1
|
Siddiq A A, Dileep SA, Sj AR, Singam SSR, Martin A. Saffron and its active constituents ameliorate hypercholesterolemia by inhibiting PCSK9 and modulating Sortilin, LDLR, and SREBP-2 signaling in high fat diet induced hypercholesterolemic C57BL/6 mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119697. [PMID: 40157403 DOI: 10.1016/j.jep.2025.119697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/17/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron (Crocus sativus L.) has long been used in Ayurveda, Iranian, and Chinese traditional medicine as a natural remedy for hypercholesterolemia, obesity, and liver disorders though its therapeutic mechanism remains unclear. AIM OF THE STUDY This study explores the mechanism by which saffron extract (SE), crocin (CN), and crocetin (CR) mitigate high fat diet (HFD) induced hypercholesterolemia and hepatic inflammation in C57BL/6 mice, focusing on their inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9). MATERIALS AND METHODS C57BL/6 mice (N = 10/group) were fed either a, normal diet, HFD, or HFD supplemented with SE, CN, CR, or atorvastatin for 12 weeks. Plasma lipids and inflammatory markers were measured. Histopathological changes were assessed via H&E and Sudan black staining. Gene expression was analyzed using qRT-PCR, and ligand-protein interactions were studied using molecular docking, simulation, and thermophoresis. RESULTS HFD-fed mice exhibited dyslipidemia, liver damage, and inflammation, which SE, CN, and CR significantly improved. Treatments reduced cholesterol, triglycerides, and reactive oxygen species, reversed fatty liver degeneration, and downregulated PCSK9 and sortilin expression while upregulating LDLR. They suppressed transcription factors SREBP-1C and SREBP-2 and reduced inflammatory markers, including TNF-α, while increasing IL-10 expression. CR reduced plasma PCSK9 secretion by 39.9 % (p < 0.05). Docking and simulation studies confirmed the strong binding potential of CR and CN to PCSK9. CONCLUSION Saffron and its active components (CN and CR) are novel natural PCSK9 inhibitors that effectively ameliorate hypercholesterolemia by modulating sortilin, LDLR and SREBP-2 pathway, potentially opening the way for developing new therapeutic approaches for managing cholesterol related disorders.
Collapse
Affiliation(s)
- Aisha Siddiq A
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Shaik Abdul Dileep
- Food Safety and Analytical Quality Control Laboratory, CSIR - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India.
| | - Aditya Rao Sj
- Plant Cell Biotechnology Department, CSIR - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India.
| | - Siva Sankara Reddy Singam
- Food Safety and Analytical Quality Control Laboratory, CSIR - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India.
| | - Asha Martin
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysuru, 570 020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
2
|
Pang H, Badehnoosh B. Synergistic strength: unleashing exercise and polyphenols against breast cancer. Cancer Cell Int 2025; 25:144. [PMID: 40234950 PMCID: PMC11998149 DOI: 10.1186/s12935-025-03767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Breast cancer remains a major global health challenge, necessitating innovative preventive and therapeutic strategies. Emerging evidence such as clinical trials suggests that the combination of exercise and polyphenol intake exerts synergistic effects in mitigating breast cancer progression by modulating key molecular pathways. Exercise enhances immune function, reduces inflammation, and regulates cellular metabolism, while polyphenols, natural compounds found in various plant-based foods, exhibit antioxidant, anti-inflammatory, and anti-carcinogenic properties. Together, these interventions influence apoptosis, oxidative stress, and ferroptosis which play crucial roles in breast cancer pathophysiology. This review explores the molecular mechanisms underlying the combined impact of exercise and polyphenols on breast cancer prevention and treatment. Understanding the interplay between exercise and polyphenols at the molecular level could pave the way for novel, non-invasive therapeutic strategies. Future research should focus on optimizing exercise regimens and dietary interventions to maximize their anti-cancer benefits. By bridging molecular insights with clinical applications, this review aims to provide a foundation for incorporating lifestyle-based interventions into breast cancer management. Our findings collectively highlight the promising potential of combining curcumin supplementation with exercise as a multifaceted approach to breast cancer treatment. The synergistic effects observed in various studies suggest that integrating lifestyle modifications with dietary interventions may enhance therapeutic efficacy and mitigate cancer progression. Further clinical investigations are warranted to validate these results and explore their applicability in human subjects. The evidence supports a holistic strategy for breast cancer management that could improve patient outcomes and quality of life during treatment.
Collapse
Affiliation(s)
- Haifan Pang
- Department of Physical Education, China University of Political Science and Law, Beijing, 102249, China.
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Chen Z, Lin S, Xu Z, Wang T, Wang S, Zhong J, Tong Y, Wang P, Feng P. Comprehensive pharmacokinetic analysis of trans-crocetin and its metabolites- cis-crocetin, CM, and CD- in rats using UPLC-Q-Orbitrap-MS/MS method. Fitoterapia 2025; 182:106460. [PMID: 40020788 DOI: 10.1016/j.fitote.2025.106460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Crocetin, an active component of saffron (Crocus sativus L.), exhibits antidepressant, anti-tumor, and anti-diabetic effects. However, the pharmacokinetics of trans-crocetin and its metabolites, such as cis-crocetin, crocetin-monoglucuronide (CM), and crocetin-diglucuronide (CD), after intragastric (i.g.) administration of trans-crocetin in vivo remains underexplored. In the present study, a sensitive and reliable UPLC-Q-Orbitrap-MS/MS method was developed to comprehensively elucidate the preclinical pharmacokinetic patterns of trans-crocetin and the distribution characteristics of its metabolites in rats for the first time. The established UPLC-Q-Orbitrap-MS/MS method has good specificity and selectivity, with the accuracy, precision, recovery, and matrix effect meeting the methodological requirements. Pharmacokinetic analysis revealed rapid absorption of trans-crocetin into the blood, with a biphasic absorption pattern observed for trans-crocetin and CM. The absorbed trans/cis-crocetin were widely distributed in rat tissues, especially spleen, heart, adipose and lungs. Notably, trans/cis-crocetin and CM were detected simultaneously in rat brain tissue, indicating that crocetin can cross the blood-brain barrier. The CD was only detected in plasma and not in other tissues. The small intestine and liver appear to be key sites for the glucuronidation and conformational change of trans-crocetin, respectively. The elimination rates of trans/cis-crocetin and CM in tissues were significantly slower than in the blood. Trans-Crocetin was primarily excreted in feces and kidneys, while cis-crocetin and CM were cleared mainly by the kidneys. The pharmacokinetic process and tissue distribution characteristics of trans/cis-crocetin, CM, and CD were expounded in this study, which can provide a scientific basis and guidance for the further development and utilization of crocetin.
Collapse
Affiliation(s)
- Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Susu Lin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The First Hospital of Jiaxing, Jiaxing 314001, People's Republic of China
| | - Zijin Xu
- College of Pharmacy, Jiangxi Medical College, Shangrao, Jiangxi 334000, People's Republic of China
| | - Ting Wang
- Institute of Natural Medicine and Health Product, School of Advanced Study, Taizhou University, Taizhou 318000, People's Republic of China
| | - Shaoxian Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jian Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yingpeng Tong
- Institute of Natural Medicine and Health Product, School of Advanced Study, Taizhou University, Taizhou 318000, People's Republic of China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Peishi Feng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Jinhua Innovation Joint Research Institute of Zhejiang University of Technology, 322002, People's Republic of China.
| |
Collapse
|
4
|
Sabeti Akbar-Abad M, Farkhondeh T, Majidpour M, Samini F, Aschner M, Alemzadeh E, Samarghandian S. The Therapeutic Role of Saffron and Its Components Mediated Through Nrf2 in Diabetes and Related Pathologies. J Med Food 2025; 28:309-324. [PMID: 40172359 DOI: 10.1089/jmf.2024.k.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
Today, diabetes is considered a growing global epidemic. In the diabetic environment, a large amount of reactive oxygen species are produced. This type of active oxygen causes severe damage to cell membranes, proteins, and DNA. Therefore, finding a solution to deal with and reduce this type of reactive oxygen is very important. One of the most effective ways to deal with oxidative damage and inflammation is the modulation of the nuclear factor erythroid 2 (Nrf2) signaling pathway. One of the useful natural substances that can be used for treatment in the signaling system is saffron. In this article, research evaluating the medicinal effects of saffron and its compounds and their mechanisms of action, especially the Nrf2 signaling pathway, have been investigated and studied. The results show that saffron and its components have the potential to treat diabetes due to their unique properties.
Collapse
Affiliation(s)
| | - Tahereh Farkhondeh
- Geriatric Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fariborz Samini
- Department of Neurosurgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Effat Alemzadeh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Physiology, School of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
5
|
Parastar H, Yazdanpanah H, Weller P. Non-targeted volatilomics for the authentication of saffron by gas chromatography-ion mobility spectrometry and multivariate curve resolution. Food Chem 2025; 465:142074. [PMID: 39571437 DOI: 10.1016/j.foodchem.2024.142074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/12/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
In the present contribution, a novel non-targeted volatilomic study based on headspace GC-IMS (HS-GC-IMS) was developed for the authentication and geographical origin discrimination of saffron. In this regard, multivariate curve resolution-alternating least squares (MCR-ALS) was employed to recover the pure GC elution and IMS profiles of saffron metabolites. Iranian saffron samples from seven important areas were analyzed by HS-GC-IMS. The resulting second-order GC-IMS datasets were organized in a augmented matrix and processed using MCR-ALS with various constraints. The MCR-ALS resolved GC profiles were analyzed by different pattern recognition techniques; principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and data driven-soft independent modeling of class analogy (DD-SIMCA). The saffron samples were assigned to their seven geographical origins with an accuracy of 89.0 %. Additionally, four adulterants (style, safflower, madder and calendula) were reliably detected with over 94.0 % accuracy. In this context, GC-IMS substantially outperformed the commonly used FT-NIR spectroscopy approach.
Collapse
Affiliation(s)
- Hadi Parastar
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-9516, Tehran, Iran.
| | - Hassan Yazdanpanah
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Toxicology and Pharmacology Department, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Philipp Weller
- Institute for Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, 68163 Mannheim, Germany.
| |
Collapse
|
6
|
Wang S, Song Y, Chen M, Bai B, Zhou L, Zhou C, Zhang Y, Huang Z, Si W. Multi-component screening coupled with ultrasound-assisted green extraction based on HPLC-HRMS for bio-actives analysis in saffron ( Crocus sativus L.). Food Chem X 2025; 25:102236. [PMID: 39974536 PMCID: PMC11838112 DOI: 10.1016/j.fochx.2025.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
A database of 115 bio-actives from seven subclasses, including information on retention time, parent ion m/z, fragment m/z, and isotopic fit, was established, and an instrumental method for simultaneous analysis of these targets was optimised. An ultrasound-assisted preparation method at 50 °C for 50 min with a 1:60 solid-liquid ratio, water as the solvent was proposed for the screening of unknown components and the antioxidant analysis in saffron. The self-built database and untargeted analysis identified 32 and 103 bio-actives in saffron, respectively. The comparative analysis revealed that the antioxidant capacity of saffron petals was superior to that of stigmas. Correlation and multivariate statistical analyses indicated that terpenoids may be the main active substances in stigmas, while flavonoids and carboxylic acid derivatives play a pivotal role in conferring antioxidant activity to de-stigmatised saffron. The method serves as an ideal tool for mining the functional components of saffron and other agricultural products.
