1
|
Arafa ESA, Abdel-Fattah MM, Hassanein EHM, Buabeid MA, Mohamed WR. Involvement of GSK-3β, NF-κB, PPARγ, and apoptosis in amlodipine's anticancer effect in BALB/c mice. Toxicol Appl Pharmacol 2025; 498:117298. [PMID: 40089189 DOI: 10.1016/j.taap.2025.117298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Lung cancer is the primary cause of death due to cancer all over the world despite the decrease in the mortality rates from cancer in general. While chemotherapy is a commonly employed treatment for lung cancer, its efficacy is limited due to poor tissue selectivity, inadequate delivery to tumor sites, and associated side effects. The present work aims to assess the potential anti-cancer effectiveness of amlodipine, a calcium channel blocker, on murine lung cancer via modulating GSK-3β, NF-κB, PPARγ, and apoptosis. Lung cancer was induced in BALB/c mice by intraperitoneal injection of 1.5 g/kg in two doses of urethane: once on the 1st and the second on the 60th day of the experiment. Amlodipine was administered orally at a dose of 10 mg/kg/day for the last 28 days of experiment. Relative to urethane group, amlodipine mitigated urethane-induced histopathological abnormalities. It restored oxidant/antioxidant balance by normalizing MDA, GSH, and SOD. Furthermore, it exerted a marked anti-inflammatory effect through downregulating lung MPO, ICAM-1, IL-6, TNF-α, and NF-қB expressions. Amlodipine enhanced apoptosis of cancer cells as evidenced by increasing Bax and decreasing Bcl-2 expression. The anticancer effect of amlodipine was suggested to be mediated through increasing PPARγ and reducing GSK3β and p-GSK3β signaling. Collectively, these results suggest that amlodipine could exert a promising anticancer effect against lung cancer through modulating GSK-3β, NF-κB, PPARγ, and apoptosis. Our findings could be highly significant in clinical settings, offering a valuable adjuvant option for managing lung carcinoma, particularly in patients with cardiovascular disorders.
Collapse
Affiliation(s)
- El-Shaimaa A Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Manal A Buabeid
- Fatima College of Health Sciences, Department of Pharmacy, United Arab Emirates
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
2
|
Jen CI, Ng LT. F2-sulfated polysaccharides of Laetiporus sulphureus suppress triple-negative breast cancer cell proliferation and metastasis through the EGFR-mediated signaling pathway. Int J Biol Macromol 2025; 306:141407. [PMID: 39993674 DOI: 10.1016/j.ijbiomac.2025.141407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Sulfated polysaccharides (SPS) are a unique secondary metabolite isolated from Laetiporus sulphureus. This study examined the detailed molecular mechanisms of action of F2, a medium molecular weight SPS of L. sulphureus, on breast cancer MDA-MB-231 cell proliferation and metastasis. Results showed that the sulfate and protein content of F2 were 2.1 % and 15.6 %, respectively. F2 had a molecular weight of 23.8 kDa and did not contain a triple helix conformation. The monosaccharide composition of F2 was mannose, galactose, glucose, and fucose. F2 inhibited MDA-MB-231 cell proliferation mainly by blocking the cell cycle at the G0/G1 phase, which was attributed to the down-regulation of CDK4 and cyclin D1 and the up-regulation of p21 protein expression. F2 suppressed epidermal growth factor receptor (EGFR)-mediated intracellular signaling events, such as phosphorylation of ERK1/2, Akt, and GSK-3β and activation of NF-κB and β-catenin, resulting in the cell cycle arrest. Moreover, F2 significantly reduced the EGFR phosphorylation and expression, and the level of mutant p53 protein. F2 also effectively inhibited breast cancer cell migration and invasion through down-regulating MMP-9 and MMP-2 protein expression. In conclusion, this study demonstrated that F2 exhibited anti-proliferative and anti-metastatic activities against MDA-MB-231 cells by inhibiting the activation of EGFR-mediated signaling pathways.
