1
|
Liu S, Liu W, Liu Y, Luo D, Feng J, Hou L, Cui H, Liu Y, Chen X, Zhu X, Wei L, Lv Q, Zhang Z. Repair effect of adipose-derived mesenchymal stem cell-conditioned medium on cyclophosphamide-induced ovarian injury in mice. Reprod Toxicol 2025; 135:108923. [PMID: 40254105 DOI: 10.1016/j.reprotox.2025.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
The chemotherapeutic drug cyclophosphamide (CTX) may damage the ovarian tissue of females and induce premature ovarian insufficiency (POI). This study aimed to investigate the therapeutic effect of adipose-derived mesenchymal stem cell-conditioned medium (ADSC-CM) on CTX-induced POI mice, and to provide new support for the clinical use of cell-free therapy for POI. Female mice were treated with CTX intraperitoneal injection for 2 weeks, followed by ADSCs or ADSC-CM by intravenous injection for 2 weeks. At the end of the experiment, various parameters were assessed, including ovarian interstitial fibrosis, cell proliferation, follicular count, the levels of follicle-stimulating hormone (FSH) and estradiol (E2), and the expression of gonadal hormone receptor. Additionally, we assessed the levels of oxidative stress, apoptosis, and apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) signaling pathway-related proteins and genes in ovarian tissue. The results showed that ADSCs or ADSC-CM treatment reduced ovarian interstitial fibrosis, promoted the proliferation of cells in the follicles, and increased the number of follicles and ovarian function. In addition, ADSCs and ADSC-CM also reduced the levels of ovarian oxidative stress, decreased the apoptosis of granulosa cells (GCs), and inhibited the activation of ASK1/JNK signaling pathway. In conclusion, our study confirmed that ADSC-CM, like ADSCs, could exert therapeutic effects in POI diseases, and the underlying mechanism may be related to the inhibition of oxidative stress-mediated activation of ASK1/JNK signaling pathway. This study has important implications for the development of cell-free therapies for the clinical treatment of POI diseases.
Collapse
Affiliation(s)
- Shuangjuan Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Weiqi Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Dongliu Luo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Jingwen Feng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Leyao Hou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Haotong Cui
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Yao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Xiaoguang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Xuemin Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Lan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China.
| |
Collapse
|
2
|
Chen S, Wang T, Chen J, Sui M, Wang L, Zhao X, Sun J, Lu Y. 3D bioprinting technology innovation in female reproductive system. Mater Today Bio 2025; 31:101551. [PMID: 40026632 PMCID: PMC11870202 DOI: 10.1016/j.mtbio.2025.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/15/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Several diseases affect the female reproductive system, and both disease factors and treatments impact its integrity and function. Consequently, understanding the mechanisms of disease occurrence and exploring treatment methods are key research focuses in obstetrics and gynecology. However, constructing accurate disease models requires a microenvironment closely resembling the human body, and current animal models and 2D in vitro cell models fall short in this regard. Thus, innovative in vitro female reproductive system models are urgently needed. Additionally, female reproductive system diseases often cause tissue loss, yet effective tissue repair and regeneration have long been a bottleneck in the medical field. 3D bioprinting offers a solution by enabling the construction of implants with tissue repair and regeneration capabilities, promoting cell adhesion, extension, and proliferation. This helps maintain the long-term efficacy of bioactive implants and achieves both structural and functional repair of the reproductive system. By combining live cells with biomaterials, 3D bioprinting can create in vitro 3D biomimetic cellular models, facilitating in-depth studies of cell-cell and cell-extracellular microenvironment interactions, which enhances our understanding of reproductive system diseases and supports disease-specific drug screening. This article reviews 3D bioprinting methods and materials applicable to the female reproductive system, discussing their advantages and limitations to aid in selecting optimal 3D bioprinting strategies. We also summarize and critically evaluate recent advancements in 3D bioprinting applications for tissue regeneration and in vitro disease models and address the prospects and challenges for translating 3D bioprinting technology into clinical applications within the female reproductive system.
Collapse
Affiliation(s)
- Siyao Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | | | - Jiaqi Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Mingxing Sui
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Luyao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Xueyu Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Jianqiao Sun
- Reproductive Clinical Science, Macon & Joan Brock Virginia Health Sciences, Old Dominion University, Norfolk, VA, 23507, USA
| | - Yingli Lu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| |
Collapse
|
3
|
Siyu Y, Shixiao Z, Congying S, Xinqin Z, Zhen H, Xiaoying W. Advances in cytokine-based herbal medicine against premature ovarian insufficiency: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118477. [PMID: 38909824 DOI: 10.1016/j.jep.2024.118477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Premature ovarian insufficiency (POI) refers to a dramatic decrease in the number and/or quality of oocytes in the ovaries before the age of 40 years, and is a key cause of female infertility. The prevalence of POI has been increasing annually and tends to be younger. Researches on the etiology of POI and related pathogenesis are still very limited. Herbal medicine can treat many gynecological diseases. And herbal medicine is effective in reproductive health care such as infertility. In recent years, it has been found that immune modulation by cytokines (CK) can prevent or intervene in POI, and herbal medicine can treat POI by regulating CK to improve ovarian function and fertility. AIM OF THE STUDY This review presents an overview of the molecular mechanisms of regulation of POI related CK, and reports the therapeutic effect of herbal medicine on POI including herbal medicine formulas, single herbal medicine, herbal medicine active components and acupuncture. This review provides theoretical support for clinical prevention and treatment of POI, and provides new ideas for researches on herbal medicine treatment of POI. MATERIALS AND METHODS We performed a collection of relevant scientific articles from different scientific databases regarding the therapeutic effect of herbal medicine on POI by regulating CK, including PubMed, Web of Science, Wanfang Database, CNKI and other publication resources. The search terms used in this review include, 'premature ovarian insufficiency', 'premature ovarian failure (POF)', 'infertility', 'herbal medicine', 'acupuncture', 'cytokine', 'interleukin (IL)', 'tumor necrosis factor-α (TNF-α)', 'interferon-γ (IFN-γ)', 'transforming growth factor-β (TGF-β)', 'vascular endothelial growth factor (VEGF)', 'immune' and 'inflammation'. This review summarized and analyzed the therapeutic effect of herbal medicine according to the existing experimental and clinical researches. RESULTS The results showed that herbal medicine treats POI through CK (including ILs, TNF-α, INF-γ, VEGF, TGF-β and others) and related signaling pathways, which regulates reproductive hormones disorder, reduces ovarian inflammatory damage, oxidative stress, apoptosis and follicular atresia, improves ovarian pathological damage and ovarian reserve function. CONCLUSIONS This review enriches the theory of POI treatments based on herbal medicine by regulating CK. The specific mechanisms of action and clinical researches on the treatment of POI by herbal medicine should be strengthened in order to promote the application of herbal medicine in the clinic and provide new ideas and better choices for the treatment of POI.
Collapse
Affiliation(s)
- Yuan Siyu
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhu Shixiao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sun Congying
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhong Xinqin
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hu Zhen
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wang Xiaoying
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
4
|
He J, Ao C, Li M, Deng T, Zheng S, Zhang K, Tu C, Ouyang Y, Lang R, Jiang Y, Yang Y, Li C, Wu D. Clusterin-carrying extracellular vesicles derived from human umbilical cord mesenchymal stem cells restore the ovarian function of premature ovarian failure mice through activating the PI3K/AKT pathway. Stem Cell Res Ther 2024; 15:300. [PMID: 39272156 PMCID: PMC11401318 DOI: 10.1186/s13287-024-03926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Emerging evidence has highlighted the therapeutic potential of human umbilical cord mesenchymal stem cells (UC-MSCs) in chemotherapy-induced premature ovarian failure (POF). This study was designed to investigate the appropriate timing and molecular mechanism of UC-MSCs treatment for chemotherapy-induced POF. METHODS Ovarian structure and function of mice were assessed every 3 days after injections with cyclophosphamide (CTX) and busulfan (BUS). UC-MSCs and UC-MSCs-derived extracellular vesicles (EVs) were infused into mice via the tail vein, respectively. Ovarian function was analyzed by follicle counts, the serum levels of hormones and ovarian morphology. The apoptosis and proliferation of ovarian granulosa cells were analyzed in vitro and in vivo. Label-free quantitative proteomics was used to detect the differentially expressed proteins in UC-MSC-derived EVs. RESULTS After CTX/BUS injection, we observed that the ovarian function of POF mice was significantly deteriorated on day 9 after CTX/BUS infusion. TUNEL assay indicated that the number of apoptotic cells in the ovaries of POF mice was significantly higher than that in normal mice on day 3 after CTX/BUS injection. Transplantation of UC-MSCs on day 6 after CTX/BUS injection significantly improved ovarian function, enhanced proliferation and inhibited apoptosis of ovarian granulosa cells, whereas the therapeutic effect of UC-MSCs transplantation decreased on day 9, or day 12 after CTX/BUS injection. Moreover, EVs derived from UC-MSCs exerted similar therapeutic effects on POF. UC-MSCs-derived EVs could activate the PI3K/AKT signaling pathway and reduce ovarian granulosa cell apoptosis. Quantitative proteomics analysis revealed that clusterin (CLU) was highly expressed in the EVs of UC-MSCs. The supplementation of CLU proteins prevented ovarian granulosa cells from chemotherapy-induced apoptosis. Further mechanistic analysis showed that CLU-knockdown blocked the PI3K/AKT signaling and reversed the protective effects of UC-MSCs-derived EVs. CONCLUSIONS Administration of UC-MSCs and UC-MSCs-derived EVs on day 6 of CTX/BUS injection could effectively improve the ovarian function of POF mice. UC-MSCs-derived EVs carrying CLU promoted proliferation and inhibited apoptosis of ovarian granulosa cells through activating the PI3K/AKT pathway. This study identifies a previously unrecognized molecular mechanism of UC-MSCs-mediated protective effects on POF, which pave the way for the use of cell-free therapeutic approach for POF.
Collapse
Affiliation(s)
- Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Mao Li
- College of Life Sciences, Hubei University, Wuhan, China
| | - Taoran Deng
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Zheng
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chengshu Tu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ruibo Lang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yijia Jiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yifan Yang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China.
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China.
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China.
| |
Collapse
|
5
|
He W, Huang Z, Nian C, Huang L, Kong M, Liao M, Zhang Q, Li W, Hu Y, Wu J. Discovery and evaluation of novel spiroheterocyclic protective agents via a SIRT1 upregulation mechanism in cisplatin-induced premature ovarian failure. Bioorg Med Chem 2024; 110:117834. [PMID: 39029436 DOI: 10.1016/j.bmc.2024.117834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Currently, no effective treatment exists for premature ovarian failure (POF). To obtain compounds with protective effects against POF, we aimed to design and synthesize a series of spiroheterocyclic protective agents with a focus on minimizing toxicity while enhancing their protective effect against cisplatin-induced POF. This was achieved through systematic modifications of Michael receptors and linkers within the molecular structure of 1,5-diphenylpenta-1,4-dien-3-one analogs. To assess the cytotoxicity and activity of these compounds, we constructed quantitative conformational relationship models using an artificial intelligence random forest algorithm, resulting in R2 values exceeding 0.87. Among these compounds, j2 exhibited optimal protective activity. It significantly increased the survival of cisplatin-injured ovarian granulosa KGN cells, improved post-injury cell morphology, reduced apoptosis, and enhanced cellular estradiol (E2) levels. Subsequent investigations revealed that j2 may exert its protective effect via a novel mechanism involving the activation of the SIRT1/AKT signal pathway. Furthermore, in cisplatin-injured POF in rats, j2 was effective in increasing body, ovarian, and uterine weights, elevating the number of follicles at all levels in the ovary, improving ovarian and uterine structures, and increasing serum E2 levels in rats with cisplatin-injured POF. In conclusion, this study introduces a promising compound j2 and a novel target SIRT1 with substantial protective activity against cisplatin-induced POF.
Collapse
Affiliation(s)
- Wenfei He
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China.
| | - Zhicheng Huang
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei 436000, China
| | - Chunhui Nian
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Luoqi Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Miaomiao Kong
- The 1th Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengqin Liao
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Qiong Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wulan Li
- The 1th Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yue Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Jianzhang Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, China; The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University; Wenzhou 325027, China.
| |
Collapse
|
6
|
Cheng F, Wang J, Wang R, Pan R, Cui Z, Wang L, Wang L, Yang X. FGF2 promotes the proliferation of injured granulosa cells in premature ovarian failure via Hippo-YAP signaling pathway. Mol Cell Endocrinol 2024; 589:112248. [PMID: 38663484 DOI: 10.1016/j.mce.2024.112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Young women undergoing anticancer treatment are at risk of premature ovarian failure (POF). Endometrial-derived stem cells (EnSCs) have demonstrated significant therapeutic potential for treating ovarian insufficiency, although the underlying mechanisms remain to be fully understood. This study aims to further investigate the therapeutic effects of EnSCs, particularly through the paracrine action of fibroblast growth factor 2 (FGF2), on POF. The findings show that exogenous FGF2 enhances the survival of ovarian granulosa cells damaged by cisplatin. FGF2 stimulates the proliferation of these damaged cells by suppressing the Hippo signaling pathway and activating YAP expression. In vivo experiments also revealed that FGF2 treatment significantly improves ovarian reserve and endocrine function in mice with POF. These results suggest that FGF2 can boost the proliferative capacity of damaged ovarian granulosa cells through the Hippo-YAP signaling pathway, providing a theoretical foundation for using EnSCs and FGF2 in clinical treatments for POF.
