1
|
Fang X, Zhang H, Zhou H, Shen S, Lao Z, Zhang Z, Bian Y, Zhou C, Jin H, Tong P, Huang Y, Zhou H, Zeng H, Fu F, Wu C, Zheng W, Ruan H. Systemic Lupus Erythematosus Exacerbates Hip Arthritis by Promoting Chondrocyte Pyroptosis in the Femoral Head via Activating the NF-κB Pathway. J Cell Mol Med 2025; 29:e70531. [PMID: 40179133 PMCID: PMC11967699 DOI: 10.1111/jcmm.70531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterised by chronic inflammation and immune dysregulation, significantly impacting multiple organ systems, including the joints. While SLE is known to contribute to musculoskeletal complications, its role in hip arthritis development and the underlying mechanisms remain poorly understood. This study aims to investigate the relationship between SLE and hip arthritis progression using MRL/lpr mice, which exhibit early-onset SLE, compared with MRL/MpJ control mice at 14 weeks of age. Through comprehensive histological, immunohistochemical and molecular analyses, we evaluated articular cartilage (AC) degeneration, extracellular matrix (ECM) metabolism, inflammatory responses, and chondrocyte pyroptosis. Our results demonstrated that MRL/lpr mice developed an accelerated hip arthritis-like phenotype, manifesting as enhanced AC degeneration, impaired chondrocyte proliferation, heightened apoptosis and promoted inflammatory cytokine production. Notably, SLE markedly stimulated chondrocyte pyroptosis by increasing pyroptosis-related proteins, including NLRP3, ASC, CASPASE-1 and GSDMD, via activating the NF-κB pathway. These findings establish a novel mechanistic link between SLE and hip arthritis progression, demonstrating that SLE promotes chondrocyte pyroptosis to exacerbate AC degeneration via NF-κB activation, highlighting chondrocyte pyroptosis as a key driver of SLE-associated hip arthritis and a potential therapeutic target for mitigating SLE-induced joint manifestations.
Collapse
Affiliation(s)
- Xuliang Fang
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Helou Zhang
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Huiqing Zhou
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Shuchao Shen
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Zhaobai Lao
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Zhiguo Zhang
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Yishan Bian
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Chengcong Zhou
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Hongting Jin
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Peijian Tong
- Department of OrthopaedicsThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Yanqun Huang
- Hangzhou Fuyang Hospital of TCM Orthopedics and TraumatologyHangzhouChina
| | - Hong Zhou
- Hangzhou Fuyang Hospital of TCM Orthopedics and TraumatologyHangzhouChina
| | - Hanbing Zeng
- The Second Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Fangda Fu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Chengliang Wu
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Wenbiao Zheng
- Department of OrthopedicsTaizhou Municipal HospitalTaizhouChina
| | - Hongfeng Ruan
- Institute of Orthopaedics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| |
Collapse
|
2
|
Jiang T, Liu X, Wang S, Chen Y, Wang Y, Li X, Yao G. Paeoniflorin alleviated experimental Sjögren's syndrome by inhibiting NLRP3 inflammasome activation of submandibular gland cells via activating Nrf2/HO-1 pathway. Free Radic Biol Med 2025; 233:355-364. [PMID: 40158745 DOI: 10.1016/j.freeradbiomed.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/15/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Total glucosides of white paeony (TGP) has been used for treatment of Sjögren's syndrome (SS) patients. Paeoniflorin (PF) is the main active ingredient of TGP and has antioxidant and anti-inflammatory effects, but its underlying mechanism on SS remains to be explored. Aberrant activation of NLRP3 inflammasome can cause injury of submandibular gland (SG) in SS. However, whether PF regulates NLRP3 inflammasome activation in SS is unknown. OBJECTIVE This study aims to investigate whether PF alleviated SS through suppressing NLRP3 inflammation activation and to explore the mechanism of PF in improving Sjögren-like symptoms in non-obese diabetic (NOD) mice. METHODS The gene expression profiles of the labial gland (LG) between SS patients and non-SS patients were analyzed by bioinformatics. Non-obese diabetic (NOD) mice were selected as SS model. Mice were divided into normal saline group and two different doses of PF-treatment groups (50 and 100 mg/kg). The SS-like symptoms and pathological changes of submandibular gland (SG) were analyzed after 4 weeks of administration. SG cells were treated with or without PF and with or without ML385 (a specific inhibitor of Nrf2) in vitro, and then lipopolysaccharide(LPS) and adenosine triphosphate (ATP) were used to induce NLRP3 inflammasome activation in SG cells. Results NLRP3 was up-regulated in LG of SS patients and SG of SS mice. PF alleviated SS-like symptoms in SS mice. Compared with control group, NLRP3 and caspase-1 in the SG, and serum IL-1β and IL-18 of NOD mice were decreased in PF group. Furthermore, we found that PF inhibited NLRP3 activation via activating the Nrf2/HO-1 pathway in SG cells. In addition, we observed the activation of Nrf2/HO-1 in the SG of mice after PF administration. CONCLUSIONS Our findings suggested that PF inhibited NLRP3 inflammasome activation through regulating the Nrf2/HO-1 axis in SG of SS mice, which might be the underlying mechanism for the therapeutic effects of PF on SS.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xuanqi Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Shumin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yu Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Xiaojing Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Genhong Yao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China; State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
3
|
Cordiano R, Caserta S, Minciullo PL, Allegra A, Gangemi S. Anthraquinones and Aloe Vera Extracts as Potential Modulators of Inflammaging Mechanisms: A Translational Approach from Autoimmune to Onco-Hematological Diseases. Molecules 2025; 30:1251. [PMID: 40142026 PMCID: PMC11944353 DOI: 10.3390/molecules30061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammaging is a chronic, low-grade inflammatory state that contributes to age-related diseases, including cardiovascular disorders, osteoporosis, neurodegeneration, and cancer. This process involves immunosenescence, oxidative stress, and immune aging, all of which contribute to the breakdown of immune tolerance and the onset of autoimmune disorders. Aloe vera (AV) has recently gained attention for its immunomodulatory, anti-inflammatory, and antioxidant properties. This review explores the effects of AV extracts and anthraquinones (e.g., aloe-emodin, emodin, aloin) on key inflammaging-driven mechanisms in autoimmunity. Our analysis highlights AV's ability to regulate hormone balance, autoantibody production, and cytokine/chemokine signaling (such as interleukin-1β, tumor necrosis factor-α, and interferon-γ). It modulates inflammatory pathways, including mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), thereby inhibiting nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) activation. Additionally, AV enhances antioxidant defenses and restores immune balance by reducing Th1/Th17 subsets while promoting Th2-mediated regulation. Notably, AV also modulates inflammasome-mediated mechanisms and counteracts immunosenescence, which is driven by autophagy-related processes. These effects position AV as a potential integrative approach to mitigating inflammaging-driven autoimmunity. Furthermore, as inflammaging is increasingly recognized in onco-hematological diseases, AV-based strategies may offer novel therapeutic avenues. Future studies should focus on clinical validation, optimizing formulations, and expanding applications to broader age-related and immune-mediated disorders.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Paola Lucia Minciullo
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (S.C.); (A.A.)
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.C.); (S.G.)
| |
Collapse
|
4
|
Tian H, Zheng J, Wang F, Zhang W, Chen Y, Wang X, Wang X, Xi J, Hu J, Zhang Y. NLRP3 inflammasome promotes functional repair after spinal cord injury in mice by regulating autophagy and its mechanism. Int Immunopharmacol 2025; 149:114230. [PMID: 39922115 DOI: 10.1016/j.intimp.2025.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/25/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Inflammation at the injury site exacerbates tissue cell death following a spinal cord injury (SCI). Studies show that NLRP3 inflammasomes are crucial in the inflammation following Spinal Cord Injury, and NLRP3 inflammasomes have been shown to promote cells to undergo excessive autophagy in other diseases. Moreover, excessive autophagy levels could hinder functional repair post-SCI. In this regard, we hypothesized that inhibiting NLRP3 inflammasomes could reduce autophagy levels at the injury site, thus promoting functional repair post-SCI. METHODS Herein, a mouse SCI model was used for in vivo experiments, and an in vitro neuroinflammatory model created using LPS-activated BV2 cells was used for in vitro experiments. Histopathological staining was used to assess tissue repair. Western Blot (WB) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) were used to detect changes in relevant autophagy molecules, macrophage polarization-related markers and downstream inflammatory factors, and Immunofluorescence (IF) was used to detect changes in macrophage polarization. RESULTS Following SCI, the inhibition of NLRP3 inflammasomes resulting from intraperitoneal injection of MCC950 significantly reduced autophagy levels at the injury site, resulting in both histological and behavioral improvements. In addition, the phosphorylation of mTOR during inhibition of NLRP3 inflammasomes to reduce autophagy levels further improved the immune microenvironment at the injury site, and M2-type macrophages were significantly upregulated M2-type macrophages. Moreover, in vitro experiments yielded results consistent with those of in vivo experiments regarding changes in autophagy-related indexes and polarization-related markers. CONCLUSIONS Inhibition of NLRP3 inflammasomes can reduce autophagy level at the injury site to promote functional recovery and play a neuroprotective role. Moreover, phosphorylation of mTOR during the process of inhibition of NLRP3 inflammasomes to reduce autophagy, leading to reduced autophagy levels, could improve the immune microenvironment at the injury site, thus promoting functional recovery and histopathological repair post-SCI.
Collapse
Affiliation(s)
- Haozhe Tian
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Juan Zheng
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Fangli Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Wenjing Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases Bengbu China; Clinical laboratory of The First Affiliated Hospital of Bengbu Medical University Bengbu China
| | - Yuqing Chen
- School of Laboratory Medicine Bengbu Medical University Bengbu China
| | - Xiangshu Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Xiaoxuan Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Jin Xi
- Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases Bengbu China; Clinical laboratory of The First Affiliated Hospital of Bengbu Medical University Bengbu China.
| | - Yuxin Zhang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China.
| |
Collapse
|
5
|
Liu T, Yang M, Feng X, Zou X, Xia Y, Chen L, Gao Z, Zhao L, Wang X. Unraveling the role of lncRNAs and their associated nearby coding genes in the pathogenesis of systemic lupus erythematosus. Arthritis Res Ther 2025; 27:44. [PMID: 40025620 PMCID: PMC11871770 DOI: 10.1186/s13075-025-03510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND The role of long non-coding RNAs (lncRNAs) and their nearby messenger RNAs (mRNAs) in systemic lupus erythematosus (SLE) pathogenesis is not well understood. METHOD High-throughput sequencing was utilized to analyze PBMCs obtained from SLE patients. Subsequently, we conducted differential analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and verification through quantitative real-time PCR (qRT-PCR). Additionally, qRT-PCR was used to analyze the levels of lncRNAs or mRNAs in transfected Raji cells. RESULTS We identified 419 differentially expressed (DE) lncRNAs and their 337 nearby DE mRNAs in SLE patients. More than 67% of the DE lncRNAs were lincRNAs and intronic_lncRNAs. The most significantly regulated nearby mRNAs in SLE patients were LTF and CIRBP, potentially involved in recurrent infection and photosensitivity. GO analysis revealed upregulation of the immune effector process term, with genes such as C1qA, C1qC, C1qB, NLRP3, and CXCL6 participating in this term and the upregulated pertussis signaling pathway. Analysis of the nearby coding genes of 88 lincRNAs indicated that XLOC_185773 had the highest number of nearby encoding genes and was negatively correlated with peripheral blood lymphocyte counts, potentially regulating HARS. Furthermore, LNC_005556, an antisense DE lncRNA, was negatively correlated with lupus nephritis occurrence and may regulate the upregulated IGLL5 in patients. CONCLUSIONS The current study provides insights into the dysregulation of lncRNAs and nearby mRNAs in SLE, highlighting potential key players in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Tao Liu
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingyue Yang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiunan Feng
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaojuan Zou
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Ying Xia
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Chen
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zixin Gao
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Ling Zhao
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Xiaosong Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Wu T, Li Y, Liu Y, Chu CQ. Preclinical RA: How to halt its progression. Best Pract Res Clin Rheumatol 2025; 39:102030. [PMID: 39721896 DOI: 10.1016/j.berh.2024.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder with a complex pathogenesis that evolves through various stages before clinical symptoms emerge. This review outlines the natural history of RA, starting from genetic predisposition and environmental triggers to preclinical autoimmunity and subsequent joint inflammation. Key genetic factors interact with environmental elements like smoking and infections, producing autoantibodies such as anti-citrullinated protein antibodies (ACPA) and rheumatoid factor, which precede clinical manifestations by several years. The preclinical phases offer critical opportunities for intervention aiming at halting disease progression. Preventive strategies including lifestyle modifications, dietary interventions, and targeted immune modulation may halt the progression to clinical RA in those at-risk individuals.