Collapse
Affiliation(s)
- Chia-I Jen
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
3
|
Dillard C, Teles-Reis J, Jain A, Antunes MG, Ruiz-Duran P, Qi Y, Le Borgne R, Jasper H, Rusten TE. NF-κB signaling driven by oncogenic Ras contributes to tumorigenesis in a Drosophila carcinoma model. PLoS Biol 2025; 23:e3002663. [PMID: 40294135 PMCID: PMC12037074 DOI: 10.1371/journal.pbio.3002663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/27/2025] [Indexed: 04/30/2025] Open
Abstract
Cancer-driving mutations synergize with inflammatory stress signaling pathways during carcinogenesis. Drosophila melanogaster tumor models are increasingly recognized as models to inform conserved molecular mechanisms of tumorigenesis with both local and systemic effects of cancer. Although initial discoveries of the Toll-NFκB signaling pathway in development and immunity were pioneered in Drosophila, limited information is available for its role in cancer progression. Using a well-studied cooperative RasV12-driven epithelial-derived tumor model, we here describe functions of Toll-NF-κB signaling in malignant RasV12, scrib- tumors. The extracellular Toll pathway components ModSP and PGRP-SA and intracellular signaling Kinase, Pelle/IRAK, are rate-limiting for tumor growth. The Toll pathway NFκB protein Dorsal as well as cactus/IκΒ show elevated expression in tumors with highest expression in invasive cell populations. Oncogenic RasV12, and not loss of scribble, confers increased expression and heterogenous distribution of two Dorsal isoforms, DorsalA and DorsalB, in different tumor cell populations. Mechanistic analyses demonstrates that Dorsal, in concert with the BTB-transcription factor Chinmo, drives growth and malignancy by suppressing differentiation, counteracting apoptosis, and promoting invasion of RasV12, scrib- tumors.
Collapse
Affiliation(s)
- Caroline Dillard
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - José Teles-Reis
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ashish Jain
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Marina Gonçalves Antunes
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Paula Ruiz-Duran
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Yanyan Qi
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Roland Le Borgne
- Univ Rennes, CNRS-UMR, Institut de Génétique et Développement de Rennes, Rennes, France
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Tor Erik Rusten
- Center for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Zhao Q, Cai D, Xu H, Gao Y, Zhang R, Zhou X, Chen X, Chen S, Wu J, Peng W, Yuan S, Li D, Li G, Nan A. o8G-modified circPLCE1 inhibits lung cancer progression via chaperone-mediated autophagy. Mol Cancer 2025; 24:82. [PMID: 40098195 PMCID: PMC11912650 DOI: 10.1186/s12943-025-02283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Lung cancer poses a serious threat to human health, but its molecular mechanisms remain unclear. Circular RNAs (circRNAs) are closely associated with tumour progression, and the important role of 8-oxoguanine (o8G) modification in regulating the fate of RNA has been gradually revealed. However, o8G modification of circRNAs has not been reported. We identified circPLCE1, which is significantly downregulated in lung cancer, and further investigated the o8G modification of circPLCE1 and the related mechanism in lung cancer progression. METHODS We identified differentially expressed circRNAs by RNA high-throughput sequencing and then conducted methylated RNA immunoprecipitation (MeRIP), immunofluorescence (IF) analysis, crosslinking immunoprecipitation (CLIP) and actinomycin D (ActD) assays to explore circPLCE1 o8G modification. The biological functions of circPLCE1 in vivo and in vitro were clarified via establishing a circPLCE1 silencing/overexpression system. Tagged RNA affinity purification (TRAP), RNA Immunoprecipitation (RIP) and coimmunoprecipitation (Co-IP) assays, and pSIN-PAmCherry-KFERQ-NE reporter gene were used to elucidate the molecular mechanism by which circPLCE1 inhibits lung cancer progression. RESULTS This study revealed that reactive oxygen species (ROS) can induce circPLCE1 o8G modification and that AUF1 can mediate a decrease in circPLCE1 stability. We found that circPLCE1 significantly inhibited lung cancer progression in vitro and in vivo and that its expression was associated with tumour stage and prognosis. The molecular mechanism was elucidated: circPLCE1 targets the HSC70 protein, increases its ubiquitination level, regulates ATG5-dependent macroautophagy via the chaperone-mediated autophagy (CMA) pathway, and ultimately inhibits lung cancer progression. CONCLUSION o8G-modified circPLCE1 inhibits lung cancer progression through CMA to inhibit macroautophagy and alter cell fate. This study provides not only a new theoretical basis for elucidating the molecular mechanism of lung cancer progression but also potential targets for lung cancer treatment.