Collapse
Affiliation(s)
- Shouying Wang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yiqing Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Miaomiao Chen
- School of Health Sciences and Engineering, Shanghai University of Technology, Shanghai 200093, China
| | - Bing Bai
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Lin Zhou
- Forest and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Changyan Zhou
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yongchun Zhang
- Forest and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhiying Huang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wenshuai Si
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- School of Health Sciences and Engineering, Shanghai University of Technology, Shanghai 200093, China
| |
Collapse
|
7
|
Mariani A, Marconi G, Ferradini N, Bocchini M, Lorenzetti S, Chiorri M, Russi L, Albertini E. A Proposed Saffron Soilless Cultivation System for a Quality Spice as Certified by Genetic Traceability. PLANTS (BASEL, SWITZERLAND) 2024; 14:51. [PMID: 39795311 PMCID: PMC11723413 DOI: 10.3390/plants14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Saffron (Crocus sativus L.) is one of the most expensive spices in the world due to its strong market demand combined with its labor-intensive production process, which needs a lot of labor and has significant costs. New cultivation methods and traceability systems are required to improve and valorize local Italian saffron production. In this study, we conducted a three-year trial in Umbria (Central Italy), looking for a soilless cultivation method based on wooden bins posted at a suitable height from the ground to ease the sowing of corms and harvesting of flowers. Moreover, the spice traceability could be based on investigating the genetic variability of Italian saffron populations using SNP markers. The proposed novel cultivation method showed significantly higher stigma and corm production than the traditional one. At the same time, the genetic analysis revealed a total of 55 thousand SNPs, 53 of which were specific to the Italian saffron populations suitable to start a food traceability and spice certification.
Collapse
Affiliation(s)
| | - Gianpiero Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (A.M.); (N.F.); (M.B.); (S.L.); (M.C.); (E.A.)
| | | | | | | | | | - Luigi Russi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (A.M.); (N.F.); (M.B.); (S.L.); (M.C.); (E.A.)
| | | |
Collapse
|
8
|
Abdian S, Fakhri S, Moradi SZ, Khirehgesh MR, Echeverría J. Saffron and its major constituents against neurodegenerative diseases: A mechanistic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156097. [PMID: 39577115 DOI: 10.1016/j.phymed.2024.156097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Neurodegeneration has been recognized as the main pathophysiological alteration in the majority of brain-related diseases. Despite contemporary attempts to provide acceptable medicinal therapies, the conclusion has not been much beneficial. Besides, the complex pathophysiological mechanisms behind neurodegenerative diseases (NDDs) urge the needs for finding novel multi-target agents. Accordingly, saffron with major active constituents and as multi-targeting agents have shown beneficial effects in modulating NDDs with higher efficacy and lower side effects. PURPOSE The present study provides a systematic and comprehensive review of the existing in vitro, in vivo, and clinical data on the effectiveness, and signaling pathways of saffron and its key phytochemical components in the management of NDDs. The need to develop novel saffron delivery systems is also considered. METHODS Studies were identified through a systematic and comprehensive search in Science Direct, PubMed, and Scopus databases through April 30, 2024. The whole saffron major constituents (e.g., saffron, crocin, crocetin, picrocrocin, and safranal) and NDDs (e.g., neuro*, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis, Huntington*, Parkinson*, Alzheimer*, and brain) were selected as keywords to find related studies. In the systematic analysis, 64 articles were directly included in the current study. Additional reports were added within the comprehensive studies in the review. RESULTS Saffron and its active metabolites crocin, crocetin, safranal, and picrocrocin have shown acceptable efficacy in managing NDDs like Alzheimer's disease, Parkinson's disease, Attention deficit hyperactivity disorder, depression, and other NDDs via modulating apoptotic (e.g., caspases, Bax/Bcl-2, cytochrome c, and death receptors), inflammatory (e.g., NF-κB, IL-1β, IL-6, TNF-α, and COX-2), and oxidative strass (e.g., Nrf2, GSH, GPx, CAT, SOD, MDA, ROS, and nitrite) signaling pathways. The presented in vitro, in vivo, and clinical evidences showed us a better future of controlling NDDs with higher efficacy, while decreasing associated side effects with no significant toxicity. Additionally, employing novel delivery systems could increase the efficacy of saffron phytoconstituents to resolve the issues pharmacokinetic limitations. CONCLUSION Saffron and its major constituents employ anti-inflammatory, anti-apoptotic and antioxidant mechanisms in modulating several dysregulated-signaling pathways in NDDs. However, further research is necessary to elucidate the precise underlying mechanisms in exploring the feasibility of using saffron active compounds against NDDs. More studies should focus on dose-response relationships, long-term effects, highlighting key mechanisms, and designing more well-controlled clinical trials. Additionally, developing stable and cost-benefit novel delivery systems in future works helps to remove the pharmacokinetic limitations of saffron major constituents.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Khan R, Farooq MS, Khelifi A, Ahmad U, Ahmad F, Riaz S. Internet of things (IoT) based saffron cultivation system in greenhouse. Sci Rep 2024; 14:22589. [PMID: 39343800 PMCID: PMC11439948 DOI: 10.1038/s41598-024-69513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 08/06/2024] [Indexed: 10/01/2024] Open
Abstract
Saffron is the world's most expensive and legendary crop that is widely used in cuisine, drugs, and cosmetics. Therefore, the demand for saffron is increasing globally day by day. Despite its massive demand the cultivation of saffron has dramatically decreased and grown in only a few countries. Saffron is an environment-sensitive crop that is affected by various factors including rapid change in climate, light intensity, pH level, soil moisture, salinity level, and inappropriate cultivation techniques. It is not possible to control many of these environmental factors in traditional farming. Although, many innovative technologies like Artificial Intelligence and Internet of Things (IoT) have been used to enhance the growth of saffron still, there is a dire need for a system that can overcome primary issues related to saffron growth. In this research, we have proposed an IoT-based system for the greenhouse to control the numerous agronomical variables such as corm size, temperature, humidity, pH level, soil moisture, salinity, and water availability. The proposed architecture monitors and controls environmental factors automatically and sends real-time data from the greenhouse to the microcontroller. The sensed values of various agronomical variables are compared with threshold values and saved at cloud for sending to the farm owner for efficient management. The experiment results reveal that the proposed system is capable to maximize saffron production in the greenhouse by controlling environmental factors as per crop needs.
Collapse
Affiliation(s)
- Rabia Khan
- Scool of System and Technology, University of Management and Technology, Lahore, 54000, Pakistan
| | - Muhammad Shoaib Farooq
- Scool of System and Technology, University of Management and Technology, Lahore, 54000, Pakistan
| | - Adel Khelifi
- Computer Science and Information Technology, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Umer Ahmad
- Department of Computer Science, Garrison University Lahore, Lahore, Pakistan
| | - Faizan Ahmad
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK.
| | - Shamyla Riaz
- Scool of System and Technology, University of Management and Technology, Lahore, 54000, Pakistan
| |
Collapse
|
10
|
Mirzavi F, Rajabian A, Hosseini H. The potential protective role of carotenoids from saffron: A focus on endoplasmic reticulum stress-related organ damage. Food Sci Nutr 2024; 12:6108-6122. [PMID: 39554322 PMCID: PMC11561782 DOI: 10.1002/fsn3.4289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/16/2024] [Accepted: 06/08/2024] [Indexed: 11/19/2024] Open
Abstract
The anticancer, antioxidant, and immunomodulatory properties of carotenoids from saffron or apocarotenoids (e.g., crocin, safranal, crocetin, and picrocrocin) have prompted research into their benefits. Apocarotenoids seem to be effective compound for the treatment of chronic diseases, such as neurodegenerative, cardiovascular, cancer, respiratory, and metabolic disorders. Endoplasmic reticulum (ER) is an essential organelle found in the cytoplasm of eukaryotic cells that participates in the biosynthesis of proteins, lipids, and steroid hormones. Given the role of the ER in the regulation of several fundamental biological processes, including metabolic pathways and immune responses, aberrant ER function can have a significant influence on these vital processes and result in serious pathological consequences. Exposure of cell to adverse environmental challenges, such as toxic agents, ischemia, and so on, causes accumulation of unfolded or misfolded proteins in the ER lumen, also called ER stress. There is a growing evidence to suggest that ER disturbance in the form of oxidative/nitrosative stress and subsequent apoptotic cell death plays major roles in the pathogenesis of many human diseases, including cardiovascular diseases, diabetes mellitus, neurodegenerative diseases, and liver diseases. Apocarotenoids with their unique properties can modulate ER stress through PERK/eIF2α/ATF4/CHOP (protein kinase R (PKR)-like ER kinase/eukaryotic initiation factor 2α/activating transcription factor 4/C/EBP /homologous protein) and X-Box Binding Protein 1/activating transcription factor 6 (XBP1/ATF6) pathways. In addition, they suppress apoptosis through inhibition of endoplasmic and mitochondrial-dependent caspase cascade and can stimulate SIRT1 (silent information regulator 1) and Nrf2 (nuclear factor erythroid 2-related factor 2) expression, thereby leading to protection against oxidative stress. This review summarizes the potential benefits of apocarotenoids in various ER-stress-related disorders.