Collapse
Affiliation(s)
- Tong Wu
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; West China Lecheng Hospital, Sichuan University, Boao, Hainan, 571435, China.
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, 97239, USA; Rheumatology Section, VA Portland Health Care System, Portland, OR, 97239, USA.
| |
Collapse
|
7
|
Zhou MY, Feng HY, Wang TT, Xu ZS, Gu SL, Li LL, Cai L, Li R. TLR3 as an emerging molecule facilitating pyroptosis in the context of rheumatoid arthritis: A study combined bioinformatics and experimental validation. Cytokine 2025; 187:156875. [PMID: 39884182 DOI: 10.1016/j.cyto.2025.156875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an inflammatory disease of the joints mediated by immune cells. As an immune-related mode of cell death, pyroptosis has yet to be fully understood in RA. This research identified novel pyroptosis-related markers in RA and confirmed its functional significance in RA. METHODS Initially, crucial pyroptosis-related genes of RA were identified through GEO database, and biological pathways were determined through enrichment analysis. Then, PPI network, WGCNA and CIBERSORT analysis was utilized to screen hub genes and evaluate immune cell infiltration levels. Finally, validation experiments determined hub genes expression and regulatory roles in RA pathogenesis, and screened potential therapeutic drugs. RESULTS A total of 46 DEPRGs in RA were identified, which involved in NOD-like receptor and Toll-like receptor signaling pathway. Further screening revealed 3 crucial hub genes: CCL5, LY96, and TLR3 had significantly increased expression in RA synovial tissue and FLS, which might become diagnostic markers of RA. Analysis of immune infiltration revealed that hub genes exhibited associations with plasma cells, T lymphocytes, and macrophages. Further study on the crucial hub gene TLR3 revealed that knocking down TLR3 significantly inhibited the RA FLS hyperproliferation and pyroptosis, and dexamethasone and doxorubicin, as potential drugs, could treat RA by inhibiting TLR3. CONCLUSION Our study indicates that high expression of TLR3 promotes FLS pyroptosis and RA progression, suggesting its potential as both a biomarker and a therapeutic target for RA.
Collapse
Affiliation(s)
- Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Hong-Yan Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Tian-Tian Wang
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ze-Shan Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Sheng-Long Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ling-Ling Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui Province, China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230026, Anhui Province, China.
| |
Collapse
|
8
|
Ding L, Lin H, Ma Z, He Y, Ding S, Zhang K, Zhang J, Li W, Xiao L. Stigmasterol mitigates rheumatoid arthritis progression by decreasing Nrf2/NLRP3-mediated pyroptosis in chondrocyte. Mol Immunol 2025; 179:9-17. [PMID: 39908592 DOI: 10.1016/j.molimm.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/19/2025] [Accepted: 01/26/2025] [Indexed: 02/07/2025]
Abstract
Stigmasterol (Stig), a phytosterol with anti-inflammatory and antioxidant properties, has been shown to have potential therapeutic effects. In this study, we aimed to investigate whether Stig mitigates rheumatoid arthritis (RA) progression by reducing chondrocyte injury. A mouse model of RA was established by intradermally injecting type II collagen into the tail roots of mice. The arthritic score and spleen index were measured in RA mice to assess the effects of Stig on RA progression. Lipopolysaccharide (LPS)-treated chondrocytes were used as a cellular model of RA. The roles of Stig in chondrocyte viability, proliferation, migration, inflammation, and injury were assessed using Cell Counting Kit-8, EdU, Transwell assays, quantitative real-time PCR, and western blotting, respectively. The results demonstrated that Stig exhibited no significant cytotoxicity in CHON-001 chondrocytes. Interestingly, it effectively inhibited LPS-induced apoptosis and increased cell viability, proliferation, and migration. Stig also alleviated LPS-induced pro-inflammatory responses and CHON-001 cell injury. Mechanistically, Stig activated nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, which led to the inactivation of the NOD-like receptor protein 3 (NLRP3) inflammasome and a subsequent decrease in CHON-001 cell pyroptosis. However, the protective effects of Stig were abrogated by ML385, a specific inhibitor Nrf2. Stig treatment further improved the clinical severity in RA mice. In summary, Stig reduces LPS-induced chondrocyte injury and mitigates RA progression by inhibiting Nrf2/NLRP3-mediated pyroptosis, offering a potential therapeutic approach for RA.
Collapse
Affiliation(s)
- Li Ding
- Department of Orthopedic, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai 200052, China
| | - Huijun Lin
- Department of Orthopedic, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai 200052, China
| | - Zhidong Ma
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Yong He
- Department of Orthopedic, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai 200052, China
| | - Sheng Ding
- Department of Orthopedic, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai 200052, China
| | - Kaile Zhang
- The Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Jiechao Zhang
- Department of Orthopedic, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai 200052, China
| | - Wenyao Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Lianbo Xiao
- Department of Orthopedic, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai 200052, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200052, China.
| |
Collapse
|
9
|
Iqbal U, Malik A, Ibrahim L, Sial NT, Mehmood MH. Natural and synthetic potential drug leads for rheumatoid arthritis probing innovative target: mitochondrial dysfunction and NLRP3 inflammasome activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03897-3. [PMID: 40019529 DOI: 10.1007/s00210-025-03897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune, chronic, inflammatory disease characterized by synovial hyperplasia, bone erosion, progressive joint deterioration, and excruciating joint pain. Worldwide RA prevalence is approximately 0.1-2%, affecting women and elderly population. Limited knowledge of disease pathogenesis causes hindrance in diagnosis and treatment of RA. Deep investigation of RA pathogenesis is deemed, for the development of novel therapies. Among diverse targets for RA, proper functioning of mitochondria is essential for endurance of synovial cells and chondrocytes. Once mitochondria are damaged, these affect immune and non-immune cells in terms of their activation, survival, and differentiation prima to occurrence of RA. An innate immune complex, NLRP3 (NOD-like receptor family pyrin domain-containing 3) inflammasome plays pivotal role in RA pathogenesis through its control on the synthesis of pro-inflammatory cytokines (IL-1β & IL-18) and induction of pyroptotic cell death. Mitochondrial dysfunction is the possible primary cause of NLRP3 inflammasome activation, leading to inflammation and joint destruction in RA. This review emphasizes that how mitochondrial dysregulation affect NLRP3 inflammasome activation and contribute to RA's inflammatory cascade. It also investigates synthetic and natural substances including Berberine, Ebselen, and Resveratrol that have emerged as promising drug leads for RA by modulating mitochondrial dysfunction and inhibiting NLRP3 inflammasome activation. Furthermore, it concise the evidences from RA-associated animal models explaining beneficial impact of various therapeutic agents in attenuation of inflammation and deterioration of bone and cartilage. Hence, the current review stresses molecular pathways in mitochondrial dynamics and NLRP3 inflammasome activation, as an approach to hone RA treatment goals.
Collapse
Affiliation(s)
- Urooj Iqbal
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Primary and Secondary Health Care Department, Lahore, Punjab, Pakistan
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan.
| | - Liza Ibrahim
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Nabeela Tabassum Sial
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmaceutical Sciences, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
10
|
Cai Y, Ma Y, Tang C, Li W, Lv X, Xie Z, Wang J. Prognostic Significance of Serum NLRP3 in Spontaneous Intracerebral Hemorrhage. Int J Gen Med 2025; 18:745-757. [PMID: 39963519 PMCID: PMC11830940 DOI: 10.2147/ijgm.s507518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Background Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) is involved in secondary brain injury after acute intracerebral hemorrhage (ICH). The objective of this study was to determine its ability to predict early neurological deterioration (END) and 3-month neurological outcome after ICH. Methods In this prospective cohort study, serum NLRP3 levels were measured in 128 patients with sICH and 100 healthy controls. National institute of health stroke scale (NIHSS) scores and hematoma volumes were recorded. Post-ICH END and 3-month poor outcome (modified Rankin Scale (mRS) scores of 3-6) were documented. The results were assessed using multivariate analysis. Results Serum NLRP3 levels in sICH patients increased significantly as compared to controls (P<0.001). Serum NLRP3 levels were independently correlated with hematoma volumes (β=0.046; 95% confidence interval (CI), 0.020-0.072; P=0.001) and NIHSS scores (β=0.071; 95% CI, 0.004-0.139; P=0.039), independently forecasted END (OR=1.268; 95% CI, 0.892-1.801; P=0.036) and poor prognosis at post-ICH 3 months (OR=1.448; 95% CI, 1.006-2.085; P=0.046), and were predictive of them with areas under receiver operating characteristic curve at 0.788 (95% CI, 0.706-0.855) and 0.805 (95% CI, 0.725-0.870) separately. Serum NLRP3 levels, along with the two independent predictors, that are NIHSS scores and hematoma volumes, are combined to establish prediction models of END and poor prognosis. The models worked well by applying a series of statistical methods. Conclusion Increased serum NLRP3 levels after ICH are independently associated with bleeding severity, END and adverse outcomes of patients, meaning that serum NLRP3 may be a potential prognostic biomarker of sICH.
Collapse
Affiliation(s)
- Yong Cai
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, Zhejiang, People’s Republic of China
| | - Yijun Ma
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, Zhejiang, People’s Republic of China
| | - Chao Tang
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei Li
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, Zhejiang, People’s Republic of China
| | - Xuan Lv
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhijie Xie
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, Zhejiang, People’s Republic of China
| | - Jun Wang
- Department of Neurosurgery, First People’s Hospital of Linping District, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
11
|
Yang J, He B, Dang L, Liu J, Liu G, Zhao Y, Yu P, Wang Q, Wang L, Xin W. Celastrol Regulates the Hsp90-NLRP3 Interaction to Alleviate Rheumatoid Arthritis. Inflammation 2025; 48:346-360. [PMID: 38874810 DOI: 10.1007/s10753-024-02060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Previous studies have verified that celastrol (Cel) protects against rheumatoid arthritis (RA) by inhibiting the NLRP3 inflammasome signaling pathway, but the molecular mechanism by which Cel regulates NLRP3 has not been clarified. This study explored the specific mechanisms of Cel in vitro and in vivo. A type II collagen-induced arthritis (CIA) mouse model was used to study the antiarthritic activity of Cel; analysis of paw swelling, determination of the arthritis score, and pathological examinations were performed. The antiproliferative and antimigratory effects of Cel on TNF-α induced fibroblast-like synoviocytes (FLSs) were tested. Proinflammatory factors were evaluated using enzyme-linked immunosorbent assay (ELISA). The expression of NF-κB/NLRP3 pathway components was determined by western blotting and immunofluorescence staining in vitro and in vivo. The putative binding sites between Cel and Hsp90 were predicted through molecular docking, and the binding interactions were determined using the Octet RED96 system and coimmunoprecipitation. Cel decreased arthritis severity and reduced TNF-α-induced FLSs migration and proliferation. Additionally, Cel inhibited NF-κB/NLRP3 signaling pathway activation, reactive oxygen species (ROS) production, and proinflammatory cytokine secretion. Furthermore, Cel interacted directly with Hsp90 and blocked the interaction between Hsp90 and NLRP3 in FLSs. Our findings revealed that Cel regulates NLRP3 inflammasome signaling pathways both in vivo and in vitro. These effects are induced through FLSs inhibition of the proliferation and migration by blocking the interaction between Hsp90 and NLRP3.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Biyao He
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Longjiao Dang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Jiayu Liu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Guohao Liu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Yuwei Zhao
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Pengfei Yu
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lei Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Wenyu Xin
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
12
|
Pak SW, Kim WI, Lee SJ, Park SH, Cho YK, Kim JS, Kim JC, Kim SH, Shin IS. Silibinin alleviates house dust mite induced allergic airway inflammation by inhibiting NLRC4 inflammasome and MMP-9 expression. Biomed Pharmacother 2025; 183:117823. [PMID: 39823722 DOI: 10.1016/j.biopha.2025.117823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Silibinin, a major compound of silymarin, has been reported to alleviate respiratory diseases including acute lung injury, asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis through its antifibrotic, anti-inflammatory, and antioxidant properties. However, the specific mechanisms underlying its therapeutic effects, particularly in allergic asthma, are not fully understood. With the increasing prevalence and impact of allergic asthma, there is a need to elucidate the exact underlying mechanisms of its potential treatment effects. Herein, we investigated the therapeutic effects of silibinin on allergic asthma using house dust mite (HDM)-exposed mice and an HDM-stimulated human bronchial epithelium cell line, focusing on the roles of the NLR family CARD domain containing 4 (NLRC4) inflammasome and matrix metalloproteinase-9 (MMP-9). To induce airway inflammation, HDM extracts were instilled intranasally on days 0, 4, 8, and 12 to mice. Silibinin (20 and 40 mg/kg) was orally administered daily from days 0-12. The results showed that silibinin treatment attenuated allergic immune responses induced by HDM exposure, as evidenced by decreased airway hyperresponsiveness, reduced inflammatory cells and cytokines, lower immunoglobulin E levls, and decreased mucus production. Furthermore, silibinin treatment suppressed NLRC4 inflammasome activation and downregulated MMP-9 expression in the lungs. In HDM-stimulated cells, silibinin treatment decreased inflammatory cytokine levels and the expression of NLRC4 and interleukin-1β, indicating inhibition of NLRC4 inflammasome activation. Overall, our data demonstrated that silibinin alleviated allergic responses in HDM-induced asthmatic mice by inhibiting NLRC4 inflammasome activation and MMP-9 expression, underscoring its therapeutic potential in the treatment of asthma.