Collapse
Affiliation(s)
- Qingyun Zhao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Dunyu Cai
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Haotian Xu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yihong Gao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Ruirui Zhang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xiaodong Zhou
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xingcai Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Sixian Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxi Wu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Wenyi Peng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Shengyi Yuan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Deqing Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| | - Aruo Nan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
5
|
Chavan PR, Pandey R, Patil BM, Murti K, Kumar N. Unravelling key signaling pathways for the therapeutic targeting of non-small cell lung cancer. Eur J Pharmacol 2025; 998:177494. [PMID: 40090536 DOI: 10.1016/j.ejphar.2025.177494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Lung cancer (LC) remains the foremost cause of cancer-related mortality across the globe. Non-small cell lung cancer (NSCLC) is a type of LC that exhibits significant heterogeneity at histological and molecular levels. Genetic alterations in upstream signaling molecules activate cascades affecting apoptosis, proliferation, and differentiation. Disruption of these signaling pathways leads to the proliferation of cancer-promoting cells, progression of cancer, and resistance to its treatment. Recent insights into the function of signaling pathways and their fundamental mechanisms in the onset of various diseases could pave the way for new therapeutic approaches. Recently, numerous drug molecules have been created that target these cell signaling pathways and could be used alongside other standard therapies to achieve synergistic effects in mitigating the pathophysiology of NSCLC. Additionally, many researchers have identified several predictive biomarkers, and alterations in transcription factors and related pathways are employed to create new therapeutic strategies for NSCLC. Findings suggest using specific inhibitors to target cellular signaling pathways in tumor progression to treat NSCLC. This review investigates the role of signaling pathways in NSCLC development and explores novel therapeutic strategies to enhance clinical treatment options for NSCLC.
Collapse
Affiliation(s)
- Pavan Ramrao Chavan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Baswant Malesh Patil
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India.
| |
Collapse
|
6
|
Jia K, Na Y, Lin Q. Molecular mechanisms of transcription factor KLF4-mediated immune infiltration influencing lung adenocarcinoma invasion. Cytokine 2025; 187:156848. [PMID: 39799743 DOI: 10.1016/j.cyto.2024.156848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is associated with an increasing incidence and mortality rate while existing treatment strategies continue to exhibit considerable limitation. Studies have demonstrated that upregulation of KLF4 gene inhibits LUAD progression, but its underlying mechanisms remain elusive. The present research explored roles and mechanisms of KLF4 and the NF-κB pathway in LUAD. METHODS Lentiviral vectors encoding KLF4 were constructed and transduced into H1299 and A549 cells to generate stable cell lines. These stable cell lines were then injected into BALB/c mice to establish a LUAD model. Subsequently, RNA sequencing, HE staining, immunohistochemistry, ELISA, Western blotting, and flow cytometry were employed to investigate the effects of KLF4 on tumor growth, invasion, immune cell infiltration, and related signaling pathways. Finally, dual-luciferase and in vivo mouse experiments were conducted to validate the molecular mechanisms. RESULTS KLF4 significantly reduced tumor cell invasion while promoted tumor cell necrosis. Transcriptomic sequencing identified CXCR2 as a target gene and the NF-κB signaling pathway associated with immune infiltration regulation. KLF4 downregulated NF-κB2 and CXCR2 expression, concomitantly decreasing tumor cell invasiveness but increasing levels of CD4+ and CD8+ T cells and macrophages. CONCLUSION NF-κB and CXCR2 play an important role in KLF4-mediated immune infiltration, thereby inhibiting tumor invasion and promoting tumor cell apoptosis in mice.