Collapse
Affiliation(s)
- Farshad Mirzavi
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Arezoo Rajabian
- Neuroscience Research CenterMashhad University of Medical SciencesMashhadIran
- Department of NeuroscienceFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Hossein Hosseini
- Department of Clinical BiochemistryFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| |
Collapse
|
11
|
Lv S, Yang N, Lu Y, Zhang G, Zhong X, Cui Y, Huang Y, Teng J, Sai Y. The therapeutic potential of traditional Chinese medicine in depression: focused on the modulation of neuroplasticity. Front Pharmacol 2024; 15:1426769. [PMID: 39253375 PMCID: PMC11381291 DOI: 10.3389/fphar.2024.1426769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Depression, a mood disorder characterized by a persistent low mood and lack of enjoyment, is considered the leading cause of non-fatal health losses worldwide. Neuroplasticity refers to the brain's ability to adapt to external or internal stimuli, resulting in functional and structural changes. This process plays a crucial role in the development of depression. Traditional Chinese Medicine (TCM) shows significant potential as a complementary and alternative therapy for neurological diseases, including depression. However, there has been no systematic summary of the role of neuroplasticity in the pathological development of depression and TCM Interventions currently. This review systematically summarized recent literature on changes in neuroplasticity in depression and analyzed the regulatory mechanisms of active metabolites in TCM and TCM formulas on neuroplasticity in antidepressant treatment. Additionally, this review discussed the limitations of current research and the application prospects of TCM in regulating neuroplasticity in antidepressant research.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China
| | - Yaru Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanyan Sai
- University Town Hospital, Afiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Rashid M, Rashid R, Saroya S, Deverapalli M, Brim H, Ashktorab H. Saffron as a Promising Therapy for Inflammatory Bowel Disease. Nutrients 2024; 16:2353. [PMID: 39064796 PMCID: PMC11280066 DOI: 10.3390/nu16142353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the gastrointestinal tract (GI), characterized by recurrent episodes of inflammation and tissue destruction. It affects an increasing number of individuals worldwide who suffer from Crohn's disease (CD) or ulcerative colitis (UC). Despite substantial advances in understanding the underlying causes of IBD, the available treatments remain restricted and are sometimes accompanied by severe consequences. Consequently, there is an urgent need to study alternate therapeutic options. This review assesses the present drugs, identifies their limitations, and proposes the use of saffron, a natural plant with great therapeutic potential based on preclinical and clinical investigations. Saffron has gained attention for its potential therapeutic benefits in treating various ailments due to its established bioactive compounds possessing antioxidant and anti-inflammatory properties. This review covers how saffron impacts the levels of calprotectin, an inflammatory marker, for various inflammatory responses in multiple diseases including IBD. Data from clinical trials were assessed to determine the efficacy and safety of using saffron to counter inflammation in multiple diseases. Studies have shown that saffron may protect against inflammatory bowel disease (IBD) through several mechanisms by inhibiting pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), reducing oxidative stress through antioxidant effects, enhancing mucosal barrier function by upregulating tight junction proteins, and modulating the gut microbiota composition to promote beneficial bacteria while suppressing pathogenic ones; these combined actions contribute to its therapeutic potential in managing and alleviating the symptoms of IBD. This will enable future research endeavors and expedite the translation of saffron-based interventions into clinical practice as a valuable adjunctive therapy or a potential alternative to conventional treatments, thereby enhancing the quality of life for individuals suffering from inflammatory diseases including IBD.
Collapse
Affiliation(s)
| | | | | | | | | | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University College of Medicine, Washington, DC 20059, USA; (M.R.); (R.R.); (S.S.); (M.D.); (H.B.)
| |
Collapse
|
13
|
Giannoulaki P, Kotzakioulafi E, Nakas A, Kontoninas Z, Karlafti E, Evripidou P, Kantartzis K, Savopoulos C, Chourdakis M, Didangelos T. Effect of Crocus sativus Extract Supplementation in the Metabolic Control of People with Diabetes Mellitus Type 1: A Double-Blind Randomized Placebo-Controlled Trial. Nutrients 2024; 16:2089. [PMID: 38999837 PMCID: PMC11243156 DOI: 10.3390/nu16132089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Introduction-Background: Data from experimental trials show that Crocus sativus L. (saffron) is considered to improve glycemia, lipid profile, and blood pressure and reduce oxidative stress. So far, clinical trials have been conducted in individuals with metabolic syndrome and Diabetes Mellitus type 2 (DMT-2). The purpose of this study is to assess the effectiveness of saffron in individuals with Diabetes Mellitus type 1 (DMT-1). PATIENTS-METHODS 61 individuals with DMT-1, mean age 48 years old (48.3 ± 14.6), 26 females (42.6%) were randomized to receive a new oral supplement in sachets containing probiotics, prebiotics, magnesium, and Crocus sativus L. extract or placebo containing probiotics, prebiotics and magnesium daily for 6 months. Glycemic control was assessed with a continuous glucose monitoring system and laboratory measurement of HbA1c and lipid profile was also examined. Blood pressure at baseline and end of intervention was also measured. Individuals were either on a continuous subcutaneous insulin infusion with an insulin pump or in multiple daily injection regimens. Diabetes distress and satiety were assessed through a questionnaire and body composition was assessed with bioelectrical impedance. RESULTS At the end of the intervention, the two groups differed significantly only in serum triglycerides (p = 0.049). After 6 months of treatment, a significant reduction in the active group was observed in glycated hemoglobin (p = 0.046) and serum triglycerides (p = 0.021) compared to baseline. The other primary endpoints (glycemic control, lipid profile, blood pressure) did not differ within the groups from baseline to end of intervention, and there was no significant difference between the two groups. Diabetes distress score improved significantly only in the active group (p = 0.044), suggesting an overall improvement in diabetes disease burden in these individuals but that was not significant enough between the two groups. CONCLUSIONS A probiotic supplement with saffron extract improves serum triglycerides in well-controlled people with DMT-1 and may potentially be a valuable adjunct for enhancing glycemic control.
Collapse
Affiliation(s)
- Parthena Giannoulaki
- Department of Clinical Nutrition, University General Hospital of Thessaloniki AHEPA, 54636 Thessaloniki, Greece
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| | - Evangelia Kotzakioulafi
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| | - Alexandros Nakas
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| | - Zisis Kontoninas
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| | - Eleni Karlafti
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| | - Polykarpos Evripidou
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| | - Konstantinos Kantartzis
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, 72076 Tübingen, Germany;
- Institute for Diabetes Research and Metabolic Diseases (IDM), Helmholtz Centre Munich, University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
| | - Christos Savopoulos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Triantafyllos Didangelos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, School of Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.N.); (Z.K.); (E.K.); (P.E.); (C.S.); (T.D.)
| |
Collapse
|
14
|
Criado-Navarro I, Ledesma-Escobar CA, Pérez-Juan P, Priego-Capote F. Distribution of Main Bioactive Compounds from Saffron Species as a Function of Infusion Temperature and Time in an Oil/Water System. Molecules 2024; 29:3080. [PMID: 38999032 PMCID: PMC11243231 DOI: 10.3390/molecules29133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Most research on saffron has focused on its composition and beneficial effects, while the culinary perspective to enhance its gastronomic potential remains unexplored. This study aims to define the transfer of the main compounds responsible for color, flavor, and aromatic properties, evaluating three critical variables: temperature (60 °C, 80 °C and 100 °C), infusion time (ranging from 10 to 30 min), and the composition of the medium (water, oil, and water/oil). Samples were analyzed using the LC-QTOF MS/MS and ISO 3632-1:2011 methods. The major compounds were crocins, including trans-crocin and picrocrocin. Among the flavonoids, kaempferol 3-O-sophoroside stands out. Regarding extraction conditions, crocins, glycoside flavonoids, and picrocrocin were enhanced in water, the former in 100% water and at low temperatures, while picrocrocin proved to be the most stable compound with extraction favored at high temperatures. The variable with the greatest incidence of picrocrocin isolation seemed to be the concentration of water since water/oil compositions reported higher concentrations. Safranal and kaempferol were enriched in the oil phase and at lower temperatures. This study provides a chemical interpretation for the appropriate gastronomic use of saffron according to its versatility. Finally, the determination of safranal using the ISO method did not correlate with that obtained using chromatography.
Collapse
Affiliation(s)
- Inmaculada Criado-Navarro
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| | - Carlos Augusto Ledesma-Escobar
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| | - Pedro Pérez-Juan
- Azafrán de La Mancha Protected Designation of Origin Regulatory Council, 45720 Camuñas, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
15
|
Hooshyari Ardakani M, Nosengo C, Felletti S, Catani M, Cavazzini A, De Luca C, Rezadoost H. Enhancing the purification of crocin-I from saffron through the combination of multicolumn countercurrent chromatography and green solvents. Anal Bioanal Chem 2024:10.1007/s00216-024-05228-6. [PMID: 38459965 DOI: 10.1007/s00216-024-05228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Crocin-I, a valuable natural compound found in saffron (Crocus sativus L.), is the most abundant among the various crocin structures. Developing a cost-effective and scalable purification process to produce high-purity crocin-I is of great interest for future investigations into its biological properties and its potential applications in the treatment of neurological disorders. However purifying crocin-I through single-column preparative chromatography (batch) poses a yield-purity trade-off due to structural similarities among crocins, meaning that the choice of the collection window sacrifices either yield in benefit of higher purity or vice versa. This study demonstrates how the continuous countercurrent operating mode resolves this dilemma. Herein, a twin-column MCSGP (multicolumn countercurrent solvent gradient purification) process was employed to purify crocin-I. This study involved an environmentally friendly ethanolic extraction of saffron stigma, followed by an investigation into the stability of the crocin-I within the feed under varying storage conditions to ensure a stable feed composition during the purification. Then, the batch purification process was initially designed, optimized, and subsequently followed by the scale-up to the MCSGP process. To ensure a fair comparison, both processes were evaluated under similar conditions (e.g., similar total column volume). The results showed that, at a purity grade of 99.7%, the MCSGP technique demonstrated significant results, namely + 334% increase in recovery + 307% increase in productivity, and - 92% reduction in solvent consumption. To make the purification process even greener, the only organic solvent employed was ethanol, without the addition of any additive. In conclusion, this study presents the MCSGP as a reliable, simple, and economical technique for purifying crocin-I from saffron extract, demonstrating for the first time that it can be effectively applied as a powerful approach for process intensification in the purification of natural products from complex matrices.
Collapse
Affiliation(s)
- Mohammad Hooshyari Ardakani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Chiara Nosengo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Simona Felletti
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Martina Catani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
- Council for Agricultural Research and Economics, CREA, Via Della Navicella 2/4, 00184, Rome, Italy
| | - Chiara De Luca
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran.
- Center for International Scientific Studies & Collaboration (CISSC), Ministry of Science Research and Technology, Tehran, Islamic Republic of Iran.
| |
Collapse
|
16
|
Fan T, Jiang K, Wang Z, Chang Y, Tian H, Huang J. Crocetin inhibits mast cell-dependent immediate-type allergic reactions through Ca 2+/PLC/IP3 and TNF pathway. Int Immunopharmacol 2024; 128:111583. [PMID: 38286072 DOI: 10.1016/j.intimp.2024.111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Crocetin is a kind of glycocone naturally occurring in Crocus sativus L.. It is an active metabolite produced by biohydrolysis of Crocus sativus L.. Crocetin has anti-cardiovascular diseases and antioxidant effects, but its anti-allergic effect has not been reported. In this study, the inhibitory effect of crocetin on immunoglobulin E (IgE) - mediated allergic reaction and the mechanism of action were investigated. The passive cutaneous anaphylaxis (PCA) was used to elucidate the anti-allergic effects of crocetin in vivo. Degranulation assay, calcium imaging, and cytokine release assay were to evaluate the anti-allergic effect of crocetin in vitro. We found that crocetin IgE-mediated RBL-2H3 cell degranulation and allergy both in vitro and in vivo. The TNF pathway was inhibited by crocetin in our RNA-seq sequences, Furthermore, crocetin inhibits IgE-mediated calcium influx, and PLC / IP3 phosphorylation in RBL-2H3 cells. Our findings suggested that crocetin revealed prominent anti-allergy activity through TNF and Ca2+/PLC/IP3 pathway.