Collapse
Affiliation(s)
- Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jingyuan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Rumeng Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
7
|
Cai J, Liang X, Sun Y, Bao S. Beneficial effects of human umbilical cord mesenchymal stem cell (HUCMSC) transplantation on cyclophosphamide (CTX)-induced premature ovarian failure (POF) in Tibetan miniature pigs. Transpl Immunol 2024; 84:102051. [PMID: 38744348 DOI: 10.1016/j.trim.2024.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Premature ovarian failure (POF), also known as primary ovarian insufficiency, is a common endocrine disease in young women. The emergence of regenerative medicine using stem cells may improve ovarian function and structure, and represents a promising prospect for POF treatment. In his study, we explored the therapeutic effects of human umbilical cord mesenchymal stem cell (HUCMSC) transplantation in a Tibetan miniature pig model of cyclophosphamide (CTX)-induced POF. METHODS We cultured and identified HUCMSCs, labeled them with DiR iodide red dye, and implanted them into a CTX-induced model of POF in Tibetan miniature pigs. The daily weight changes were recorded, and the levels of estradiol (E2) and follicle-stimulating hormone (FSH) were measured on days 0, 7, and 14. At the end of the 21-day observation period, in vivo imaging of the bilateral ovaries was performed, and the ovarian index was measured. Ovarian tissue morphology and follicles were examined by hematoxylin-eosin staining. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay was employed to assess cell apoptosis, and immunohistochemistry was used to determine the levels of p-AKT, p-ERK1/2, BAX, and BCL2 expression. RESULTS Our analysis indicated successful delivery of HUCMSCs to the ovaries of the POF pig model. Significant increases were observed in body weight, E2 levels, ovarian index, and number of normal follicles (all p < 0.05). Moreover, FSH levels reduced and ovarian tissue morphology improved following HUCMSCs transplantation (all p < 0.05). Importantly, upregulated p-AKT, p-ERK1/2, and BCL2 expression were observed, whereas the expression of BAX was suppressed (all p < 0.05), suggesting the inhibition of ovarian cell apoptosis. CONCLUSION Our study highlights the significant therapeutic effects of HUCMSC transplantation on CTX-induced POF in a Tibetan miniature pig model.
Collapse
Affiliation(s)
- Junhong Cai
- Medical Laboratory Central, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China
| | - Xiaochen Liang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571199, PR China; Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Haikou, Hainan 571199, PR China
| | - Yuting Sun
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 571199, PR China; Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Haikou, Hainan 571199, PR China
| | - Shan Bao
- Department of Gynaecology and Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China.
| |
Collapse
|
8
|
Wang L, Wang L, Wang R, Xu T, Wang J, Cui Z, Cheng F, Wang W, Yang X. Endometrial stem cell-derived exosomes repair cisplatin-induced premature ovarian failure via Hippo signaling pathway. Heliyon 2024; 10:e31639. [PMID: 38831834 PMCID: PMC11145543 DOI: 10.1016/j.heliyon.2024.e31639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Stem cells have been documented as a new therapeutic method for ovarian injuries such as premature ovarian failure (POF). However, effects of exosomes (Exos) derived from human endometrial stem cells (EnSCs) on diminished ovarian failure remain to be carefully elucidated. Our study aims to investigate the mechanisms of EnSC-Exos in the recovery of the cisplatin-induced granulosa cell injury model in vitro or POF mouses model in vivo and whether the Hippo signaling pathway is involved in the regulation. In this study, we established successful construction of the cisplatin-induced granulosa cell injury model and evaluated Hippo signaling pathway activation in cisplatin-damaged granulosa cells (GCs). Furthermore, laser scanning confocal microscope and immunofluorescence demonstrated that EnSC-Exos can be transferred to cisplatin-damaged GCs to decrease apoptosis. In addition, the enhanced expression of YAP at the protein level as well as YAP/TEAD target genes, such as CTGF, ANKRD1, and the increase of YAP into the nucleus in immunofluorescence staining after the addition of EnSC-Exos to cisplatin-damaged GCs confirmed the suppression of Hippo signaling pathway. While in vivo, EnSC-Exos successfully remedied POF in a mouse model. Collectively, our findings suggest that chemotherapy-induced POF was associated with the activating of Hippo signaling pathway. Human EnSC-Exos significantly elevated the proliferation of ovarian GCs and the ovarian function by regulating Hippo signaling pathway. These findings provide new insights for further understanding of EnSC-Exos in the recovery of ovary function.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
- Department of Obstetrics and Gynecology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Ting Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Jingyuan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| |
Collapse
|
9
|
Zha Y, Li Y, Lyu W. Research progress on the prevention and treatment of chemotherapy-induced ovarian damage. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:288-296. [PMID: 38742393 PMCID: PMC11348697 DOI: 10.3724/zdxbyxb-2023-0495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Chemotherapy is a main treatment option for malignant tumors, but it may cause various adverse effects, including dysfunction of female endocrine system and fertility. Chemotherapy-induced ovarian damage has been concerned with ovarian preservation but also the prevention and treatment of ovarian dysfunction. In this article, the mechanisms of ovarian injury caused by chemotherapy, including apoptosis of the follicle and supporting cells, follicle "burn out", ovarian stromal and microvascular damage; and influencing factors, including age at diagnosis, initial low pre-treatment anti-Müllerian hormone levels, toxicity, dose and regimen of chemotherapy drugs are reviewed based on the latest research results and clinical practice. The article also discusses measures and frontier therapies for the prevention and treatment of ovarian injury, including the application of gonadotropin releasing hormone agonists or antagonists, tyrosine kinase inhibitors, antioxidants, sphingosine-1-phosphate, ceramide-1-phosphate, mammalian target of rapamycin inhibitors, granulocyte-colony stimulating factor, stem cell therapy and artificial ovaries.
Collapse
Affiliation(s)
- Yuxin Zha
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Yang Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006, China
| | - Weiguo Lyu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006, China.
- Zhejiang Provincial Key Laboratory of Women's Reproductive Health, Hangzhou 310006, China.
| |
Collapse
|
10
|
Dang L, Dong Y, Zhang C, Su B, Ning N, Zhou S, Zhang M, Huang Q, Li Y, Wang S. Zishen Yutai pills restore fertility in premature ovarian failure through regulating arachidonic acid metabolism and the ATK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117782. [PMID: 38272104 DOI: 10.1016/j.jep.2024.117782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Zishen Yutai pills (ZYP), a Chinese medicinal formulation derived from the Qing Dynasty prescription "Shou Tai pills", have been documented to exhibit beneficial effects in clinical observations treating premature ovarian failure (POF). However, the anti-POF effects and its comprehensive systemic mechanism have not yet been clarified. AIM OF THE REVIEW Therapeutic effects and systemic mechanism of ZYP in POF were evaluated. MATERIALS AND METHODS After pulverization, sieving, and stirring, ZYP was administered intragastrically to cisplatin-induced POF mice at a dose of 1.95 mg/kg/d for 14 days. The anti-POF effects of ZYP were investigated by assessing the number of ovarian follicles at different developmental stages, as well as measuring serum estradiol (E2) levels and ovarian-expressed anti-Müllerian hormone (AMH). Reproductive performance and offspring health were evaluated to predict fertility restoration. Furthermore, a combination of proteomic and metabolomic profiling was employed to elucidate the underlying molecular mechanism of ZYP in treating POF. Western blot (WB) analyses and real-time quantitative polymerase chain reaction (RT-qPCR) were conducted to explore the mechanisms through which ZYP exerted its anti-POF effects. RESULTS We have demonstrated that oral administration of ZYP reversed the reduction in follicles at different developmental stages and stimulated the expressions of serum E2 and ovarian-expressed AMH in a cisplatin-induced POF model. Additionally, ZYP ameliorated follicle apoptosis in ovaries affected by cisplatin-induced POF. Furthermore, treatment with ZYP restored the quantity and quality of oocytes, as well as enhanced fertility. Our results revealed 62 differentially expressed proteins (DEPs) through proteomic analyses and identified 26 differentially expressed metabolites (DEMs) through metabolomic analyses. Both DEPs and DEMs were highly enriched in the arachidonic acid (AA) metabolism pathway. ZYP treatment effectively upregulated the protein and mRNA expression of critical targets in AA metabolism and the AKT pathway, including CYP17α1, HSD3β1, LHR, STAR, and AKT, in cisplatin-induced POF mice. CONCLUSIONS These results indicated that ZYP exerted protective effects against POF and restored fertility from cisplatin-induced apoptosis. ZYP could be a satisfying alternative treating POF.
Collapse
Affiliation(s)
- Lei Dang
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, China; Postdoctoral Research Center of Guangzhou Pharmaceutical Holdings Ltd., Guangzhou, China
| | - Yingying Dong
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunbo Zhang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, China; Postdoctoral Research Center of Guangzhou Pharmaceutical Holdings Ltd., Guangzhou, China
| | - Biru Su
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, China
| | - Su Zhou
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Minli Zhang
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiuling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong, China
| | - Yan Li
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Barrenetxea G, Celis R, Barrenetxea J, Martínez E, De Las Heras M, Gómez O, Aguirre O. Intraovarian platelet-rich plasma injection and IVF outcomes in patients with poor ovarian response: a double-blind randomized controlled trial. Hum Reprod 2024; 39:760-769. [PMID: 38423539 DOI: 10.1093/humrep/deae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
STUDY QUESTION Does platelet-rich plasma (PRP) intraovarian injection increase the number of retrieved oocytes in successive ovarian punctions among patients with poor ovarian reserve (POR)? SUMMARY ANSWER The injection of PRP increases the number of retrieved oocytes without increasing the quality of developed blastocysts. WHAT IS KNOWN ALREADY Management of women with reduced ovarian response to stimulation is one of the significant challenges in reproductive medicine. Recently, PRP treatment has been proposed as an adjunct in assisted reproduction technology, with controversial results. STUDY DESIGN, SIZE, DURATION This placebo-controlled, double-blind, randomized trial included 60 patients with POR stratified according to the POSEIDON classification groups 3 and 4. It was conducted to explore the efficacy and safety of intraovarian PRP injection. Patients were proposed to undergo three consecutive ovarian stimulations to accumulate oocytes and were randomized to receive either PRP or placebo during their first oocyte retrieval. Randomization was performed using computer-generated randomization codes. Double blinding was ensured so that neither the participant nor the investigators knew of the treatment allotted. All patients underwent three ovarian stimulations and egg retrieval procedures. ICSI was performed after a third ovarian puncture. The primary endpoint was the number of mature oocytes retrieved after PRP or placebo injection in successive ovarian punctures. PARTICIPANTS/MATERIALS, SETTING, METHODS Sixty women (30-42 years) fulfilling inclusion criteria were randomized in equal proportions to the treatment or control groups. MAIN RESULTS AND THE ROLE OF CHANCE The baseline demographic and clinical characteristics [age, BMI, anti-Müllerian hormone (AMH) levels] were comparable between the groups. Regarding the primary endpoint, the cumulative number (mean ± SEM) of retrieved mature oocytes was slightly higher in the treatment group: 10.45 ± 0.41 versus 8.91 ± 0.39 in the control group, respectively (95% CI of the difference 0.42-2.66; P = 0,008). The number of mature oocytes obtained among all patients increased in successive egg retrievals: 2.61 ± 0.33 (mean ± SEM) in punction 1 (P1), 3.85 ± 0.42 in P2, and 4.73 ± 0.44 in P3. However, the increase was higher among patients receiving the assessed PRP treatment. In P2, the number of retrieved mature oocytes was 4.18 ± 0.58 versus 3.27 ± 0.61 in controls (95% CI of the difference: -0.30 to 2.12; P = 0.138) and in P3, 5.27 ± 0.73 versus 4.15 ± 0.45 (95% CI of the difference: 0.12-2.12; P = 0.029). The mean ± SEM number of developed and biopsied blastocysts was 2.43 ± 0.60 in the control group and 1.90 ± 0.32 in the treatment group, respectively (P = 0.449). The mean number of euploid blastocysts was 0.81 ± 0.24 and 0.81 ± 0.25 in the control and treatment groups, respectively (P = 1.000). The percentages of patients with euploid blastocysts were 53.33% (16 out of 30) and 43.33% (13 out of 30) for patients in the control and treatment groups, respectively (Fisher's exact test P = 0.606). The overall pregnancy rate per ITT was 43% (26 out of 60 patients). However, the percentage of clinical pregnancies was higher in the control group (18 out of 30, 60%) than in the treatment group (8 out of 30, 27%) (P = 0.018). There was also a trend toward poorer outcomes in the treatment group when considering full-term pregnancies (P = 0.170). There were no differences between control and treatment groups regarding type of delivery, and sex of newborns. LIMITATIONS, REASONS FOR CAUTION The mechanism of the potential beneficial effect of PRP injection on the number of retrieved oocytes is unknown. Either delivered platelet factors or a mechanical effect could be implicated. Further studies will be needed to confirm or refute the data presented in this trial and to specify the exact mechanism of action, if any, of PRP preparations. WIDER IMPLICATIONS OF THE FINDINGS The increasing number of women with a poor response to ovarian stimulation supports the exploration of new areas of research to know the potential benefits of therapies capable of increasing the number of oocytes available for fertilization and improving the quality of developed blastocysts. An increase in the retrieved oocytes in both arms of the trial suggests that, beyond the release of growth factor from platelets, a mechanical effect can play a role. However, neither improvement in euploid blastocyst development nor pregnancy rates have been demonstrated. STUDY FUNDING/COMPETING INTEREST(S) This trial was supported by Basque Government and included in HAZITEK program, framed in the new Euskadi 2030 Science and Technology Plan (PCTI 2030). These aids are co-financed by the European Regional Development Fund (FEDER). The study funders had no role in the study design, implementation, analysis, manuscript preparation, or decision to submit this article for publication. No competing interests are declared by all the authors. TRIAL REGISTRATION NUMBER Clinical Trial Number EudraCT 2020-000247-32. TRIAL REGISTRATION DATE 3 November 2020. DATE OF FIRST PATIENT’S ENROLLMENT 16 January 2021.