Collapse
Affiliation(s)
- Kaining Jia
- Clinical Trials Center, Huabei Petroleum Administration Bureau General Hospital, 062550, Hebei, China
| | - Yiwen Na
- Department of Oncology, Huabei Petroleum Administration Bureau General Hospital, 062550, Hebei, China
| | - Qiang Lin
- Department of Oncology, Huabei Petroleum Administration Bureau General Hospital, 062550, Hebei, China.
| |
Collapse
|
7
|
Wang H, Gan X, Tang Y. Mechanisms of Heavy Metal Cadmium (Cd)-Induced Malignancy. Biol Trace Elem Res 2025; 203:608-623. [PMID: 38683269 DOI: 10.1007/s12011-024-04189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
The environmental pollution of cadmium is worsening, and its significant carcinogenic effects on humans have been confirmed. Cadmium can induce cancer through various signaling pathways, including the ERK/JNK/p38MAPK, PI3K/AKT/mTOR, NF-κB, and Wnt. It can also cause cancer by directly damaging DNA and inhibiting DNA repair systems, or through epigenetic mechanisms such as abnormal DNA methylation, LncRNA, and microRNA. However, the detailed mechanisms of Cd-induced cancer are still not fully understood and require further investigation.
Collapse
Affiliation(s)
- Hairong Wang
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China
| | - Xuehui Gan
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No. 1, Section 1, Xianglin Road, Longmatan District, Luzhou, 646000, China.
| |
Collapse
|
8
|
Pasha A, Ravinder D, Pawar SC. Andrographolide Mitigates Cisplatin Resistance by Inhibiting SPP1 Regulated NF-kB/iNOS/COX-2 and PI3K/AKT Pathway in Cisplatin Resistant Cervical Carcinoma Cells. Drug Dev Res 2025; 86:e70052. [PMID: 39888044 DOI: 10.1002/ddr.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Drug resistance and cancer recurrence are major cause of Cervical cancer (CC) patient mortality. Cisplatin (CDDP) is the major drug that has been extremely used in all stages in treating CC, although relapse and malignant instances have been observed as a result of cisplatin resistance in CC. In the present study, we established Cisplatin resistant CC HeLa cell line model and the cytotoxic effects of Andro as a single agent or in combination with CDDP were investigated to assess its potential as a chemotherapeutic agent in cisplatin-resistant HeLa (CisR-HeLa) cells. Andro enhanced the cytotoxicity of CDDP in CisR-HeLa cells and shown a synergistic effect by reducing cell viability, proliferation, migration, invasion, and inducing apoptosis in cisplatin resistant cells. Furthermore, we evaluated the expression levels of inflammatory and oncogenic proteins, SPP1, NF-kB, iNOS, COX-2, and the PI3K/AKT signaling pathway, which are associated with cisplatin resistance, as well as using Andro to regulate the targeted markers in CisR-HeLa cells to overcome resistance. The results show that suppressing SPP1 and NF-kB by Andro alone or in combination with CDDP regulates iNOS, COX-2, and increases PTEN expression. The addition of Andro to CDDP inhibited PI3K and AKT expression as well as triggered synergistic apoptosis, which could be associated with variations in Bax and Bcl-2 protein levels. The results suggest that Andro in combination with CDDP exhibits synergistic anti-tumor growth efficacy that targets multiple inflammatory markers, resulting in a promising treatment option for individuals with recurrent cancer due to drug resistance and advanced CC.
Collapse
Affiliation(s)
- Akbar Pasha
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, India
| | - Doneti Ravinder
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, India
| | - Smita C Pawar
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
9
|
Haysom‐McDowell A, Paudel KR, Yeung S, Kokkinis S, El Sherkawi T, Chellappan DK, Adams J, Dua K, De Rubis G. Recent trends and therapeutic potential of phytoceutical-based nanoparticle delivery systems in mitigating non-small cell lung cancer. Mol Oncol 2025; 19:15-36. [PMID: 39592417 PMCID: PMC11705733 DOI: 10.1002/1878-0261.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer death globally, with non-small cell lung cancer accounting for the majority (85%) of cases. Standard treatments including chemotherapy and radiotherapy present multiple adverse effects. Medicinal plants, used for centuries, are traditionally processed by methods such as boiling and oral ingestion, However, water solubility, absorption, and hepatic metabolism reduce phytoceutical bioavailability. More recently, isolated molecular compounds from these plants can be extracted with these phytoceuticals administered either individually or as an adjunct with standard therapy. Phytoceuticals have been shown to alleviate symptoms, may reduce dosage of chemotherapy and, in some cases, enhance pharmaceutical mechanisms. Research has identified many phytoceuticals' actions on cancer-associated pathways, such as oncogenesis, the tumour microenvironment, tumour cell proliferation, metastasis, and apoptosis. The development of novel nanoparticle delivery systems such as solid lipid nanoparticles, liquid crystalline nanoparticles, and liposomes has enhanced the bioavailability and targeted delivery of pharmaceuticals and phytoceuticals. This review explores the biological pathways associated with non-small cell lung cancer, a diverse range of phytoceuticals, the cancer pathways they act upon, and the pros and cons of several nanoparticle delivery systems.