Collapse
Affiliation(s)
- So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sin-Hyang Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si, Chungbuk 28503, Republic of Korea
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup-si, Jeonbuk 53212, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
13
|
Han Y, Liu S, Shi S, Shu Y, Lu C, Gu X. Screening of Genes Associated with Immune Infiltration of Discoid Lupus Erythematosus Based on Weighted Gene Co-expression Network Analysis. Biochem Genet 2025; 63:465-482. [PMID: 38451400 DOI: 10.1007/s10528-023-10603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2023] [Indexed: 03/08/2024]
Abstract
Discoid lupus erythematosus (DLE) is a disorder of the immune system commonly seen in women of childbearing age. The pathophysiology and aetiology are still poorly understood, and no cure is presently available. Therefore, there is an urgent need to explore the underlying molecular mechanisms, as well as search for new therapeutic targets. Gene expression data from skin biopsies samples of DLE patients and healthy controls were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) between DLE and healthy control samples were identified by differential expression analysis. Samples were analysed using CIBERSORT to examine the proportion of immune infiltration. Weighted gene co-expression network analysis was used to screen for the module most relevant to immune infiltration. Candidate genes were uploaded to the TRRUST database to obtain the potential transcription factors regulating these genes. Protein-protein interaction (PPI) analysis was performed to obtain the hub genes most associated with immune infiltration among the candidate genes. A total of 273 DEGs were identified between the DLE and healthy control samples. The results of immunoinfiltration analysis showed that the abundances of resting memory CD4 T cells, activated memory CD4 T cells and M1 macrophages were significantly higher, while those of resting infiltration of plasma cells, regulatory T cells and dendritic cells were lower in DLE samples than in healthy control samples. Correlation analysis showed that ISG15, TRIM22, XAF1, IFIT2, OAS2, OAS3, OAS1, IFI44, IFI6, BST2, IFIT1 and MX2 were negatively correlated with the abundances of plasma cells, T-cell regulatory cells and resting dendritic cells and positively correlated with activated memory CD4 T cells and M1 macrophages. Our study shows that these hub genes may regulate DLE via immune-related pathways mediated by the infiltration of these immune cells.
Collapse
Affiliation(s)
- Yuru Han
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd. Pudong New District, Shanghai, 201318, China
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuang Liu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd. Pudong New District, Shanghai, 201318, China
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuo Shi
- China COMAC Shanghai Aircraft Design and Research Institute, Shanghai, China
| | - Yongyong Shu
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd. Pudong New District, Shanghai, 201318, China.
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Rd. Pudong New District, Shanghai, 201318, China.
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
14
|
Zhang W, Wu H, Liao Y, Zhu C, Zou Z. Caspase family in autoimmune diseases. Autoimmun Rev 2025; 24:103714. [PMID: 39638102 DOI: 10.1016/j.autrev.2024.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining tissue homeostasis, with its primary forms including apoptosis, pyroptosis, and necroptosis. The caspase family is central to these processes, and its complex functions across different cell death pathways and other non-cell death roles have been closely linked to the pathogenesis of autoimmune diseases. This article provides a comprehensive review of the role of the caspase family in autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), and multiple sclerosis (MS). It particularly emphasizes the intricate functions of caspases within various cell death pathways and their potential as therapeutic targets, thereby offering innovative insights and a thorough discussion in this field. In terms of therapy, strategies targeting caspases hold significant promise. We emphasize the importance of a holistic understanding of caspases in the overall concept of cell death, exploring their unique functions and interrelationships across multiple cell death pathways, including apoptosis, pyroptosis, necroptosis, and PANoptosis. This approach transcends the limitations of previous studies that focused on singular cell death pathways. Additionally, caspases play a key role in non-cell death functions, such as immune cell activation, cytokine processing, inflammation regulation, and tissue repair, thereby opening new avenues for the treatment of autoimmune diseases. Regulating caspase activity holds the potential to restore immune balance in autoimmune diseases. Potential therapeutic approaches include small molecule inhibitors (both reversible and irreversible), biological agents (such as monoclonal antibodies), and gene therapies. However, achieving specific modulation of caspases to avoid interference with normal physiological functions remains a major challenge. Future research must delve deeper into the regulatory mechanisms of caspases and their associated complexes linked to PANoptosis to facilitate precision medicine. In summary, this article offers a comprehensive and in-depth analysis, providing a novel perspective on the complex roles of caspases in autoimmune diseases, with the potential to catalyze breakthroughs in understanding disease mechanisms and developing therapeutic strategies.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Huang Wu
- Basic Medical University, Naval Medical University, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
15
|
Svadlakova T, Kolackova M, Kulich P, Kotoucek J, Rosecka M, Krejsek J, Fiala Z, Andrýs C. Human Primary Monocytes as a Model for in vitro Immunotoxicity Testing: Evaluation of the Regulatory Properties of TiO 2 Nanoparticles. Int J Nanomedicine 2025; 20:1171-1189. [PMID: 39902067 PMCID: PMC11789775 DOI: 10.2147/ijn.s498690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025] Open
Abstract
Introduction A critical step preceding the potential biomedical application of nanoparticles is the evaluation of their immunomodulatory effects. Such nanoparticles are expected to enter the bloodstream where they can be recognized and processed by circulating monocytes. Despite the required biocompatibility, this interaction can affect intracellular homeostasis and modulate physiological functions, particularly inflammation. This study focuses on titanium dioxide (TiO2) as an example of relatively low cytotoxic nanoparticles with potential biomedical use and aims to evaluate their possible modulatory effects on the inflammasome-based response in human primary monocytes. Methods Monocyte viability, phenotypic changes, and cytokine production were determined after exposure to TiO2 (diameter, 25 nm; P25) alone. In the case of the modulatory effects, we focused on NLRP3 activation. The production of IL-1β and IL-10 was evaluated after (a) simultaneous activation of monocytes with bacterial stimuli muramyl dipeptide (MDP), or lipopolysaccharide (LPS), and TiO2 (co-exposure model), (b) prior activation with TiO2 alone and subsequent exposure to bacterial stimuli MDP or LPS. The differentiation of TiO2-treated monocytes into macrophages and their polarization were also assessed. Results The selected TiO2 concentration range (30-120 µg/mL) did not induce any significant cytotoxic effects. The highest dose of TiO2 promoted monocyte survival and differentiation into macrophages, with the M2 subset being the most prevalent. Nanoparticles alone did not induce substantial production of inflammatory cytokines IL-1β, IL-6, or TNF-α. The immunomodulatory effect on NLRP3 depended on the type of costimulant used. While co-exposure of monocytes to MDP and TiO2 boosted NLRP3 activity, co-exposure to LPS and TiO2 inhibited NLRP3 by enhancing IL-10 release. The inhibitory effect of TiO2 on NLRP3 based on the promotion of IL-10 was confirmed in a post-exposure model for both costimulants. Conclusion This study confirmed a non-negligible modulatory effect on primary monocytes in their inflammasome-based response and differentiation ability.
Collapse
Affiliation(s)
- Tereza Svadlakova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Pavel Kulich
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Jan Kotoucek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Michaela Rosecka
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Zdeněk Fiala
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ctirad Andrýs
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
16
|
Khanmohammadi S, Habibzadeh A, Fallahtafti P, Rezaei A, Sadr M, Ziaee V, Rezaei N. Association of NLRP3 single nucleotide polymorphisms with juvenile idiopathic arthritis: a case-control study. Clin Rheumatol 2025; 44:403-411. [PMID: 39673035 DOI: 10.1007/s10067-024-07270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Although juvenile idiopathic arthritis (JIA) is one of the most common pediatric rheumatologic diseases, the exact etiology of JIA remains unclear. Genetic factors, including variations in the NLRP3 gene, have been implicated in the pathogenesis of autoimmune diseases. Therefore, we aimed to investigate the association between NLRP3 polymorphisms and JIA. MATERIAL AND METHOD We conducted a case-control study involving 51 JIA patients and 56 healthy controls from the Children's Medical Center Hospital. Genotyping of four NLRP3 single nucleotide polymorphisms (SNPs) (rs10754558, rs3806265, rs4612666, and rs35829419) was performed using real-time polymerase chain reaction (PCR). Statistical analysis was conducted to compare allele and genotype frequencies between cases and controls. Additionally, haplotype analysis and evaluation of information interaction between SNPs were performed. RESULTS Allele and genotype frequencies of the investigated NLRP3 SNPs did not show significant differences between JIA cases and healthy controls. However, a notable difference in information interaction was observed at the rs4612666/rs3806265 SNPs (p-value = 0.000426). The CCCT haplotype was associated with increased odds of JIA with an odds ratio (OR) of 2.166 (95%CI:1.156-4.06), and contrariwise, the TCGT haplotype was associated with lower odds of JIA with an OR of 0.166 (95%CI:0.036-0.763). RESULTS The NLRP3 gene could be involved in the pathogenesis of JIA. Further research with larger cohorts and functional studies is warranted to confirm these findings and elucidate the underlying biological mechanisms. Key Points • No significant difference was observed in the allelic and genotype distribution of NLRP3 SNPs (rs10754558, rs3806265, rs4612666, and rs35829419) between JIA cases and the control group. • A statistically significant difference in information interaction between cases and the control group was observed in rs4612666/rs3806265 SNPs. • The CCCT haplotype was associated with a higher risk of JIA, while the TCGT haplotype was associated with a lower risk.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Parisa Fallahtafti
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
| | - Maryam Sadr
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
| | - Vahid Ziaee
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
18
|
El Gendy A, Abo Ali FH, Baioumy SA, Taha SI, El-Bassiouny M, Abdel Latif OM. NOD-like receptor family pyrin domain containing 3 (rs10754558) gene polymorphism in chronic spontaneous urticaria: A pilot case-control study. Immunobiology 2025; 230:152868. [PMID: 39818117 DOI: 10.1016/j.imbio.2025.152868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Chronic spontaneous urticaria (CSU) is a persistent skin condition with no known cause or trigger. The unpredictability of CSU attacks lowers patients' quality of life. NOD-like receptor pyrin domain containing 3 (NLRP3) gene dysregulation can result in numerous immunological and inflammatory diseases. OBJECTIVE This case-control study aimed to determine the association between the NLRP3 inflammasome (rs10754558) single nucleotide polymorphism (SNP) and the occurrence, severity and etiology of CSU. METHODS Each study group included 62 participants; all were subjected to CSU severity evaluation by the urticaria activity score (UAS), autologous serum skin testing (ASST) and NLRP3 (rs10754558) genotyping. RESULTS The NLRP3 (rs10754558) CG genotype was the most predominant in both study groups, followed by the CC genotype (41.9 %) in the CSU group and the GG genotype (25.8 %) in the control group. Most of the CSU group (66.1 %) had the C allele, compared to most controls (53.2 %) with the G allele. The frequency of NLRP3 (rs10754558) genotypes and alleles did not differ significantly according to the severity of CSU by UAS (P > 0.05). The prevalence of the CC genotype was significantly higher among the ASST-positive CSU patients. The C allele elevated the likelihood of positive ASST in CSU patients by 21 times, suggesting the autoimmune theory of CSU. None of the ASST-positive patients had the GG genotype. CONCLUSION The NLRP3 inflammasome (rs10754558) C allele may be associated with CSU risk but not severity by UAS. It may also be associated with ASST positivity which suggests a connection between the C-allele and the autoimmune notion of CSU.