Collapse
Affiliation(s)
- G Barrenetxea
- Reproducción Bilbao Assisted Reproduction Center, Bilbao, Spain
- Departamento de Especialidades Médico-Quirúrgicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
| | - R Celis
- Reproducción Bilbao Assisted Reproduction Center, Bilbao, Spain
| | - J Barrenetxea
- Reproducción Bilbao Assisted Reproduction Center, Bilbao, Spain
- Osakidetza/Servicio Vasco de Salud, Hospital de Urduliz Alfredo Espinosa, Urduliz, Spain
| | - E Martínez
- Reproducción Bilbao Assisted Reproduction Center, Bilbao, Spain
| | - M De Las Heras
- Reproducción Bilbao Assisted Reproduction Center, Bilbao, Spain
| | - O Gómez
- Reproducción Bilbao Assisted Reproduction Center, Bilbao, Spain
| | - O Aguirre
- Reproducción Bilbao Assisted Reproduction Center, Bilbao, Spain
| |
Collapse
|
12
|
Hu L, Tan R, He Y, Wang H, Pu D, Wu J. Stem cell therapy for premature ovarian insufficiency: a systematic review and meta-analysis of animal and clinical studies. Arch Gynecol Obstet 2024; 309:457-467. [PMID: 37264272 DOI: 10.1007/s00404-023-07062-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
PURPOSE The aim of this systematic review and meta-analysis is to evaluate the efficacy of stem cell therapy in mouse models of POI and patients with POI. METHODS The PubMed, Web of Science, and Embase databases were searched from inception to February 2022 for relevant animal and clinical studies. The reference lists of the included reviews were manually searched to identify additional eligible studies. Data were independently extracted by two investigators, and disagreements were resolved by discussion. SYRCLE's risk of bias tool and the MINORS tool were used to assess the quality of animal and clinical studies by two independent investigators. All statistical analyses were conducted using Review Manager 5.3 software. RESULTS A total of twenty animal studies and six clinical studies were included in this meta-analysis. In animal studies, the results showed that stem cells could improve hormone levels, follicle count, estrous cycle and pregnancy outcome. For hormone levels, stem cells increased serum E2 and AMH levels and decreased serum FSH and LH levels compared with the control group (serum E2 level: SMD: 5.05, 95% CI 4.21-5.90, P < 0.00001; serum AMH level: SMD: 4.42, 95% CI 3.06-5.79, P < 0.00001; serum FSH level: SMD: - 3.79, 95% CI - 4.87 to - 2.70, P < 0.00001; serum LH level: SMD: - 1.31, 95% CI - 1.65 to - 0.96, P < 0.00001). All follicle counts, except for the antral follicle count, were significantly changed compared with the control group. (primordial follicle count: SMD: 4.61, 95% CI 3.65-5.56, P < 0.00001; primary follicle count: SMD: 3.35, 95% CI 1.08-5.63, P = 0.004; secondary follicle count: SMD: 3.23, 95% CI 1.92-4.55, P < 0.00001; total follicle count: SMD: 4.84, 95% CI 2.86-6.83, P < 0.00001; oocyte count: SMD: 7.56, 95% CI 5.92-9.20, P < 0.00001; atretic follicle count: SMD: - 1.79, 95% CI - 2.59 to - 1.00, P < 0.00001). For the estrous cycle, stem cell therapy increased the number of estrous cycles (WMD: 2.72, 95% CI 2.07-3.37, P < 0.00001) and decreased the duration of the estrous cycle (WMD: - 1.26, 95% CI - 1.84 to - 0.69, P < 0.0001) compared with the control group. For pregnancy outcomes, stem cell therapy increased the fertility rate (RR: 3.00, 95% CI 1.74-5.17, P < 0.0001) and litter size (WMD: 3.82, 95% CI 0.36-7.28, P = 0.03) compared with the control group. In animal studies, the asymmetric funnel plot of serum E2 and FSH levels indicated the possibility of publication bias. Unpublished and negative studies may be the source of publication bias. In clinical studies, the results showed that stem cell therapy could decrease serum FSH level (MD: - 30.32, 95% CI - 59.03 to - 1.01, P = 0.04) and increase AFC (MD: 1.07, 95% CI 0.70-1.43, P < 0.00001), pregnancy rate (RD: 0.19, 95% CI 0.04-0.34, P = 0.01) and live birth rate (RD: 0.19, 95% CI 0.07-0.31, P = 0.001) in POI patients. In addition, there was no significant difference in menstrual function regained (RD: 0.22, 95% CI - 0.03-0.46, P = 0.09), oocytes retrieved (MD: 1.00, 95% CI - 0.64-2.64, P = 0.23) and embryos (MD: 0.80, 95% CI - 0.15-1.76, P = 0.10) between different groups. CONCLUSION This meta-analysis suggested that stem cell therapy might be effective in POI mouse models and patients and could be considered a potential treatment to restore fertility capability in POI patients.
Collapse
Affiliation(s)
- Luanqian Hu
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rongrong Tan
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuheng He
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiyuan Wang
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danhua Pu
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jie Wu
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Hu HQ, Xin XY, Zhu YT, Fan RW, Zhang HL, Ye Y, Li D. Application of mesenchymal stem cell therapy for premature ovarian insufficiency: Recent advances from mechanisms to therapeutics. World J Stem Cells 2024; 16:1-6. [PMID: 38292439 PMCID: PMC10824040 DOI: 10.4252/wjsc.v16.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
The incidence of premature ovarian insufficiency (POI) is increasing worldwide, particularly among younger women, posing a significant challenge to fertility. In addition to menopausal symptoms, POI leads to several complications that profoundly affect female reproductive function and overall health. Unfortunately, current clinical treatment strategies for this condition are limited and often yield unsatisfactory outcomes. These approaches typically involve hormone replacement therapy combined with psychological support. Recently, mesenchymal stem cell (MSC) therapies for POI have garnered considerable attention in global research. MSCs can restore ovarian reproductive and endocrine functions through diverse mechanisms, including controlling differentiation, promoting angiogenesis, regulating ovarian fibrosis, inhibiting apoptosis, enhancing autocrine and paracrine effects, suppressing inflammation, modulating the immune system, and genetic regulation. This editorial offers a succinct summary of the application of MSC therapy in the context of POI, providing evidence for groundbreaking medical approaches that have potential to enhance reproductive health and overall well-being for women.
Collapse
Affiliation(s)
- Hang-Qi Hu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xi-Yan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yu-Tian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Rui-Wen Fan
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Hao-Lin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
14
|
Sadeghi S, Mosaffa N, Huang B, Ramezani Tehrani F. Protective role of stem cells in POI: Current status and mechanism of action, a review article. Heliyon 2024; 10:e23271. [PMID: 38169739 PMCID: PMC10758796 DOI: 10.1016/j.heliyon.2023.e23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Premature ovarian insufficiency (POI) has far-reaching consequences on women's life quality. Due to the lack of full recognition of the etiology and complexity of this disease, there is no appropriate treatment for infected patients. Recently, stem cell therapy has attracted the attention of regenerative medicine scholars and offered promising outcomes for POI patients. Several kinds of stem cells, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) have been used for the treatment of ovarian diseases. However, their potential protective mechanisms are still unknown. Undoubtedly, a better understanding of the therapeutic molecular and cellular mechanisms of stem cells will address uncover strategies to increase their clinical application for multiple disorders such as POI. This paper describes a detailed account of the potential properties of different types of stem cells and provides a comprehensive review of their protective mechanisms, particularly MSC, in POI disorder. In addition, ongoing challenges and several strategies to improve the efficacy of MSC in clinical use are addressed. Therefore, this review will provide proof-of-concept for further clinical application of stem cells in POI.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Foundation for Research & Education Excellence, AL, USA
| |
Collapse
|
15
|
Ren Y, He J, Wang X, Liang H, Ma Y. Exosomes from adipose-derived stem cells alleviate premature ovarian failure via blockage of autophagy and AMPK/mTOR pathway. PeerJ 2023; 11:e16517. [PMID: 38107591 PMCID: PMC10725676 DOI: 10.7717/peerj.16517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023] Open
Abstract
Objective The objective of this study was to investigate the effects and mechanisms of adipose-derived stem cell-derived exosome (ADSCs-Exo) in treating premature ovarian failure (POF). Methods We constructed a POF mouse model through intraperitoneal injection of cyclophosphamide, followed by the administration of the autophagy inhibitor 3-methyladenine (3-MA). Pathological injury, follicle stimulating hormone (FSH), malondialdehyde (MDA), reactive oxygen species (ROS), estradiol (E2), superoxide dismutase (SOD), granulosa cell (GC) apoptosis, and autophagy were assessed. Exosomes isolated from ADSCs were used to treat POF in mice. The AMPK-mTOR pathway and its proteins (p-AMPK and p-mTOR) were evaluated. A POF cell model was established using cyclophosphamide-treated human ovarian granulosa-like tumor (KGN) cells. We administered ADSCs-Exo and rapamycin to validate the mechanism of ADSCs-Exo against POF. Results In POF mice, 3-MA treatment attenuated pathological injuries, decreased FSH, MDA, and ROS levels, and increased E2 and SOD levels. 3-MA treatment also inhibited GC apoptosis and autophagy. ADSCs-Exo alleviated pathological injuries, improved ovarian morphology and function, and reduced oxidative stress in POF mice. ADSCs-Exo inhibited GC apoptosis and autophagy. ADSCs-Exo downregulated the expression of AMPK/mTOR pathway proteins (p-AMPK and p-mTOR). In the POF cell model, ADSCs-Exo and rapamycin inhibited AMPK/mTOR-mediated autophagy. Conclusion ADSCs-Exo inhibits POF through the inhibition of autophagy and the AMPK/mTOR pathway. This study provides a potential target for the clinical treatment of POF.
Collapse
Affiliation(s)
- Yu Ren
- Department of Scientific Research, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jinying He
- Reproductive Medicine Centre, Inner Mongolia People’s Hospital, Hohhot, China
| | - Xiao Wang
- Endoscopy Center, Inner Mongolia People’s Hospital, Hohhot, China
| | - Hongyu Liang
- Department of Scientific Research, Inner Mongolia People’s Hospital, Hohhot, China
| | - Yuzhen Ma
- Reproductive Medicine Centre, Inner Mongolia People’s Hospital, Hohhot, China
| |
Collapse
|
16
|
Zhang S, Yahaya BH, Pan Y, Liu Y, Lin J. Menstrual blood-derived endometrial stem cell, a unique and promising alternative in the stem cell-based therapy for chemotherapy-induced premature ovarian insufficiency. Stem Cell Res Ther 2023; 14:327. [PMID: 37957675 PMCID: PMC10644549 DOI: 10.1186/s13287-023-03551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chemotherapy can cause ovarian dysfunction and infertility since the ovary is extremely sensitive to chemotherapeutic drugs. Apart from the indispensable role of the ovary in the overall hormonal milieu, ovarian dysfunction also affects many other organ systems and functions including sexuality, bones, the cardiovascular system, and neurocognitive function. Although conventional hormone replacement therapy can partly relieve the adverse symptoms of premature ovarian insufficiency (POI), the treatment cannot fundamentally prevent deterioration of POI. Therefore, effective treatments to improve chemotherapy-induced POI are urgently needed, especially for patients desiring fertility preservation. Recently, mesenchymal stem cell (MSC)-based therapies have resulted in promising improvements in chemotherapy-induced ovary dysfunction by enhancing the anti-apoptotic capacity of ovarian cells, preventing ovarian follicular atresia, promoting angiogenesis and improving injured ovarian structure and the pregnancy rate. These improvements are mainly attributed to MSC-derived biological factors, functional RNAs, and even mitochondria, which are directly secreted or indirectly translocated with extracellular vesicles (microvesicles and exosomes) to repair ovarian dysfunction. Additionally, as a novel source of MSCs, menstrual blood-derived endometrial stem cells (MenSCs) have exhibited promising therapeutic effects in various diseases due to their comprehensive advantages, such as periodic and non-invasive sample collection, abundant sources, regular donation and autologous transplantation. Therefore, this review summarizes the efficacy of MSCs transplantation in improving chemotherapy-induced POI and analyzes the underlying mechanism, and further discusses the benefit and existing challenges in promoting the clinical application of MenSCs in chemotherapy-induced POI.
Collapse
Affiliation(s)
- Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, , China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| |
Collapse
|
17
|
Un B, Cetinkaya-Un B, Akpolat M, Andic F, Yazir Y. The effects of human amnion membrane-derived mesenchymal stem cells conditioned medium on ionizing radiation-induced premature ovarian failure and endoplasmic reticulum stress-related apoptosis mechanism. Eur J Obstet Gynecol Reprod Biol 2023; 288:191-197. [PMID: 37566962 DOI: 10.1016/j.ejogrb.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/07/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
OBJECTIVES Premature ovarian failure (POF) is defined as the cessation of menstrual periods for at least 4-6 months before the age of 40 years, accompanied by FSH values measuring over 40 IU/L for a month. Radiation therapy, one of the cancer treatment methods, is known to accelerate ovarian aging by reducing and eliminating the number of primordial follicles in the ovarian follicle pool. Ionizing radiation has been reported to cause POF. The objective of this study is to investigate the impact of mesenchymal stem cell conditioned medium (hAMSCs-CM), which is isolated from the amniotic membrane of human placenta, on premature ovarian failure (POF) caused by whole-body irradiation. The study will focus on the ER stress and apoptosis mechanisms in the process. STUDY DISAYN A POF model was created by exposing rats to 7 Gy of whole-body irradiation. Serum-free hAMSCs-CM were then administered via the tail vein. Follicle count was performed on the ovaries, and immunohistochemistry was used to determine the expressions of GRP78, CHOP, IRE-1, caspase-12, caspase-9, caspase-3. TUNEL was also carried out, and levels of serum FSH, LH, E2, AMH, and oxidative stress marker 8-OHdG were measured. RESULTS AND CONCLUSION The application of hAMSCs-CM has been found to have a positive impact on follicles affected by radiation. After treatment, the number of primordial, primary, secondary, and graafian follicles, which had previously decreased due to radiation, showed an increase. Furthermore, the number of atretic follicles, which had been increasing due to radiation, showed a decrease. ER is one of the targets affected by ionizing radiation. After ionizing radiation, the expressions of ER stress-related markers and apoptosis markers increased in the ovary. After hAMSCs-CM administration, the expressions of these markers and number of TUNEL-positive cells decreased. Following irradiation, anti-mullerian hormone (AMH) and estradiol (E2) levels decreased, while follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels increased. After administration of hAMSCs-CM, AMH and E2 levels increased, while FSH and LH levels decreased. Amnion membrane-derived mesenchymal stem cell conditioned medium can play a therapeutic role in ionizing radiation-induced premature ovarian failure by reducing endoplasmic reticulum stress and apoptosis.
