1
|
Yang Y, Wu X, Pan Y, Wang Y, Lian X, Dong C, Liu W, Wang S, Lei Y. Collagen Hydrogel Tube Microbioreactors for Cell and Tissue Manufacturing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631570. [PMID: 39829742 PMCID: PMC11741382 DOI: 10.1101/2025.01.08.631570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The production of mammalian cells in large quantities is essential for various applications. However, scaling up cell culture using existing bioreactors poses significant technical challenges and high costs. To address this, we previously developed an innovative 3D culture system, known as the AlgTube cell culture system, for high-density cell cultivation. This system involves processing cells into microscale alginate hydrogel tubes, which are suspended in the culture medium within a vessel. These hydrogel tubes shield cells from hydrodynamic stress and maintain the cell mass below 400 µm in diameter, facilitating efficient mass transport and creating a favorable microenvironment for cell growth. Under optimized conditions, AlgTubes supported long-term culture with high cell viability, rapid expansion (1000-fold increase over 9 days per passage), and high yield (5×10⁸ cells/mL), offering significant advantages over conventional methods. Despite these benefits, AlgTubes have critical drawbacks. They are mechanically fragile, with frequent breakage during culture leading to cell leakage and production failures. Additionally, many cell types exhibit poor growth due to the inability to adhere to the alginate surface, making alginate hydrogel microtubes unsuitable for industrial-scale cell production. To overcome these challenges, we developed a novel collagen hydrogel tube-based microbioreactor system in this work. This system provides enhanced robustness and adhesion, enabling scalable, cost-effective, and efficient cell production for a wide range of applications.
Collapse
|
2
|
Stitz J. Development of HIV-1 vectors pseudotyped with envelope proteins of other retroviruses. Virology 2025; 602:110300. [PMID: 39577275 DOI: 10.1016/j.virol.2024.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
In the past three decades, human immunodeficiency virus type 1 (HIV-1)-derived vectors were evolved and became indispensable to transduce therapeutic genes into a range of different target cell types to facilitate a variety of gene therapeutic strategies. To achieve this, i) the biosafety profile of the vectors was incrementally enhanced and ii) the CD4-restricted tropism mediated by the envelope proteins (Env) of the parental virus needed to be directed towards recruitment of other receptors expressed on the desired target cells. Here, a closer look is first taken at the development of vector components and the mechanisms of Env incorporation into particles. While envelope proteins originating from a broad range of very diverse virus species were successfully utilized, members of the Retroviridae family most frequently provided Env or further engineered variants thereof to form transduction-competent HIV-1 pseudotype vector particles. The development of these vectors is reviewed and anticipated to further contribute to the future progression of somatic gene therapy.
Collapse
Affiliation(s)
- Jörn Stitz
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campusplatz 1, 51379, Leverkusen, Germany.
| |
Collapse
|
3
|
Xinyue Z, Li S, Yujie W, Yingcai D, Changhao B, Xueli Z. Engineering of HEK293T Cell Factory for Lentiviral Production by High-Throughput Selected Genes. CRISPR J 2024; 7:272-282. [PMID: 39387256 DOI: 10.1089/crispr.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Lentiviral vectors (LVs) are crucial tools in gene therapy and bioproduction, but high-yield LV production systems are urgently needed. Using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 high-throughput screening, we identified nine critical genes (LDAH, GBP3, BPIFC, NHLRC1, NHLRC3, ZNF425, TTC37, LRRC4B, and SPINK6) from 17,501 genes that limit LV packaging and formation. Knocking out these genes in HEK293T cells significantly increased virus production, with LDAH knockout exhibiting a 6.63-fold increase. Studies on multigene knockouts demonstrated that the cumulative effects of different gene knockouts can significantly enhance lentivirus production in HEK293T cells. Triple knockout of GBP3, BPIFC, and LDAH increased LV titer by ∼8.33-fold, and knockout (or knockdown) of GBP3, NHLRC1, and NHLRC3 increased LV titer by ∼6.53-fold. This study established HEK293T cell lines with multiple genes knockout for efficient LV production, providing reliable technical support for LV production and application and offering new perspectives for studying LV packaging mechanisms and related virus research.
Collapse
Affiliation(s)
- Zhang Xinyue
- Tianjin University of Science and Technology, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wang Yujie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Binzhou Medical University, Shandong, China
| | - Dai Yingcai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Shanghai Jiao Tong University, Shanghai, China
| | - Bi Changhao
- Tianjin University of Science and Technology, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhang Xueli
- Tianjin University of Science and Technology, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
4
|
Pandit S, Agarwalla P, Song F, Jansson A, Dotti G, Brudno Y. Implantable CAR T cell factories enhance solid tumor treatment. Biomaterials 2024; 308:122580. [PMID: 38640784 PMCID: PMC11125516 DOI: 10.1016/j.biomaterials.2024.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/11/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy has produced revolutionary success in hematological cancers such as leukemia and lymphoma. Nonetheless, its translation to solid tumors faces challenges due to manufacturing complexities, short-lived in vivo persistence, and transient therapeutic impact. We introduce 'Drydux' - an innovative macroporous biomaterial scaffold designed for rapid, efficient in-situ generation of tumor-specific CAR T cells. Drydux expedites CAR T cell preparation with a mere three-day turnaround from patient blood collection, presenting a cost-effective, streamlined alternative to conventional methodologies. Notably, Drydux-enabled CAR T cells provide prolonged in vivo release, functionality, and enhanced persistence exceeding 150 days, with cells transitioning to memory phenotypes. Unlike conventional CAR T cell therapy, which offered only temporary tumor control, equivalent Drydux cell doses induced lasting tumor remission in various animal tumor models, including systemic lymphoma, peritoneal ovarian cancer, metastatic lung cancer, and orthotopic pancreatic cancer. Drydux's approach holds promise in revolutionizing solid tumor CAR T cell therapy by delivering durable, rapid, and cost-effective treatments and broadening patient accessibility to this groundbreaking therapy.