Collapse
Affiliation(s)
- Adam Haysom‐McDowell
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Keshav Raj Paudel
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
- Centre for Inflammation Centenary Institute, Faculty of Science, School of Life SciencesUniversity of Technology SydneyAustralia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Jon Adams
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
- Australian Research Consortium in Complementary and Integrative Medicine, School of Public HealthUniversity of Technology SydneyUltimoAustralia
| |
Collapse
|
10
|
El-Samad LM, Maklad AM, Elkady AI, Hassan MA. Unveiling the mechanism of sericin and hydroxychloroquine in suppressing lung oxidative impairment and early carcinogenesis in diethylnitrosamine-induced mice by modulating PI3K/Akt/Nrf2/NF-κB signaling pathway. Biomed Pharmacother 2025; 182:117730. [PMID: 39671723 DOI: 10.1016/j.biopha.2024.117730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
This study sheds light on the ameliorative influence of combined sericin and hydroxychloroquine (HQ) on mitigating diethylnitrosamine (DEN)-induced lung oxidative impairment and inflammation, thereby precluding early carcinogenic episodes in mice. Besides, the pivotal role of sericin and HQ in controlling the PI3K/Akt/Nrf2/NF-κB signaling pathway was probed. Therefore, male Swiss albino mice were assigned to different groups and treated with different drugs. Oxidative stress and inflammatory biomarkers, in addition to the expression of PI3K and Akt genes were evaluated in lung tissues. Treatment with DEN disturbed the redox homeostasis associated with inflammation in the lungs. Conversely, sericin combined with HQ remarkably upregulated Nrf2 expression in the lungs associated with significant ameliorations of antioxidant factors, including SOD, GST, GSH, and MDA. Furthermore, sericin and HQ abated inflammation instigated by DEN through downregulating NF-κB and inflammatory biomarkers, including TNF-α and IL-6, with an increase in IL-10. Importantly, sericin and HQ treatment significantly downregulated PI3K and Akt expression. Immunohistochemical investigations demonstrated marked diminutions in Ki-67 and p53 expressions in animals cotreated with sericin and HQ compared to the DEN-treated group, inhibiting lung cancer progression. Histopathological and ultrastructural anomalies were detected in lung tissues from the DEN group, while significant enhancements were perceived in lung tissues treated with sericin and HQ. Our findings emphasized that the combinatorial therapy of sericin and HQ could orchestrate the PI3K/Akt/Nrf2/NF-κB signaling pathway in the lungs, counteracting oxidative stress, inflammation, and uncontrolled cellular proliferation and sustaining lung structures. Furthermore, they could serve as anticancer agents, hindering lung cancer progression.