Collapse
Affiliation(s)
- Aya El Gendy
- Department of Internal Medicine / Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Fawzia Hassan Abo Ali
- Department of Internal Medicine / Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shereen A Baioumy
- Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Egypt
| | - Sara I Taha
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Mahy El-Bassiouny
- Department of Dermatology, Andrology and Venereology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Osama M Abdel Latif
- Department of Internal Medicine / Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
19
|
Kong K, Qiao X, Liu T, Wang X, Li R, Fang J, Zhang X. Identification of Novel Hub Genes Associated with Inflammation and Autophagy in Astragaloside Membranaceus ameliorates Lupus Nephritis by Bioinformatics Analysis and Molecular Dynamics Simulation. Comb Chem High Throughput Screen 2025; 28:306-318. [PMID: 38299290 DOI: 10.2174/0113862073255980231113071412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Lupus nephritis is an autoimmune disease, and its pathogenesis involves inflammation and autophagy disorders. Studies have demonstrated that Astragalus membranaceus can effectively suppress the progression of LN, but the underlying therapeutic target is still unclear. OBJECTION This study aimed to investigate the therapeutic target whereby AM ameliorates LN. METHOD We downloaded AM and LN-related chips from the TCMSP and GEO databases, respectively. We selected the two compound targets for the subsequent analysis via WGCNA, and constructed protein interaction networks of compound targets and determined the core targets. GO, KEGG analyses were conducted on compound targets to identify enriched functional and genomic pathways. The core genes were further validated in clinical and external datasets. Molecular docking of AS with the core targets was performed using the AutoDock software, and molecular dynamics simulation was conducted for the optimal core protein ligand obtained by molecular docking by Gromacs 2020.6 software. RESULT We obtained 10 core targets, namely IL-1β, EGF, CCND1, CASP3, STAT1, PTGS2, PPARγ, AR, CXCL10, and KDR, from the 24 compound targets identified. The results of the GO enrichment analysis mainly included cell growth regulation. The results of the KEGG enrichment analysis showed that 7 out of 23 valid targets were significantly enriched in the mitogen-activated protein kinase pathway (p < 0.01). Combined with the clinical datasets, we found that IL-1β, EGF, CCND1, CASP3, STAT1, PTGS2, and PPARγ have high diagnostic values for LN. In the validation dataset, all the core targets were significantly differentially expressed, except for EGF deletion. The molecular docking and molecular dynamics simulation results showed that AM and IL- 1β, CASP3, STAT1, and PPARγ all had binding energies < -5 kJ·mol-1 and good binding properties. CONCLUSION IL-1β, CASP3, STAT1, and PPARγ could be potential biomarkers and therapeutic targets in AM ameliorates LN.
Collapse
Affiliation(s)
- Kaili Kong
- Shanxi Medicial University, Taiyuan, China
| | | | - Ting Liu
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | | | - Rui Li
- Shanxi Medicial University, Taiyuan, China
| | - Jingai Fang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaodong Zhang
- Department of Nephrology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
20
|
Scalavino V, Piccinno E, Giannelli G, Serino G. Inflammasomes in Intestinal Disease: Mechanisms of Activation and Therapeutic Strategies. Int J Mol Sci 2024; 25:13058. [PMID: 39684769 DOI: 10.3390/ijms252313058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
NOD-like receptors (NLRs) are a family of cytosolic pattern recognition receptors (PRRs) implicated in the innate immune sensing of pathogens and damage signals. NLRs act as sensors in multi-protein complexes called inflammasomes. Inflammasome activity is necessary for the maintenance of intestinal homeostasis, although their aberrant activation contributes to the pathogenesis of several gastrointestinal diseases. In this review, we summarize the main features of the predominant types of inflammasomes involved in gastrointestinal immune responses and their implications in intestinal disease, including Irritable Bowel Syndrome (IBS), Inflammatory Bowel Disease (IBD), celiac disease, and Colorectal Cancer (CRC). In addition, we report therapeutic discoveries that target the inflammasome pathway, highlighting promising novel therapeutic strategies in the treatment of intestinal diseases. Collectively, our understanding of the mechanisms of intestinal inflammasome activation and their interactions with other immune pathways appear to be not fully elucidated. Moreover, the clinical relevance of the efficacy of inflammasome inhibitors has not been evaluated. Despite these limitations, a greater understanding of the effectiveness, specificity, and reliability of pharmacological and natural inhibitors that target inflammasome components could be an opportunity to develop new therapeutic options for the treatment of intestinal disease.
Collapse
Affiliation(s)
- Viviana Scalavino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| | - Emanuele Piccinno
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy
| |
Collapse
|
21
|
Kong R, Peng L, Bao H, Sun L, Feng Y, Li H, Wang D. The role of Gαq in regulating NLRP3 inflammasome activation. Inflamm Res 2024; 73:2249-2261. [PMID: 39455437 DOI: 10.1007/s00011-024-01961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND G proteins are a class of important signal transducers in mammalians. G proteins can corpoarated with G proteincoupled receptors (GPCRs) and transmit signals from extracellular stimuli into intracellular response, which will regulate a series of biological functions. G-proteins are heterotrimeric proteins composed of Gα, Gβ, and Gγ subunits. Based on structural and functional similarity of their α-subunits, G proteins are typically grouped into four classes (Gi, Gs, Gq/11, and G12/13). The Gq/11 subfamily consists of Gq, G11, G14, and G15/16 proteins. Gαq is the α-subunit of Gq protein and encoded by GNAQ. Our previous studies revealed that Gαq play an important role in regulating T cell survival and T cell differentiation. Inflammasomes are multiprotein complexes that play a critical role in modulating innate inflammatory response. NLRP3 inflammasome is currently the most extensively studied inflammasome. METHODS We found that Gαq suppressed NLRP3 inflammasome activation in macrophage, Gαq also suppressed NLRP3 inflammasome activation in a LPS-induced sepsis mouse model. Gαq can locate to mitochondria and Gαq was required for the maintenance of mitochondrial homeostasis. Gαq regulated NLRP3 inflammasome activation by modulating mitochondrial reactive oxygen species (mtROS). RESULTS We found that Gαq suppressed NLRP3 inflammasome activation in macrophage, Gαq also suppressed NLRP3 inflammasome activation in a LPS-induced sepsis mouse model. Gαq can locate to mitochondria and Gαq was required for the maintenance of mitochondrial homeostasis. Gαq regulated NLRP3 inflammasome activation by modulating mitochondrial reactive oxygen species (mtROS). CONCLUSION Our results indicate that Gαq regulates NLRP3 inflammasome activation by modulating mitochondrial ROS production. Our research provides new mechanistic insight into the activation of NLRP3 inflammasome. As it has been proved that NLRP3 inflammasome plays an important role in the pathogenesis many diseases such as Alzheimer's disease, cancer, and inflammatory bowel disease, Gαq might become a novel drug target for these diseases in future.
Collapse
Affiliation(s)
- Ruixue Kong
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Lijun Peng
- Department of Gastroenterology, Linyi People's Hospital, Linyi, 276000, Shandong, China
| | - Honggang Bao
- Department of Laboratory Medicine, Linyi Cancer Hospital, Linyi, 276000, Shandong, China
| | - Lulu Sun
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yan Feng
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Hua Li
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Dashan Wang
- Research Center, Shandong Medical College, Linyi, 276000, Shandong, China.
| |
Collapse
|
22
|
Wang Y, Gao S, Cao F, Yang H, Lei F, Hou S. Ocular immune-related diseases: molecular mechanisms and therapy. MedComm (Beijing) 2024; 5:e70021. [PMID: 39611043 PMCID: PMC11604294 DOI: 10.1002/mco2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Ocular immune-related diseases, represent a spectrum of conditions driven by immune system dysregulation, include but not limit to uveitis, diabetic retinopathy, age-related macular degeneration, Graves' ophthalmopathy, etc. The molecular and cellular mechanisms underlying these diseases are typically dysfunctioned immune responses targeting ocular tissues, resulting in inflammation and tissue damage. Recent advances have further elucidated the pivotal role of different immune responses in the development, progression, as well as management of various ocular immune diseases. However, there is currently a relative lack of connection between the cellular mechanisms and treatments of several immune-related ocular diseases. In this review, we discuss recent findings related to the immunopathogenesis of above-mentioned diseases. In particular, we summarize the different types of immune cells, inflammatory mediators, and associated signaling pathways that are involved in the pathophysiology of above-mentioned ophthalmopathies. Furthermore, we also discuss the future directions of utilizing anti-inflammatory regime in the management of these diseases. This will facilitate a better understanding of the pathogenesis of immune-related ocular diseases and provide new insights for future treatment approaches.
Collapse
Affiliation(s)
- Yakun Wang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Shangze Gao
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Fan Cao
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Hui Yang
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Fengyang Lei
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Shengping Hou
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| |
Collapse
|
23
|
Wang Z, Guo L, Yuan C, Zhu C, Li J, Zhong H, Mao P, Li J, Cui L, Dong J, Liu K, Meng X, Zhu G, Wang H. Staphylococcus pseudintermedius induces pyroptosis of canine corneal epithelial cells by activating the ROS-NLRP3 signalling pathway. Virulence 2024; 15:2333271. [PMID: 38515339 PMCID: PMC10984133 DOI: 10.1080/21505594.2024.2333271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024] Open
Abstract
Staphylococcus pseudintermedius (S. pseudintermedius) is a common pathogen that causes canine corneal ulcers. However, the pathogenesis remained unclear. In this study, it has been demonstrated that S. pseudintermedius invaded canine corneal epithelial cells (CCECs) intracellularly, mediating oxidative damage and pyroptosis by promoting the accumulation of intracellular reactive oxygen species (ROS) and activating the NLRP3 inflammasome. The canine corneal stroma was infected with S. pseudintermedius to establish the canine corneal ulcer model in vivo. The intracellular infectious model in CCECs was established in vitro to explore the mechanism of the ROS - NLRP3 signalling pathway during the S. pseudintermedius infection by adding NAC or MCC950. Results showed that the expression of NLRP3 and gasdermin D (GSDMD) proteins increased significantly in the infected corneas (p < 0.01). The intracellular infection of S. pseudintermedius was confirmed by transmission electron microscopy and immunofluorescent 3D imaging. Flow cytometry analysis revealed that ROS and pyroptosis rates increased in the experimental group in contrast to the control group (p < 0.01). Furthermore, NAC or MCC950 inhibited activation of the ROS - NLRP3 signalling pathway and pyroptosis rate significantly, by suppressing pro-IL-1β, cleaved-IL-1β, pro-caspase-1, cleaved-caspase-1, NLRP3, GSDMD, GSDMD-N, and HMGB1 proteins. Thus, the research confirmed that oxidative damage and pyroptosis were involved in the process of CCECs infected with S. pseudintermedius intracellularly by the ROS - NLRP3 signalling pathway. The results enrich the understanding of the mechanisms of canine corneal ulcers and facilitate the development of new medicines and prevention measures.
Collapse
Affiliation(s)
- Zhihao Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Changning Yuan
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Chengcheng Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Jun Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Peng Mao
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu, China
| |
Collapse
|
24
|
Khodir SA, Sweed EM, Faried MA, Abo Elkhair DM, Khalil MM, Afifi KH, El Agamy DF. Neuroprotective Effect of Maresin-1 in Rotenone-Induced Parkinson's Disease in Rats: The Putative Role of the JAK/STAT Pathway. Neurochem Res 2024; 50:30. [PMID: 39576344 PMCID: PMC11584474 DOI: 10.1007/s11064-024-04282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024]
Abstract
Exposure to rotenone results in similar pathophysiological features as Parkinson's disease. Inflammation and oxidative stress are essential to PD pathogenesis. Maresin-1 has potent anti-inflammatory properties and promotes the regression of inflammation function. The current study aimed to evaluate the protective effects of Maresin-1 (MaR1) in rotenone (ROT)-induced PD and whether this protective role is associated with the initiation of the Janus kinase (JAK)-signal transducers and activator of transcription (STAT) signaling pathway. Thirty male Wister rats were classified into control, ROT-treated, and ROT + MaR1-treated groups. Rats underwent rotarod, open field, grip strength, and stepping tests as part of their motor behavioral evaluation. Serum glial cell-derived neurotrophic factor (GDNF) and striatal dopamine, acetylcholine, malondialdehyde (MDA), reduced glutathione (GSH), TNF-α, IL-6, and IL-1β were evaluated. Expression of JAK1 and STAT3 genes was assessed in striatum. Then, the tissue was subjected to histological and immunohistochemical evaluation for caspase-3, GFAP, and NF-kB. The administrated group with rotenone showed significant motor behavioral impairment. This was accompanied by reduced levels of GDNF and dopamine and increased levels of acetylcholine, as well as augmented oxidative stress and inflammatory biomarkers and reduced antioxidant activity. Inflammatory pathways (JAK1/STAT3, caspase-3, and NF-kB) were upregulated. Histopathological changes and upregulation in GFAP immunopositive reaction were observed. Remarkably, MaR1 treatment effectively alleviated behavior, histopathological changes, and biochemical alterations induced by ROT. MaR1 exerts protective effects against ROT-induced PD by its anti-inflammatory, antiapoptotic, and antioxidant properties. MaR1 mechanisms of action may involve modulation of pathways such as JAK/STAT.