Collapse
Affiliation(s)
- Ting Fan
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Kai Jiang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zixiao Wang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yu Chang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hua Tian
- Department of Respiratory and geriatrics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Jing Huang
- Department of Clinical Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
17
|
Abd Rahim IN, Mohd Kasim NA, Omar E, Abdul Muid S, Nawawi H. Safety evaluation of saffron extracts in early and established atherosclerotic New Zealand white rabbits. PLoS One 2024; 19:e0295212. [PMID: 38207245 PMCID: PMC10783933 DOI: 10.1371/journal.pone.0295212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024] Open
Abstract
Previous research has shown that natural medications pose health risks, especially in subjects with comorbidities. This study aimed to evaluate the safety of saffron ethanolic extract (SEE) administration in early and established atherosclerotic rabbits. Rabbits were given a high-cholesterol diet (HCD) for 4 and 8 weeks to induce early and established atherosclerosis respectively, and then they were treated with 50 and 100 mg/kg/day SEE. The body weight of the animals was recorded. Blood samples were collected at baseline, pre-treatment, and post-treatment for hematological studies, lipid profiles, and biochemical profiles. Tissue specimens of the vital organs were subjected to histological examination. The above parameters were significantly altered post-intervention with 4 and 8 weeks of HCD. No significant differences in body weight were observed in all the groups post-treatment with 50 and 100mg/kg of SEE compared to pre-treatment. However, low-density lipoprotein cholesterol, total cholesterol, serum urea, and glucose significantly decreased post-treatment with 50 and 100mg/kg/day SEE compared to pre-treatment in early and established atherosclerosis groups. Hematological parameters that were affected post-intervention with HCD returned to their baseline values post-treatment with 50 and 100mg/kg/day SEE. There was a significant improvement in the vital organs post-treatment with 50 and 100mg/kg SEE. SEE can safely be administered without causing harmful effects on the hematological, biochemical profiles, and vital organs. Notably, SEE exerts hypolipidemic and hypoglycemic effects on atherosclerotic conditions. Further clinical trials are warranted to ensure the safety of saffron administration in patients with atherosclerosis-related diseases.
Collapse
Affiliation(s)
- Iman Nabilah Abd Rahim
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Noor Alicezah Mohd Kasim
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Effat Omar
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Suhaila Abdul Muid
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry & Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Hapizah Nawawi
- Department of Pathology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
18
|
Vitiello L, Capasso L, Cembalo G, De Pascale I, Imparato R, De Bernardo M. Herbal and Natural Treatments for the Management of the Glaucoma: An Update. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3105251. [PMID: 38027044 PMCID: PMC10673672 DOI: 10.1155/2023/3105251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/13/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Glaucoma causes the degeneration of the retinal ganglion cells (RGCs) and their axons, inducing a tissue reshaping that affects both the retina and the optic nerve head. Glaucoma care especially focuses on reducing intraocular pressure, a significant risk factor for progressive damage to the optic nerve. The use of natural treatments, such as herbs, vitamins, and minerals, is becoming increasingly popular today. While plants are a rich source of novel biologically active compounds, only a small percentage of them have been phytochemically examined and evaluated for their medicinal potential. It is necessary for eye care professionals to inform their glaucoma patients about the therapy, protection, and efficacy of commonly used herbal medicines, considering the widespread use of herbal medicines. The purpose of this review is to examine evidence related to the most widely used herbal medicines for the management and treatment of glaucoma, to better understand the potential benefits of these natural compounds as supplementary therapy.
Collapse
Affiliation(s)
- Livio Vitiello
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, Polla, 84035 Salerno, Italy
| | - Luigi Capasso
- Eye Unit, “Ospedale del Mare” Hospital, Azienda Sanitaria Locale Napoli 1 Centro, Naples 80147, Italy
| | - Giovanni Cembalo
- Eye Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy
| | - Ilaria De Pascale
- Eye Unit, “Ramazzini” Hospital, Azienda Unità Sanitaria Locale Modena, Carpi 41012, Italy
| | - Roberto Imparato
- Eye Unit, Azienda Unità Sanitaria Locale Valle d'Aosta, Aosta 11100, Italy
| | - Maddalena De Bernardo
- Eye Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy
| |
Collapse
|
19
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
20
|
Islam MR, Dhar PS, Akash S, Syed SH, Gupta JK, Gandla K, Akter M, Rauf A, Hemeg HA, Anwar Y, Aljohny BO, Wilairatana P. Bioactive molecules from terrestrial and seafood resources in hypertension treatment: focus on molecular mechanisms and targeted therapies. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:45. [PMID: 37902881 PMCID: PMC10616036 DOI: 10.1007/s13659-023-00411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Hypertension (HTN), a complex cardiovascular disease (CVD), significantly impacts global health, prompting a growing interest in complementary and alternative therapeutic approaches. This review article seeks to provide an up-to-date and thorough summary of modern therapeutic techniques for treating HTN, with an emphasis on the molecular mechanisms of action found in substances found in plants, herbs, and seafood. Bioactive molecules have been a significant source of novel therapeutics and are crucial in developing and testing new HTN remedies. Recent advances in science have made it possible to understand the complex molecular mechanisms underlying blood pressure (BP)-regulating effects of these natural substances better. Polyphenols, flavonoids, alkaloids, and peptides are examples of bioactive compounds that have demonstrated promise in influencing several pathways involved in regulating vascular tone, reducing oxidative stress (OS), reducing inflammation, and improving endothelial function. The article explains the vasodilatory, diuretic, and renin-angiotensin-aldosterone system (RAAS) modifying properties of vital plants such as garlic and olive leaf. Phytochemicals from plants are the primary in traditional drug development as models for novel antihypertensive drugs, providing diverse strategies to combat HTN due to their biological actions. The review also discusses the functions of calcium channel blockers originating from natural sources, angiotensin-converting enzyme (ACE) inhibitors, and nitric oxide (NO) donors. Including seafood components in this study demonstrates the increased interest in using bioactive chemicals originating from marine sources to treat HTN. Omega-3 fatty acids, peptides, and minerals obtained from seafood sources have anti-inflammatory, vasodilatory, and antioxidant properties that improve vascular health and control BP. Overall, we discussed the multiple functions of bioactive molecules and seafood components in the treatment of HTN.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Sabeena Hussain Syed
- School of Pharmacy, Vishwakarma University, Survey No 2, 3,4, Kondhwa Main Rd, Laxmi Nagar, Betal Nagar, Kondhwa, Pune, Maharashtra, 411048, India
| | | | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to Be University), Himayath Nagar, Hyderabad, Telangana, 500075, India
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan.
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia
| | - Bassam Oudh Aljohny
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
21
|
Panara A, Gikas E, Thomaidis NS. Complete chemical characterization of Crocus sativus via LC-HRMS: Does trimming affect the chemical content of saffron? Food Chem 2023; 424:136452. [PMID: 37257282 DOI: 10.1016/j.foodchem.2023.136452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Saffron, a spice derived from Crocus sativus, which in Iran is subjected to different trimming, is known for its beneficial health effects and high market value. Authentication studies related to geographical origin and adulterants presence mainly exist in literature, however fraud due to trimming has not been reported. In the current research, chemical characterization of six saffron trims, namely Sargol, Negin, Pushal, Bunch, Style, and Powder, was accomplished through suspect and non-target screening employing LC-QToF-MS in both electrospray ionization modes. The samples were extracted using methanol:water (50:50,v:v) and 62 compounds were identified, including amino acids, vitamins, flavonoids, phenolics, carotenoids, cyclohexenones. A clear discrimination among the red trims (Pushal, Sargol and Negin), as well as between Style and Bunch using Multivariate Chemometrics techniques was achieved. Proline and isophorone were highlighted as authenticity markers. Finally, the effect of three harvesting year on the most contributing compounds for trimming discrimination has been evaluated.
Collapse
Affiliation(s)
- Anthi Panara
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Evagelos Gikas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
22
|
Xiong J, Grace MH, Kobayashi H, Lila MA. Evaluation of saffron extract bioactivities relevant to skin resilience. J Herb Med 2023. [DOI: 10.1016/j.hermed.2023.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Mandal D, Sarkar T, Chakraborty R. Critical Review on Nutritional, Bioactive, and Medicinal Potential of Spices and Herbs and Their Application in Food Fortification and Nanotechnology. Appl Biochem Biotechnol 2023; 195:1319-1513. [PMID: 36219334 PMCID: PMC9551254 DOI: 10.1007/s12010-022-04132-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Medicinal or herbal spices are grown in tropical moist evergreen forestland, surrounding most of the tropical and subtropical regions of Eastern Himalayas in India (Sikkim, Darjeeling regions), Bhutan, Nepal, Pakistan, Iran, Afghanistan, a few Central Asian countries, Middle East, USA, Europe, South East Asia, Japan, Malaysia, and Indonesia. According to the cultivation region surrounded, economic value, and vogue, these spices can be classified into major, minor, and colored tropical spices. In total, 24 tropical spices and herbs (cardamom, black jeera, fennel, poppy, coriander, fenugreek, bay leaves, clove, chili, cassia bark, black pepper, nutmeg, black mustard, turmeric, saffron, star anise, onion, dill, asafoetida, celery, allspice, kokum, greater galangal, and sweet flag) are described in this review. These spices show many pharmacological activities like anti-inflammatory, antimicrobial, anti-diabetic, anti-obesity, cardiovascular, gastrointestinal, central nervous system, and antioxidant activities. Numerous bioactive compounds are present in these selected spices, such as 1,8-cineole, monoterpene hydrocarbons, γ-terpinene, cuminaldehyde, trans-anethole, fenchone, estragole, benzylisoquinoline alkaloids, eugenol, cinnamaldehyde, piperine, linalool, malabaricone C, safrole, myristicin, elemicin, sinigrin, curcumin, bidemethoxycurcumin, dimethoxycurcumin, crocin, picrocrocin, quercetin, quercetin 4'-O-β-glucoside, apiol, carvone, limonene, α-phellandrene, galactomannan, rosmarinic acid, limonene, capsaicinoids, eugenol, garcinol, and α-asarone. Other than that, various spices are used to synthesize different types of metal-based and polymer-based nanoparticles like zinc oxide, gold, silver, selenium, silica, and chitosan nanoparticles which provide beneficial health effects such as antioxidant, anti-carcinogenic, anti-diabetic, enzyme retardation effect, and antimicrobial activity. The nanoparticles can also be used in environmental pollution management like dye decolorization and in chemical industries to enhance the rate of reaction by the use of catalytic activity of the nanoparticles. The nutritional value, phytochemical properties, health advantages, and both traditional and modern applications of these spices, along with their functions in food fortification, have been thoroughly discussed in this review.