Collapse
Affiliation(s)
- Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Alaa M Maklad
- Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - Ayman I Elkady
- Department of Zoology, Faculty of Science, Alexandria University, Egypt; Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| |
Collapse
|
11
|
Famurewa AC, George MY, Ukwubile CA, Kumar S, Kamal MV, Belle VS, Othman EM, Pai SRK. Trace elements and metal nanoparticles: mechanistic approaches to mitigating chemotherapy-induced toxicity-a review of literature evidence. Biometals 2024; 37:1325-1378. [PMID: 39347848 DOI: 10.1007/s10534-024-00637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Anticancer chemotherapy (ACT) remains a cornerstone in cancer treatment, despite significant advances in pharmacology over recent decades. However, its associated side effect toxicity continues to pose a major concern for both oncology clinicians and patients, significantly impacting treatment protocols and patient quality of life. Current clinical strategies to mitigate ACT-induced toxicity have proven largely unsatisfactory, leaving a critical unmet need to block toxicity mechanisms without diminishing ACT's therapeutic efficacy. This review aims to document the molecular mechanisms underlying ACT toxicity and highlight research efforts exploring the protective effects of trace elements (TEs) and their nanoparticles (NPs) against these mechanisms. Our literature review reveals that the primary driver of ACT toxicity is redox imbalance, which triggers oxidative inflammation, apoptosis, endoplasmic reticulum stress, mitochondrial dysfunction, autophagy, and dysregulation of signaling pathways such as PI3K/mTOR/Akt. Studies suggest that TEs, including zinc, selenium, boron, manganese, and molybdenum, and their NPs, can potentially counteract ACT-induced toxicity by inhibiting oxidative stress-mediated pathways, including NF-κB/TLR4/MAPK/NLRP3, STAT-3/NLRP3, Bcl-2/Bid/p53/caspases, and LC3/Beclin-1/CHOP/ATG6, while also upregulating protective signaling pathways like Sirt1/PPAR-γ/PGC-1α/FOXO-3 and Nrf2/HO-1/ARE. However, evidence regarding the roles of lncRNA and the Wnt/β-catenin pathway in ACT toxicity remains inconsistent, and the impact of TEs and NPs on ACT efficacy is not fully understood. Further research is needed to confirm the protective effects of TEs and their NPs against ACT toxicity in cancer patients. In summary, TEs and their NPs present a promising avenue as adjuvant agents for preventing non-target organ toxicity induced by ACT.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University Ndufu-Alike Ikwo, Abakaliki, Ebonyi, Nigeria.
- Centre for Natural Products Discovery, School of P harmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Cletus A Ukwubile
- Department of Pharmacognosy, Faculty of Pharmacy, University of Maiduguri, Bama Road, Maiduguri, Borno, Nigeria
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Mehta V Kamal
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vijetha S Belle
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Cancer Therapy Research Center, Department of Biochemistry-I, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
- Department of Bioinformatics, University of Würzburg, Am Hubland, 97074, BiocenterWürzburg, Germany
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
12
|
Lv Z, Du Y, Zhang H, Fang H, Guo Y, Zeng L, Chen Y, Li D, Li R. Inhibition of JNK/STAT3/NF-KB pathway-mediated migration and clonal formation of lung adenocarcinoma A549 cells by daphnetin. Cell Adh Migr 2024; 18:27-37. [PMID: 39469948 PMCID: PMC11540088 DOI: 10.1080/19336918.2024.2418049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Daphnetin, a coumarin derivative isolated from Daphne odorifera, has anti-tumor effects. The MAPK, STAT3, and NF-κB signaling pathways are closely related to the pathogenesis of lung cancer. To investigate the effect of daphnetin on anti-lung adenocarcinoma A549 cells and its mechanism. The anti-tumor effects of daphnetin on the proliferation, clone formation, migration, and invasion of A549 lung adenocarcinoma cells were investigated. The results showed that daphnetin inhibited the proliferation, colony formation, migration, and invasion of A549 cells through the MAPK/STAT3/NF-KB pathway, and mainly inhibited the clonal formation and migration of A549 cells through the JNK pathway. These results provide a new research direction and theoretical basis for the use of daphnetin in the inhibition of lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhe Lv
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yuna Du
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Huiqing Zhang
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Hui Fang
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yujie Guo
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Lifeng Zeng
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yiguo Chen
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Dan Li
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Rong Li
- Department of Clinical Laboratory, Jiangxi Provincial People’s Hospital & The first Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
13
|
Helmy MW, Youssef MH, Yamari I, Amr A, Moussa FI, El Wakil A, Chtita S, El-Samad LM, Hassan MA. Repurposing of sericin combined with dactolisib or vitamin D to combat non-small lung cancer cells through computational and biological investigations. Sci Rep 2024; 14:27034. [PMID: 39505930 PMCID: PMC11541877 DOI: 10.1038/s41598-024-76947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
This study aims to repurpose sericin in combating non-small lung cancer cells (A549 and H460) by combining it with dactolisib or vitamin D to reduce the dose of dactolisib and boost the anticancer effectiveness of dactolisib and vitamin D. Therefore, the binding affinities of individual and combined drugs were examined using in silico and protein-protein interaction studies, targeting NF-κB, Cyclin D1, p-AKT, and VEGF1 proteins. The findings manifested remarkable affinities for combinatorial drugs compared to individual compounds. To substantiate these findings, the combined IC50 for each combination (sericin + dactolisib and sericin + vitamin D) were determined, reporting 31.9 and 41.8 µg/ml, respectively, against A549 cells and 47.9 and 55.3 µg/ml, respectively, against H460 cells. Furthermore, combination indices were assessed to lower the doses of each drug. Interestingly, in vitro results exhibited marked diminutions in NF-κB, Cyclin D1, p-AKT, and VEGF1 after treatment with sericin + dactolisib and sericin + vitamin D compared to control lung cancer cells and those treated with a single drug. Moreover, A549 and H460 cells treated with both combinations demonstrated augmented caspase-3 levels, implying substantial apoptotic activity. Altogether, these results accentuated the prospective implementation of sericin in combination with dactolisib and vitamin D at low doses to preclude lung cancer cell proliferation.