Collapse
Affiliation(s)
- Burak Un
- Department of Obstetrics and Gynecology, Adana City Training and Research Hospital, 01370 Adana, Turkey; Department of Histology and Embryology, Medicine Faculty, Zonguldak Bulent Ecevit University, 67600 Zonguldak, Turkey.
| | - Busra Cetinkaya-Un
- IVF Unit, Adana City Training and Research Hospital, 01370 Adana, Turkey; Department of Histology and Embryology, Medicine Faculty, Zonguldak Bulent Ecevit University, 67600 Zonguldak, Turkey.
| | - Meryem Akpolat
- Department of Histology and Embryology, Medicine Faculty, Zonguldak Bulent Ecevit University, 67600 Zonguldak, Turkey.
| | - Fundagul Andic
- Department of Radiation Oncology, Medicine Faculty, Cukurova University, 01380 Adana, Turkey.
| | - Yusufhan Yazir
- Department of Histology and Embryology, Medicine Faculty, Kocaeli University, 41001 Kocaeli, Turkey.
| |
Collapse
|
18
|
Lopez J, Hohensee G, Liang J, Sela M, Johnson J, Kallen AN. The Aging Ovary and the Tales Learned Since Fetal Development. Sex Dev 2023; 17:156-168. [PMID: 37598664 PMCID: PMC10841896 DOI: 10.1159/000532072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND While the term "aging" implies a process typically associated with later life, the consequences of ovarian aging are evident by the time a woman reaches her forties, and sometimes earlier. This is due to a gradual decline in the quantity and quality of oocytes which occurs over a woman's reproductive lifespan. Indeed, the reproductive potential of the ovary is established even before birth, as the proper formation and assembly of the ovarian germ cell population during fetal life determines the lifetime endowment of oocytes and follicles. In the ovary, sophisticated molecular processes have been identified that regulate the timing of ovarian aging and these are critical to ensuring follicular maintenance. SUMMARY The mechanisms thought to contribute to overall aging have been summarized under the term the "hallmarks of aging" and include such processes as DNA damage, mitochondrial dysfunction, telomere attrition, genomic instability, and stem cell exhaustion, among others. Similarly, in the ovary, molecular processes have been identified that regulate the timing of ovarian aging and these are critical to ensuring follicular maintenance. In this review, we outline critical processes involved in ovarian aging, highlight major achievements for treatment of ovarian aging, and discuss ongoing questions and areas of debate. KEY MESSAGES Ovarian aging is recognized as what may be a complex process in which age, genetics, environment, and many other factors contribute to the size and depletion of the follicle pool. The putative hallmarks of reproductive aging outlined herein include a diversity of plausible processes contributing to the depletion of the ovarian reserve. More research is needed to clarify if and to what extent these putative regulators do in fact govern follicle and oocyte behavior, and how these signals might be integrated in order to control the overall pattern of ovarian aging.
Collapse
Affiliation(s)
- Jesus Lopez
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Gabe Hohensee
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Jing Liang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Meirav Sela
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Joshua Johnson
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA
| | - Amanda N. Kallen
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
19
|
Cavalcante MB, Sampaio OGM, Câmara FEA, Schneider A, de Ávila BM, Prosczek J, Masternak MM, Campos AR. Ovarian aging in humans: potential strategies for extending reproductive lifespan. GeroScience 2023; 45:2121-2133. [PMID: 36913129 PMCID: PMC10651588 DOI: 10.1007/s11357-023-00768-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
Ovarian reserve is a term used to estimate the total number of immature follicles present in the ovaries. Between birth and menopause, there is a progressive decrease in the number of ovarian follicles. Ovarian aging is a continuous physiological phenomenon, with menopause being the clinical mark of the end of ovarian function. Genetics, measured as family history for age at the onset of menopause, is the main determinant. However, physical activity, diet, and lifestyle are important factors that can influence the age of menopause. The low estrogen levels after natural or premature menopause increased the risk for several diseases, resulting in increased mortality risk. Besides that, the decreasing ovarian reserve is associated to reduced fertility. In women with infertility undergoing in vitro fertilization, reduced markers of ovarian reserve, including antral follicular count and anti-Mullerian hormone, are the main indicators of reduced chances of becoming pregnant. Therefore, it becomes clear that the ovarian reserve has a central role in women's life, affecting fertility early in life and overall health later in life. Based on this, the ideal strategy for delaying ovarian aging should have the following characteristics: (1) be initiated in the presence of good ovarian reserve; (2) maintained for a long period; (3) have an action on the dynamics of primordial follicles, controlling the rate of activation and atresia; and (4) safe use in pre-conception, pregnancy, and lactation. In this review, we therefore discuss some of these strategies and its feasibility for preventing a decline in the ovarian reserve.
Collapse
Affiliation(s)
- Marcelo Borges Cavalcante
- Postgraduate Program in Medical Sciences, University of Fortaleza (UNIFOR), Fortaleza, CE, 60.811-905, Brazil.
| | - Olga Goiana Martins Sampaio
- Postgraduate Program in Medical Sciences, University of Fortaleza (UNIFOR), Fortaleza, CE, 60.811-905, Brazil
| | | | - Augusto Schneider
- Nutrition College, Federal University of Pelotas (UFPel), Pelotas, RS, 96010-610, Brazil
| | | | - Juliane Prosczek
- Nutrition College, Federal University of Pelotas (UFPel), Pelotas, RS, 96010-610, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Adriana Rolim Campos
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
20
|
Hu YY, Zhong RH, Guo XJ, Li GT, Zhou JY, Yang WJ, Ren BT, Zhu Y. Jinfeng pills ameliorate premature ovarian insufficiency induced by cyclophosphamide in rats and correlate to modulating IL-17A/IL-6 axis and MEK/ERK signals. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116242. [PMID: 36775079 DOI: 10.1016/j.jep.2023.116242] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinfeng Pill (JFP) is a classical Chinese medicine formula and composed of 9 herbs, including Epimedium brevicornu Maxim (Yinyanghuo), Cervus elaphus Linnaeus (Lurong), Panax ginseng C.A.Mey. (Renshen), Equus asinus (EJiao), Ligustrum lucidum W.T.Aiton (Nvzhenzi), Reynoutria multiflora (Thunb.) Moldenke (Heshouwu), Curculigo orchioides Gaertn (Xianmao), Neolitsea cassia (L.) Kosterm. (Rougui) and Leonurus japonicus Houtt. (Yimucao). The formula is clinically used to regulate menstrual cycle and alleviate polycystic ovarian syndrome due to its capabilities of ovulation induction. It is therefore presumed that JFP could be used for the therapy of premature ovarian insufficiency (POI) but the assumed efficacy has not been fully substantiated in experiment. AIM OF STUDY To evaluate the effectiveness of JFP on cyclophosphamide (CTX)-induced POI and preliminarily explore its potential mechanisms of action. MATERIAL AND METHODS An experimental rat model of POI was established by using CTX induction to assess the efficacy of JFP. The potential targets of action for JFP alleviating POI were predicted by the combination of network pharmacology and transcriptomics and finally validating by RT-qPCR and Western blot. RESULTS JFP alleviated the damages of ovarian tissue induced by CTX in the rat model of POI via significantly decreasing serum levels of FSH and LH and the ratio of FSH/LH and increasing the levels of E2 and AMH, accompanied with promoting ovarian folliculogenesis and follicle maturity and reversing the depletion of follicle pool. With the analysis of network pharmacology, pathways in cancer, proteoglycans in cancer, PI3K-AKT, TNF and FoxO signaling pathways were predicted to be influenced by JFP. The results of RNA-seq further revealed that IL-17 signaling pathway was the most important pathway regulated by both CTX and JFP, following by transcriptional misregulation in cancer and proteoglycans in cancer. Combining the two analytical methods, JFP likely targeted genes associated with immune regulation, including COX-2, HSP90AA1, FOS, MMP3 and MAPK11 and pathways, including IL-17,Th17 cell differentiation and TNF signaling pathway. Finally, JFP was validated to regulate the mRNA expression of FOS, FOSB, FOSL1, MMP3, MMP13 and COX-2 and decrease the release of IL-17A and the protein expression of IL-6 and suppress the phosphorylation of MEK1/2 and ERK1/2 in CTX induced POI rats. CONCLUSION Jinfeng Pill is effective to ameliorate the symptoms of POI induced by CTX in the model of rats and its action is likely associated with suppressing IL-17A/IL-6 axis and the activity of MEK1/2-ERK1/2 signaling.
Collapse
Affiliation(s)
- Ying-Yi Hu
- Pharmacy School, Fudan University, Shanghai, 200032, China; Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Rui-Hua Zhong
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Xiang-Jie Guo
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Guo-Ting Li
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Jie-Yun Zhou
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Wen-Jie Yang
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Bing-Tao Ren
- Pharmacy School, Fudan University, Shanghai, 200032, China; Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Yan Zhu
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Umer A, Khan N, Greene DL, Habiba UE, Shamim S, Khayam AU. The Therapeutic Potential of Human Umbilical Cord Derived Mesenchymal Stem Cells for the Treatment of Premature Ovarian Failure. Stem Cell Rev Rep 2023; 19:651-666. [PMID: 36520408 PMCID: PMC10070285 DOI: 10.1007/s12015-022-10493-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Premature ovarian failure (POF) affects 1% of women under 40, leading to infertility. The clinical symptoms of the POF include hypoestrogenism, lack of mature follicles, hypergonadotropinism, and amenorrhea. POF can be caused due to genetic defects, autoimmune illnesses, and environmental factors. The conventional treatment of POF remains a limited success rate. Therefore, an innovative treatment strategy like the regeneration of premature ovaries by using human umbilical cord mesenchymal stem cells (hUC-MSCs) can be a choice. To summarize all the theoretical frameworks for additional research and clinical trials, this review article highlights all the results, pros, and cons of the hUC-MSCs used to treat POF. So far, the data shows promising results regarding the treatment of POF using hUC-MSCs. Several properties like relatively low immunogenicity, multipotency, multiple origins, affordability, convenience in production, high efficacy, and donor/recipient friendliness make hUC-MSCs a good choice for treating basic POF. It has been reported that hUC-MSCs impact and enhance all stages of injured tissue regeneration by concurrently stimulating numerous pathways in a paracrine manner, which are involved in the control of ovarian fibrosis, angiogenesis, immune system modulation, and apoptosis. Furthermore, some studies demonstrated that stem cell treatment could lead to hormone-level restoration, follicular activation, and functional restoration of the ovaries. Therefore, all the results in hand regarding the use of hUC-MSCs for the treatment of POF encourage researchers for further clinical trials, which will overcome the ongoing challenges and make this treatment strategy applicable to the clinic in the near future.
Collapse
Affiliation(s)
- Amna Umer
- R3 Medical and Research Institute Pvt. Ltd, Jahangir Multiplex, H-13 Sector, Islamabad, 44000, Pakistan
| | - Nasar Khan
- R3 Medical and Research Institute Pvt. Ltd, Jahangir Multiplex, H-13 Sector, Islamabad, 44000, Pakistan.
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA.
| | - David Lawrence Greene
- R3 Medical and Research Institute Pvt. Ltd, Jahangir Multiplex, H-13 Sector, Islamabad, 44000, Pakistan
- R3 Medical Research LLC, 10045 East Dynamite Boulevard Suite 260, Scottsdale, AZ, 85262, USA
| | - Umm E Habiba
- R3 Medical and Research Institute Pvt. Ltd, Jahangir Multiplex, H-13 Sector, Islamabad, 44000, Pakistan
| | - Sabiha Shamim
- R3 Medical and Research Institute Pvt. Ltd, Jahangir Multiplex, H-13 Sector, Islamabad, 44000, Pakistan
| | - Asma Umer Khayam
- Department of Biochemistry, Quaid e Azam University, Islamabad, 44000, Pakistan
| |
Collapse
|
22
|
Liu J, Yang Y, He Y, Feng C, Ou H, Yang J, Chen Y, You F, Shao B, Bao J, Guan X, Chen F, Zhao P. Erxian decoction alleviates cisplatin-induced premature ovarian failure in rats by reducing oxidation levels in ovarian granulosa cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116046. [PMID: 36567042 DOI: 10.1016/j.jep.2022.116046] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANT Erxian Decoction (EXD) has been used empirically for more than 70 years to treat premature ovarian failure (POF), but more research is needed to understand how it works. AIM OF THE RESEARCH The study aims to ascertain both in vivo and in vitro rewards of EXD. MATERIALS AND METHODS EXD is composed of Curculiginis Rhizoma, Epimedii Folium, Morindae Officinalis, Angelicae Sinensis, Anemarrhenae Rhizoma, and Phellodendri Chinensis Cortex. UPLC/MS analysis was used to investigate the components of EXD. Using a POF model created by administering cisplatin to rats intraperitoneally, the pharmacodynamic effects of EXD were investigated. Three dose groups of EXD were garaged into rats: high (15.6 g/kg), medium (7.8 g/kg), and low (3.9 g/kg). By using a vaginal smear, the impact of EXD on the rat estrous cycle was evaluated. An ELISA test was used to measure the anti-Mullerian hormone (AMH), estradiol (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels in the serum of rats. By using HE stains, pathological alterations in the ovaries may be seen. MDA and SOD levels in ovarian samples were used to measure the degree of ovarian oxidation. TUNEL labeling of ovarian sections was used to find apoptosis levels. By using ATP, energy production was evaluated. The relative expression of proteins connected to aging and the RAGE pathway was assessed using Western blot. Then, using H2O2, a model of senescent human ovarian granulosa cells (KGN) was created in vitro. The impact of EXD and H2O2 on cellular senescence was discovered using-galactosidase staining. Cell apoptosis levels were found using PI/Hoechest33342. By using DCFH-DA, intracellular ROS was examined. MDA and SOD concentrations were used to measure the degree of cellular oxidation. RAGE-related mRNA and protein expression were evaluated using RT-qPCR and western blotting. RESULTS Using UPLC/MS analysis, 39 chemicals in EXD were found. Rats' estrous cycles were enhanced by EXD, which increased ovarian index and follicle count and reduced the proportion of atretic follicles in the rats. EXD reduced LH and FSH output while restoring AMH and E2 secretion. In ovarian tissues, EXD reduced the amount of apoptosis and MDA while raising SOD activity and ATP levels. The protein levels of p16, p21, p53, and Lamin A/C were among the senescence-related proteins that EXD lowered, along with the levels of RAGE, PI3K, BAX, and CASPASE 3. Anti-apoptotic protein BCL-2 was also raised in the RAGE pathway. Senescence, apoptosis, ROS, and MDA levels in the KGN cells were lowered in vitro by EXD. Additionally, EXD increased the anti-apoptotic potential by changing the expression of CAT, SOD2, and SIRT1. RAGE, BAX, BCL-2, CASPASE 3, and p38 expression levels were altered by EXD, enhancing its anti-apoptotic capability. CONCLUSION EXD boosted the ovary's antioxidant and anti-apoptotic capabilities while enhancing the estrous cycle and hormone output. These findings strongly suggested that EXD may contribute to the alleviation of POF and ovarian granulosa cells senescence.