Collapse
Affiliation(s)
- Sharda Pandit
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Pritha Agarwalla
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Feifei Song
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anton Jansson
- Department of Product Development, Production and Design, School of Engineering, Jönköping University, Sweden
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yevgeny Brudno
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Mier NC, Roper DK. Effects of an indole derivative on cell proliferation, transfection, and alternative splicing in production of lentiviral vectors by transient co-transfection. PLoS One 2024; 19:e0297817. [PMID: 38833479 PMCID: PMC11149887 DOI: 10.1371/journal.pone.0297817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/12/2024] [Indexed: 06/06/2024] Open
Abstract
Lentiviral vectors derived from human immunodeficiency virus type I are widely used to deliver functional gene copies to mammalian cells for research and gene therapies. Post-transcriptional splicing of lentiviral vector transgene in transduced host and transfected producer cells presents barriers to widespread application of lentiviral vector-based therapies. The present study examined effects of indole derivative compound IDC16 on splicing of lentiviral vector transcripts in producer cells and corresponding yield of infectious lentiviral vectors. Indole IDC16 was shown previously to modify alternative splicing in human immunodeficiency virus type I. Human embryonic kidney 293T cells were transiently transfected by 3rd generation backbone and packaging plasmids using polyethyleneimine. Reverse transcription-quantitative polymerase chain reaction of the fraction of unspliced genomes in human embryonic kidney 293T cells increased up to 31% upon the indole's treatment at 2.5 uM. Corresponding yield of infectious lentiviral vectors decreased up to 4.5-fold in a cell transduction assay. Adjusting timing and duration of IDC16 treatment indicated that the indole's disruption of early stages of transfection and cell cycle had a greater effect on exponential time course of lentiviral vector production than its reduction of post-transcriptional splicing. Decrease in transfected human embryonic kidney 293T proliferation by IDC16 became significant at 10 uM. These findings indicated contributions by early-stage transfection, cell proliferation, and post-transcriptional splicing in transient transfection of human embryonic kidney 293T cells for lentiviral vector production.
Collapse
Affiliation(s)
- Nataly Carolina Mier
- Department of Biological Engineering, Utah State University, Logan, Utah, United States of America
| | - Donald Keith Roper
- Department of Biological Engineering, Utah State University, Logan, Utah, United States of America
| |
Collapse
|
6
|
Borrelli C, Gurtner A, Arnold IC, Moor AE. Stress-free single-cell transcriptomic profiling and functional genomics of murine eosinophils. Nat Protoc 2024; 19:1679-1709. [PMID: 38504138 DOI: 10.1038/s41596-024-00967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/20/2023] [Indexed: 03/21/2024]
Abstract
Eosinophils are a class of granulocytes with pleiotropic functions in homeostasis and various human diseases. Nevertheless, they are absent from conventional single-cell RNA sequencing atlases owing to technical difficulties preventing their transcriptomic interrogation. Consequently, eosinophil heterogeneity and the gene regulatory networks underpinning their diverse functions remain poorly understood. We have developed a stress-free protocol for single-cell RNA capture from murine tissue-resident eosinophils, which revealed distinct intestinal subsets and their roles in colitis. Here we describe in detail how to enrich eosinophils from multiple tissues of residence and how to capture high-quality single-cell transcriptomes by preventing transcript degradation. By combining magnetic eosinophil enrichment with microwell-based single-cell RNA capture (BD Rhapsody), our approach minimizes shear stress and processing time. Moreover, we report how to perform genome-wide CRISPR pooled genetic screening in ex vivo-conditioned bone marrow-derived eosinophils to functionally probe pathways required for their differentiation and intestinal maturation. These protocols can be performed by any researcher with basic skills in molecular biology and flow cytometry, and can be adapted to investigate other granulocytes, such as neutrophils and mast cells, thereby offering potential insights into their roles in both homeostasis and disease pathogenesis. Single-cell transcriptomics of eosinophils can be performed in 2-3 d, while functional genomics assays may require up to 1 month.
Collapse
Affiliation(s)
- Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Alessandra Gurtner
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
7
|
Christoffers S, Seiler L, Wiebe E, Blume C. Possibilities and efficiency of MSC co-transfection for gene therapy. Stem Cell Res Ther 2024; 15:150. [PMID: 38783353 PMCID: PMC11119386 DOI: 10.1186/s13287-024-03757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are not only capable of self-renewal, trans-differentiation, homing to damaged tissue sites and immunomodulation by secretion of trophic factors but are also easy to isolate and expand. Because of these characteristics, they are used in numerous clinical trials for cell therapy including immune and neurological disorders, diabetes, bone and cartilage diseases and myocardial infarction. However, not all trials have successful outcomes, due to unfavourable microenvironmental factors and the heterogenous nature of MSCs. Therefore, genetic manipulation of MSCs can increase their prospect. Currently, most studies focus on single transfection with one gene. Even though the introduction of more than one gene increases the complexity, it also increases the effectivity as different mechanism are triggered, leading to a synergistic effect. In this review we focus on the methodology and efficiency of co-transfection, as well as the opportunities and pitfalls of these genetically engineered cells for therapy.
