg mL−1. The actinobacterial isolates were also tested for their anticancer potential on two human cancer cell lines. Twenty-eight extracts affected the viability of at least one human cancer cell line (breast carcinoma T-47D and neuroblastoma SH-SY5Y) and non-carcinogenic endothelial cell line (hCMEC/D3). Seven extracts affected the viability of cancer cells only. This study revealed that L. ochroleuca is a rich source of actinobacteria with promising antimicrobial and anticancer activities and suggests that macroalgae may be a valuable source of actinobacteria and, consequently, of new molecules with biotechnological importance.
Collapse
Affiliation(s)
- Mariana Girão
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Inês Ribeiro
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Tiago Ribeiro
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Isabel C Azevedo
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Filipe Pereira
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Maria F Carvalho
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| |
Collapse
|
43
|
Almasi F, Mohammadipanah F, Adhami HR, Hamedi J. Introduction of marine-derivedStreptomycessp. UTMC 1334 as a source of pyrrole derivatives with anti-acetylcholinesterase activity. J Appl Microbiol 2018; 125:1370-1382. [DOI: 10.1111/jam.14043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/26/2018] [Accepted: 07/03/2018] [Indexed: 01/28/2023]
Affiliation(s)
- F. Almasi
- Department of Microbial Biotechnology; School of Biology and Center of Excellence in Phylogeny of Living Organisms; College of Science; University of Tehran; Tehran Iran
- Microbial Technology and Products Research Center; University of Tehran; Tehran Iran
| | - F. Mohammadipanah
- Department of Microbial Biotechnology; School of Biology and Center of Excellence in Phylogeny of Living Organisms; College of Science; University of Tehran; Tehran Iran
| | - H.-R. Adhami
- Department of Pharmacognosy; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - J. Hamedi
- Department of Microbial Biotechnology; School of Biology and Center of Excellence in Phylogeny of Living Organisms; College of Science; University of Tehran; Tehran Iran
- Microbial Technology and Products Research Center; University of Tehran; Tehran Iran
| |
Collapse
|
44
|
Heterologous Expression of a VioA Variant Activates Cryptic Compounds in a Marine-Derived Brevibacterium Strain. Mar Drugs 2018; 16:md16060191. [PMID: 29865236 PMCID: PMC6024985 DOI: 10.3390/md16060191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 12/27/2022] Open
Abstract
A new 14-membered homodimeric macrodiolide, brevidiolide (3), along with four known aromatic compounds (1, 2, 4 and 5) were obtained by heterologous expression of the recombinant plasmid pWLI823 expressing the G231L variant of VioA in the marine-derived Brevibacterium sp. 7002-073. The structures of 1–5 were elucidated on the basis of LC-MS and 2D NMR spectroscopic analyses. In the evaluation for the antibacterial activities of the compounds against multi-drug resistant (MDR) strains, 5 showed notable growth inhibition against Staphylococcus aureus CCARM 3090 and Klebsiella pneumoniae ATCC 13883, with a minimum inhibitory concentration (MIC) value of 3.12 µg/mL.
Collapse
|
45
|
Jiang ZK, Tuo L, Huang DL, Osterman IA, Tyurin AP, Liu SW, Lukyanov DA, Sergiev PV, Dontsova OA, Korshun VA, Li FN, Sun CH. Diversity, Novelty, and Antimicrobial Activity of Endophytic Actinobacteria From Mangrove Plants in Beilun Estuary National Nature Reserve of Guangxi, China. Front Microbiol 2018; 9:868. [PMID: 29780376 PMCID: PMC5945994 DOI: 10.3389/fmicb.2018.00868] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/16/2018] [Indexed: 11/13/2022] Open
Abstract
Endophytic actinobacteria are one of the important pharmaceutical resources and well known for producing different types of bioactive substances. Nevertheless, detection of the novelty, diversity, and bioactivity on endophytic actinobacteria isolated from mangrove plants are scarce. In this study, five different mangrove plants, Avicennia marina, Aegiceras corniculatum, Kandelia obovota, Bruguiera gymnorrhiza, and Thespesia populnea, were collected from Beilun Estuary National Nature Reserve in Guangxi Zhuang Autonomous Region, China. A total of 101 endophytic actinobacteria strains were recovered by culture-based approaches. They distributed in 7 orders, 15 families, and 28 genera including Streptomyces, Curtobacterium, Mycobacterium, Micrococcus, Brevibacterium, Kocuria, Nocardioides, Kineococcus, Kytococcus, Marmoricola, Microbacterium, Micromonospora, Actinoplanes, Agrococcus, Amnibacterium, Brachybacterium, Citricoccus, Dermacoccus, Glutamicibacter, Gordonia, Isoptericola, Janibacter, Leucobacter, Nocardia, Nocardiopsis, Pseudokineococcus, Sanguibacter, and Verrucosispora. Among them, seven strains were potentially new species of genera Nocardioides, Streptomyces, Amnibacterium, Marmoricola, and Mycobacterium. Above all, strain 8BXZ-J1 has already been characterized as a new species of the genus Marmoricola. A total of 63 out of 101 strains were chosen to screen antibacterial activities by paper-disk diffusion method and inhibitors of ribosome and DNA biosynthesis by means of a double fluorescent protein reporter. A total of 31 strains exhibited positive results in at least one antibacterial assay. Notably, strain 8BXZ-J1 and three other potential novel species, 7BMP-1, 5BQP-J3, and 1BXZ-J1, all showed antibacterial bioactivity. In addition, 21 strains showed inhibitory activities against at least one "ESKAPE" resistant pathogens. We also found that Streptomyces strains 2BBP-J2 and 1BBP-1 produce bioactive compound with inhibitory activity on protein biosynthesis as result of translation stalling. Meanwhile, Streptomyces strain 3BQP-1 produces bioactive compound inducing SOS-response due to DNA damage. In conclusion, this study proved mangrove plants harbored a high diversity of cultivable endophytic actinobacteria, which can be a promising source for discovery of novel species and bioactive compounds.