Collapse
Affiliation(s)
- Maged W Helmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Damanhour, Egypt
| | - Mariam H Youssef
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P. O. Box 7955, Casablanca, Morocco
| | - Alaa Amr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Farouzia I Moussa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P. O. Box 7955, Casablanca, Morocco
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
14
|
Strzyga-Łach P, Kurpios-Piec D, Chrzanowska A, Szczepaniak J, Bielenica A. 1,3-Disubstituted thiourea derivatives: Promising candidates for medicinal applications with enhanced cytotoxic effects on cancer cells. Eur J Pharmacol 2024; 982:176885. [PMID: 39128803 DOI: 10.1016/j.ejphar.2024.176885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
The distinct chemical structure of thiourea derivatives provides them with an advantage in selectively targeting cancer cells. In our previous study, we selected the most potent compounds, 2 and 8, with 3,4-dichloro- and 3-trifluoromethylphenyl substituents, respectively, across colorectal (SW480 and SW620), prostate (PC3), and leukemia (K-562) cancer cell lines, as well as non-tumor HaCaT cells. Our research has demonstrated their anticancer potential by targeting key molecular pathways involved in cancer progression, including caspase 3/7 activation, NF-κB (Nuclear Factor Kappa-light-chain-enhancer of activated B cells) activation decrease, VEGF (Vascular Endothelial Growth Factor) secretion, ROS (Reactive Oxygen Species) production, and metabolite profile alterations. Notably, these processes exhibited no significant alterations in HaCaT cells. The effectiveness of the studied compounds was also tested on spheroids (3D culture). Both derivatives 2 and 8 increased caspase activity, decreased ROS production and NF-κB activation, and suppressed the release of VEGF in cancer cells. Metabolomic analysis revealed intriguing shifts in cancer cell metabolic profiles, particularly in lipids and pyrimidines metabolism. Assessment of cell viability in 3D spheroids showed that SW620 cells exhibited better sensitivity to compound 2 than 8. In summary, structural modifications of the thiourea terminal components, particularly dihalogenophenyl derivative 2 and para-substituted analog 8, demonstrate their potential as anticancer agents while preserving safety for normal cells.
Collapse
Affiliation(s)
- Paulina Strzyga-Łach
- Chair and Department of Biochemistry, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Dagmara Kurpios-Piec
- Chair and Department of Biochemistry, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Jarosław Szczepaniak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences ul., Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Anna Bielenica
- Chair and Department of Biochemistry, Medical University of Warsaw, Ul. Banacha 1, 02-097, Warsaw, Poland.