Collapse
Affiliation(s)
- Jiao Liu
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Yang Yang
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Yueshuang He
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Chenran Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Haosong Ou
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Jiadi Yang
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Yao Chen
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Fengming You
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Binghao Shao
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Jirong Bao
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Xingyu Guan
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Fangfang Chen
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China
| | - Piwen Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| |
Collapse
|
23
|
Wu M, Xue L, Guo Y, Dong X, Chen Z, Wei S, Yi X, Li Y, Zhang J, Zhou S, Wu M, Lou X, Dai J, Xia F, Wang S. Microenvironmentally Responsive Chemotherapeutic Prodrugs and CHEK2 Inhibitors Self-Assembled Micelles: Protecting Fertility and Enhancing Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210017. [PMID: 36528787 DOI: 10.1002/adma.202210017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Chemotherapy is a widely used and effective adjuvant treatment for cancer, and it has unavoidable damage to female fertility, with statistics showing 38% of women who have received chemotherapy are infertile. How to reduce fertility toxicity while enhancing the oncologic chemotherapy is a clinical challenge. Herein, co-delivery micelles (BML@PMP) are developed, which are composed of a reduction-sensitive paclitaxel prodrug (PMP) for chemotherapy and a CHEK2 inhibitor (BML277) for both fertility protection and chemotherapy enhancement. BML@PMP achieves fertility protection through three actions: (1) Due to the enhanced permeability and retention (EPR) effect, BML@PMP is more enriched in the tumor, while very little in the ovary (about 1/10th of the tumor). (2) Glutathione (GSH) triggers the release of PTX, and with low levels of GSH in the ovary, the amount of PTX released in the ovary is correspondingly reduced. (3) BML277 inhibits oocyte apoptosis by inhibiting the CHEK2-TAp63α pathway. Because of the different downstream targets of CHEK2 in tumor cells and oocytes, BML277 also enhances chemotherapeutic efficacy by reducing DNA damage repair which is activated through the CHEK2 pathway. This bidirectional effect of CHEK2 inhibitor-based co-delivery system represents a promising strategy for improving oncology treatment indices and preventing chemotherapy-associated fertility damage.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Xiaoqi Dong
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhaojun Chen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Xiaoqing Yi
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, China
| | - Yinuo Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, China
| |
Collapse
|
24
|
Zhao Y, Yang J, Lu D, Zhu Y, Liao K, Tian Y, Yin R. The Loss-Function of KNL1 Causes Oligospermia and Asthenospermia in Mice by Affecting the Assembly and Separation of the Spindle through Flow Cytometry and Immunofluorescence. SENSORS (BASEL, SWITZERLAND) 2023; 23:2571. [PMID: 36904774 PMCID: PMC10007211 DOI: 10.3390/s23052571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
KNL1 (kinetochore scaffold 1) has attracted much attention as one of the assembly elements of the outer kinetochore, and the functions of its different domains have been gradually revealed, most of which are associated with cancers, but few links have been made between KNL1 and male fertility. Here, we first linked KNL1 to male reproductive health and the loss-function of KNL1 resulted in oligospermia and asthenospermia in mice (an 86.5% decrease in total sperm number and an 82.4% increase in static sperm number, respectively) through CASA (computer-aided sperm analysis). Moreover, we introduced an ingenious method to pinpoint the abnormal stage in the spermatogenic cycle using flow cytometry combined with immunofluorescence. Results showed that 49.5% haploid sperm was reduced and 53.2% diploid sperm was increased after the function of KNL1 was lost. Spermatocytes arrest was identified at the meiotic prophase I of spermatogenesis, which was induced by the abnormal assembly and separation of the spindle. In conclusion, we established an association between KNL1 and male fertility, providing a guide for future genetic counseling regarding oligospermia and asthenospermia, and a powerful method for further exploring spermatogenic dysfunction by utilizing flow cytometry and immunofluorescence.
Collapse
Affiliation(s)
- Yuwei Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
| | - Jingmin Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
- Shanghai WeHealth BioMedical Technology Co., Ltd., Shanghai 201318, China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 404100, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 404100, China
| | - Yijian Zhu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 404100, China
| | - Kai Liao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
| | - Yafei Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200000, China
- Shanghai WeHealth BioMedical Technology Co., Ltd., Shanghai 201318, China
| | - Rui Yin
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 404100, China
- Reproductive Medicine Research Center, Medical Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
25
|
Rezayat F, Esmaeil N, Rezaei A. Potential Therapeutic Effects of Human Amniotic Epithelial Cells on Gynecological Disorders Leading to Infertility or Abortion. Stem Cell Rev Rep 2023; 19:368-381. [PMID: 36331801 DOI: 10.1007/s12015-022-10464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
The induction of feto-maternal tolerance, fetal non-immunogenicity, and the regulation of mother's immune system are essential variables in a successful pregnancy. Fetal membranes have been used as a source of stem cells and biological components in recent decades. Human amniotic epithelial cells (hAEC) have stem/progenitor characteristics like those found in the amniotic membrane. Based on their immunomodulatory capabilities, recent studies have focused on the experimental and therapeutic applications of hAECs in allograft transplantation, autoimmune disorders, and gynecological problems such as recurrent spontaneous abortion (RSA), recurrent implantation failure (RIF), and premature ovarian failure (POF). This review discusses some of the immunomodulatory features and therapeutic potential of hAECs in preventing infertility, miscarriage, and implantation failure by controlling the maternal immune system.
Collapse
Affiliation(s)
- Fatemeh Rezayat
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. .,Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Immunology, School of Medicine, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran.
| | - Abbas Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Zafardoust S, Kazemnejad S, Darzi M, Fathi-Kazerooni M, Saffarian Z, Khalili N, Edalatkhah H, Mirzadegan E, Khorasani S. Intraovarian Administration of Autologous Menstrual Blood Derived-Mesenchymal Stromal Cells in Women with Premature Ovarian Failure. Arch Med Res 2023; 54:135-144. [PMID: 36702667 DOI: 10.1016/j.arcmed.2022.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/12/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Premature ovarian failure (POF) is a well-known cause of infertility, particularly in women under the age of 40. POF is also associated with elevated gonadotropin levels, amenorrhea and sex-hormone deficiency. AIM OF THE STUDY In this study, the therapeutic potential of autologous mesenchymal stromal cells obtained from menstrual blood (Men-MSCs) for patients with POF was evaluated. METHODS 15 POF patients were included in the study. The cultured Men-MSCs were confirmed by flow cytometry, karyotype, endotoxin and mycoplasma and were then injected into the patients' right ovary by vaginal ultrasound guidance and under general anesthesia and aseptic conditions. Changes in patients' anti-Müllerian hormone (AMH), antral follicle count (AFC), follicle-stimulating hormone (FSH), luteal hormone (LH), and estradiol (E2) levels, as well as general flushing and vaginal dryness were followed up to one year after treatment. RESULTS All patients were satisfied with a decrease in general flushing and vaginal dryness. 4 patients (2.9%) showed a spontaneous return of menstruation without additional pharmacological treatment. There was a significant difference in AFC (0 vs. 1 ± 0.92 count, p value ≤0.001%), FSH (74 ± 22.9 vs. 54.8 ± 17.5 mIU/mL, p-value ≤0.05%), E2 (10.2 ± 6 vs. 21.8 ± 11.5 pg/mL p-value ≤0.01%), LH (74 ± 22.9 vs. 54.8 ± 17.5 IU/L,p-value ≤0.01%) during 3 months post-injection. However, there were no significant changes in AMH (p-value ≥0.05%). There were also no significant differences in assessed parameters between 3 and 6 months after cell injection. CONCLUSION According to the findings of this study, administration of Men-MSCs improved ovarian function and menstrual restoration in some POF patients.
Collapse
Affiliation(s)
- Simin Zafardoust
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somaieh Kazemnejad
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Maryam Darzi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mina Fathi-Kazerooni
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Zahra Saffarian
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Niloofar Khalili
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Haleh Edalatkhah
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ebrahim Mirzadegan
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somayeh Khorasani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
27
|
Nouri N, Shareghi-Oskoue O, Aghebati-Maleki L, Danaii S, Ahmadian Heris J, Soltani-Zangbar MS, Kamrani A, Yousefi M. Role of miRNAs interference on ovarian functions and premature ovarian failure. Cell Commun Signal 2022; 20:198. [PMID: 36564840 PMCID: PMC9783981 DOI: 10.1186/s12964-022-00992-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/22/2022] [Indexed: 12/24/2022] Open
Abstract
Premature ovarian failure is a to some extent unknown and intricate problem with diverse causes and clinical manifestations. The lack of ovarian sex hormones presumably is effective in the occurrence of ovarian failure. Our progress in this field has been very little despite undertaken scientific research endeavors; scholars still are trying to understand the explanation of this dilemmatic medical condition. In contrast, the practice of clinical medicine has made meaningful strides in providing assurance to the women with premature ovarian insufficiency that their quality of life as well as long-term health can be optimized through timely intervention. Very recently Scientists have investigated the regulating effects of small RNA molecules on steroidogenesis apoptosis, ovulation, gonadal, and corpus luteum development of ovaries. In this literature review, we tried to talk over the mechanisms of miRNAs in regulating gene expression after transcription in the ovary. Video abstract.
Collapse
Affiliation(s)
- Narjes Nouri
- grid.412888.f0000 0001 2174 8913Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Olduz Shareghi-Oskoue
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Leili Aghebati-Maleki
- grid.412888.f0000 0001 2174 8913Immunology Research Center, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Center, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Javad Ahmadian Heris
- grid.412888.f0000 0001 2174 8913Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Amin Kamrani
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran
| | - Mehdi Yousefi
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, PO Box: 516-6615573, Tabriz, Iran ,grid.412888.f0000 0001 2174 8913Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Chen J, Wu S, Wang M, Zhang H, Cui M. A review of autoimmunity and immune profiles in patients with primary ovarian insufficiency. Medicine (Baltimore) 2022; 101:e32500. [PMID: 36595863 PMCID: PMC9794221 DOI: 10.1097/md.0000000000032500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a complicated clinical syndrome characterized by progressive deterioration of ovarian function. Autoimmunity is one of the main pathogenic factors affecting approximately 10% to 55% of POI cases. This review mainly focuses on the role of autoimmunity in the pathophysiology of POI and the potential therapies for autoimmunity-related POI. This review concluded that various markers of ovarian reserve, principally anti-Müllerian hormone, could be negatively affected by autoimmune diseases. The presence of lymphocytic oophoritis, anti-ovarian autoantibodies, and concurrent autoimmune diseases, are the main characteristics of autoimmune POI. T lymphocytes play the most important role in the immune pathogenesis of POI, followed by disorders of other immune cells and the imbalance between pro-inflammatory and anti-inflammatory cytokines. A comprehensive understanding of immune characteristics of patients with autoimmune POI and the underlying mechanisms is essential for novel approaches of treatment and intervention for autoimmune POI.
Collapse
Affiliation(s)
- Junyu Chen
- Departments of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Shan Wu
- Departments of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
- Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Mengqi Wang
- Departments of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Haoxian Zhang
- Department of Pharmacy, Xuchang Central Hospital, Xuchang, China
| | - Manhua Cui
- Departments of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
- * Correspondence: Manhua Cui, Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130022, China (e-mail: )
| |
Collapse
|
29
|
Bahrehbar K, Gholami S, Nazari Z, Malakhond MK. Embryonic stem cells-derived mesenchymal stem cells do not differentiate into ovarian cells but improve ovarian function in POF mice. Biochem Biophys Res Commun 2022; 635:92-98. [DOI: 10.1016/j.bbrc.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022]
|
30
|
Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency and Infertility: A Focus on Aging. Cells 2022; 11:cells11233713. [PMID: 36496972 PMCID: PMC9738202 DOI: 10.3390/cells11233713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Reproductive aging is on the rise globally and inseparable from the entire aging process. An extreme form of reproductive aging is premature ovarian insufficiency (POI), which to date has mostly been of idiopathic etiology, thus hampering further clinical applications and associated with enormous socioeconomic and personal costs. In the field of reproduction, the important functional role of inflammation-induced ovarian deterioration and therapeutic strategies to prevent ovarian aging and increase its function are current research hotspots. This review discusses the general pathophysiology and relative causes of POI and comprehensively describes the association between the aging features of POI and infertility. Next, various preclinical studies of stem cell therapies with potential for POI treatment and their molecular mechanisms are described, with particular emphasis on the use of human induced pluripotent stem cell (hiPSC) technology in the current scenario. Finally, the progress made in the development of hiPSC technology as a POI research tool for engineering more mature and functional organoids suitable as an alternative therapy to restore infertility provides new insights into therapeutic vulnerability, and perspectives on this exciting research on stem cells and the derived exosomes towards more effective POI diagnosis and treatment are also discussed.