Collapse
Affiliation(s)
- Suzan A Khodir
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
- Medical Physiology Department, Menoufia National University, Menoufia, Egypt
| | - Eman M Sweed
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt.
- Quality Assurance Center, Menoufia National University, Menoufia, Egypt.
| | - Manar A Faried
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | - Doaa M Abo Elkhair
- Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | - Marwa M Khalil
- Medical biochemistry and molecular biology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
- Medical biochemistry and molecular biology Department, Menoufia National University, Menoufia, Egypt
| | - Khaled Hatem Afifi
- Neurology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
| | - Dalia Fathy El Agamy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, 32511, Egypt
- Medical Physiology Department, Menoufia National University, Menoufia, Egypt
| |
Collapse
|
25
|
Kirdaite G, Denkovskij J, Mieliauskaite D, Pachaleva J, Bernotiene E. The Challenges of Local Intra-Articular Therapy. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1819. [PMID: 39597004 PMCID: PMC11596802 DOI: 10.3390/medicina60111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Fibroblast-like synoviocytes (FLSs) are among the main disease-driving players in most cases of monoarthritis (MonoA), oligoarthritis, and polyarthritis. In this review, we look at the characteristics and therapeutic challenges at the onset of arthritis and during follow-up management. In some cases, these forms of arthritis develop into autoimmune polyarthritis, such as rheumatoid arthritis (RA), whereas local eradication of the RA synovium could still be combined with systemic treatment using immunosuppressive agents. Currently, the outcomes of local synovectomies are well studied; however, there is still a lack of a comprehensive analysis of current local intra-articular treatments highlighting their advantages and disadvantages. Therefore, the aim of this study is to review local intra-articular therapy strategies. According to publications from the last decade on clinical studies focused on intra-articular treatment with anti-inflammatory molecules, a range of novel slow-acting forms of steroidal drugs for the local treatment of synovitis have been investigated. As pain is an essential symptom, caused by both inflammation and cartilage damage, various molecules acting on pain receptors are being investigated in clinical trials as potential targets for local intra-articular treatment. We also overview the new targets for local treatment, including surface markers and intracellular proteins, non-coding ribonucleic acids (RNAs), etc.
Collapse
Affiliation(s)
- Gailute Kirdaite
- Department of Personalised Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Jaroslav Denkovskij
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania (E.B.)
| | - Diana Mieliauskaite
- Department of Personalised Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Jolita Pachaleva
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania (E.B.)
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania (E.B.)
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, VilniusTech, Sauletekio al. 11, LT-10223 Vilnius, Lithuania
| |
Collapse
|
26
|
Gumber L, Samarasinghe H, Gladston P, Moorthy A. Diabetes in axial spondyloarthritis: a systematic review and meta-analysis of observational studies. Rheumatol Int 2024; 44:2381-2388. [PMID: 39261370 PMCID: PMC11424650 DOI: 10.1007/s00296-024-05700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024]
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory condition with an increased risk of cardiovascular disease (CVD). Diabetes is a well-established risk factor for CVD and stroke. The objective of this study was to conduct a systematic review to: (i) identify the prevalence of diabetes in axSpA and (ii) compare the risk of diabetes in patients with axSpA and without. A comprehensive literature search was performed for articles published between 1 January 2000 and 15 November 2023 using Medline, Embase and Scopus (PROSPERO: CRD42023482573). Observational studies reporting prevalence, incidence or risk of diabetes in axSpA were included. Search results were independently screened by at least two reviewers. Quality of included studies were assessed using the JBI critical appraisal tool. Study-specific proportions and odds ratios (OR) were combined in a random-effects meta-analysis. 2257 articles were identified from database searching from which 23 studies were included for analysis amounting to a combined sample size of 65 025 patients. The pooled prevalence of diabetes in people with axSpA was 7.0% (95% CI 5.9-8.0%; predictive interval 2.4-12.9%; p < 0.001). The funnel plot was symmetric suggesting no small-study effects (I2 = 98.1% (95% CI 0.05-0.08), τ2 = 0.02; p < 0.001). Comparing patients with axSpA to those without, the pooled OR was 1.29 (95% CI 1.10-1.52; predictive interval 0.76-2.22; p = 0.001) for diabetes. The study suggests an increased prevalence and probably an increased risk of diabetes in people with axSpA. Routine screening for diabetes and lifestyle modifications should be encouraged in this cohort.
Collapse
Affiliation(s)
- Leher Gumber
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon- Tyne, UK
- Northumbria Healthcare NHS Foundation Trust, Northumberland, UK
| | | | - Praveen Gladston
- Wirral University Teaching Hospital NHS Foundation Trust, Wirral, UK
| | - Arumugam Moorthy
- Department of Rheumatology, University Hospitals of Leicester NHS Trust, Leicester, UK.
- College of Life Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
27
|
Liu K, Wang M, Li D, Duc Duong NT, Liu Y, Ma J, Xin K, Zhou Z. PANoptosis in autoimmune diseases interplay between apoptosis, necrosis, and pyroptosis. Front Immunol 2024; 15:1502855. [PMID: 39544942 PMCID: PMC11560468 DOI: 10.3389/fimmu.2024.1502855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
PANoptosis is a newly identified inflammatory programmed cell death (PCD) that involves the interplay of apoptosis, necrosis, and pyroptosis. However, its overall biological effects cannot be attributed to any one type of PCD alone. PANoptosis is regulated by a signaling cascade triggered by the recognition of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) by various sensors. This triggers the assembly of the PANoptosome, which integrates key components from other PCD pathways via adapters and ultimately activates downstream execution molecules, resulting in cell death with necrotic, apoptotic, and pyroptotic features. Autoimmune diseases are characterized by reduced immune tolerance to self-antigens, leading to abnormal immune responses, often accompanied by systemic chronic inflammation. Consequently, PANoptosis, as a unique innate immune-inflammatory PCD pathway, has significant pathophysiological relevance to inflammation and autoimmunity. However, most previous research on PANoptosis has focused on tumors and infectious diseases, leaving its activation and role in autoimmune diseases unclear. This review briefly outlines the characteristics of PANoptosis and summarizes several newly identified PANoptosome complexes, their activation mechanisms, and key components. We also explored the dual role of PANoptosis in diseases and potential therapeutic approaches targeting PANoptosis. Additionally, we review the existing evidence for PANoptosis in several autoimmune diseases and explore the potential regulatory mechanisms involved.
Collapse
Affiliation(s)
- Kangnan Liu
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mi Wang
- Rheumatology Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Dongdong Li
- Oncology Department, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| | | | - Yawei Liu
- Rheumatology Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Junfu Ma
- Rheumatology Department, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| | - Kai Xin
- Rheumatology Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zipeng Zhou
- Rheumatology Department, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| |
Collapse
|
28
|
Gopalaswamy R, Aravindhan V, Subbian S. The Ambivalence of Post COVID-19 Vaccination Responses in Humans. Biomolecules 2024; 14:1320. [PMID: 39456253 PMCID: PMC11506738 DOI: 10.3390/biom14101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has prompted a massive global vaccination campaign, leading to the rapid development and deployment of several vaccines. Various COVID-19 vaccines are under different phases of clinical trials and include the whole virus or its parts like DNA, mRNA, or protein subunits administered directly or through vectors. Beginning in 2020, a few mRNA (Pfizer-BioNTech BNT162b2 and Moderna mRNA-1273) and adenovirus-based (AstraZeneca ChAdOx1-S and the Janssen Ad26.COV2.S) vaccines were recommended by WHO for emergency use before the completion of the phase 3 and 4 trials. These vaccines were mostly administered in two or three doses at a defined frequency between the two doses. While these vaccines, mainly based on viral nucleic acids or protein conferred protection against the progression of SARS-CoV-2 infection into severe COVID-19, and prevented death due to the disease, their use has also been accompanied by a plethora of side effects. Common side effects include localized reactions such as pain at the injection site, as well as systemic reactions like fever, fatigue, and headache. These symptoms are generally mild to moderate and resolve within a few days. However, rare but more serious side effects have been reported, including allergic reactions such as anaphylaxis and, in some cases, myocarditis or pericarditis, particularly in younger males. Ongoing surveillance and research efforts continue to refine the understanding of these adverse effects, providing critical insights into the risk-benefit profile of COVID-19 vaccines. Nonetheless, the overall safety profile supports the continued use of these vaccines in combating the pandemic, with regulatory agencies and health organizations emphasizing the importance of vaccination in preventing COVID-19's severe outcomes. In this review, we describe different types of COVID-19 vaccines and summarize various adverse effects due to autoimmune and inflammatory response(s) manifesting predominantly as cardiac, hematological, neurological, and psychological dysfunctions. The incidence, clinical presentation, risk factors, diagnosis, and management of different adverse effects and possible mechanisms contributing to these effects are discussed. The review highlights the potential ambivalence of human response post-COVID-19 vaccination and necessitates the need to mitigate the adverse side effects.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Directorate of Distance Education, Madurai Kamaraj University, Madurai 625021, India;
| | - Vivekanandhan Aravindhan
- Department of Genetics, Dr Arcot Lakshmanasamy Mudaliyar Post Graduate Institute of Basic Medical Sciences (Dr ALM PG IBMS), University of Madras, Taramani, Chennai 600005, India;
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
29
|
Wang M, Xiang YH, Liu M, Jiang S, Guo JY, Jin XY, Sun HF, Zhang N, Wang ZG, Liu JX. The application prospects of sacha inchi ( Plukenetia volubilis linneo) in rheumatoid arthritis. Front Pharmacol 2024; 15:1481272. [PMID: 39484157 PMCID: PMC11524839 DOI: 10.3389/fphar.2024.1481272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Sacha Inchi (Plukenetia volubilis L) (SI) is a traditional natural medicine from tropical rainforests of Amazon region in South America. As a raw material for edible oil, it has various pharmacological effects such as antioxidant, anti-inflammatory, hypolipidemia, and blood pressure lowering, which have attracted increasing attentions of pharmacists. This has prompted researchers to explore its pharmacological effects for potential applications in certain diseases. Among these, the study of its anti-inflammatory effects has become a particularly interesting topic, especially in rheumatoid arthritis (RA). RA is a systemic autoimmune disease, and often accompanied by chronic inflammatory reactions. Despite significant progress in its treatment, there is still an urgent need to find effective anti-RA drugs in regard to safety. This review summarizes the potential therapeutic effects of SI on RA by modulating gut microbiota, targeting inflammatory cells and pathways, and mimicking biologic antibody drugs, predicting the application prospects of SI in RA, and providing references for research aimed at using SI to treat RA.
Collapse
Affiliation(s)
- Min Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yin-Hong Xiang
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Mei Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| | - Shan Jiang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jia-ying Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiao-yan Jin
- School of Pharmaceutical Sciences, Xinjiang medical University, Wulumuqi, Xinjiang, China
| | - Hui-feng Sun
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Zhi-Gang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jian-xin Liu
- Sino-Pakistan Center on Traditional Chinese Medicine, School of Pharmaceutical Sciences, School of Basic Medical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan, China
| |
Collapse
|
30
|
Dadkhah M, Sharifi M. The NLRP3 inflammasome: Mechanisms of activation, regulation, and role in diseases. Int Rev Immunol 2024; 44:98-111. [PMID: 39402899 DOI: 10.1080/08830185.2024.2415688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/09/2024] [Accepted: 10/05/2024] [Indexed: 02/22/2025]
Abstract
Because of numerous stress signals, intracellular protein complexes are called inflammasomes. They function as catalysts for the proteolytic transformation of pro-interleukin into the active form of interleukin. Inflammasomes can promote a type of cell death process known as pyroptosis. The NLRP3 inflammasome, comprised of the NLRP3 protein, procaspase-1, and ASC, tightly regulates inflammation. The NLRP3 inflammasome is activated by a variety of stimuli, and several molecular and cellular events, such as ion influx, mitochondrial dysfunction, reactive oxygen species production, and lysosomal damage have been shown to trigger its activation. Inflammation plays a major role in almost all types of human diseases. The NLRP3 inflammasome has been the most widely studied and plays an important pathogenic role in various inflammatory pathologies. This review briefly presents the basic features of NLRP3 inflammasome and their mechanisms of activation and regulation. In addition, recent studies report the role of NLRP3 inflammasome in several diseases have been summarized.