Collapse
Affiliation(s)
- Debopriya Mandal
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
24
|
García-Montalvo IA, Matías-Pérez D, Hernández-Bautista E, Pérez-Campos E. Inclusion of carotenoids in dietary habits as an alternative to prevent age-related macular degeneration. Front Nutr 2023; 9:1063517. [PMID: 36698471 PMCID: PMC9868752 DOI: 10.3389/fnut.2022.1063517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Iván Antonio García-Montalvo
- Division of Graduate Studies and Research, National Institute of Technology of Mexico/Technological Institute of Oaxaca, Oaxaca, Mexico
| | | | | | | |
Collapse
|
25
|
Sanaie S, Nikanfar S, Kalekhane ZY, Azizi-Zeinalhajlou A, Sadigh-Eteghad S, Araj-Khodaei M, Ayati MH, Andalib S. Saffron as a promising therapy for diabetes and Alzheimer's disease: mechanistic insights. Metab Brain Dis 2023; 38:137-162. [PMID: 35986812 DOI: 10.1007/s11011-022-01059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
The prevalence of both Alzheimer's disease (AD) and diabetes mellitus is increasing with the societies' aging and has become an essential social concern worldwide. Accumulation of amyloid plaques and neurofibrillary tangles (NFTs) of tau proteins in the brain are hallmarks of AD. Diabetes is an underlying risk factor for AD. Insulin resistance has been proposed to be involved in amyloid-beta (Aβ) aggregation in the brain. It seems that diabetic conditions can result in AD pathology by setting off a cascade of processes, including inflammation, mitochondrial dysfunction, and ROS and advanced glycation end products (AGEs) synthesis. Due to the several side effects of chemical drugs and their high cost, using herbal medicine has recently attracted attention for the treatment of diabetes and AD. Saffron and its active ingredients have been used for its anti-inflammatory, anti-oxidant, anti-diabetic, and anti-AD properties. Therefore, in the present review paper, we take account of the clinical, in vivo and in vitro evidence regarding the anti-diabetic and anti-AD effects of saffron and discuss the preventive or postponing properties of saffron or its components on AD development via its anti-diabetic effects.
Collapse
Affiliation(s)
- Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Nikanfar
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Yousefi Kalekhane
- Research Center of Psychiatry and Behavioral Sciences, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Tabriz, Tabriz, Iran
| | - Akbar Azizi-Zeinalhajlou
- Student Research Committee, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hossein Ayati
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sasan Andalib
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, Odense University Hospital, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
26
|
Grewal J, Kumar V, Gandhi Y, Rawat H, Singh R, Singh A, Narasimhaji CV, Acharya R, Mishra SK. Current Perspective and Mechanistic Insights on Bioactive Plant Secondary Metabolites for the Prevention and Treatment of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2023; 23:157-176. [PMID: 37921163 DOI: 10.2174/011871529x262371231009132426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 11/04/2023]
Abstract
Cardiovascular diseases (CVDs) are one of the most prevalent medical conditions of modern era and are one of the primary causes of adult mortality in both developing and developed countries. Conventional medications such as use of aspirin, beta-blockers, statins and angiotensin- converting enzyme inhibitors involve use of drugs with many antagonistic effects. Hence, alternative therapies which are safe, effective, and relatively cheap are increasingly being investigated for the treatment and prevention of CVDs. The secondary metabolites of medicinal plants contain several bioactive compounds which have emerged as alternatives to toxic modern medicines. The detrimental effects of CVDs can be mitigated via the use of various bioactive phytochemicals such as catechin, isoflavones, quercetin etc. present in medicinal plants. Current review intends to accumulate previously published data over the years using online databases concerning herbal plant based secondary metabolites that can help in inhibition and treatment of CVDs. An in-depth review of various phytochemical constituents with therapeutic actions such as antioxidant, anti-inflammatory, vasorelaxant, anti-hypertensive and cardioprotective properties has been delineated. An attempt has been made to provide a probable mechanistic overview for the pertinent phytoconstituent which will help in achieving a better prognosis and effective treatment for CVDs.
Collapse
Affiliation(s)
- Jyotika Grewal
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Vijay Kumar
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Yashika Gandhi
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Hemant Rawat
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Ravindra Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Arjun Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Ch V Narasimhaji
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| | - Rabinarayan Acharya
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Sujeet K Mishra
- Central Ayurveda Research Institute Jhansi, Uttar Pradesh, 284003, India
| |
Collapse
|
27
|
Flavonoid Composition and Antibacterial Properties of Crocus sativus L. Petal Extracts. Molecules 2022; 28:molecules28010186. [PMID: 36615378 PMCID: PMC9822159 DOI: 10.3390/molecules28010186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Saffron petals, which are the main by-products of Crocus sativus L. (Iridaceae family), are produced in large quantities and are known for their many beneficial properties. In this regard, this study aims to investigate the phenolic composition and antibacterial properties of hydroethanolic extracts from Crocus sativus L. petals collected from Serghina (province of Boulmane) in Morocco. The phenolic profiles were characterized using high-performance liquid chromatography coupled to a photodiode array and electrospray ionization mass spectrometry (HPLC-PDA-ESI/MS). The antibacterial potential was evaluated against four bacterial strains potentially causing food-borne disease (Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, and Listeria monocytogenes) using disc diffusion and broth micro-dilution assays. Results showed that a total of 27 phenolic compounds was detected in the Crocus sativus L. petal extracts, which were assigned to flavonoids (kaempferol, quercetin, isorhamnetin, and myricetin derivatives). The most abundant compound was represented by kaempferol-sophoroside isomer (20.82 mg/g ± 0.152), followed by kaempferol-sophoroside-hexoside (2.63 mg/g ± 0.001). The hydroethanolic extracts of Crocus sativus L. petals demonstrated bactericidal effects against Staphylococcus aureus and Listeria monocetogenes and bacteriostatic effects against Escherichia coli and Salmonella typhimurium. Therefore, the by-product Crocus sativus L. petal extracts might be considered as valuable sources of natural antibacterial agents with potential applications in the food and pharmaceutical industries.
Collapse
|
28
|
Chemical Composition Profiling and Antifungal Activity of Saffron Petal Extract. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248742. [PMID: 36557875 PMCID: PMC9787665 DOI: 10.3390/molecules27248742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Numerous fungal plant pathogens can infect fresh fruits and vegetables during transit and storage conditions. The resulting infections were mainly controlled by synthetic fungicides, but their application has many drawbacks associated with the threatened environment and human health. Therefore, the use of natural plants with antimicrobial potential could be a promising alternative to overcome the side effects of fungicides. In this regard, this study aimed at evaluating the antifungal activity potential of saffron petal extract (SPE) against three mains important fungal pathogens: Rhizopus stolonifer, Penicillium digitatum and Botritys cinerea, which cause rot decay on the tomato, orange and apple fruits, respectively. In addition, the organic composition of SPE was characterized by attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy and its biochemical, and gas chromatography-mass spectrometry (GC-MS) analyses were carried out. The obtained results highlighted an increased inhibition rate of the mycelial growth and spore germination of the three pathogenic fungi with increasing SPE concentrations. The mycelial growth and spore germination were completely inhibited at 10% of the SPE for Rhizopus stolonifer and Penicillium digitatum and at 5% for B. cinerea. Interestingly, the in vivo test showed the complete suppression of Rhizopus rot by the SPE at 10%, and a significant reduction of the severity of grey mold disease (37.19%) and green mold, when applied at 5 and 10%, respectively. The FT-IR spectra showed characteristic peaks and a variety of functional groups, which confirmed that SPE contains phenolic and flavonoid components. In addition, The average value of the total phenolic content, flavonoid content and half-maximal inhibitory concentration (IC50) were 3.09 ± 0.012 mg GAE/g DW, 0.92 ± 0.004 mg QE/g DW and 235.15 ± 2.12 µg/mL, respectively. A volatile analysis showed that the most dominant component in the saffron petal is 2(5H)-Furanone (92.10%). Taken together, it was concluded that SPE could be used as an alternative to antioxidant and antifungal compounds for the control of postharvest diseases in fruits.
Collapse
|
29
|
Zamani M, Zarei M, Nikbaf-Shandiz M, Gholami F, Hosseini AM, Nadery M, Shiraseb F, Asbaghi O. The effects of saffron supplementation on cardiovascular risk factors in adults: A systematic review and dose-response meta-analysis. Front Nutr 2022; 9:1055517. [PMID: 36570145 PMCID: PMC9774508 DOI: 10.3389/fnut.2022.1055517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Cardiovascular disease (CVD) is one of the leading causes of death and disability in the world and is estimated to involve more people in the next years. It is said that alternative remedies such as herbs can be used to manage the complications of this disease. For this reason, we aimed to conduct this meta-analysis to systematically assess and summarize the effects of saffron supplementation as an important herb on cardiovascular risk factors in adults. Methods A systematic search was done in PubMed, Scopus, and Web of Science to find eligible articles up to September 2022. Randomized controlled trials (RCTs) that evaluated the effects of saffron on lipid profiles, glycemic control, blood pressure, anthropometric measures, and inflammatory markers were included. In the meta-analysis, 32 studies were taken into account (n = 1674). Results Consumption of saffron significantly decreased triglyceride (TG) (WMD = -8.81 mg/dl, 95%CI: -14.33, -3.28; P = 0.002), total cholesterol (TC) (WMD = -6.87 mg/dl, 95%CI: -11.19, -2.56; P = 0.002), low density lipoprotein (LDL) (WMD = -6.71 mg/dl, 95%CI: -10.51, -2.91; P = 0.001), (P = 0.660), fasting blood glucose (FBG) level (WMD = -7.59 mg/dl, 95%CI: -11.88, -3.30; P = 0.001), HbA1c (WMD = -0.18%, 95%CI: -0.21, -0.07; P < 0.001), homeostasis model assessment-insulin resistance (HOMA-IR) (WMD = -0.49, 95%CI: -0.89, -0.09; P = 0.016), systolic blood pressure (SBP) (WMD = -3.42 mmHg, 95%CI: -5.80, -1.04; P = 0.005), tumor necrosis factor α (TNF-α) (WMD = -2.54 pg/ml, 95%CI: -4.43, -0.65; P = 0.008), waist circumference (WC) (WMD = -1.50 cm; 95%CI: -2.83, -0.18; P = 0.026), malondialdehyde (MDA) (WMD = -1.50 uM/L, 95%CI: -2.42, -0.57; P = 0.001), and alanine transferase (ALT) (WMD = -2.16 U/L, 95%CI: -4.10, -0.23; P = 0.028). Also, we observed that saffron had an increasing effect on total antioxidant capacity (TAC) (WMD = 0.07 mM/L, 95%CI: 0.01, 0.13; P = 0.032). There was linear regression between FBG and the duration of saffron intake. Additionally, the non-linear dose-response analysis has shown a significant association of saffron intervention with HDL (P = 0.049), HOMA-IR (P = 0.002), weight (P = 0.036), ALP (P = 0.016), FBG (P = 0.011), HbA1c (P = 0.002), and TNF-α (P = 0.042). A non-linear association between the length of the intervention and the level of HDL and DBP was also found. Discussion That seems saffron could effectively improve TG, TC, LDL, FBG, HbA1c, HOMA-IR, SBP, CRP, TNF-α, WC, MDA, TAC, and ALT.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Fatemeh Gholami
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amir Mehdi Hosseini
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Nadery
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran,*Correspondence: Farideh Shiraseb,
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Omid Asbaghi,
| |
Collapse
|
30
|
Ezati P, Khan A, Rhim JW, Roy S, Hassan ZU. Saffron: Perspectives and Sustainability for Active and Intelligent Food Packaging Applications. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Akbarizare M. Photodynamic Inactivation Property of Saffron (Crocus sativus) as a Natural Photosensitizer in Combination with Blue Light in Microbial Strains. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2022. [DOI: 10.30699/ijmm.16.6.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Blasco-Fontecilla H, Moyano-Ramírez E, Méndez-González O, Rodrigo-Yanguas M, Martin-Moratinos M, Bella-Fernández M. Effectivity of Saffron Extract (Saffr’Activ) on Treatment for Children and Adolescents with Attention Deficit/Hyperactivity Disorder (ADHD): A Clinical Effectivity Study. Nutrients 2022; 14:nu14194046. [PMID: 36235697 PMCID: PMC9573091 DOI: 10.3390/nu14194046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 12/14/2022] Open
Abstract
Attention Deficit/Hyperactivity Disorder is the most prevalent neurodevelopmental disorder worldwide. Choice treatment includes psychostimulants, but parents tend to be reluctant to administer them due to side effects, and alternatives are needed. Saffron extract is a natural stimulant that has been proven safe and effective for treating a variety of mental disorders. This study compares the efficacy of saffron and the usual treatment with methylphenidate, using objective and pen-and-paper tests. We performed a non-randomized clinical trial with two groups, methylphenidate (n = 27) and saffron (n = 36), in children and adolescents aged 7 to 17. Results show that the efficacy of saffron is comparable to that of methylphenidate. Saffron is more effective for treating hyperactivity symptoms, while methylphenidate is more effective for inattention symptoms.