Collapse
Affiliation(s)
- Sina Christoffers
- Institute for Technical Chemistry, Leibniz University Hannover, Callinstr. 3-5, 30167, Hannover, Germany.
- Cluster of Excellence Hearing4all, Hannover, Germany.
| | - Lisa Seiler
- Institute for Technical Chemistry, Leibniz University Hannover, Callinstr. 3-5, 30167, Hannover, Germany
| | - Elena Wiebe
- Institute for Technical Chemistry, Leibniz University Hannover, Callinstr. 3-5, 30167, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Cornelia Blume
- Institute for Technical Chemistry, Leibniz University Hannover, Callinstr. 3-5, 30167, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| |
Collapse
|
8
|
Jamour P, Jamali A, Langeroudi AG, Sharafabad BE, Abdoli A. Comparing chemical transfection, electroporation, and lentiviral vector transduction to achieve optimal transfection conditions in the Vero cell line. BMC Mol Cell Biol 2024; 25:15. [PMID: 38741034 PMCID: PMC11089686 DOI: 10.1186/s12860-024-00511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Transfection is an important analytical method for studying gene expression in the cellular environment. There are some barriers to efficient DNA transfection in host cells, including circumventing the plasma membrane, escaping endosomal compartmentalization, autophagy, immune sensing pathways, and translocating the nuclear envelope. Therefore, it would be very useful to introduce an optimum transfection approach to achieve a high transfection efficiency in the Vero cell line. The aim of this study was to compare various transfection techniques and introduce a highly efficient method for gene delivery in Vero cells. METHODS In the current study, three transfection methods were used, including chemical transfection, electroporation, and lentiviral vector transduction, to obtain the optimum transfection conditions in the Vero cell line. Vero cells were cultured and transfected with chemical transfection reagents, electroporation, or HIV-1-based lentivectors under different experimental conditions. Transfection efficiency was assessed using flow cytometry and fluorescence microscopy to detect GFP-positive cells. RESULTS Among the tested methods, TurboFect™ chemical transfection exhibited the highest efficiency. Optimal transfection conditions were achieved using 1 µg DNA and 4 µL TurboFect™ in 6 × 104 Vero cells. CONCLUSION TurboFect™, a cationic polymer transfection reagent, demonstrated superior transfection efficiency in Vero cells compared with electroporation and lentivirus particles, and is the optimal choice for chemical transfection in the Vero cell line.
Collapse
Affiliation(s)
- Parisa Jamour
- Department of Hepatitis and HIV, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Jamali
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Ghalyanchi Langeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Behrouz Ebadi Sharafabad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and HIV, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Scarsella L, Ehrke-Schulz E, Paulussen M, Thal SC, Ehrhardt A, Aydin M. Advances of Recombinant Adenoviral Vectors in Preclinical and Clinical Applications. Viruses 2024; 16:377. [PMID: 38543743 PMCID: PMC10974029 DOI: 10.3390/v16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 05/23/2024] Open
Abstract
Adenoviruses (Ad) have the potential to induce severe infections in vulnerable patient groups. Therefore, understanding Ad biology and antiviral processes is important to comprehend the signaling cascades during an infection and to initiate appropriate diagnostic and therapeutic interventions. In addition, Ad vector-based vaccines have revealed significant potential in generating robust immune protection and recombinant Ad vectors facilitate efficient gene transfer to treat genetic diseases and are used as oncolytic viruses to treat cancer. Continuous improvements in gene delivery capacity, coupled with advancements in production methods, have enabled widespread application in cancer therapy, vaccine development, and gene therapy on a large scale. This review provides a comprehensive overview of the virus biology, and several aspects of recombinant Ad vectors, as well as the development of Ad vector, are discussed. Moreover, we focus on those Ads that were used in preclinical and clinical applications including regenerative medicine, vaccine development, genome engineering, treatment of genetic diseases, and virotherapy in tumor treatment.
Collapse
Affiliation(s)
- Luca Scarsella
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Michael Paulussen
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
| | - Serge C. Thal
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Malik Aydin
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
10
|
Rotte A. Development of Cell and Gene Therapies for Clinical Use in the US and EU: Summary of Regulatory Guidelines. Curr Gene Ther 2024; 25:10-21. [PMID: 38676481 DOI: 10.2174/0115665232306205240419091414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Recent decades have seen advancements in the management and treatment of difficultto- treat diseases such as cancer. A special class of therapeutics called cell and gene therapy has been introduced in the past 10 years. Cell and gene therapy products have strengthened the treatment options for life-threatening diseases with unmet clinical needs and also provided the possibility of a potential cure for the disease in some of the patients. Cell and gene therapy products are gaining recognition, and the interest in clinical development of cell and gene therapy products is increasing. Moreover, as the class of cell and gene therapy products is relatively new, there is a limited regulatory experience in the development, and the developers of the cell and gene therapy products can often be puzzled with an array of questions on regulations. The current review intends to provide a basic understanding of regulatory guidelines from the FDA and EMA that are applicable to cell and gene therapy products. Essentials such as which office is responsible for the evaluation of applications, which regulatory class/pathway is appropriate for development, and what are the quality, nonclinical and clinical studies that are needed to support the application are discussed in the article. In addition, a summary of regulatory designations and the post-approval requirements, such as Risk Evaluation and Mitigation Strategies (REMS) and long-term follow- up, is included in the article. Developers (referred to as 'sponsors' in this article) of cell and gene therapies can use the respective guidance documents and other specific review articles cited in this review for detailed information on the topics.