Collapse
Affiliation(s)
- Zhong-ke Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Tuo
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, China
| | - Da-lin Huang
- College of Basic Medical Sciences, Guilin Medical University, Guilin, China
| | - Ilya A. Osterman
- Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anton P. Tyurin
- Gause Institute of New Antibiotics, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Shao-wei Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dmitry A. Lukyanov
- Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Petr V. Sergiev
- Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Olga A. Dontsova
- Department of Chemistry, A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Vladimir A. Korshun
- Gause Institute of New Antibiotics, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Fei-na Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cheng-hang Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Fluostatins M-Q Featuring a 6-5-6-6 Ring Skeleton and High Oxidized A-Rings from Marine Streptomyces sp. PKU-MA00045. Mar Drugs 2018. [PMID: 29522466 PMCID: PMC5867631 DOI: 10.3390/md16030087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aromatic polyketides from marine actinomycetes have received increasing attention due to their unusual structures and potent bioactivities. Compared to their terrestrial counterparts, marine aromatic polyketides have been less discovered and their structural and biological diversities are far from being fully investigated. In this study, we employed a PCR-based genome mining method to discover aromatic polyketides in our marine bacteria collection. Five new atypical angucyclinones, fluostatins M–Q (1–5) featuring a unique 6-5-6-6 ring skeleton, were discovered from one “positive” Streptomyces sp. PKU-MA00045. The structures of fluostatins M–Q (1–5) were elucidated based on comprehensive spectroscopic analyses and the crystallographic structure of fluostatin P (4), which contains the most oxidized A-ring, was solved by X-ray diffraction analysis with Cu Kα radiation. Compared to the published 16 fluostatin analogues, fluostatins M–Q (1–5) contained a different methoxy group attached at C-7 and hydroxy group attached at C-4, enriching the structural diversity of aromatic polyketides from marine actinomycetes. Genome sequencing of Streptomyces sp. PKU-MA00045 revealed the biosynthetic gene cluster of fluostatins M–Q (1–5), which contained different genes and gene organizations compared to known fluostatin gene clusters, facilitating the investigation of the biosynthesis of the unique 6-5-6-6 ring skeleton in all fluostatins.
Collapse
|
47
|
Lombardi VR, Corzo L, Carrera I, Cacabelos R. The Search for Biomarine-derived Compounds with Immunomodulatory Activity. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2018; 3:30-41. [DOI: 10.14218/jerp.2018.00006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Bernardini S, Tiezzi A, Laghezza Masci V, Ovidi E. Natural products for human health: an historical overview of the drug discovery approaches. Nat Prod Res 2017; 32:1926-1950. [DOI: 10.1080/14786419.2017.1356838] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- S. Bernardini
- Laboratory of Plant Cytology and Biotechnology, Department for the Innovation in Biological, Agrofood and Forestal Systems (DIBAF), Tuscia University, Viterbo, Italy
| | - A. Tiezzi
- Laboratory of Plant Cytology and Biotechnology, Department for the Innovation in Biological, Agrofood and Forestal Systems (DIBAF), Tuscia University, Viterbo, Italy
| | - V. Laghezza Masci
- Laboratory of Plant Cytology and Biotechnology, Department for the Innovation in Biological, Agrofood and Forestal Systems (DIBAF), Tuscia University, Viterbo, Italy
| | - E. Ovidi
- Laboratory of Plant Cytology and Biotechnology, Department for the Innovation in Biological, Agrofood and Forestal Systems (DIBAF), Tuscia University, Viterbo, Italy
| |
Collapse
|
49
|
Anjum K, Shagufta BI, Abbas SQ, Patel S, Khan I, Shah SAA, Akhter N, Hassan SSU. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review. Biomed Pharmacother 2017; 92:681-689. [PMID: 28582760 DOI: 10.1016/j.biopha.2017.05.125] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest form of heterogeneous brain cancer. It affects an enormous number of patients every year and the survival is approximately 8 to 15 months. GBM has driven by complex signaling pathways and considered as a most challenging to treat. Standard treatment of GBM includes surgery, radiation therapy, chemotherapy and also the combined treatment. This review article described inter and intra- tumor heterogeneity of GMB. In addition, recent chemotherapeutic agents, with their mechanism of action have been defined. FDA-approved drugs also been focused over here and most importantly highlighting some natural and synthetic and novel anti- glioma agents, that are the main focus of researchers nowadays.
Collapse
Affiliation(s)
- Komal Anjum
- Ocean College, Zhejiang University, Hangzhou, 310058, China
| | - Bibi Ibtesam Shagufta
- Department of Zoology, Kohat University of Science and Technology (KUST), K.P.K 26000, Pakistan
| | - Syed Qamar Abbas
- Faculty of Pharmacy, Gomal University D.I.Khan, K.P.K 29050, Pakistan
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego-92182, USA
| | - Ishrat Khan
- Ocean College, Zhejiang University, Hangzhou, 310058, China
| | | | - Najeeb Akhter
- Ocean College, Zhejiang University, Hangzhou, 310058, China
| | - Syed Shams Ul Hassan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|