Collapse
Affiliation(s)
- Hilario Blasco-Fontecilla
- Hospital Universitario Puerta de Hierro Majadahonda, 28222 Majadahonda, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- CIBERSAM (Centro de Investigación en Salud Mental), Carlos III Institute of Health, 28029 Madrid, Spain
- ITA Mental Health, 28043 Madrid, Spain
- Correspondence:
| | | | | | - María Rodrigo-Yanguas
- Hospital Universitario Puerta de Hierro Majadahonda, 28222 Majadahonda, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Marina Martin-Moratinos
- Hospital Universitario Puerta de Hierro Majadahonda, 28222 Majadahonda, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Marcos Bella-Fernández
- Hospital Universitario Puerta de Hierro Majadahonda, 28222 Majadahonda, Spain
- Faculty of Psychology, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Department of Psychology, Universidad Pontificia de Comillas, 28049 Madrid, Spain
| |
Collapse
|
33
|
Nakajima S, Yamamoto M, Kuroki S, Itoh H. Structural and spectroscopic characterization of saffron starches at different growth stages. STARCH-STARKE 2022. [DOI: 10.1002/star.202200119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shusaku Nakajima
- Graduate School of Agricultural Science Kobe University 1‐1 Rokkodai‐cho Nada Kobe 657‐8501 Japan
| | - Masaki Yamamoto
- Graduate School of Agricultural Science Kobe University 1‐1 Rokkodai‐cho Nada Kobe 657‐8501 Japan
| | - Shinichiro Kuroki
- Graduate School of Agricultural Science Kobe University 1‐1 Rokkodai‐cho Nada Kobe 657‐8501 Japan
| | - Hiromichi Itoh
- Graduate School of Agricultural Science Kobe University 1‐1 Rokkodai‐cho Nada Kobe 657‐8501 Japan
| |
Collapse
|
34
|
Mahmod AI, Haif SK, Kamal A, Al-Ataby IA, Talib WH. Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Front Nutr 2022; 9:924192. [PMID: 35990343 PMCID: PMC9386380 DOI: 10.3389/fnut.2022.924192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most deadly cancer worldwide. Nevertheless, more than 70% of CRC cases are resulted from sporadic tumorigenesis and are not inherited. Since adenoma-carcinoma development is a slow process and may take up to 20 years, diet-based chemoprevention could be an effective approach in sporadic CRC. The Mediterranean diet is an example of a healthy diet pattern that consists of a combination of nutraceuticals that prevent several chronic diseases and cancer. Many epidemiological studies have shown the correlation between adherence to the Mediterranean diet and low incidence of CRC. The goal of this review is to shed the light on the anti-inflammatory and anti-colorectal cancer potentials of the natural bioactive compounds derived from the main foods in the Mediterranean diet.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Shatha Khaled Haif
- Department of Pharmacy, Princess Sarvath Community College, Amman, Jordan
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Israa A Al-Ataby
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| |
Collapse
|
35
|
Shakeri R, Savari B, Sheikholeslami MN, Radjabian T, Khorshidi J, Safavi M. Untargeted Metabolomics Analysis of Crocus cancellatus subsp. damascenus (Herb.) B. Mathew Stigmas and Their Anticarcinogenic Effect on Breast Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3861783. [PMID: 36016682 PMCID: PMC9398734 DOI: 10.1155/2022/3861783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/01/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
Safranal, crocin, crocetin, and picrocrocin are major known compounds in the stigma extract of Crocus sativus with various medicinal properties. Crocus cancellatus is another Crocus species that grows extensively in Iran's various regions, such as the Kurdistan province. The predominant metabolites and biological properties of C. cancellatus have not yet been investigated. The ingredients of the stigma ethanol extract of C. cancellatus were investigated using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography with tandem mass spectrometry (LC-MS). The ROIMCR approach was performed to analyze the LC-MS full scan data sets. This method searches the MS regions of interest (ROI) data in the m/z domain and analyses the results using the multivariate curve-resolution alternating least squares (MCR-ALS) chemometrics technique for simultaneous resolution of two extracts. Also, the antiproliferative properties of C. cancellatus against MDA-MB-231 and MCF-7 cancer cells were examined by MTT, dual acridine orange/ethidium bromide test, Annexin V-FITC/PI, and zymography. The GC-MS and LC-MS untargeted metabolomics data analysis of the extract indicated the presence of cytotoxic agents including safranal, crocin, picrocrocin, and crocetin in the stigma ethanol extract of C. cancellatus. Biological tests showed that the viability of MDA-MB-231 and MCF-7 cancer cells is decreased following C. cancellatus treatment in a time- and dose-dependent way in both monolayer and 3D cell cultures. The MCF-7 cell spheroids had greater resistance to the cytotoxic activity of the extract in 3D cell culture than the MDA-MB-231 cell spheroids. The morphological changes of the cells treated with C. cancellatus stigmas extract were indicative of apoptosis. Zymography analysis revealed a similar trend of matrix metallopeptidase-2 (MMP-2) and matrix metallopeptidase-9 (MMP-9) activity in the treated cells with C. cancellatus extract in comparison with doxorubicin treatment as a positive control. The findings of this research indicate that the ethanolic extract of C. cancellatus stigmas was a good source of bioactive metabolites with anticancer activity.
Collapse
Affiliation(s)
- Raheleh Shakeri
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Bahram Savari
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Mahsa N. Sheikholeslami
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran 1417614418, Iran
| | | | - Jalal Khorshidi
- Department of Horticultural Science and Engineering, Research Center of Medicinal Plants Breeding and Development, University of Kurdistan, Sanandaj, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran 13353-5111, Iran
| |
Collapse
|
36
|
Shahbaz K, Chang D, Zhou X, Low M, Seto SW, Li CG. Crocins for Ischemic Stroke: A Review of Current Evidence. Front Pharmacol 2022; 13:825842. [PMID: 35991882 PMCID: PMC9388830 DOI: 10.3389/fphar.2022.825842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Crocins (CRs) and the related active constituents derived from Crocus sativus L. (Saffron) have demonstrated protective effects against cerebral ischemia and ischemic stroke, with various bioactivities including neuroprotection, anti-neuroinflammation, antioxidant, and cardiovascular protection. Among CRs, crocin (CR) has been shown to act on multiple mechanisms and signaling pathways involved in ischemic stroke, including mitochondrial apoptosis, nuclear factor kappa light chain enhancer of B cells pathway, S100 calcium-binding protein B, interleukin-6 and vascular endothelial growth factor-A. CR is generally safe and well-tolerated. Pharmacokinetic studies indicate that CR has poor bioavailability and needs to convert to crocetin (CC) in order to cross the blood-brain barrier. Clinical studies have shown the efficacy of saffron and CR in treating various conditions, including metabolic syndrome, depression, Alzheimer’s disease, and coronary artery disease. There is evidence supporting CR as a treatment for ischemic stroke, although further studies are needed to confirm their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Kiran Shahbaz
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Mitchell Low
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Sai Wang Seto
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Reserach Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| |
Collapse
|
37
|
Pagano C, Ceccarini MR, Faieta M, di Michele A, Blasi F, Cossignani L, Beccari T, Oliva E, Pittia P, Sergi M, Primavilla S, Serafini D, Benedetti L, Ricci M, Perioli L. Starch-based sustainable hydrogel loaded with Crocus sativus petals extract: A new product for wound care. Int J Pharm 2022; 625:122067. [PMID: 35931396 DOI: 10.1016/j.ijpharm.2022.122067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/05/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
Abstract
The aim of the present study was to valorize Crocus sativus petals, the main waste deriving from saffron stigma harvesting, as source of bioactive molecules to be used in health field. Three different dry extracts were prepared by eco-friendly methods (maceration and ultrasound bath assisted maceration) using saffron petals as raw material and ethanol 70 % either ethanol 96 % as extraction solvents. A preliminary evaluation of the antioxidant activity (measured by ABTS*+, DPPH* and FRAP) highlighted that the most suitable extraction solvent is represented by ethanol 70 %. By in vitro studies on keratinocytes emerged that the extract obtained by maceration (rich in gallic and chlorogenic acids) stimulates their growth in a safe concentration range (0.02-0.4 mg/mL) suggesting a potential application in skin diseases such as superficial wounds. Due to the low manageability, the extract was firstly supported on corn starch powder particles and then formulated as starch gel. The obtained formulation showed both suitable rheological properties and spreadability necessary for an easy and pain free application on damaged skin. Moreover, in vitro microbiological studies of starch gel demonstrated antimicrobial activity toward S. epidermidis and self-preserving capacity.
Collapse
Affiliation(s)
- Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy.