Collapse
Affiliation(s)
- Anand Rotte
- Clinical and Regulatory Affairs, Arcellx Inc, Redwood City, California, CA, USA
| |
Collapse
|
11
|
Műzes G, Sipos F. CAR-Based Therapy for Autoimmune Diseases: A Novel Powerful Option. Cells 2023; 12:1534. [PMID: 37296654 PMCID: PMC10252902 DOI: 10.3390/cells12111534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The pervasive application of chimeric antigen receptor (CAR)-based cellular therapies in the treatment of oncological diseases has long been recognized. However, CAR T cells can target and eliminate autoreactive cells in autoimmune and immune-mediated diseases. By doing so, they can contribute to an effective and relatively long-lasting remission. In turn, CAR Treg interventions may have a highly effective and durable immunomodulatory effect via a direct or bystander effect, which may have a positive impact on the course and prognosis of autoimmune diseases. CAR-based cellular techniques have a complex theoretical foundation and are difficult to implement in practice, but they have a remarkable capacity to suppress the destructive functions of the immune system. This article provides an overview of the numerous CAR-based therapeutic options developed for the treatment of immune-mediated and autoimmune diseases. We believe that well-designed, rigorously tested cellular therapies could provide a promising new personalized treatment strategy for a significant number of patients with immune-mediated disorders.
Collapse
Affiliation(s)
- Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| | | |
Collapse
|
12
|
Ahmadi SE, Shabestari RM, kojabad AA, Safa M. A straightforward microfluidic-based approach toward optimizing transduction efficiency of HIV-1-derived lentiviral vectors in BCP-ALL cells. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00792. [PMID: 36950261 PMCID: PMC10025989 DOI: 10.1016/j.btre.2023.e00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Background HIV-1-derived lentiviral vectors (LVs) are capable of transducing human cells by integrating the transgene into the host genome. In order to do that, LVs should have enough time and space to interact with the surface of the target cells. Herein, we used a microfluidic system to facilitate the transduction of BCP-ALL cells. Methods and Results We used a SU-8 mold to fabricate a PDMS microfluidic chip containing three channels with a 50 μm height and a surface matching 96-well plates. In order to produce LVs, we used HEK293T cells to package the second generation of LVs. First, we evaluated the cell recovery from the microfluidic chip. Cell recovery assessment showcased that 3 h and 6 h of incubation in microfluidic channels containing 100,000 NALM-6 (BCP-ALL) cells with 2μL of culture media yielded 87±7.2% and 80.6 ± 10% of cell recovery, respectively. Afterward, the effects of LV-induced toxicity were evaluated using 10-30% LV concentrations in time frames ranging from 3 h to 24 h. In 96-well plates, it took 12-24 h for the viruses with 20% and 30% concentrations to affect the cell survival significantly. These effects were intensified in the microfluidic system implying that microfluidic is capable of enhancing LV transduction. Based on the evidence of cell recovery and cell survival we chose 6 h of incubation with 20% LV. Conclusion The results from EGFP expression showcased that a microfluidic system could increase the LV transduction in BCP-ALL cells by almost 9-folds. All in all, the microfluidic system seems to be a great armamentarium in optimizing LV-based transduction.
Collapse
|
13
|
Farzanehpour M, Miri A, Ghorbani Alvanegh A, Esmaeili Gouvarchinghaleh H. Viral Vectors, Exosomes, and Vexosomes: Potential Armamentarium for Delivering CRISPR/Cas to Cancer Cells. Biochem Pharmacol 2023; 212:115555. [PMID: 37075815 DOI: 10.1016/j.bcp.2023.115555] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
The underlying cause of cancer is genetic disruption, so gene editing technologies, particularly CRISPR/Cas systems can be used to go against cancer. The field of gene therapy has undergone many transitions over its 40-year history. Despite its many successes, it has also suffered many failures in the battle against malignancies, causing really adverse effects instead of therapeutic outcomes. At the tip of this double-edged sword are viral and non-viral-based vectors, which have profoundly transformed the way scientists and clinicians develop therapeutic platforms. Viruses such as lentivirus, adenovirus, and adeno-associated viruses are the most common viral vectors used for delivering the CRISPR/Cas system into human cells. In addition, among non-viral vectors, exosomes, especially tumor-derived exosomes (TDEs), have proven to be quite effective at delivering this gene editing tool. The combined use of viral vectors and exosomes, called vexosomes, seems to be a solution to overcoming the obstacles of both delivery systems.