Collapse
Affiliation(s)
- Mina Dadkhah
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
31
|
Pivina L, Batenova G, Ygiyeva D, Orekhov A, Pivin M, Dyussupov A. Assessment of the Predictive Ability of the Neutrophil-to-Lymphocyte Ratio in Patients with In-Stent Restenosis after COVID-19. Diagnostics (Basel) 2024; 14:2262. [PMID: 39451585 PMCID: PMC11506230 DOI: 10.3390/diagnostics14202262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The neutrophil-to-lymphocyte ratio (NLR) is an independent predictor of the severity of coronary heart disease and COVID-19. This study aims to assess the predictive ability of the NLR in patients with in-stent restenosis after COVID-19. MATERIALS AND METHODS a cross-sectional study included 931 patients who underwent repeated myocardial revascularization between May 2020 and May 2023. The 420 patients of the main group had in-stent restenosis, of which 162 patients had COVID-19 previously. The control group included 511 patients without stent restenosis (107 patients had COVID-19 previously). All reported events were verified by hospital electronic records from the Complex Medical Information System. RESULTS The mean values of the NLR were 2.51 and 2.68 in the study groups, respectively. A statistically significant positive relationship in both groups was found between the NLR and troponin, D-dimer, C-reactive protein, creatinine, ALT, and AST. A statistically significant positive relationship was found between NLR and myocardial infarction (MI) in patients of both groups (p = 0.004; p < 0.001, respectively) and a negative relationship with the ejection fraction (p = 0.001; p < 0.036, respectively). An evaluation of the predictive ability of the clinical and laboratory predictors of recurrent myocardial infarction shows a high degree of utility of this model. The area under the ROC curve for AUC for NLR was 0.664 with 95% CI from 0.627 to 0.700 (p < 0.001). CONCLUSIONS NLR is one of the significant factors for predicting the development of adverse outcomes in patients with revascularized myocardium after COVID-19.
Collapse
Affiliation(s)
- Lyudmila Pivina
- Department of Emergency Medicine, Semey Medical University, Semey 071400, Kazakhstan; (G.B.); (D.Y.); (M.P.)
| | - Gulnara Batenova
- Department of Emergency Medicine, Semey Medical University, Semey 071400, Kazakhstan; (G.B.); (D.Y.); (M.P.)
| | - Diana Ygiyeva
- Department of Emergency Medicine, Semey Medical University, Semey 071400, Kazakhstan; (G.B.); (D.Y.); (M.P.)
| | - Andrey Orekhov
- Department of Internal Medicine, Semey Medical University, Semey 071400, Kazakhstan;
| | - Maksim Pivin
- Department of Emergency Medicine, Semey Medical University, Semey 071400, Kazakhstan; (G.B.); (D.Y.); (M.P.)
| | - Altay Dyussupov
- Rector Office, Semey Medical University, Semey 071400, Kazakhstan;
| |
Collapse
|
32
|
Zhang S, Hou B, Xu A, Wen Y, Zhu X, Cai W, Han Z, Chen J, Nhamdriel T, Mi M, Qiu L, Sun H. Ganlu formula ethyl acetate extract (GLEE) blocked the development of experimental arthritis by inhibiting NLRP3 activation and reducing M1 type macrophage polarization. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118377. [PMID: 38782307 DOI: 10.1016/j.jep.2024.118377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Tibetan medicine Ganlu Formula, as a classic prescription, is widely used across the Qinghai-Tibet Plateau area of China, which has a significant effect on relieving the course of rheumatoid arthritis (RA). However, the active compounds and underlying mechanisms of Ganlu Formula in RA treatment remain largely unexplored. AIM OF THE STUDY This study aimed to elucidate the active substances and potential mechanisms of the ethyl acetate extract of Ganlu Formula ethyl acetate extract (GLEE) in the treatment of RA. MATERIALS AND METHODS Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was utilized to analyze and identify the chemical constituents within GLEE. Discovery Studio molecular virtual docking technology was utilized to dock the interaction of GLEE with inflammation-related pathway proteins. The GLEE gene library was obtained by transcriptome sequencing. Collagen-induced arthritic(CIA) rats were utilized to assess the antiarthritic efficacy of GLEE. Micro-CT imaging was employed to visualize the rat paw, and ultrasound imaging revealed knee joint effusion. Evaluation of synovial tissue pathological changes was conducted through hematoxylin-eosin staining and saffranine solid green staining, while immunohistochemical staining was employed to assess NLRP3 expression along with inflammatory markers. Immunofluorescence staining was utilized to identify M1 macrophages. RESULTS Metabolomic analysis via UPLC-Q-TOF-MS identified 28 potentially bioactive compounds in GLEE, which interacted with the active sites of key proteins such as NLRP3, NF-κB, and STAT3 through hydrogen bonds, C-H bonds, and electrostatic attractions. In vitro analyses demonstrated that GLEE significantly attenuated NLRP3 inflammasome activation and inhibited the polarization of bone marrow-derived macrophages (BMDMs) towards the M1 phenotype. In vivo, GLEE not only prevented bone mineral density (BMD) loss but also reduced ankle swelling in CIA rats. Furthermore, it decreased the expression of the NLRP3 inflammasome and curtailed the release of inflammatory mediators within the knee joint. CONCLUSION GLEE effectively mitigated inflammatory responses in both blood and knee synovial membranes of CIA rats, potentially through the down-regulation of the NLRP3/Caspase-1/IL-1β signaling pathway and reduction in M1 macrophage polarization.
Collapse
Affiliation(s)
- Shijie Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Anjing Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yuanyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Xuexue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Zhijun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi, 214001, Jiangsu Province, China
| | - Jing Chen
- Department of Basic Medicine, Tibet University of Medicine, 850000, Lhasa, China
| | - Tsedien Nhamdriel
- Department of Basic Medicine, Tibet University of Medicine, 850000, Lhasa, China
| | - Ma Mi
- Department of Basic Medicine, Tibet University of Medicine, 850000, Lhasa, China.
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
33
|
Li D, Onodera S, Yu Q, Zhou J. The impact of alternate-day fasting on the salivary gland stem cell compartments in non-obese diabetic mice with newly established Sjögren's syndrome. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119817. [PMID: 39159683 PMCID: PMC11368138 DOI: 10.1016/j.bbamcr.2024.119817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Intermittent fasting exerts a profound beneficial influence on a spectrum of diseases through various mechanisms including regulation of immune responses, elimination of senescent- and pathogenic cells and improvement of stem cell-based tissue regeneration in a disease- and tissue-dependent manner. Our previous study demonstrated that alternate-day fasting (ADF) led to alleviation of xerostomia and sialadenitis in non-obese diabetic (NOD) mice, a well-defined model of Sjögren's syndrome (SS). This present study delved into the previously unexplored impacts of ADF in this disease setting and revealed that ADF increases the proportion of salivary gland stem cells (SGSCs), defined as the EpCAMhi cell population among the lineage marker negative submandibular gland (SMG) cells. Furthermore, ADF downregulated the expression of p16INK4a, a cellular senescence marker, which was concomitant with increased apoptosis and decreased expression and activity of NLRP3 inflammasomes in the SMGs, particularly in the SGSC-residing ductal compartments. RNA-sequencing analysis of purified SGSCs from NOD mice revealed that the significantly downregulated genes by ADF were mainly associated with sugar metabolism, amino acid biosynthetic process and MAPK signaling pathway, whereas the significantly upregulated genes related to fatty acid metabolic processes, among others. Collectively, these findings indicate that ADF increases the SGSC proportion, accompanied by a modulation of the SGSC property and a switch from sugar- to fatty acid-based metabolism. These findings lay the foundation for further investigation into the functionality of SGSCs influenced by ADF and shed light on the cellular and molecular mechanisms by which ADF exerts beneficial actions on salivary gland restoration in SS.
Collapse
Affiliation(s)
- Dongfang Li
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Shoko Onodera
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; Department of Biochemistry, Tokyo Dental College, Tokyo, Japan
| | - Qing Yu
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| | - Jing Zhou
- The ADA Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.
| |
Collapse
|
34
|
Bakhsh R, Dairi K, Almadabgy E, Albiladi A, Gamal L, Almatrafi D, AlShariff F, Alsefri A. New Onset of Neuro-Sjögren's Syndrome Nine Months After the Third COVID-19 Vaccine Dose: A Case Report. Cureus 2024; 16:e69562. [PMID: 39421077 PMCID: PMC11486521 DOI: 10.7759/cureus.69562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune chronic inflammatory disease causing peripheral nerve system and central nervous system issues. It results from lymphocytic infiltrates in exocrine glands, coexists with rheumatoid arthritis, and manifests independently. The COVID-19 vaccine has been linked to increased autoimmune diseases and rheumatological flare-ups, possibly due to its use of adjuvants and molecular mimicry, particularly those containing aluminum. Additionally, SS-like manifestations have been reported after the infection or vaccination, potentially leading to long-term salivary secretory dysfunction. Multiple studies have suggested the presence of a special relationship between COVID-19 vaccination/infection and the emergence of autoimmune syndromes as a negative side effect of the vaccine or direct complication from infection. The time frame for the appearance of the symptoms after vaccination or disease is not well established. Some studies suggested increased risk shortly after vaccination, while others suggested a long-term association. In this case, report, and review article, we discuss the presence of a possible association with the emergence of neuro-SS in a young lady nine months after she received her third dose of COVID-19 vaccination. Furthermore, we reviewed studies highlighting the special link and relationship between the COVID-19 vaccine/infection and SS.
Collapse
Affiliation(s)
- Raja Bakhsh
- Internal Medicine, King Faisal Hospital, Ministry of Health, Makkah, SAU
| | - Khaled Dairi
- Internal Medicine, King Faisal Hospital, Ministry of Health, Makkah, SAU
| | - Elaf Almadabgy
- Internal Medicine, King Faisal Hospital, Ministry of Health, Makkah, SAU
| | - Amani Albiladi
- Internal Medicine, King Faisal Hospital, Ministry of Health, Makkah, SAU
| | - Lamyaa Gamal
- Internal Medicine, King Faisal Hospital, Ministry of Health, Makkah, SAU
| | - Duaa Almatrafi
- Internal Medicine, King Faisal Hospital, Ministry of Health, Makkah, SAU
| | | | | |
Collapse
|
35
|
Yang X, Sun A, Kong L, Yang X, Zhao X, Wang S. Inhibition of NLRP3 inflammasome alleviates cognitive deficits in a mouse model of anti-NMDAR encephalitis induced by active immunization. Int Immunopharmacol 2024; 137:112374. [PMID: 38851162 DOI: 10.1016/j.intimp.2024.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a neurological disorder, characterized by cognitive deficits as one of its vital features. The nucleotide-binding oligomerization domain-like receptor (NLRP3) inflammasome is a key contributor to neuroinflammation and cognitive deficits in neurological diseases. However, the underlying mechanism of anti-NMDAR encephalitis remains unclear, and the biological function of the NLRP3 inflammasome in this condition has not been elucidated. In this study, a mouse model of anti-NMDAR encephalitis was induced by active immunization with the GluN1356-385 peptide (NEA model). The NLRP3 inflammasome in the hippocampus and temporal cortex was investigated using real-time quantitative PCR (RT-qPCR), western blotting, and immunofluorescence staining. The impact of MCC950 on cognitive function and NLRP3 inflammation was assessed. Confocal immunofluorescence staining and Sholl analysis were employed to examine the function and morphology of microglia. In the current study, we discovered overactivation of the NLRP3 inflammasome and an enhanced inflammatory response in the NEA model, particularly in the hippocampus and temporal cortex. Furthermore, significant cognitive dysfunction was observed in the NEA model. While, MCC950, a selective inhibitor of the NLRP3 inflammasome, sharply attenuated the inflammatory response in mice, leading to mitigated cognitive deficits of mice and more regular arrangements of neurons and reduced number of hyperchromatic cells were also observed in the hippocampus area. In addition, we found that the excess elevation of NLRP3 inflammasome was mainly expressed in microglia accompanied with the overactivation of microglia, while MCC950 treatment significantly inhibited the increased number and activated morphological changes of microglia in the NEA model. Altogether, our study reveals the vital role of overactivated NLRP3 signaling pathway in aggravating the inflammatory response and cognitive deficits and the potential protective effect of MCC950 in anti-NMDAR encephalitis. Thus, MCC950 represents a promising strategy for anti-inflammation in anti-NMDAR encephalitis and our study lays a theoretical foundation for it to become a clinically targeted drug.