Collapse
|
31
|
Huang Y, Zhu M, Liu Z, Hu R, Li F, Song Y, Geng Y, Ma W, Song K, Zhang M. Bone marrow mesenchymal stem cells in premature ovarian failure: Mechanisms and prospects. Front Immunol 2022; 13:997808. [PMID: 36389844 PMCID: PMC9646528 DOI: 10.3389/fimmu.2022.997808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
Premature ovarian failure (POF) is a common female reproductive disorder and characterized by menopause, increased gonadotropin levels and estrogen deficiency before the age of 40 years old. The etiologies and pathogenesis of POF are not fully clear. At present, hormone replacement therapy (HRT) is the main treatment options for POF. It helps to ameliorate perimenopausal symptoms and related health risks, but can't restore ovarian function and fertility fundamentally. With the development of regenerative medicine, bone marrow mesenchymal stem cells (BMSCs) have shown great potential for the recovery of ovarian function and fertility based on the advantages of abundant sources, high capacity for self-renewal and differentiation, low immunogenicity and less ethical considerations. This systematic review aims to summarize the possible therapeutic mechanisms of BMSCs for POF. A detailed search strategy of preclinical studies and clinical trials on BMSCs and POF was performed on PubMed, MEDLINE, Web of Science and Embase database. A total of 21 studies were included in this review. Although the standardization of BMSCs need more explorations, there is no doubt that BMSCs transplantation may represent a prospective therapy for POF. It is hope to provide a theoretical basis for further research and treatment for POF.
Collapse
Affiliation(s)
- Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengdi Zhu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| |
Collapse
|
32
|
Dang L, Zhang C, Su B, Ning N, Huang Q, Zhou S, Wu M, Ma W, Wang M, Cui P, Li Y, Wang S. Mechanisms of action of Zishen Yutai pills in treating premature ovarian failure determined by integrating UHPLC-Q-TOF-MS and network pharmacology analysis. BMC Complement Med Ther 2022; 22:281. [PMID: 36289509 PMCID: PMC9597968 DOI: 10.1186/s12906-022-03763-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Zishen Yutai (ZSYT) pill, a patent Chinese medicine, has been widely used in the treatment of infertility, abortion, and adjunctive treatment of in vitro fertilization (IVF) for decades. Recently, the results of clinical observations showed that premature ovarian failure (POF) patients exhibited improved expression of steroids and clinical symptoms associated with hormone disorders after treatment with Zishen Yutai pills. However, the pharmacological mechanism of action of these pills remains unclear. Methods The compounds of Zishen Yutai pills found in blood circulation were identified via ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) technique in the serum of POF mice after oral administration of Zishen Yutai pills. The potential targets of compounds were screened using Traditional Chinese Medicine Systems Pharmacology Database, Traditional Chinese Medicine Database@Taiwan, Drugbank Database, PubChem, HIT, Pharmapper, and Swiss Target Prediction. The target genes associated with POF were collected from Online Mendelian Inheritance in Man Database, PharmGkb, Genecards, Therapeutic Target Database, and Genetic Association Database. The overlapping genes between the potential targets of Zishen Yutai pills’ compounds and the target genes associated with POF were clarified via protein-protein interaction (PPI), pathway, and network analysis. Results Nineteen compounds in Zishen Yutai pills were detected in the serum of POF mice after oral administration. A total of 695 Zishen Yutai (ZSYT) pill-related targets were screened, and 344 POF-related targets were collected. From the results of Zishen Yutai (ZSYT) pill-POF PPI analysis, CYP19A1, AKR1C3, ESR1, AR, and SRD5A2 were identified as key targets via network analysis, indicating their core role in the treatment of POF with Zishen Yutai pills. Moreover, the pathway enrichment results suggested that Zishen Yutai pills treated POF primarily by regulating neuroactive ligand-receptor interaction, steroid hormone biosynthesis, and ovarian steroidogenesis. Conclusions Via virtual screening, we found that regulation of neuroactive ligand-receptor interaction, steroid hormone biosynthesis, and ovarian steroidogenesis was the potential therapeutic mechanism of Zishen Yutai pills in treating POF. Our study suggested that combining the analysis of Zishen Yutai pills’ compounds in blood in vivo in the POF model and network pharmacology prediction might offer a tool to characterize the mechanism of Zishen Yutai pills in the POF. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03763-2.
Collapse
Affiliation(s)
- Lei Dang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,Post-Doctoral Research Center of Guangzhou Pharmaceutical Holdings Ltd, Guangzhou, Guangdong China ,Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Chunbo Zhang
- Post-Doctoral Research Center of Guangzhou Pharmaceutical Holdings Ltd, Guangzhou, Guangdong China ,Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Biru Su
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Qiuling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co. Ltd, Guangzhou, Guangdong China
| | - Su Zhou
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Meng Wu
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Wenqing Ma
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Man Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Pengfei Cui
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Yan Li
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Shixuan Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| |
Collapse
|
33
|
Garg K, Zilate S. Umbilical Cord-Derived Mesenchymal Stem Cells for the Treatment of Infertility Due to Premature Ovarian Failure. Cureus 2022; 14:e30529. [PMID: 36415442 PMCID: PMC9674197 DOI: 10.7759/cureus.30529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Females belonging to the reproductive age group may face challenges regarding infertility or miscarriage due to conditions such as premature ovarian failure (POF). It is the condition that happens when a female's ovaries stop working before she is 40. The majority of the causes of POF cases are idiopathic. Other reasons include genetic disorders (Turner's syndrome, bone morphogenetic protein 15 (BMP15) mutation, galactosemia, mutation of forkhead box protein L2 (FOXL2), growth differentiation factor-9 (GDF9), mutation of luteinizing hormone (LH) and follicle-stimulating hormone receptors (FSHR), etc.), enzymatic mutation such as aromatase, autoimmune disorders (Addison's disease, vitiligo, systemic lupus erythematosus, myasthenia gravis, autoimmune thyroiditis, autoimmune polyglandular syndrome, etc.), vaccination, and environmental factors (cigarette smoking, toxins, and infections). Many attempts have been made to treat POF by various methods. Some of the methods of treatment include hormone replacement therapy (HRT), melatonin therapy, dehydroepiandrosterone (DHEA) therapy, and stem cell therapy. Stem cell therapy has proven to be the most efficient form for treating POF as compared to all other options. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are the best among the other sources of mesenchymal stem cells (MSCs) for the treatment of POF as they have a painless extraction procedure. They have a tremendous capacity for self-repair and regeneration, which helps them in restoring degenerated ovaries. This review includes information on the causes of POF, its efficacious therapeutic approaches, and the impact of transplantation of human umbilical cord mesenchymal stem cells (hUCMSCs) as an option for the therapy of POF. Numerous studies conducted on stem cell therapy prove that it is an effective approach for the treatment of sterility.
Collapse
|
34
|
Smith TI, Russell AE. Extracellular vesicles in reproduction and pregnancy. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:292-317. [PMID: 39697491 PMCID: PMC11648528 DOI: 10.20517/evcna.2022.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are small, lipid-bound packages that are secreted by all cell types and have been implicated in many diseases, such as cancer and neurodegenerative disorders. Though limited, an exciting new area of EV research focuses on their role in the reproductive system and pregnancy. In males, EVs have been implicated in sperm production and maturation. In females, EVs play a vital role in maintaining reproductive organ homeostasis and pregnancy, including the regulation of folliculogenesis, ovulation, and embryo implantation. During the development and maintenance of a pregnancy, the placenta is the main form of communication between the mother and the developing fetus. To support the developing fetus, the placenta will act as numerous vital organs until birth, and release EVs into the maternal and fetal bloodstream. EVs play an important role in cell-to-cell communication and may mediate the pathophysiology of pregnancy-related disorders such as preeclampsia, gestational diabetes mellitus, preterm birth, and intrauterine growth restriction, and potentially serve as noninvasive biomarkers for these conditions. In addition, EVs may also mediate processes involved in both male and female infertility. Together, the EVs secreted by both the male and female reproductive tracts work to promote reproductive fertility and play vital roles in mediating maternal-fetal crosstalk and pregnancy maintenance.
Collapse
Affiliation(s)
- Tahlia I. Smith
- Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA
- These authors contributed equally
| | - Ashley E. Russell
- Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA 16563, USA
- Magee Womens Research Institute - Allied Member, Pittsburgh, PA 15213, USA
- These authors contributed equally
| |
Collapse
|
35
|
Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying MicroRNA-29a Improves Ovarian Function of Mice with Primary Ovarian Insufficiency by Targeting HMG-Box Transcription Factor/Wnt/β-Catenin Signaling. DISEASE MARKERS 2022; 2022:5045873. [PMID: 35845134 PMCID: PMC9277157 DOI: 10.1155/2022/5045873] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 12/05/2022]
Abstract
Background Primary ovarian insufficiency (POI) is a female disease characterized by ovarian function loss under 40 years old. Transplantation of exosomes is an encouraging regenerative medicine method that has the potential for restoring ovarian functions post-POI with high efficiency. Therefore, we investigate the therapeutic efficacy and potential mechanisms of human umbilical cord mesenchymal stem cell- (UCMSC-) derived exosomes on ovarian dysfunction post-POI. Methods The model of POI was established by intraperitoneal injection with 5 mg/kg cisplatin. The mouse ovarian function was detected by measuring the levels of anti-Mullerian hormone, follicle-stimulating hormone, and estradiol and detecting the morphological changes. For in vitro experiments, the characterization and identification of UCMSCs and UCMSC-derived exosomes were done by observation of morphologies and flow cytometry. To exclude the interference effect of nonspecific precipitation substances, UCMSCs were treated with RNase A or RNase A in combination with Triton X-100. Granulosa cell (GC) identification was performed using immunofluorescence. GC proliferation and viability were assessed using 5-ethynyl-2′-deoxyuridine (EdU) assays and Cell Counting Kit-8 (CCK-8), and GC apoptosis was calculated by flow cytometry. Gene expression and protein levels were evaluated using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting. The binding relationship between miR-29a and HMG-box transcription factor (HBP1) was verified by luciferase reporter assays. Results In vitro, the human UCMSC-derived exosomes carrying miR-29a upregulation promoted the proliferation of GCs and suppressed their apoptosis. In vivo, miR-29a upregulation reserved the mature follicles and restored the ovarian functions. miR-29a targeted HBP1 and negatively regulated its expression. HBP1 upregulation rescued the miR-29a upregulation-induced inhibition in GC apoptosis and inactivated the Wnt/β-catenin pathway. Conclusion The exosomal miR-29a derived from human UCMSCs improves the ovarian function by targeting HBP1 and activating the Wnt/β-catenin pathway.
Collapse
|
36
|
Zeng L, Ye J, Zhang Z, Liang Y, Li J, Zeng L, Cao L, Zhu L, Luo S. Zuogui pills maintain the stemness of oogonial stem cells and alleviate cyclophosphamide-induced ovarian aging through Notch signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153975. [PMID: 35217439 DOI: 10.1016/j.phymed.2022.153975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zuogui pills (ZGP), a classical prescription of traditional Chinese medicine, have been widely used in the treatment of ovarian aging. Previous studies have demonstrated its efficacy on protecting ovarian aging, and the mechanisms were mostly relevant to inhibiting the apoptosis of follicles and activating the primordial follicles. However, whether ZGP could stimulate the oogonial stem cells (OSCs) to refresh the follicle pool remains poorly understood. PURPOSE To investigate the effects of ZGP on the stemness of OSCs in cyclophosphamide (Cy)-induced ovarian aging. STUDY DESIGN AND METHODS Female Sprague-Dawley (SD) rats were randomly divided into 8 groups: control group, model group, ZGP groups (low / high dose groups), estradiol valerate (EV) groups (low / high dose groups), DAPT group and DAPT+ZGP-L group. After modeling with Cy, the ZGP groups and EV groups were treated with ZGP and EV for 8 weeks respectively. Meanwhile, the DAPT groups were treated with DAPT twice a week. Additionally, OSCs were also isolated after modeling, and then treated with drug serum containing ZGP or EV. Ovarian volume and the ratio of weight of total ovaries to the body weight were measured. The serum hormones were measured by ELISA. Quantities and location of OSCs in ovaries were detected by flow cytometry and immunofluorescence. Cell viability was measured by CCK8. And OSCs were identified by immunofluorescence. Biomarkers of germ cells, stem cells and associated to differentiation and meiosis were detected by qPCR and western blot. Proteins in Notch signaling pathway were detected by western blot and immunofluorescence. RESULTS After treating with ZGP, ovarian volume and the ratio of weight of total ovaries to the body weight increased. ZGP could increase serum AMH and E2 level and decrease serum FSH level. Quantities and cell viability of OSCs increased after ZGP treatment in vivo and in vitro. In addition, treatment with ZGP could increase not only the expression of MVH, Oct4 and DAZL, but also the expression of ZP1 and ZP2. Furthermore, ZGP could up-regulate the expression of Notch intracellular domain (NICD), HES1 and HES5. After blocking the Notch signaling pathway, ZGP could increase not only the expression of NICD, HES1 and HES5, but also the expression of MVH, Oct4, DAZL, ZP1 and ZP3. CONCLUSION In conclusion, the mechanism of ZGP on treating ovarian aging may be relevant to maintain the stemness of OSCs by up-regulating Notch signaling pathway, which added the mechanism of ZGP on the perspective of OSCs at first time.