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Marco Faieta
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | | | - Francesca Blasi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Eleonora Oliva
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Paola Pittia
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Manuel Sergi
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Sara Primavilla
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini, 1, 06126 Perugia, Italy
| | - Domiziana Serafini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Lucia Benedetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| | - Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy
| |
Collapse
|
38
|
Makaritsis KP, Kotidis C, Papacharalampous K, Kouvaras E, Poulakida E, Tarantilis P, Asprodini E, Ntaios G, Koukoulis GΚ, Dalekos GΝ, Ioannou M. Mechanistic insights on the effect of crocin, an active ingredient of saffron, on atherosclerosis in apolipoprotein E knockout mice. Coron Artery Dis 2022; 33:394-402. [PMID: 35880561 DOI: 10.1097/mca.0000000000001142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND We investigated the effect of crocin treatment on atherosclerosis and serum lipids in apolipoprotein E knockout (ApoE-/-) mice, focusing on the expression of endothelial nitric oxide synthase (eNOS) and hypoxia-induced factor-1 alpha (HIF-1α). METHODS Sixty-two animals were divided into two groups and randomly allocated to crocin (100 mg/kg/day) in drinking water or no crocin. All mice were maintained on standard chow diet containing 5% fat. Crocin was initiated at the 16th week of age and continued for 16 additional weeks. At 32 weeks of age, after blood sampling for plasma lipid determination and euthanasia, proximal aorta was removed and 3 μm sections were used to measure the atherosclerotic area and determine the expression of eNOS and HIF-1α by immunohistochemistry. RESULTS Each group consisted of 31 animals (17 males and 14 females in each group). Crocin significantly reduced the atherosclerotic area (mm2 ± SEM) in treated mice compared to controls, both in males (0.0798 ± 0.017 vs. 0.1918 ± 0.028, P < 0.002, respectively) and females (0.0986 ± 0.023 vs. 0.1765 ± 0.025, P < 0.03, respectively). eNOS expression was significantly increased in crocin-treated mice compared to controls, both in males (2.77 ± 0.24 vs. 1.50 ± 0.34, P=0.004, respectively) and females (3.41 ± 0.37 vs. 1.16 ± 0.44, P=0.003, respectively). HIF-1α expression was significantly decreased in crocin-treated mice compared to controls, both in males (21.25 ± 2.14 vs. 156.5 ± 6.67, P < 0.001, respectively) and females (35.3 ± 7.20 vs. 113.3 ± 9.0, P < 0.01, respectively). No difference was noticed in total, low- and high-density lipoprotein cholesterol between treated and control mice. CONCLUSION Crocin reduces atherosclerosis possibly by modulation of eNOS and HIF-1α expression in ApoE-/- mice without affecting plasma cholesterol.
Collapse
Affiliation(s)
- Konstantinos P Makaritsis
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - Charalampos Kotidis
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
- East Midlands Congenital Heart Centre, University Hospitals of Leicester, Leicester, UK
| | | | - Evangelos Kouvaras
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa
| | - Eirini Poulakida
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - Petros Tarantilis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens
| | - Eftichia Asprodini
- Laboratory of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - George Ntaios
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - George Κ Koukoulis
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa
| | - George Ν Dalekos
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - Maria Ioannou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa
| |
Collapse
|
39
|
Khalaf RA, Asa'ad M, Habash M. Thiomethylphenyl benzenesulfonamides as potential cholesteryl ester transfer protein inhibitors: Synthesis, molecular modeling and biological evaluation. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220601150913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The number of lipid disorders cases has risen dramatically around the world as a result of poor dietary habits, hereditary risk factors, or other diseases or medicines. Cholesteryl ester transfer protein (CETP) is a 476 amino acid lipophilic glycoprotein that helps transport cholesteryl esters and phospholipids from proatherogenic LDL and VLDL to atheroprotective HDL. CETP inhibition increases HDL cholesterol, lowers LDL cholesterol and triglycerides, rendering it a promising therapy option for hyperlipidemia and its comorbidities.
Methods:
In this research, fourteen benzenesulfonamides 7a-7g and 8a-8g were synthesized and identified using 1H-NMR, 13C-NMR, IR and MS. The in vitro biological evaluation of 7a-7g and 8a-8g revealed CETP inhibitory activities ranging from 15.6 to 100% at 10 μM concentration.
Results:
Four aromatic rings compounds bearing either m-CH3 (8c) or p-Cl (8g) were the most potent compounds with 100% CETP inhibition, while the most active compound was 7c bearing three aromatic rings and m-CH3 with an IC50 of 0.12 μM. LibDock displayed that benzeneulfonamides can form hydrophobic interactions with the side chains of Leu129, Cys13, Ala202, Val198, Leu217 and Ile215 and participate in п-п stacking with Phe441, Phe197 and Arg201 in the binding pocket of CETP.
Conclusion:
Pharmacophore mapping showed significant matching with the pharmacophoric features of Hypo4/8 and shape-complemented Hypo4/8 of CETP inhibitors for potent compounds.
Collapse
Affiliation(s)
- Reema Abu Khalaf
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Manal Asa'ad
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Maha Habash
- Department of Pharmacy, Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| |
Collapse
|
40
|
Rahimi G, Shams S, Aslani MR. Effects of crocin supplementation on inflammatory markers, lipid profiles, insulin and cardioprotective indices in women with PCOS: A randomized, double-blind, placebo-controlled trial. Phytother Res 2022; 36:2605-2615. [PMID: 35470916 DOI: 10.1002/ptr.7474] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/29/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial reproductive condition common in women of reproductive age. Hyperlipidemia, insulin resistance, obesity, and chronic low-grade inflammation are associated with PCOS. In a clinical trial study, women with PCOS were divided into two groups (n = 25 each): the intervention group receiving crocin (15 mg, twice daily) and the control group receiving a placebo. The duration of intervention in both groups was 12 weeks. Pre- and postintervention, demographic information, lipid profile, fasting blood glucose (FBG), fasting insulin, and inflammatory markers (interleukin-6 [IL-6] and tumor necrosis factor-alpha [TNF-α]) were measured. Intervention with crocin significantly increased the mean high-density lipoprotein cholesterol postintervention compared to the placebo group, while exerting a suppressive effect on the increase in mean low-density lipoprotein cholesterol, triglycerides, and cholesterol levels. Intervention with crocin also exerted inhibitory effects on changes in FBG and insulin, so that crocin improved insulin and cardioprotective indices. Finally, despite the increased inflammatory markers (IL-6 and TNF-α) in the placebo group, crocin treatment had protective effects on their increased changes. Thus, crocin supplementation could be considered in the therapeutic targets of women with PCOS.
Collapse
Affiliation(s)
- Giti Rahimi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeideh Shams
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Aslani
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Liu J, Zhang Q, Tao T, Wang LY, Sun JY, Wu CJ, Zou WJ. Health benefits of spices in individuals with chemotherapeutic drug-induced cardiotoxicity. Curr Opin Pharmacol 2022; 63:102187. [PMID: 35245798 DOI: 10.1016/j.coph.2022.102187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023]
Abstract
Cardio-oncology is an emerging field that mainly focuses on a series of cardiovascular diseases caused by chemotherapy and radiotherapy. In the history and culture of human nutrition, spices have been emphasized for their wide range of economic and medical applications in addition to being used as a food-flavoring agent and food preservative. Currently, an increasing number of studies have focused on the health benefits of spices in preventing cardiovascular diseases, particularly their antioxidant effects against cardiovascular damage. This review summarizes the cardioprotective effects of black pepper, cardamom, clove, garlic, ginger, onion, and other spices against chemotherapeutic drug-induced cardiotoxicity and the potential mechanisms. Here, we recommend dietary adjustments with spices for patients with cancer to prevent or mitigate the cardiotoxicity induced by chemotherapeutic agents.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China
| | - Ting Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China
| | - Ling-Yu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China
| | - Jia-Yi Sun
- Innovation Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China.
| | - Wen-Jun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China.
| |
Collapse
|
42
|
Crocetin exerts hypocholesterolemic effect by inducing LDLR and inhibiting PCSK9 and Sortilin in HepG2 cells. Nutr Res 2022; 98:41-49. [DOI: 10.1016/j.nutres.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022]
|
43
|
El Midaoui A, Ghzaiel I, Vervandier-Fasseur D, Ksila M, Zarrouk A, Nury T, Khallouki F, El Hessni A, Ibrahimi SO, Latruffe N, Couture R, Kharoubi O, Brahmi F, Hammami S, Masmoudi-Kouki O, Hammami M, Ghrairi T, Vejux A, Lizard G. Saffron (Crocus sativus L.): A Source of Nutrients for Health and for the Treatment of Neuropsychiatric and Age-Related Diseases. Nutrients 2022; 14:nu14030597. [PMID: 35276955 PMCID: PMC8839854 DOI: 10.3390/nu14030597] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Saffron (Crocus sativus L.) is a medicinal plant, originally cultivated in the East and Middle East, and later in some Mediterranean countries. Saffron is obtained from the stigmas of the plant. Currently, the use of saffron is undergoing a revival. The medicinal virtues of saffron, its culinary use and its high added value have led to the clarification of its phytochemical profile and its biological and therapeutic characteristics. Saffron is rich in carotenoids and terpenes. The major products of saffron are crocins and crocetin (carotenoids) deriving from zeaxanthin, pirocrocin and safranal, which give it its taste and aroma, respectively. Saffron and its major compounds have powerful antioxidant and anti-inflammatory properties in vitro and in vivo. Anti-tumor properties have also been described. The goal of this review is to present the beneficial effects of saffron and its main constituent molecules on neuropsychiatric diseases (depression, anxiety and schizophrenia) as well as on the most frequent age-related diseases (cardiovascular, ocular and neurodegenerative diseases, as well as sarcopenia). Overall, the phytochemical profile of saffron confers many beneficial virtues on human health and, in particular, on the prevention of age-related diseases, which is a major asset reinforcing the interest for this medicinal plant.