Collapse
Affiliation(s)
- Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Miri
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
14
|
Bomb K, LeValley PJ, Woodward I, Cassel SE, Sutherland BP, Bhattacharjee A, Yun Z, Steen J, Kurdzo E, McCoskey J, Burris D, Levine K, Carbrello C, Lenhoff AM, Fromen CA, Kloxin AM. Cell therapy biomanufacturing: integrating biomaterial and flow-based membrane technologies for production of engineered T-cells. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201155. [PMID: 37600966 PMCID: PMC10437131 DOI: 10.1002/admt.202201155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 08/22/2023]
Abstract
Adoptive T-cell therapies (ATCTs) are increasingly important for the treatment of cancer, where patient immune cells are engineered to target and eradicate diseased cells. The biomanufacturing of ATCTs involves a series of time-intensive, lab-scale steps, including isolation, activation, genetic modification, and expansion of a patient's T-cells prior to achieving a final product. Innovative modular technologies are needed to produce cell therapies at improved scale and enhanced efficacy. In this work, well-defined, bioinspired soft materials were integrated within flow-based membrane devices for improving the activation and transduction of T cells. Hydrogel coated membranes (HCM) functionalized with cell-activating antibodies were produced as a tunable biomaterial for the activation of primary human T-cells. T-cell activation utilizing HCMs led to highly proliferative T-cells that expressed a memory phenotype. Further, transduction efficiency was improved by several fold over static conditions by using a tangential flow filtration (TFF) flow-cell, commonly used in the production of protein therapeutics, to transduce T-cells under flow. The combination of HCMs and TFF technology led to increased cell activation, proliferation, and transduction compared to current industrial biomanufacturing processes. The combined power of biomaterials with scalable flow-through transduction techniques provides future opportunities for improving the biomanufacturing of ATCTs.
Collapse
Affiliation(s)
- Kartik Bomb
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Paige J. LeValley
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Ian Woodward
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Samantha E. Cassel
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | | | | | - Zaining Yun
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Jonathan Steen
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - Emily Kurdzo
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - Jacob McCoskey
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | - David Burris
- Mechanical Engineering, University of Delaware, Newark, DE
| | - Kara Levine
- EMD Millipore Corporation, Bedford, MA, an affiliate of Merck, Newark, DE
| | | | - Abraham M. Lenhoff
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | | | - April M. Kloxin
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
- Material Science and Engineering, University of Delaware, Newark, DE
| |
Collapse
|
15
|
Ahmadi SE, Soleymani M, Shahriyary F, Amirzargar MR, Ofoghi M, Fattahi MD, Safa M. Viral vectors and extracellular vesicles: innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy. Cancer Gene Ther 2023:10.1038/s41417-023-00597-z. [PMID: 36854897 PMCID: PMC9971689 DOI: 10.1038/s41417-023-00597-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/13/2023] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
Gene editing-based therapeutic strategies grant the power to override cell machinery and alter faulty genes contributing to disease development like cancer. Nowadays, the principal tool for gene editing is the clustered regularly interspaced short palindromic repeats-associated nuclease 9 (CRISPR/Cas9) system. In order to bring this gene-editing system from the bench to the bedside, a significant hurdle remains, and that is the delivery of CRISPR/Cas to various target cells in vivo and in vitro. The CRISPR-Cas system can be delivered into mammalian cells using various strategies; among all, we have reviewed recent research around two natural gene delivery systems that have been proven to be compatible with human cells. Herein, we have discussed the advantages and limitations of viral vectors, and extracellular vesicles (EVs) in delivering the CRISPR/Cas system for cancer therapy purposes.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- grid.411230.50000 0000 9296 6873School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fahimeh Shahriyary
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amirzargar
- grid.411746.10000 0004 4911 7066Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahya Ofoghi
- Division of Clinical Laboratory, Tehran Hospital of Petroleum Industry, Tehran, Iran ,grid.411600.2Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Davood Fattahi
- grid.411600.2Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Mollashahi B, Latifi-Navid H, Owliaee I, Shamdani S, Uzan G, Jamehdor S, Naserian S. Research and Therapeutic Approaches in Stem Cell Genome Editing by CRISPR Toolkit. Molecules 2023; 28:1982. [PMID: 36838970 PMCID: PMC9961668 DOI: 10.3390/molecules28041982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
The most widely used genome editing toolkit is CRISPR (clustered regularly interspaced short palindromic repeats). It provides the possibility of replacing and modifying DNA and RNA nucleotides. Furthermore, with advancements in biological technology, inhibition and activation of the transcription of specific gene(s) has become possible. Bioinformatics tools that target the evolution of CRISPR-associated protein 9 (Cas9) turn this protein into a vehicle that is specific for a DNA or RNA region with single guide RNA (sgRNA). This toolkit could be used by researchers to investigate the function of stem cell gene(s). Here, in this review article, we cover recent developments and applications of this technique in stem cells for research and clinical purposes and discuss different CRISPR/Cas technologies for knock-out, knock-in, activation, or inhibition of gene expression. Additionally, a comparison of several deliveries and off-target detecting strategies is discussed.
Collapse
Affiliation(s)
- Behrouz Mollashahi
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Iman Owliaee
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamedan 6517838636, Iran
| | - Sara Shamdani
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Paris-Saclay University, 94807 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Paris-Saclay University, 94807 Villejuif, France
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamedan 6517838636, Iran
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Paris-Saclay University, 94807 Villejuif, France
- CellMedEx, 94100 Saint Maur Des Fossés, France
| |
Collapse
|
17
|
Ranjbarnejad F, Khazaei M, Shahryari A, Khazaei F, Rezakhani L. Recent advances in gene therapy for bone tissue engineering. J Tissue Eng Regen Med 2022; 16:1121-1137. [PMID: 36382408 DOI: 10.1002/term.3363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 10/05/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
Autografting, a major treatment for bone fractures, has potential risks related to the required surgery and disease transmission. Bone morphogenetic proteins (BMPs) are the most common osteogenic factors used for bone-healing applications. However, BMP delivery can have shortcomings such as a short half-life and the high cost of manufacturing the recombinant proteins. Gene delivery methods have demonstrated promising alternative strategies for producing BMPs or other osteogenic factors using engineered cells. These approaches can also enable temporal overexpression and local production of the therapeutic genes in the target tissues. This review addresses recent progress on engineered viral, non-viral, and RNA-mediated gene delivery systems that are being used for bone repair and regeneration. Advances in clustered regularly interspaced short palindromic repeats/Cas9 genome engineering for bone tissue regeneration also is discussed.