Collapse
Affiliation(s)
- Lihua Zeng
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinfei Ye
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhaoping Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yunyi Liang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jing Li
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lei Zeng
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lei Cao
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ling Zhu
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Songping Luo
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
37
|
Menstrual blood-derived endometrial stem cells ameliorate the viability of ovarian granulosa cells injured by cisplatin through activating autophagy. Reprod Toxicol 2022; 110:39-48. [PMID: 35346788 DOI: 10.1016/j.reprotox.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
Although the cancer incidence showed a yearly increasing trend, the long-term survival rate of cancer patients significantly increased with the continuous improvements in cancer diagnosis and treatment. Therefore, recent strategies for cancer treatment not only focus on improving the survival rate of patients but also simultaneously consider the life quality of cancer patients, especially for those with fertility requirements. Stem cell-based therapies have exhibited promising improvement in various disease treatments, and provide hope for diseases without effective treatment. Menstrual blood-derived endometrial stem cells (MenSCs) can be noninvasively and periodically obtained from discarded menstrual blood samples and exhibit high proliferative capacity, low immunogenicity and autologous transplantation. As expected, MenSCs treatment effectively improved the viability of cisplatin-injured ovarian granulosa cells (GCs) and significantly upregulated their antiapoptotic capacity. Further results demonstrated that MenSCs treatment significantly upregulated autophagy activity in cisplatin-injured ovarian GCs, and the degree of autophagy activation was positively correlated with the viability improvement of ovarian GCs, while autophagy inhibitors significantly impaired MenSC-promoted viability improvement of cisplatin-injured ovarian GCs. Additionally, MenSCs treatment can also significantly promote the proliferation of normal GCs by activating the PI3K/Akt signaling pathway. Conclusively, MenSCs treatment not only enhanced the antiapoptotic capacity and survival of cisplatin-injured ovarian GCs by upregulating autophagy activity but also improved the viability of normal ovarian GCs by activating the PI3K/Akt signal pathway. These results provide a theoretical and experimental foundation for the clinical application of MenSCs in improving chemotherapy-induced ovarian injury and delaying ovarian senescence.
Collapse
|
38
|
Zhang X, Zhang R, Hao J, Huang X, Liu M, Lv M, Su C, Mu YL. miRNA-122-5p in POI ovarian-derived exosomes promotes granulosa cell apoptosis by regulating BCL9. Cancer Med 2022; 11:2414-2426. [PMID: 35229987 PMCID: PMC9189466 DOI: 10.1002/cam4.4615] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
This study is to explore the therapeutic effect and potential mechanisms of exosomal microRNAs (miRNAs) derived from the ovaries with primary ovarian insufficiency (POI). The POI mouse model was established by intraperitoneal injection of cyclophosphamide (CTX) and busulfan. The apoptosis of granulosa cells (GCs) incubated with exosomes extracted from ovarian tissues of control and POI groups was analyzed by flow cytometry. Then, high-throughput sequencing was performed to detect the difference of miRNAs profile in ovarian tissue-derived exosomes between the control and POI mice. The effect of differential miRNA on the apoptosis of CTX-induced ovarian GCs was analyzed by flow cytometry. The results showed that POI mouse model was successfully established. Exosomes extracted from ovarian of normal and POI group have different effects on apoptosis of GCs induced by CTX. miRNA-seq found that exosomal miR-122-5p in POI group increased significantly. miR-122-5p as the dominant miRNA targeting BCL9 was significantly upregulated in ovarian tissues of chemotherapy-induced POI group. Exosomes derived from the ovaries in the control group and miR-122-5p inhibitor group attenuated the apoptosis of primary cultured ovarian GCs. In conclusion, exosomal miR-122-5p promoted the apoptosis of ovarian GCs by targeting BCL9, suggested that miR-122-5p may function as a potential target to restore ovarian function.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ruihong Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Jing Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Xiaoyan Huang
- Shandong Maternal and Child Health Care Hospital, Jinan, China
| | - Ming Liu
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mengxiao Lv
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chan Su
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu-Lan Mu
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
39
|
Qin X, Zhao Y, Zhang T, Yin C, Qiao J, Guo W, Lu B. TrkB agonist antibody ameliorates fertility deficits in aged and cyclophosphamide-induced premature ovarian failure model mice. Nat Commun 2022; 13:914. [PMID: 35177657 PMCID: PMC8854395 DOI: 10.1038/s41467-022-28611-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/12/2022] [Indexed: 12/18/2022] Open
Abstract
Premature ovarian failure (POF) is a leading cause of women's infertility without effective treatment. Here we show that intravenous injection of Ab4B19, an agonistic antibody for the BDNF receptor TrkB, penetrates into ovarian follicles, activates TrkB signaling, and promotes ovary development. In both natural aging and cyclophosphamide-induced POF models, treatment with Ab4B19 completely reverses the reduction of pre-antral and antral follicles, and normalizes gonadal hormone. Ab4B19 also attenuates gonadotoxicity and inhibits apoptosis in cyclophosphamide-induced POF ovaries. Further, treatment with Ab4B19, but not BDNF, restores the number and quality of oocytes and enhances fertility. In human, BDNF levels are high in granulosa cells and TrkB levels increase in oocytes as they mature. Moreover, BDNF expression is down-regulated in follicles of aged women, and Ab4B19 activates TrkB signaling in human ovary tissue ex vivo. These results identify TrkB as a potential target for POF with differentiated mechanisms, and confirms superiority of TrkB activating antibody over BDNF as therapeutic agents.
Collapse
Affiliation(s)
- Xunsi Qin
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, 100084, China
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Tianyi Zhang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, 100084, China
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Chenghong Yin
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, 100084, China.
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, 100084, China.
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
40
|
Wu M, Lu Z, Zhu Q, Ma L, Xue L, Li Y, Zhou S, Yan W, Ye W, Zhang J, Luo A, Wang S. DDX4 + stem cells in the ovaries of postmenopausal women: existence and differentiation potential. Stem Cells 2022; 40:88-101. [PMID: 35511860 DOI: 10.1093/stmcls/sxab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022]
Abstract
Abstract
Ovarian aging is a pacemaker with multiple organ dysfunction. Recently, stem cells with the ability to generate new oocytes have been identified, which provides the possibility of stem cell therapy for ovarian aging. Several studies have revealed the existence of stem cells in human postmenopausal ovary. In this study, we describe a new method using magnetic activated cell sorting combined with differential adhesion to isolate DDX4 + stem cells from ovaries of postmenopausal women and show that the cells exhibit similar gene expression profiles and growth characteristics with primitive germ cells. Furthermore, the DDX4 + stem cells could enter meiosis stage and differentiation into oocytes. The RNA-seq data of the differentiated oocytes shows that mitochondrial metabolism may play an important role in the oogenesis process of the DDX4 + stem cells. Through using human ovarian cortical fragments transplantation model, we indicated that the GFP-DDX4 + stem cells differentiated into some GFP positive oocyte-like structure in vivo. Our study provided a new method for the isolation of DDX4 + stem cells from the ovaries of postmenopausal women and confirmed the ability of these stem cells to differentiate into oocytes.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyong Lu
- Hubei Key Laboratory of Embryonic Stem Cell Research, TaiHe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qingqing Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingwei Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenlei Ye
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
41
|
Medenica S, Abazovic D, Ljubić A, Vukovic J, Begovic A, Cucinella G, Zaami S, Gullo G. The Role of Cell and Gene Therapies in the Treatment of Infertility in Patients with Thyroid Autoimmunity. Int J Endocrinol 2022; 2022:4842316. [PMID: 36081621 PMCID: PMC9448571 DOI: 10.1155/2022/4842316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
There is a rising incidence of infertility worldwide, and many couples experience difficulties conceiving nowadays. Thyroid autoimmunity (TAI) is recognized as one of the major female infertility causes related to a diminished ovarian reserve and potentially impaired oocyte maturation and embryo development, causing adverse pregnancy outcomes. Growing evidence has highlighted its impact on spontaneously achieved pregnancy and pregnancy achieved by in vitro fertilization. Despite the influence of thyroid hormones on the male reproductive system, there is insufficient data on the association between TAI and male infertility. In past years, significant progress has been achieved in cell and gene therapies as emerging treatment options for infertility. Cell therapies utilize living cells to restore healthy tissue microenvironment and homeostasis and usually involve platelet-rich plasma and various stem cells. Using stem cells as therapeutic agents has many advantages, including simple sampling, abundant sources, poor immunogenicity, and elimination of ethical concerns. Mesenchymal Stem Cells (MSCs) represent a heterogeneous fraction of self-renewal, multipotent non-hematopoietic stem cells that display profound immunomodulatory and immunosuppressive features and promising therapeutic effects. Infertility has a genetic component in about half of all cases, although most of its genetic causes are still unknown. Hence, it is essential to identify genes involved in meiosis, DNA repair, ovarian development, steroidogenesis, and folliculogenesis, as well as those involved in spermatogenesis in order to develop potential gene therapies for infertility. Despite advances in therapy approaches such as biological agents, autoimmune disorders remain impossible to cure. Recent research demonstrates the remarkable therapeutic effectiveness of MSCs in a wide array of autoimmune diseases. TAI is one of many autoimmune disorders that can benefit from the use of MSCs, which can be derived from bone marrow and adipose tissue. Cell and gene therapies hold great potential for treating autoimmune conditions, although further research is still needed.
Collapse
Affiliation(s)
- Sanja Medenica
- Department of Endocrinology, Internal Medicine Clinic, Clinical Center of Montenegro, School of Medicine, University of Montenegro, Podgorica, Montenegro
| | | | - Aleksandar Ljubić
- Biocell Hospital, Belgrade, Serbia
- Special Gynecology Hospital with Maternity Ward Jevremova, Belgrade, Serbia
- Libertas International University, Dubrovnik, Croatia
| | | | | | - Gaspare Cucinella
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, IVF UNIT, University of Palermo, Palermo, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, IVF UNIT, University of Palermo, Palermo, Italy
| |
Collapse
|
42
|
Wu JX, Xia T, She LP, Lin S, Luo XM. Stem Cell Therapies for Human Infertility: Advantages and Challenges. Cell Transplant 2022; 31:9636897221083252. [PMID: 35348026 PMCID: PMC8969497 DOI: 10.1177/09636897221083252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/15/2022] Open
Abstract
Physical and mental health and hormonal imbalance are associated with the problems related to infertility and reproductive disorders. The rate of infertility has increased globally over the years, due to various reasons. Given the psychosocial implications of infertility and its effects on the life of the affected people, there has been an increased focus on its treatment over the last several years. Assisted reproductive technology can only solve about 50% of the cases. Moreover, it contains significant risks and does not solve the fundamental problem of infertility. As pluripotent stem cells have the potential to differentiate into almost any type of cell, they have been widely regarded as a promising option in the development of stem cell-based fertility treatments, which could even correct genetic diseases in offspring. These advancements in reproductive biotechnology present both challenges and possibilities for solving infertility problems caused by various unexplainable factors. This review briefly presents the different types of infertility disorders and the potential applications of stem cells in the treatment of these reproductive diseases.
Collapse
Affiliation(s)
- Jin-Xiang Wu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tian Xia
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Li-Ping She
- New England Fertility Institute, Stamford, CT, USA
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Xiang-Min Luo
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
43
|
Wang J, Liu W, Yu D, Yang Z, Li S, Sun X. Research Progress on the Treatment of Premature Ovarian Failure Using Mesenchymal Stem Cells: A Literature Review. Front Cell Dev Biol 2021; 9:749822. [PMID: 34966738 PMCID: PMC8710809 DOI: 10.3389/fcell.2021.749822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Premature ovarian failure (POF) has become one of the main causes of infertility in women of childbearing age and the incidence of POF is increasing year by year, seriously affecting the physical and mental health of patients and increasing the economic burden on families and society as a whole. The etiology and pathogenesis of POF are complex and not very clear at present. Currently, hormone replacement therapy is mainly used to improve the symptoms of low estrogen, but cannot fundamentally solve the fertility problem. In recent years, stem cell (SC) transplantation has become one of the research hotspots in the treatment of POF. The results from animal experiments bring hope for the recovery of ovarian function and fertility in patients with POF. In this article, we searched the published literature between 2000 and 2020 from the PubMed database (https://pubmed.ncbi.nlm.nih.gov), and summarized the preclinical research data and possible therapeutic mechanism of mesenchymal stem cells (MSCs) in the treatment of POF. Our aim is to provide useful information for understanding POF and reference for follow-up research and treatment of POF.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China
| | - Wanru Liu
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China
| | - Dehai Yu
- The Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zongxing Yang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiguang Sun
- Hand Surgery Department, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
44
|
Zhou F, Song Y, Liu X, Zhang C, Li F, Hu R, Huang Y, Ma W, Song K, Zhang M. Si-Wu-Tang facilitates ovarian function through improving ovarian microenvironment and angiogenesis in a mouse model of premature ovarian failure. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114431. [PMID: 34293457 DOI: 10.1016/j.jep.2021.114431] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Premature ovarian failure (POF) is a severe illness, characterized by premature menopause with a markedly decrease in ovarian function, which leads to infertility. Si-Wu-Tang (SWT), also called "the first prescription of gynecology" by medical experts in China, is widely used as the basic formula in regulating the menstrual cycle and treating infertility. However, the potential effect and underlying mechanisms of action of SWT on the treatment of POF have not yet been elucidated. PURPOSE This study aimed to explore the therapeutic effect and underlying molecular mechanism of action of SWT on the treatment of POF in C57BL/6 mice. MATERIALS AND METHODS The main compounds of SWT were identified by high-performance liquid chromatography (HPLC). POF model groups were established by a single intraperitoneal injection of cyclophosphamide (Cy, 100 mg/kg). SWT or dehydroepiandrosterone (DHEA) were administered via oral gavage for 28 consecutive days. Ovarian function and pathological changes were evaluated by hormone levels, follicular development, and changes in angiogenesis. Furthermore, statistical analyses of fertility were also performed. RESULTS Treatment with SWT significantly improved estrogen levels, the number of follicles, antioxidant defense, and microvascular formation in POF mice. Moreover, SWT significantly activated the Nrf2/HO-1 and STAT3/HIF-1α/VEGF signaling pathways to promote angiogenesis, resulting in a better fertility outcome when compared to the model group. CONCLUSIONS Our findings indicated that SWT protected ovarian function of Cy-induced POF mice by improving the antioxidant ability and promoting ovarian angiogenesis, thereby providing scientific evidence for the treatment of POF using SWT.