Collapse
Affiliation(s)
- Xiaxin Yang
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Anqi Sun
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Liangbo Kong
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Xue Yang
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Xiuhe Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China.
| | - Shengjun Wang
- Department of Neurology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China.
| |
Collapse
|
36
|
Li S, Huo C, Liu A, Zhu Y. Mitochondria: a breakthrough in combating rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1439182. [PMID: 39161412 PMCID: PMC11330793 DOI: 10.3389/fmed.2024.1439182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
As a chronic autoimmune disease with complex aetiology, rheumatoid arthritis (RA) has been demonstrated to be associated with mitochondrial dysfunction since mitochondrial dysfunction can affect the survival, activation, and differentiation of immune and non-immune cells involved in the pathogenesis of RA. Nevertheless, the mechanism behind mitochondrial dysfunction in RA remains uncertain. Accordingly, this review addresses the possible role and mechanisms of mitochondrial dysfunction in RA and discusses the potential and challenges of mitochondria as a potential therapeutic strategy for RA, thereby providing a breakthrough point in the prevention and treatment of RA.
Collapse
Affiliation(s)
- Shuang Li
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chenlu Huo
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Anting Liu
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yan Zhu
- Department of Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
37
|
Chen P, Li X. NLRP3 inflammasome in atherosclerosis: Mechanisms and targeted therapies. Front Pharmacol 2024; 15:1430236. [PMID: 39144618 PMCID: PMC11322363 DOI: 10.3389/fphar.2024.1430236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Atherosclerosis (AS) is the primary pathology behind various cardiovascular diseases and the leading cause of death and disability globally. Recent evidence suggests that AS is a chronic vascular inflammatory disease caused by multiple factors. In this context, the NLRP3 inflammasome, acting as a signal transducer of the immune system, plays a critical role in the onset and progression of AS. The NLRP3 inflammasome is involved in endothelial injury, foam cell formation, and pyroptosis in AS. Therefore, targeting the NLRP3 inflammasome offers a new treatment strategy for AS. This review highlights the latest insights into AS pathogenesis and the pharmacological therapies targeting the NLRP3 inflammasome, focusing on optimal targets for small molecule inhibitors. These insights are valuable for rational drug design and the pharmacological assessment of new targeted NLRP3 inflammasome inhibitors in treating AS.
Collapse
Affiliation(s)
- Pengfei Chen
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- Shandong Kelun Pharmaceutical Co, Ltd., Binzhou, China
| |
Collapse
|
38
|
Jin J, Zhang M. Exploring the role of NLRP3 inflammasome in diabetic nephropathy and the advancements in herbal therapeutics. Front Endocrinol (Lausanne) 2024; 15:1397301. [PMID: 39104818 PMCID: PMC11299242 DOI: 10.3389/fendo.2024.1397301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Diabetic nephropathy (DN), a prevalent complication of diabetes mellitus (DM), is clinically marked by progressive proteinuria and a decline in glomerular filtration rate. The etiology and pathogenesis of DN encompass a spectrum of factors, including hemodynamic alterations, inflammation, and oxidative stress, yet remain incompletely understood. The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a critical component of the body's innate immunity, plays a pivotal role in the pathophysiology of DN by promoting the release of inflammatory cytokines, thus contributing to the progression of this chronic inflammatory condition. Recent studies highlight the involvement of the NLRP3 inflammasome in the renal pathology associated with DN. This article delves into the activation pathways of the NLRP3 inflammasome and its pathogenic implications in DN. Additionally, it reviews the therapeutic potential of traditional Chinese medicine (TCM) in modulating the NLRP3 inflammasome, aiming to provide comprehensive insights into the pathogenesis of DN and the current advancements in TCM interventions targeting NLRP3 inflammatory vesicles. Such insights are expected to lay the groundwork for further exploration into TCM-based treatments for DN.
Collapse
Affiliation(s)
- Jiangyuan Jin
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mianzhi Zhang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
39
|
Bilski R, Kamiński P, Kupczyk D, Jeka S, Baszyński J, Tkaczenko H, Kurhaluk N. Environmental and Genetic Determinants of Ankylosing Spondylitis. Int J Mol Sci 2024; 25:7814. [PMID: 39063056 PMCID: PMC11277374 DOI: 10.3390/ijms25147814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Exposure to heavy metals and lifestyle factors like smoking contribute to the production of free oxygen radicals. This fact, combined with a lowered total antioxidant status, can induce even more damage in the development of ankylosing spondylitis (AS). Despite the fact that some researchers are looking for more genetic factors underlying AS, most studies focus on polymorphisms within the genes encoding the human leukocyte antigen (HLA) system. The biggest challenge is finding the effective treatment of the disease. Genetic factors and the influence of oxidative stress, mineral metabolism disorders, microbiota, and tobacco smoking seem to be of great importance for the development of AS. The data contained in this review constitute valuable information and encourage the initiation and development of research in this area, showing connections between inflammatory disorders leading to the pathogenesis of AS and selected environmental and genetic factors.
Collapse
Affiliation(s)
- Rafał Bilski
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicholaus Copernicus University, M. Karłowicz St. 24, 85-092 Bydgoszcz, Poland
| | - Piotr Kamiński
- Department of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, 85-094 Bydgoszcz, Poland
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, 65-516 Zielona Góra, Poland
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicholaus Copernicus University, M. Karłowicz St. 24, 85-092 Bydgoszcz, Poland
| | - Sławomir Jeka
- Department of Rheumatology and Connective Tissue Diseases, Collegium Medicum, Nicolaus Copernicus University, University Hospital No. 2, Ujejski St. 75, 85-168 Bydgoszcz, Poland
| | - Jędrzej Baszyński
- Department of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, 85-094 Bydgoszcz, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland
| |
Collapse
|
40
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
41
|
Ding X, Fan S. Purple sweet potato polysaccharide ameliorates concanavalin A-induced hepatic injury by inhibiting inflammation and oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155652. [PMID: 38663118 DOI: 10.1016/j.phymed.2024.155652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is a prevalent liver disease that can potentially lead to hepatic fibrosis and cirrhosis. The prolonged administration of immunosuppressive medications carries significant risks for patients. Purple sweet potato polysaccharide (PSPP), a macromolecule stored in root tubers, exhibits anti-inflammatory, antioxidant, immune-enhancing, and intestinal flora-regulating properties. Nevertheless, investigation into the role and potential mechanisms of PSPP in AIH remains notably scarce. PURPOSE Our aim was to explore the possible protective impacts of PSPP against concanavalin A (Con A)-induced liver injury in mice. METHODS Polysaccharide was isolated from purple sweet potato tubers using water extraction and alcohol precipitation, followed by purification through DEAE-52 cellulose column chromatography and Sephadex G-100 column chromatography. A highly purified component was obtained, and its monosaccharide composition was characterized by high performance liquid chromatography (HPLC). Mouse and cellular models induced by Con A were set up to investigate the impacts of PSPP on hepatic histopathology, apoptosis, as well as inflammation- and oxidative stress-related proteins in response to PSPP treatment. RESULTS The administration of PSPP significantly reduced hepatic pathological damage, suppressed elevation of ALT and AST levels, and attenuated hepatic apoptosis in Con A-exposed mice. PSPP was found to mitigate Con A-induced inflammation by suppressing the TLR4-P2X7R/NLRP3 signaling pathway in mice. Furthermore, PSPP alleviated Con A-induced oxidative stress by activating the PI3K/AKT/mTOR signaling pathway in mice. Additionally, PSPP demonstrated the ability to reduce inflammation and oxidative stress in RAW264.7 cells induced by Con A in vitro. CONCLUSION PSPP has the potential to ameliorate hepatic inflammation via the TLR4-P2X7R/NLRP3 pathway and inhibit hepatic oxidative stress through the PI3K/AKT/mTOR pathway during the progression of Con A-induced hepatic injury. The results of this study have unveiled the potential hepatoprotective properties of purple sweet potato and its medicinal value for humans. Moreover, this study serves as a valuable reference, highlighting the potential of PSPP-1 as a drug candidate for the treatment of immune liver injury.
Collapse
Affiliation(s)
- Xiao Ding
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Shaohua Fan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China.
| |
Collapse
|
42
|
Sun J, Wang S, Zhao Z, Lu J, Zhang Y, An W, Li W, Yang L, Tong X. Oxymatrine Attenuates Ulcerative Colitis through Inhibiting Pyroptosis Mediated by the NLRP3 Inflammasome. Molecules 2024; 29:2897. [PMID: 38930963 PMCID: PMC11206389 DOI: 10.3390/molecules29122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Ulcerative colitis (UC) is difficult to cure and easy to relapse, leading to poor quality of life for patients. Oxymatrine (OMT) is one of the main alkaloids of Sophora flavescens Aiton, which has many effects, such as anti-inflammation, anti-oxidative stress, and immunosuppression. This study aimed to investigate whether OMT could attenuate ulcerative colitis by inhibiting the NOD-like receptor family pyrin domain containing three (NLRP3) inflammasome-mediated pyroptosis. In this study, the UC rat models were established by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) in vivo, while RAW264.7 cells and peritoneal macrophages were stimulated with Lipopolysaccharides/Adenosine Triphosphate (LPS/ATP) in vitro to simulate pyroptosis models, and Western blotting (WB) and other detection techniques were applied to analyze proteins involved in the NLRP3 inflammasome pathway. Our results showed that OMT alleviated colitis ulcers and pathological damage in the TNBS-induced UC rats and exhibited an inhibitory effect on pyroptosis at the early stage of UC. In the model group, the pyroptosis reached the peak at 24 h after modeling with the contents of active-cysteine-aspartic proteases-1 (caspase-1), Gasdermin D (GSDMD)-N, and cleaved-interleukin-1 beta (IL-1β) to the highest expression level. Meanwhile, we found that OMT (80 mg kg-1) remarkably decreased the expression levels of NLRP3, active-caspase-1, and cleaved-IL-1β at 24 h in the lesion tissue from UC rats. Further experiments on cells demonstrated that OMT at concentrations of 100 and 250 μM significantly inhibited cell death caused by NLRP3 inflammasome activation (p < 0.05), downregulated caspase-1, GSDMD, and decreased the levels of active-caspase-1, GSDMD-N, cleaved-IL-1β in RAW326.7 cells, and peritoneal macrophages. In summary, these results indicated that OMT could attenuate ulcerative colitis through inhibiting pyroptosis mediated by the NLRP3 inflammasome. The inhibition of the NLRP3 inflammasome may be a potential strategy for UC.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
- Ningbo Institute of Dalian University of Technology, No. 26, Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Shuai Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
- Ningbo Institute of Dalian University of Technology, No. 26, Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Zhengtian Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
| | - Jiaqi Lu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
| | - Yiming Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
| | - Wen An
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
| | - Wei Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
| | - Li Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
- Ningbo Institute of Dalian University of Technology, No. 26, Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Xiaowei Tong
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
| |
Collapse
|
43
|
Wieske L, Michael MR, In 't Veld SGJG, Visser A, van Schaik IN, Eftimov F, Teunissen CE. Proximity extension assay-based discovery of biomarkers for disease activity in chronic inflammatory demyelinating polyneuropathy. J Neurol Neurosurg Psychiatry 2024; 95:595-604. [PMID: 37879899 DOI: 10.1136/jnnp-2023-332398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Objective disease activity biomarkers are lacking in chronic inflammatory demyelinating polyneuropathy (CIDP), impacting treatment decisions in clinical care and outcomes in clinical trials. Using a proximity extension assay, we aimed to identify candidate serum protein biomarkers for disease activity in CIDP. METHOD We collected clinical data and serum of 106 patients with CIDP. Patients starting induction treatment (n=53) and patients on maintenance treatment starting treatment withdrawal (n=40) were assessed at baseline and at 6 months (or at relapse). Patients in remission (n=13) were assessed once. Clinical disease activity was defined based on improvement or deterioration by the minimal clinically important difference on the inflammatory Rasch-built Overall Disability Scale in combination with either grip strength or the Medical Research Council sum score. Using a proximity extension assay (Olink Explore platform), 1472 protein levels were analysed in serum. Candidate proteins were selected based on fold change>0.5 or <-0.5 and p<0.05 between clinically active and inactive disease. Longitudinal changes of candidate proteins between baseline and follow-up were analysed. RESULTS We identified 48 candidate proteins that differed between clinically active and inactive disease on cross-sectional comparison. Five of these proteins (SUGT1, IRAK4, DCTN1, 5'-nucleotidase cytosolic IIIA (NT5C3A), glutaredoxin (GLRX)) also showed longitudinal changes consistent with disease activity changes. IRAK4 was also identified in a sensitivity analysis, using another definition for disease activity. CONCLUSION Our results indicate that IRAK4 and possibly SUGT1, DCTN1, NT5C3A and GLRX are candidate biomarkers for monitoring clinical disease activity in CIDP.