Collapse
Affiliation(s)
- Fatemeh Ranjbarnejad
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Shahryari
- Tools for Bio-Imaging, Max-Planck-Institute for Biological Intelligence, Martinsried, Germany
| | - Fatemeh Khazaei
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
18
|
Britto C, Alter G. The next frontier in vaccine design: blending immune correlates of protection into rational vaccine design. Curr Opin Immunol 2022; 78:102234. [PMID: 35973352 PMCID: PMC9612370 DOI: 10.1016/j.coi.2022.102234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 07/13/2022] [Indexed: 02/02/2023]
Abstract
Despite the extraordinary speed and success in SARS-Cov-2 vaccine development, the emergence of variants of concern perplexed the vaccine development community. Neutralizing antibodies waned antibodies waned and were evaded by viral variants, despite the preservation of protection against severe disease and death across vaccinated populations. Similar to other vaccine design efforts, the lack of mechanistic correlates of immunity against Coronavirus Disease 2019, raised questions related to the need for vaccine redesign and boosting. Hence, our limited understanding of mechanistic correlates of immunity - across pathogens - remains a major obstacle in vaccine development. The identification and incorporation of mechanistic correlates of immunity are key to the accelerated design of highly impactful globally relevant vaccines. Systems-biology tools can be applied strategically to define a complete understanding of mechanistic correlates of immunity. Embedding immunological dissection and target immune profile identification, beyond canonical antibody binding and neutralization, may accelerate the design and success of durable protective vaccines.
Collapse
Affiliation(s)
- Carl Britto
- Department of Pediatrics, Boston Children's Hospital, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Cordes N, Winter N, Kolbe C, Kotter B, Mittelstaet J, Assenmacher M, Cathomen T, Kaiser A, Schaser T. Adapter-Mediated Transduction with Lentiviral Vectors: A Novel Tool for Cell-Type-Specific Gene Transfer. Viruses 2022; 14:2157. [PMID: 36298713 PMCID: PMC9607492 DOI: 10.3390/v14102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Selective gene delivery to a cell type of interest utilizing targeted lentiviral vectors (LVs) is an efficient and safe strategy for cell and gene therapy applications, including chimeric antigen receptor (CAR)-T cell therapy. LVs pseudotyped with measles virus envelope proteins (MV-LVs) have been retargeted by ablating binding to natural receptors while fusing to a single-chain antibody specific for the antigen of choice. However, the broad application of MV-LVs is hampered by the laborious LV engineering required for every new target. Here, we report the first versatile targeting system for MV-LVs that solely requires mixing with biotinylated adapter molecules to enable selective gene transfer. The analysis of the selectivity in mixed cell populations revealed transduction efficiencies below the detection limit in the absence of an adapter and up to 5000-fold on-to-off-target ratios. Flexibility was confirmed by transducing cell lines and primary cells applying seven different adapter specificities in total. Furthermore, adapter mixtures were applied to generate CAR-T cells with varying CD4/CD8-ratios in a single transduction step. In summary, a selective and flexible targeting system was established that may serve to improve the safety and efficacy of cellular therapies. Compatibility with a wide range of readily available biotinylated molecules provides an ideal technology for a variety of applications.
Collapse
Affiliation(s)
- Nicole Cordes
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Nora Winter
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Carolin Kolbe
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Bettina Kotter
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | | | | | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Center for chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Andrew Kaiser
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Thomas Schaser
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| |
Collapse
|
20
|
Zhang L, Gong M, Lei S, Cui C, Liu Y, Xiao S, Kang X, Sun T, Xu Z, Zhou C, Zhang S, Zhang D. Targeting visualization of malignant tumor based on the alteration of DWI signal generated by hTERT promoter-driven AQP1 overexpression. Eur J Nucl Med Mol Imaging 2022; 49:2310-2322. [PMID: 35044495 DOI: 10.1007/s00259-022-05684-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/09/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE To specifically diagnose malignant tumors in DWI using the human telomerase reverse transcriptase (hTERT) promoter-driven AQP1 expression. METHODS The human telomerase reverse transcriptase (hTERT) promoter-driven AQP1 gene overexpression lentivirus system (hTERT-AQP1) and cytomegalovirus (CMV) promoter-driven AQP1 gene overexpression lentivirus system (CMV-AQP1) were prepared, and transduced into telomerase-positive and -negative cells. The AQP1 expression and DWI signal intensity (SI) change in transduced cells were analyzed. Balb/C nude mice subcutaneous xenograft models derived from lentivirus-transduced telomerase-positive and -negative cells were used to evaluate AQP1 expression and DWI SI change in vivo. We further established another group of subcutaneous xenograft model using pristine telomerase-positive and -negative cells, followed by injecting the lentiviral vectors intratumorally or intravenously, to determine the malignant tumor-targeted imaging of hTERT-AQP1. RESULTS The hTERT-AQP1 and CMV-AQP1 were successfully prepared. After transduction, hTERT-AQP1 could induce the specific overexpression of AQP1 in telomerase-positive cells. Compared with untransduced cells, all CMV-AQP1-pretransduced cells and hTERT-AQP1-pretransduced telomerase-positive cells showed decreased SI and increased apparent diffusion coefficient (ADC) in DWI, while hTERT-AQP1-pretransduced telomerase-negative cells showed no obvious SI and ADC change. Correspondingly, hTERT-AQP1-transduced telomerase-positive tumors and CMV-AQP1-transduced telomerase-positive and -negative tumors showed decreased DWI SI and increased ADC, while hTERT-AQP1-transduced telomerase-negative tumor had no SI and ADC changes. After intratumoral or intravenous injection, CMV-AQP1 could upregulate AQP1 expression and induce DWI SI and ADC alteration in both telomerase-positive and -negative tumors, while hTERT-AQP1 worked in telomerase-positive tumors specifically. CONCLUSION Cancers can be specifically visualized based on the DWI signal alteration which triggered by hTERT-AQP1 lentivirus system that combined AQP1 gene and hTERT promoter.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China.