Collapse
Affiliation(s)
- Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia 52000, Morocco;
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
- Correspondence: (A.E.M.); (G.L.); Tel.: +1-514-343-6111 (ext. 3320) (A.E.M.); +33-3-80-39-62-56 (G.L.)
| | - Imen Ghzaiel
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comte, 21000 Dijon, France;
| | - Mohamed Ksila
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Amira Zarrouk
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
- Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Farid Khallouki
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia 52000, Morocco;
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
| | - Salama Ouazzani Ibrahimi
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
| | - Norbert Latruffe
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
| | - Omar Kharoubi
- Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran1 ABB, Oran 31000, Algeria;
| | - Fatiha Brahmi
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Sonia Hammami
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Olfa Masmoudi-Kouki
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Mohamed Hammami
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Taoufik Ghrairi
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Correspondence: (A.E.M.); (G.L.); Tel.: +1-514-343-6111 (ext. 3320) (A.E.M.); +33-3-80-39-62-56 (G.L.)
| |
Collapse
|
44
|
Annemer S, Ez zoubi Y, Ramzi A, El Hadrami EM, El Ouali Lalami A, Satrani B, Farah A. Variations in saffron quality in Morocco (Taliouine and Taznakht) according to altitude and provenance: Chemometric investigation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saoussan Annemer
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
| | - Yassine Ez zoubi
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
- Biotechnology, Environmental Technology and Valorization of Bio‐Resources Team Department of Biology Faculty of Sciences and Techniques Al‐Hoceima Abdelmalek Essaadi University Tetouan Morocco
| | - Amal Ramzi
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
| | - El Mestafa El Hadrami
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
| | - Abdelhakim El Ouali Lalami
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
- Higher Institute of Nursing Professions and Health Techniques of Fez Regional Health Directorate Fez Meknes El Ghassani Hospital Fez Morocco
| | - Badr Satrani
- Forestry Research Center ‐ Rabat Rabat‐Agdal Morocco
| | - Abdellah Farah
- Laboratory of Applied Organic Chemistry Faculty of Sciences and Techniques University Sidi Mohammed Ben Abdellah Fez Morocco
| |
Collapse
|
45
|
The Effect of the Liposomal Encapsulated Saffron Extract on the Physicochemical Properties of a Functional Ricotta Cheese. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010120. [PMID: 35011352 PMCID: PMC8746351 DOI: 10.3390/molecules27010120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
In this study, the encapsulation of saffron extract (SE) was examined at four various concentrations of soy lecithin (0.5%–4% w/v) and constant concentration of SE (0.25% w/v). Particle size and zeta potential of liposomes were in the range of 155.9–208.1 nm and −34.6–43.4 mV, respectively. Encapsulation efficiency was in the range of 50.73%–67.02%, with the stability of nanoliposomes in all treatments being >90%. Encapsulated SE (2% lecithin) was added to ricotta cheese at different concentrations (0%, 0.125%, 1%, and 2% w/v), and physicochemical and textural properties of the cheese were examined. Lecithin concentration significantly (p ≤ 0.05) affected the particle size, zeta potential, stability, and encapsulation efficiency of the manufactured liposomes. In terms of chemical composition and color of the functional cheese, the highest difference was observed between the control cheese and the cheese enriched with 2% liposomal encapsulated SE. Hardness and chewiness increased significantly (p ≤ 0.05) in the cheeses containing encapsulated SE compared to the control cheese. However, there was no significant difference in the case of adhesiveness, cohesiveness, and gumminess among different cheeses. Overall, based on the findings of this research, liposomal encapsulation was an efficient method for the delivery of SE in ricotta cheese as a novel functional food.
Collapse
|
46
|
Xing B, Li S, Yang J, Lin D, Feng Y, Lu J, Shao Q. Phytochemistry, pharmacology, and potential clinical applications of saffron: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114555. [PMID: 34438035 DOI: 10.1016/j.jep.2021.114555] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/11/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saffron, the dried red stigma of the perennial herb Crocus sativus L. (Iridaceae), is one of the most important and expensive spices in the world. It is used as a traditional Chinese medicine with demonstrated effects in promoting blood circulation and suppressing blood stasis, cooling blood detoxification, and relieving depression. It is mainly used for the treatment of depression, irregular menstruation, postpartum thrombosis, and bruises. AIM OF THE STUDY This review aims to provide a systematic and up-to-date overview of the phytochemistry, pharmacology, and clinical applications of saffron. We hope it could provide useful references and guidance for the future directions of research on saffron. MATERIALS AND METHODS The online database, such as Web of Science, Google Scholar, Science Direct, PubMed, SpringerLink, Wiley Online Library, SciFinder and Chemical book, and CNKI were used to collect relevant literature. And the classic books about Chinese herbal medicine were also being referenced. RESULTS More than 150 chemical compounds, including carotenoids, flavonoids and flavonoid glycosides, monoterpenes and monoterpenoid derivatives, monocyclic aromatic hydrocarbons, amino acids, alkaloids and others, were revealed. The pharmacological activities study of saffron were focused on the antioxidant, anti-inflammatory, antitumor, antidepressant, hypoglycemic, hypolipidemic, memory-enhancing, and so on. Currently, saffron is mainly used for the treatment of diabetes, Alzheimer's disease, depression, anxiety disorders, cardiovascular diseases, learning and memory disorders, cancer, and other conditions. CONCLUSIONS Phytochemical and pharmacological analyses of saffron have been revealed in recent studies. However, clinical studies have focused mainly on AD, depression and anxiety disorders. Therefore, a large number of clinical trials are needed to study the efficacy of saffron and its major chemical components against other diseases including hypertension, hyperlipidemia, and cancer. Further studies of the mechanism of action and toxicological properties of saffron are also required, especially research to establish an effective dose of saffron and its long-term toxicity in vivo.
Collapse
Affiliation(s)
- Bingcong Xing
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Shuailing Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jiaxin Yang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ding Lin
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yue Feng
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiangjie Lu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, 310036, China
| | - Qingsong Shao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
47
|
Lin CY, Shibu MA, Wen R, Day CH, Chen RJ, Kuo CH, Ho TJ, Viswanadha VP, Kuo WW, Huang CY. Leu 27 IGF-II-induced hypertrophy in H9c2 cardiomyoblasts is ameliorated by saffron by regulation of calcineurin/NFAT and CaMKIIδ signaling. ENVIRONMENTAL TOXICOLOGY 2021; 36:2475-2483. [PMID: 34495567 DOI: 10.1002/tox.23360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The insulin-like growth factor II receptor (IGF-IIR) induces myocardial hypertrophy under various pathological conditions like diabetes and hypertension via G protein receptors like Gαq or Gαs. Increased expression of the ligand IGF II and IGF-IIR induces pathological hypertrophy through downstream signaling mediators such as calcineurin, nuclear factor of activated T cells 3 and calcium-calmodulin (CaM)-dependent kinase II (CaMKII)-histone deacetylase 4 (HDAC4). The dried stigma of Crocus sativus L. (saffron) has a long repute as a traditional medicine against various disorders. In the present study, we have investigated whether C. sativus extract (CSE) canameliorate Leu27 IGF-II triggered hypertrophy and have elucidated the underlying mechanism of protection. Additionally, the effects of oleic acid (OA), an activator of calcineurin and CaMKII was investigated thereof. The results demonstrate that CSE can ameliorate Leu27 IGF-II-induced hypertrophy seemingly through regulation of calcineurin-NFAT3 and CaMKII-HDAC4 signaling cascade.
Collapse
Affiliation(s)
- Chin-Yi Lin
- Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Yuan Sheng Hospital, ChangHua, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Renee Wen
- Walnut High School, Walnut, California, USA
- Department of Dermatology, Taipei City Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Science, China Medical University, Taichung, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical sciences, China Medical University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
48
|
Multivariate Statistical Analysis Uncovers Spectrum–Effect Relationship between HPLC Fingerprints and Antioxidant Activity of Saffron. J CHEM-NY 2021. [DOI: 10.1155/2021/7352938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Crocus sativus L. is commonly used as functional food and medicinal herb in traditional Chinese medicine. In this study, the spectrum–effect relationship was established between HPLC fingerprints and in vitro antioxidant activity of saffron to improve the quality evaluation method of saffron. The fingerprints of 21 batches of saffron collected from different regions were assessed, and the data were further analyzed by chemometric methods, including similarity analysis, hierarchical clustering analysis, principal component analysis, and orthogonal partial least squares discriminant analysis. The spectrum–effect relationship between fingerprints and antioxidant effect of saffron was analyzed by grey relational analysis and partial least square methods to figure out the antioxidant component of saffron. Thirteen common peaks of 21 batches of saffron were included in the analysis, and peak 3 (picrocrocin), peak 7 (crocin I), and peak 10 (crocin II) were identified as the main active components responsible for antioxidant efficacy. Besides, a multi-index quality control method was developed for simultaneous determination of these three antioxidant components in saffron. Taken together, this study provided new strategies for the quality control and the development of new bioactive products of saffron in the future.
Collapse
|
49
|
Shah HM, Jain AS, Joshi SV, Kharkar PS. Crocetin and related oxygen diffusion-enhancing compounds: Review of chemical synthesis, pharmacology, clinical development, and novel therapeutic applications. Drug Dev Res 2021; 82:883-895. [PMID: 33817811 PMCID: PMC8273373 DOI: 10.1002/ddr.21814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023]
Abstract
The current pandemic forced us to introspect and revisit our armamentarium of medicinal agents which could be life-saving in emergency situations. Oxygen diffusion-enhancing compounds represent one such class of potential therapeutic agents, particularly in ischemic conditions. As rewarding as the name suggests, these agents, represented by the most advanced and first-in-class molecule, trans-sodium crocetinate (TSC), are the subject of intense clinical investigation, including Phase 1b/2b clinical trials for COVID-19. Being a successor of a natural product, crocetin, TSC is being investigated for various cancers as a radiosensitizer owing to its oxygen diffusion enhancement capability. The unique properties of TSC make it a promising therapeutic agent for various ailments such as hemorrhagic shock, stroke, heart attack, among others. The present review outlines various (bio)synthetic strategies, pharmacological aspects, clinical overview and potential therapeutic benefits of crocetin and related compounds including TSC. The recent literature focusing on the delivery aspects of these compounds is covered as well to paint the complete picture to the curious reader. Given the potential TSC holds as a first-in-class agent, small- and/or macromolecular therapeutics based on the core concept of improved oxygen diffusion from blood to the surrounding tissues where it is needed the most, will be developed in future and satisfy the unmet medical need for many diseases and disorders.
Collapse
Affiliation(s)
- Hriday M. Shah
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| | - Ashvi S. Jain
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| | - Shreerang V. Joshi
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| | - Prashant S. Kharkar
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| |
Collapse
|
50
|
Roshanravan N, Ghaffari S. The therapeutic potential of Crocus sativus Linn.: A comprehensive narrative review of clinical trials. Phytother Res 2021; 36:98-111. [PMID: 34532906 DOI: 10.1002/ptr.7286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022]
Abstract
Crocus sativus Linn. (Saffron) is valued worldwide for its potential use in the management of various degenerative disorders, including cardiovascular diseases (CVDs), diabetes, cancer, metabolic syndrome (MetS), neurodegenerative diseases, immune disorders, and sexual dysfunction. Previous reports, based on clinical trials, suggest that crocetin, crocin, picrocrocin, and safranal are the main bioactive components of saffron with antioxidant, anti-inflammatory, and anti-apoptotic effects. In this comprehensive narrative review, we studied the recent clinical trials, investigating the medicinal applications of saffron and/or its components. The present results can provide important insights into the potential of saffron in preventing and treating different disorders, with a special focus on the underlying cellular and molecular mechanisms. However, further high-quality studies are needed to firmly establish the clinical efficacy of saffron in treating some degenerative diseases.
Collapse
Affiliation(s)
- Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|