Collapse
Affiliation(s)
- Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, Amsterdam, Noord-Holland, The Netherlands
- Department of Clinical Neurophysiology, Sint Antonius Hospital, Nieuwegein, The Netherlands
| | - Milou R Michael
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, Amsterdam, Noord-Holland, The Netherlands
| | - Sjors G J G In 't Veld
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, Noord-Holland, The Netherlands
| | - Allerdien Visser
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, Noord-Holland, The Netherlands
| | - Ivo N van Schaik
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, Amsterdam, Noord-Holland, The Netherlands
- Sanquin Bloedvoorziening, Amsterdam, Noord-Holland, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC Location AMC, Amsterdam, Noord-Holland, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, Noord-Holland, The Netherlands
| |
Collapse
|
44
|
Gu W, Zeng Q, Wang X, Jasem H, Ma L. Acute Lung Injury and the NLRP3 Inflammasome. J Inflamm Res 2024; 17:3801-3813. [PMID: 38887753 PMCID: PMC11182363 DOI: 10.2147/jir.s464838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Acute lung injury (ALI) manifests through harm to the capillary endothelium and alveolar epithelial cells, arising from a multitude of factors, leading to scattered interstitial alterations, pulmonary edema, and subsequent acute hypoxic respiratory insufficiency. Acute lung injury (ALI), along with its more serious counterpart, acute respiratory distress syndrome (ARDS), carry a fatality rate that hovers around 30-40%. Its principal pathological characteristic lies in the unchecked inflammatory reaction. Currently, the main strategies for treating ALI are alleviation of inflammation and prevention of respiratory failure. Concerning the etiology of ALI, NLRP3 Inflammasome is essential to the body's innate immune response. The composition of this inflammasome complex includes NLRP3, the pyroptosis mediator ASC, and pro-caspase-1. Recent research has reported that the inflammatory response centered on NLRP3 inflammasomes plays a key part in inflammation in ALI, and may hence be a prospective candidate for therapeutic intervention. In the review, we present an overview of the ailment characteristics of acute lung injury along with the constitution and operation of the NLRP3 inflammasome within this framework. We also explore therapeutic strategies targeting the NLRP3 inflammasome to combat acute lung injury.
Collapse
Affiliation(s)
- Wanjun Gu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Qi Zeng
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xin Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Huthaifa Jasem
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Ling Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
45
|
Sircana MC, Erre GL, Castagna F, Manetti R. Crosstalk between Inflammation and Atherosclerosis in Rheumatoid Arthritis and Systemic Lupus Erythematosus: Is There a Common Basis? Life (Basel) 2024; 14:716. [PMID: 38929699 PMCID: PMC11204900 DOI: 10.3390/life14060716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in patients with rheumatoid arthritis and systemic lupus erythematosus. Traditional cardiovascular risk factors, although present in lupus and rheumatoid arthritis, do not explain such a high burden of early cardiovascular disease in the context of these systemic connective tissue diseases. Over the past few years, our understanding of the pathophysiology of atherosclerosis has changed from it being a lipid-centric to an inflammation-centric process. In this review, we examine the pathogenesis of atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis, the two most common systemic connective tissue diseases, and consider them as emblematic models of the effect of chronic inflammation on the human body. We explore the roles of the inflammasome, cells of the innate and acquired immune system, neutrophils, macrophages, lymphocytes, chemokines and soluble pro-inflammatory cytokines in rheumatoid arthritis and systemic lupus erythematosus, and the roles of certain autoantigens and autoantibodies, such as oxidized low-density lipoprotein and beta2-glycoprotein, which may play a pathogenetic role in atherosclerosis progression.
Collapse
Affiliation(s)
| | | | | | - Roberto Manetti
- Department of Medical, Surgical and Pharmacology, University of Sassari, 07100 Sassari, Italy; (G.L.E.); (F.C.)
| |
Collapse
|
46
|
Jiang L, Ye C, Huang Y, Hu Z, Wei G. Targeting the TRAF3-ULK1-NLRP3 regulatory axis to control alveolar macrophage pyroptosis in acute lung injury. Acta Biochim Biophys Sin (Shanghai) 2024; 56:789-804. [PMID: 38686458 PMCID: PMC11187487 DOI: 10.3724/abbs.2024035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/04/2024] [Indexed: 05/02/2024] Open
Abstract
Acute lung injury (ALI) is a serious condition characterized by damage to the lungs. Recent research has revealed that activation of the NLRP3 inflammasome in alveolar macrophages, a type of immune cell in the lungs, plays a key role in the development of ALI. This process, known as pyroptosis, contributes significantly to ALI pathogenesis. Researchers have conducted comprehensive bioinformatics analyses and identified 15 key genes associated with alveolar macrophage pyroptosis in ALI. Among these, NLRP3 has emerged as a crucial regulator. This study further reveal that the ULK1 protein diminishes the expression of NLRP3, thereby reducing the immune response of alveolar macrophages and mitigating ALI. Conversely, TRAF3, another protein, is found to inhibit ULK1 through a process called ubiquitination, leading to increased activation of the NLRP3 inflammasome and exacerbation of ALI. This TRAF3-mediated suppression of ULK1 and subsequent activation of NLRP3 are confirmed through various in vitro and in vivo experiments. The presence of abundant M0 and M1 alveolar macrophages in the ALI tissue samples further support these findings. This research highlights the TRAF3-ULK1-NLRP3 regulatory axis as a pivotal pathway in ALI development and suggests that targeting this axis could be an effective therapeutic strategy for ALI treatment.
Collapse
Affiliation(s)
- Lei Jiang
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| | - Chunlin Ye
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| | - Yunhe Huang
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| | - Zhi Hu
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| | - Guangxia Wei
- />Department of Thoracic Surgerythe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330000China
| |
Collapse
|
47
|
Ning Y, Gu Q, Zheng T, Xu Y, Li S, Zhu Y, Hu B, Yu H, Liu X, Zhang Y, Jiao B, Lu X. Genome Mining Leads to Diverse Sesquiterpenes with Anti-inflammatory Activity from an Arctic-Derived Fungus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1426-1440. [PMID: 38690764 DOI: 10.1021/acs.jnatprod.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
With the advancement of bioinformatics, the integration of genome mining with efficient separation technology enables the discovery of a greater number of novel bioactive compounds. The deletion of the key gene responsible for triterpene cyclase biosynthesis in the polar strain Eutypella sp. D-1 instigated metabolic shunting, resulting in the activation of dormant genes and the subsequent production of detectable, new compounds. Fifteen sesquiterpenes were isolated from the mutant strain, with eight being new compounds. The structural elucidation of these compounds was obtained through a combination of HRESIMS, NMR spectroscopy, and ECD calculations, revealing six distinct skeleton types. Compound 7 possessed a unique skeleton of 5/10 macrocyclic ether structure. Based on the gene functions and newly acquired secondary metabolites, the metabolic shunting pathway in the mutant strain was inferred. Compounds 6, 8, 11, 14, and 15 exhibited anti-inflammatory effects without cytotoxicity through the release of nitric oxide from lipopolysaccharide-stimulated RAW264.7 cells. Notably, acorane-type sesquiterpene 8 inhibited nitric oxide production and modulated the MAPK and NLRP3/caspase-1 signaling pathways. Compound 8 also alleviated the CuSO4-induced systemic neurological inflammation symptoms in a transgenic fluorescent zebrafish model.
Collapse
Affiliation(s)
- Yaodong Ning
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Qinwufeng Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Te Zheng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250000, People's Republic of China
| | - Yao Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Song Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Yuping Zhu
- College of Basic Medical Sciences, Experimental Teacher Center, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Bo Hu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Haobing Yu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Xiaoyu Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250000, People's Republic of China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, People's Republic of China
| | - Xiaoling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
48
|
Márquez-Flores YK, Martínez-Galero E, Correa-Basurto J, Sixto-López Y, Villegas I, Rosillo MÁ, Cárdeno A, Alarcón-de-la-Lastra C. Daidzein and Equol: Ex Vivo and In Silico Approaches Targeting COX-2, iNOS, and the Canonical Inflammasome Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:647. [PMID: 38794217 PMCID: PMC11124169 DOI: 10.3390/ph17050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND The inflammasome is a cytosolic multiprotein complex associated with multiple autoimmune diseases. Phytochemical compounds in soy (Glycine max) foods, such as isoflavones, have been reported for their anti-inflammatory properties. AIM the anti-inflammatory activity of DZ (daidzein) and EQ (equol) were investigated in an ex vivo model of LPS-stimulated murine peritoneal macrophages and by molecular docking correlation. METHODS Cells were pre-treated with DZ (25, 50, and 100 µM) or EQ (5, 10, and 25 µM), followed by LPS stimulation. The levels of PGE2, NO, TNF-α, IL-6, and IL-1β were analyzed by ELISA, whereas the expressions of COX-2, iNOS, NLRP3, ASC, caspase 1, and IL-18 were measured by Western blotting. Also, the potential for transcriptional modulation by targeting NF-κB, COX-2, iNOS, NLRP3, ASC, and caspase 1 was investigated by molecular docking. RESULTS The anti-inflammatory responses observed may be due to the modulation of NF-κB due to the binding of DZ or EQ, which is translated into decreased TNF-α, COX-2, iNOS, NLRP3, and ASC levels. CONCLUSION This study establishes that DZ and EQ inhibit LPS-induced inflammatory responses in peritoneal murine macrophages via down-regulation of NO and PGE2 generation, as well as the inhibition of the canonical inflammasome pathway, regulating NLRP3, and consequently decreasing IL-1β and IL-18 activation.
Collapse
Affiliation(s)
- Yazmín K. Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, Mexico City C.P. 07738, Mexico;
| | - Elizdath Martínez-Galero
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, Mexico City C.P. 07738, Mexico;
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, Mexico City C.P. 11340, Mexico; (J.C.-B.); (Y.S.-L.)
| | - Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Santo Tomas, Mexico City C.P. 11340, Mexico; (J.C.-B.); (Y.S.-L.)
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Campus de Cartuja, Universidad de Granada, 18071 Granada, Spain
| | - Isabel Villegas
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| | - María Á. Rosillo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| | - Ana Cárdeno
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| | - Catalina Alarcón-de-la-Lastra
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Professor García González Street 2, 41012 Seville, Spain; (I.V.); (A.C.); (C.A.-d.-l.-L.)
| |
Collapse
|
49
|
Islamuddin M, Qin X. Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics. Cell Death Discov 2024; 10:229. [PMID: 38740765 PMCID: PMC11091222 DOI: 10.1038/s41420-024-01996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1β and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1β-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.
Collapse
Affiliation(s)
- Mohammad Islamuddin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
50
|
Wang T, Ding J, Cheng X, Yang Q, Hu P. Glucagon-like peptide-1 receptor agonists: new strategies and therapeutic targets to treat atherosclerotic cardiovascular disease. Front Pharmacol 2024; 15:1396656. [PMID: 38720777 PMCID: PMC11076696 DOI: 10.3389/fphar.2024.1396656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of cardiovascular mortality and is increasingly prevalent in our population. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) can safely and effectively lower glucose levels while concurrently managing the full spectrum of ASCVD risk factors and improving patients' long-term prognosis. Several cardiovascular outcome trials (CVOTs) have been carried out to further investigate the cardiovascular benefits of GLP-1RAs. Analyzing data from CVOTs can provide insights into the pathophysiologic mechanisms by which GLP-1RAs are linked to ASCVD and define the use of GLP-1RAs in clinical practice. Here, we discussed various mechanisms hypothesized in previous animal and preclinical human studies, including blockade of the production of adhesion molecules and inflammatory factors, induction of endothelial cells' synthesis of nitric oxide, protection of mitochondrial function and restriction of oxidative stress, suppression of NOD-like receptor thermal protein domain associated protein three inflammasome, reduction of foam cell formation and macrophage inflammation, and amelioration of vascular smooth muscle cell dysfunction, to help explain the cardiovascular benefits of GLP-1RAs in CVOTs. This paper provides an overview of the clinical research, molecular processes, and possible therapeutic applications of GLP-1RAs in ASCVD, while also addressing current limitations in the literature and suggesting future research directions.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Juncan Ding
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyi Cheng
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Yang
- Department of The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|