Collapse
Affiliation(s)
- Fanru Zhou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Xia Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Chu Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wenwen Ma
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Kunkun Song
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Mingmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
45
|
Bahmyari S, Jamali Z, Khatami SH, Vakili O, Roozitalab M, Savardashtaki A, Solati A, Mousavi P, Shabaninejad Z, Vakili S, Behrouj H, Ghasemi H, Movahedpour A. microRNAs in female infertility: An overview. Cell Biochem Funct 2021; 39:955-969. [PMID: 34708430 DOI: 10.1002/cbf.3671] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
Infertility impacts a considerable number of women worldwide, and it affects different aspects of family life and society. Although female infertility is known as a multifactorial disorder, there are strong genetic and epigenetic bases. Studies revealed that miRNAs play critical roles in initiation and development of female infertility related disorders. Early diagnosis and control of these diseases is an essential key for improving disease prognosis and reducing the possibility of infertility and other side effects. Investigating the possible use of miRNAs as biomarkers and therapeutic options is valuable, and it merits attention. Thus, in this article, we reviewed research associated with female diseases and highlighted microRNAs that are related to the polycystic ovary syndrome (up to 30 miRNAs), premature ovarian failure (10 miRNAs), endometriosis (up to 15 miRNAs), uterine fibroids (up to 15 miRNAs), endometrial polyp (3 miRNAs), and pelvic inflammatory (6 miRNAs), which are involved in one or more ovarian or uterine disease-causing processes.
Collapse
Affiliation(s)
- Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Roozitalab
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Behrouj
- Department of Clinical Biochemistry, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan University of Medical Sciences, Abadan, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
46
|
Christin-Maitre S, Givony M, Albarel F, Bachelot A, Bidet M, Blanc JV, Bouvattier C, Brac de la Perrière A, Catteau-Jonard S, Chevalier N, Carel JC, Coutant R, Donadille B, Duranteau L, El-Khattabi L, Hugon-Rodin J, Houang M, Grynberg M, Kerlan V, Leger J, Misrahi M, Pienkowski C, Plu-Bureau G, Polak M, Reynaud R, Siffroi JP, Sonigo C, Touraine P, Zenaty D. Position statement on the diagnosis and management of premature/primary ovarian insufficiency (except Turner Syndrome). ANNALES D'ENDOCRINOLOGIE 2021; 82:555-571. [PMID: 34508691 DOI: 10.1016/j.ando.2021.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Premature ovarian insufficiency (POI) is a rare pathology affecting 1-2% of under-40 year-old women, 1 in 1000 under-30 year-olds and 1 in 10,000 under-20 year-olds. There are multiple etiologies, which can be classified as primary (chromosomal, genetic, auto-immune) and secondary or iatrogenic (surgical, or secondary to chemotherapy and/or radiotherapy). Despite important progress in genetics, more than 60% of cases of primary POI still have no identifiable etiology; these cases are known as idiopathic POI. POI is defined by the association of 1 clinical and 1 biological criterion: primary or secondary amenorrhea or spaniomenorrhea of>4 months with onset before 40 year of age, and elevated follicle-stimulating hormone (FSH)>25IU/L on 2 assays at>4 weeks' interval. Estradiol level is low, and anti-Müllerian hormone (AMH) levels have usually collapsed. Initial etiological work-up comprises auto-immune assessment, karyotype, FMR1 premutation screening and gene-panel study. If all of these are normal, the patient and parents may be offered genome-wide analysis under the "France Génomique" project. The term ovarian insufficiency suggests that the dysfunction is not necessarily definitive. In some cases, ovarian function may fluctuate, and spontaneous pregnancy is possible in around 6% of cases. In confirmed POI, hormone replacement therapy is to be recommended at least up to the physiological menopause age of 51 years. Management in a rare diseases center may be proposed.
Collapse
Affiliation(s)
- Sophie Christin-Maitre
- Sorbonne University, Hôpital St Antoine, Assistance Publique- Hôpitaux de Paris (AP-HP), Paris, France.
| | - Maria Givony
- French National Healthcare Network for Rare Endocrine Diseases (FIRENDO), AP-HP, Paris, France
| | - Frédérique Albarel
- Conception University Hospital, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Anne Bachelot
- Sorbonne University, Hôpital de la Pitié-Salpétrière, AP-HP, Paris, France
| | - Maud Bidet
- Clinique mutualiste La Sagesse, Rennes, France
| | - Jean Victor Blanc
- Sorbonne University, Hôpital St Antoine, Assistance Publique- Hôpitaux de Paris (AP-HP), Paris, France
| | | | | | | | | | | | | | - Bruno Donadille
- Sorbonne University, Hôpital St Antoine, Assistance Publique- Hôpitaux de Paris (AP-HP), Paris, France
| | - Lise Duranteau
- Saclay University, Hôpital du Kremlin-Bicêtre, AP-HP, Paris, France
| | - Laïla El-Khattabi
- Paris-Centre University, Hôpital Cochin Port-Royal, AP-HP, Paris, France
| | | | - Muriel Houang
- Sorbonne University, Hôpital Trousseau, AP-HP, Paris, France
| | - Michaël Grynberg
- Saclay University, Hôpital Antoine Béclère, AP-HP, Clamart, France
| | - Véronique Kerlan
- University of Brest, Centre Hospitalier Régional Universitaire, Brest, France
| | - Juliane Leger
- Paris-Centre University, Hôpital Robert Debré, AP-HP, Paris, France
| | | | | | | | - Michel Polak
- Paris Centre University, Hôpital Necker, AP-HP, Paris, France
| | | | | | - Charlotte Sonigo
- Saclay University, Hôpital Antoine Béclère, AP-HP, Clamart, France
| | - Phillipe Touraine
- Sorbonne University, Hôpital de la Pitié-Salpétrière, AP-HP, Paris, France
| | - Delphine Zenaty
- Paris-Centre University, Hôpital Robert Debré, AP-HP, Paris, France
| |
Collapse
|
47
|
Yamchi NN, Rahbarghazi R, Bedate AM, Mahdipour M, Nouri M, Khanbabaee R. Menstrual blood CD146 + mesenchymal stem cells reduced fibrosis rate in the rat model of premature ovarian failure. Cell Biochem Funct 2021; 39:998-1008. [PMID: 34477225 DOI: 10.1002/cbf.3669] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022]
Abstract
Here, the regenerative potential of menstrual blood-derived mesenchymal stem cells (MenSCs) was examined on restoration of premature ovarian failure (POF) ovaries in rats' POF model. Freshly isolated CD146+ MenSCs using magnetic-activated cell storing method were immediately injected into ovaries of POF rats. Four and eight weeks after cell administration, both ovarian tissues were sampled for histological examination and the expression of fibrosis-related genes. Serum samples were also prepared for hormonal analysis. At the endpoint, mating trials were performed to assess the fertility of POF rats following MenSC transplantation. Histopathological examination revealed the induction of POF after Ceftriaxone injection by increasing atretic follicles and abnormal morphologies. MenSCs transplantation increased the number of normal follicles and coincided with the reduction of follicular atresia. Biochemical analyses exhibited the reduction and increase of systemic follicle-stimulating hormone (FSH) and E2 respectively after MenSCs transplantation compared to the POF rats (P < .05). No significant differences in anti-mullerian hormone (AMH) blood levels were detected in this study between POF controls and MenSCs-treated rats. We noted moreover the transcriptional up-regulation of Smad 2, 4, and TGF-β1 in POF rats, and these values were decreased after MenSCs transplantation (P < .01). By contrast, the RNA expression of Smad 6 remained increased in both pre- and post-treatment with MenSCs groups (P < .05). Finally, we found an increase in neonate births in POF rats treated with MenSCs, and that this feature was associated with ovarian rejuvenation through amelioration of fibrosis. These data showed that MenSCs are promising cell lineage for the alleviation of POF in the rat model by controlling the fibrosis rate.
Collapse
Affiliation(s)
- Nahideh Nazdikbin Yamchi
- Department of Biology, Faculty of Basic Sciences, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alberto Miranda Bedate
- Department of Immune Mechanisms (IMM), Center for Immunology of Infectious Diseases and Vaccines (IIV), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramazan Khanbabaee
- Department of Biology, Faculty of Basic Sciences, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| |
Collapse
|
48
|
Chen H, Xia K, Huang W, Li H, Wang C, Ma Y, Chen J, Luo P, Zheng S, Wang J, Wang Y, Dong L, Tan Z, Lai X, Mao FF, Li W, Liang X, Wang T, Xiang AP, Ke Q. Autologous transplantation of thecal stem cells restores ovarian function in nonhuman primates. Cell Discov 2021; 7:75. [PMID: 34462432 PMCID: PMC8405815 DOI: 10.1038/s41421-021-00291-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Premature ovarian insufficiency (POI) is defined as the loss of ovarian activity under the age of 40. Theca cells (TCs) play a vital role during folliculogenesis and TCs dysfunction participate in the pathogenesis of POI. Therefore, transplantation of thecal stem cells (TSCs), which are capable of self-renewal and differentiation into mature TCs, may provide a new strategy for treating POI. To investigate the feasibility, safety, and efficacy of TSCs transplantation in clinically relevant non-human primate (NHP) models, we isolate TSCs from cynomolgus monkeys, and these cells are confirmed to expand continuously and show potential to differentiate into mature TCs. In addition, engraftment of autologous TSCs into POI monkeys significantly improves hormone levels, rescues the follicle development, promotes the quality of oocytes and boosts oocyte maturation/fertilization rate. Taken together, these results for the first time suggest that autologous TSCs can ameliorate POI symptoms in primate models and shed new light on developing stem cell therapy for POI.
Collapse
Affiliation(s)
- Hong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huijian Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianhui Chen
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuwei Zheng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiancheng Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yi Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lin Dong
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhipeng Tan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xingqiang Lai
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Frank Fuxiang Mao
- State Key Laboratory of Ophthalmology, Zhong Shan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyan Liang
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
49
|
Nouri N, Aghebati-Maleki L, Yousefi M. Adipose-Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of pre mature ovarian failure. J Reprod Immunol 2021; 147:103363. [PMID: 34450435 DOI: 10.1016/j.jri.2021.103363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/03/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022]
Abstract
Despite being rare, primary ovarian insufficiency (POI) is a significant cause of infertility and deficiency of ovarian hormone in women. Several health risks are also associated with POI, which include dry eye syndrome, reduced density of bones and enhanced fracture risks, troublesome menopausal symptoms, early development of cardiovascular disease, and psychological effects such as declined cognition, reduced perceived psychological support, anxiety, and depression. Replacing premenopausal levels of ovarian sex steroids through proper hormone replacement therapy could improve the quality of life for POI women and ameliorate related health risks. Herein, POI and its complications, in addition to hormone replacement therapies, which are safe and effective, are discussed. It is proposed that the use of HRT) Hormone replacement therapy (formulations which mimic normal production of ovarian hormones could reduce POI-associated morbidity rates if they are continued by the age 50, which is approximately the natural age of menopause. Particular populations of POI women are also addressed, which include those with enhanced risk of ovarian or breast cancer, those with Turner syndrome, those approaching natural menopause, and those who are breastfeeding. It is generally predicted that stem cell-based therapies would be both safe and effective. In fact, several types of cells have been described as safe, though their effectiveness and therapeutic application are yet to be defined. Several factors exist which could affect the results of treatment, such as cell handling, ex-vivo preparation strategies, variations in tissue of origin, potency, and immunocompatibility. Accordingly, cell types potentially effective in regenerative medicine could be recognized. Notably, products of MSCs from various sources of tissues show different levels of regenerative capabilities. The ultimate focus of the review is on adipose tissue-derive MCSs (ADMSCs), which possess exceptional features such as general availability, great ability to proliferate and differentiate, immunomodulatory capabilities, and low immunogenicity.
Collapse
Affiliation(s)
- Narges Nouri
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
50
|
Zhang S, Zhu D, Li Z, Huang K, Hu S, Lutz H, Xie M, Mei X, Li J, Neal-Perry G, Wang S, Cheng K. A stem cell-derived ovarian regenerative patch restores ovarian function and rescues fertility in rats with primary ovarian insufficiency. Theranostics 2021; 11:8894-8908. [PMID: 34522217 PMCID: PMC8419036 DOI: 10.7150/thno.61690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: Primary ovarian insufficiency (POI) normally occurs before age 40 and is associated with infertility. Hormone replacement therapy is often prescribed to treat vasomotor symptom, but it cannot restore ovarian function or fertility. Stem cell therapy has been studied for the treatment of POI. However, the application of live stem cells has suffered from drawbacks, such as low cell retention/engraftment rate, risks for tumorigenicity and immunogenicity, and lack of off-the-shelf feasibility. Methods: We developed a therapeutic ovarian regenerative patch (ORP) that composed of clinically relevant hydrolysable scaffolds and synthetic mesenchymal stem cells (synMSCs), which are microparticles encapsulating the secretome from MSCs. The therapeutic potency of ORP was tested in rats with cisplatin induced POI injury. Results:In vitro studies revealed that ORP stimulated proliferation of ovarian somatic cells (OSCs) and inhibited apoptosis under injury stress. In a rat model of POI, implantation of ORP rescued fertility by restoring sexual hormone secretion, estrus cycle duration, and follicle development. Conclusion: ORP represents a cell-free, off-the-shelf, and clinically feasible treatment for POI.
Collapse
Affiliation(s)
- Sichen Zhang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China. NO.1 DaHua Road, Dong Dan, Beijing 100730, P. R. China
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College. No. 9 Dong Dan Santiao, Beijing 100730, P.R. China
| | - Dashuai Zhu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhenhua Li
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ke Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shiqi Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Halle Lutz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mengjie Xie
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China. NO.1 DaHua Road, Dong Dan, Beijing 100730, P. R. China
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College. No. 9 Dong Dan Santiao, Beijing 100730, P.R. China
| | - Xuan Mei
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Junlang Li
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Genevieve Neal-Perry
- Department of Obstetrics and Gynecology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China. NO.1 DaHua Road, Dong Dan, Beijing 100730, P. R. China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College. No. 9 Dong Dan Santiao, Beijing 100730, P.R. China
| | - Ke Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|