| | - Sheng Lei
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Chun Cui
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Shilin Xiao
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Xun Kang
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Tao Sun
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Zhongsheng Xu
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Chunyu Zhou
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Si Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao street Shapingba district, Chongqing, China.
| |
Collapse
|
21
|
Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Ther 2022; 29:647-660. [PMID: 34158626 DOI: 10.1038/s41417-021-00359-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an encouraging and fast-growing platform used for the treatment of various types of tumors in human body. Despite the recent success of CAR T-cell therapy in hematologic malignancies, especially in B-cell lymphoma and acute lymphoblastic leukemia, the application of this treatment approach in solid tumors faced several obstacles resulted from the heterogeneous expression of antigens as well as the induction of immunosuppressive tumor microenvironment. Oncolytic virotherapy (OV) is a new cancer treatment modality by the use of competent or genetically engineered viruses to replicate in tumor cells selectively. OVs represent potential candidates to synergize the current setbacks of CAR T-cell application in solid tumors and then and overcome them. As well, the application of OVs gives researches the ability to engineer the virus with payloads in the way that it selectively deliver a specific therapeutic agents in tumor milieu to reinforce the cytotoxic activity of CAR T cells. Herein, we made a comprehensive review on the outcomes resulted from the combination of CAR T-cell immunotherapy and oncolytic virotherapy for the treatment of solid cancers. In the current study, we also provided brief details on some challenges that remained in this field and attempted to shed a little light on the future perspectives.
Collapse
|
22
|
Epigenetic therapy targeting bone marrow mesenchymal stem cells for age-related bone diseases. Stem Cell Res Ther 2022; 13:201. [PMID: 35578312 PMCID: PMC9109405 DOI: 10.1186/s13287-022-02852-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 02/08/2023] Open
Abstract
As global aging accelerates, the prevention and treatment of age-related bone diseases are becoming a critical issue. In the process of senescence, bone marrow mesenchymal stem cells (BMSCs) gradually lose the capability of self-renewal and functional differentiation, resulting in impairment of bone tissue regeneration and disorder of bone tissue homeostasis. Alteration in epigenetic modification is an essential factor of BMSC dysfunction during aging. Its transferability and reversibility provide the possibility to combat BMSC aging by reversing age-related modifications. Emerging evidence demonstrates that epigenetic therapy based on aberrant epigenetic modifications could alleviate the senescence and dysfunction of stem cells. This review summarizes potential therapeutic targets for BMSC aging, introduces some potential approaches to alleviating BMSC aging, and analyzes its prospect in the clinical application of age-related bone diseases.
Collapse
|
23
|
Quach ABV, Little SR, Shih SCC. Viral Generation, Packaging, and Transduction on a Digital Microfluidic Platform. Anal Chem 2022; 94:4039-4047. [PMID: 35192339 DOI: 10.1021/acs.analchem.1c05227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viral-based systems are a popular delivery method for introducing exogenous genetic material into mammalian cells. Unfortunately, the preparation of lentiviruses containing the machinery to edit the cells is labor-intensive, with steps requiring optimization and sensitive handling. To mitigate these challenges, we introduce the first microfluidic method that integrates lentiviral generation, packaging, and transduction. The new method allows the production of viral titers between 106 and 107 (similar to macroscale production) and high transduction efficiency for hard-to-transfect cell lines. We extend the technique for gene editing applications and show how this technique can be used to knock out and knock down estrogen receptor gene─a gene prominently responsible for 70% of breast cancer cases. This new technique is automated with multiplexing capabilities, which have the potential to standardize the methods for viral-based genome engineering.
Collapse
Affiliation(s)
- Angela B V Quach
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.,Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| | - Samuel R Little
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.,Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec H3G 1M8, Canada
| | - Steve C C Shih
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.,Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.,Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec H3G 1M8, Canada
| |
Collapse
|
24
|
Rajabzadeh A, Hamidieh AA, Rahbarizadeh F. Spinoculation and retronectin highly enhance the gene transduction efficiency of Mucin-1-specific chimeric antigen receptor (CAR) in human primary T cells. BMC Mol Cell Biol 2021; 22:57. [PMID: 34814824 PMCID: PMC8609792 DOI: 10.1186/s12860-021-00397-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Producing an appropriate number of engineered cells is considered as one of the influential factors in the successful treatments with chimeric antigen receptor (CAR) T cells. To this aim, the transduction rate of the viral vectors can play a significant role. In addition, improving transduction rates can affect the success rate of this treatment due to hard-transduced T lymphocytes. RESULTS In this study, activated T cells were transduced using different transduction methods such as spinoculation, retronectin, polybrene, spinoculation + retronectin, and spinoculation + polybrene after selecting the most efficient transfection method to produce recombinant viral particles containing MUC1 CAR. PEI and lipofectamine with the amount of 73.72 and 72.53%, respectively, showed the highest transfection rates with respect to calcium phosphate (14.13%) for producing lentiviral particles. However, the cytotoxicity of transfection methods was not significantly different. Based on the results, spinoculation + retronectin leads to the highest transduction rates of T cells (63.19 ± 4.45%) relative to spinoculation + polybrene (34.6 ± 4.44%), polybrene (10.23 ± 0.79%), retronectin (10.37 ± 1.85%), and spinoculation (21.11 ± 1.55%). Further, the polybrene (40.02%) and spinoculation + polybrene (48.83% ± 4.83) increased cytotoxicity significantly compared to other groups. CONCLUSION Improving transduction conditions such as using spinoculation with retronectin can ameliorate the production of CAR-T cells by increasing the rate of transduction, as well as the success rate of treatment.
Collapse
Affiliation(s)
- Alireza Rajabzadeh
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
25
|
Mancinelli S, Turcato A, Kisslinger A, Bongiovanni A, Zazzu V, Lanati A, Liguori GL. Design of transfections: Implementation of design of experiments for cell transfection fine tuning. Biotechnol Bioeng 2021; 118:4488-4502. [PMID: 34406655 PMCID: PMC9291525 DOI: 10.1002/bit.27918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
Transfection is the process by which nucleic acids are introduced into eukaryotic cells. This is fundamental in basic research for studying gene function and modulation of gene expression as well as for many bioprocesses in the manufacturing of clinical‐grade recombinant biologics from cells. Transfection efficiency is a critical parameter to increase biologics' productivity; the right protocol has to be identified to ensure high transfection efficiency and therefore high product yield. Design of experiments (DoE) is a mathematical method that has become a key tool in bioprocess development. Based on the DoE method, we developed an operational flow that we called “Design of Transfections” (DoT) for specific transfection modeling and identification of the optimal transfection conditions. As a proof of principle, we applied the DoT workflow to optimize a cell transfection chemical protocol for neural progenitors, using polyethyleneimine (PEI). We simultaneously varied key influencing factors, namely concentration and type of PEI, DNA concentration, and cell density. The transfection efficiency was measured by fluorescence imaging followed by automatic counting of the green fluorescent transfected cells. Taking advantage of the DoT workflow, we developed a new simple, efficient, and economically advantageous PEI transfection protocol through which we were able to obtain a transfection efficiency of 34%.
Collapse
Affiliation(s)
- Sara Mancinelli
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Naples, Italy
| | | | - Annamaria Kisslinger
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples, Italy
| | - Antonella Bongiovanni
- Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Valeria Zazzu
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Naples, Italy
| | | | - Giovanna Lucia Liguori
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Naples, Italy
| |
Collapse
|
26
|
Dong W, Song Z, Liu S, Yu P, Shen Z, Yang J, Yang D, Hu Q, Zhang H, Gu Y. Adipose-Derived Stem Cells Based on Electrospun Biomimetic Scaffold Mediated Endothelial Differentiation Facilitating Regeneration and Repair of Abdominal Wall Defects via HIF-1α/VEGF Pathway. Front Bioeng Biotechnol 2021; 9:676409. [PMID: 34307320 PMCID: PMC8293919 DOI: 10.3389/fbioe.2021.676409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022] Open
Abstract
Application of synthetic or biological meshes is the main therapy for the repair and reconstruction of abdominal wall defects, a common disease in surgery. Currently, no ideal materials are available, and there is an urgent need to find appropriate ones to satisfy clinical needs. Electrospun scaffolds have drawn attention in soft tissue reconstruction. In this study, we developed a novel method to fabricate a composite electrospun scaffold using a thermoresponsive hydrogel, poly (N-isopropylacrylamide)-block-poly (ethylene glycol), and a biodegradable polymer, polylactic acid (PLA). This scaffold provided not only a high surface area/volume ratio and a three-dimensional fibrous matrix but also high biocompatibility and sufficient mechanical strength, and could simulate the native extracellular matrix and accelerate cell adhesion and proliferation. Furthermore, rat adipose-derived stem cells (ADSCs) were seeded in the composite electrospun scaffold to enhance the defect repair and regeneration by directionally inducing ADSCs into endothelial cells. In addition, we found early vascularization in the process was regulated by the hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway. In our study, overexpression of HIF-1α/VEGF in ADSCs using a lentivirus system promoted early vascularization in the electrospun scaffolds. Overall, we expect our composite biomimetic scaffold method will be applicable and useful in abdominal wall defect regeneration and repair in the future.
Collapse
Affiliation(s)
- Wenpei Dong
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicheng Song
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suihong Liu
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, China
| | - Ping Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhipeng Shen
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, China
| | - Jianjun Yang
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongchao Yang
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinxi Hu
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, Shanghai University, Shanghai, China
| | - Yan Gu
- Department of General Surgery, Hernia and Abdominal Wall Surgery Center of Shanghai Jiao Tong University, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|