| |
Collapse
|
15
|
Lv H, Yang H, Duan Y, Yan C, Li G, Zhao G, Sun F, Feng Y, Li Y, Fu Y, Li Y, Zhao Z, Jia X. S-(N,N-diethyldithiocarbamoyl)-N-acetyl-l-cysteine for the treatment of non-small cell lung cancer through regulating NF-κB signalling pathway without neurotoxicity. J Drug Target 2024; 32:1111-1124. [PMID: 38962807 DOI: 10.1080/1061186x.2024.2374037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
The discovery of novel targeted agents for non-small cell lung cancer (NSCLC) remains an important research landscape due to the limited efficacy, side effects and drug resistance of current treatment options. Among many repurposed drugs, disulphiram (DSF) has shown the potential to target tumours. However, its unpleasant neurotoxicity greatly limits its use. A DSF derivative, S-(N,N-diethyldithiocarbamoyl)-N-acetyl-l-cysteine (DS-NAC), was synthesised against NSCLC. The therapeutic effects, mechanism and toxicities of DS-NAC were evaluated in A549 and H460 cells and the mouse model of in situ lung cancer. The in vitro results exhibited that DS-NAC had potent anti-proliferation, apoptotic, anti-metastasis and epithelial-mesenchymal transition (EMT) inhibition effects. In the orthotopic lung cancer mouse model, therapeutic effects of DS-NAC were better than those of DSF and were similar to docetaxel (DTX). Also, results from western blot and immunohistochemistry showed that DS-NAC in combination with copper exerted therapeutic effects via regulating NF-κB signalling pathway and ROS-related proteins such as HIF-1α, Nrf2 and PKC-δ rather than regulating ROS level directly. Moreover, the safety evaluation study showed that DS-NAC had low haematologic and hepatic toxicities in comparison with DTX as well as low neurological toxicity compared with DSF. DS-NAC could be a promising anti-lung cancer agent with a favourable safety profile.
Collapse
Affiliation(s)
- Huaiyou Lv
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology of Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pharmacy, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Huatian Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology of Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yifei Duan
- Department of Statistics, University of Virginia, Charlottesville, VA, USA
| | - Chongzheng Yan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology of Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Genju Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology of Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guozhi Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology of Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengqin Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology of Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yafei Feng
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology of Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuhan Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology of Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaqing Fu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology of Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yizhe Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology of Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongxi Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology of Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiumei Jia
- Department of Pharmacy, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| |
Collapse
|
16
|
Kandimalla R, Moholkar DN, Samanta SK, Tyagi N, Aqil F, Gupta R. Oncogene Downregulation by Mahanine Suppresses Drug-Sensitive and Drug-Resistant Lung Cancer and Inhibits Orthotopic Tumor Progression. Cancers (Basel) 2024; 16:3572. [PMID: 39518013 PMCID: PMC11545155 DOI: 10.3390/cancers16213572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Lung cancer is one of the deadliest cancers, and drug resistance complicates its treatment. Mahanine (MH), an alkaloid from Murraya koenigii has been known for its anti-cancer properties. However, its effectiveness and mechanisms in treating non-small cell lung cancer (NSCLC) remain largely unexplored. The present study aimed to investigate MH's effect on drug-sensitive and drug-resistant NSCLC and its potential mechanism of action. Methods: We isolated MH from M. koenigii leaves and the purity (99%) was confirmed by HPLC, LC-MS and NMR. The antiproliferative activity of MH was determined using MTT and colony formation assays against drug-sensitive (A549 and H1299) and Taxol-resistant lung cancer cells (A549-TR). Western blot analysis was performed to determine MH's effects on various molecular targets. Anti-tumor activity of MH was determined against lung tumors developed in female NOD Scid mice injected with A549-Fluc bioluminescent cells (1.5 × 106) intrathoracically. Results: MH dose-dependently reduced the proliferation of all lung cancer cells (A549, H1299 and A549-TR), with IC50 values of 7.5, 5, and 10 µM, respectively. Mechanistically, MH arrested cell growth in the G0/G1 and G2/M phases of the cell cycle by inhibiting cyclin-dependent kinase 4/6 (CDK4/6) and cell division control 2 (CDC2) and induced apoptosis through the downregulation of B-cell leukemia/lymphoma 2 (BCL2) and B-cell lymphoma-extra large (BCL-XL). The apoptotic induction capacity of MH can also be attributed to its ability to inhibit pro-oncogenic markers, including mesenchymal-epithelial transition factor receptor (MET), phosphorylated protein kinase B (p-AKT), phosphorylated mammalian target of rapamycin (p-mTOR), survivin, rat sarcoma viral oncogene (RAS), myelocytomatosis oncogene (cMYC), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) levels. In vivo, MH (25 mg/kg b. wt.) significantly (p < 0.001) inhibited the growth of A549 lung cancer orthotopic xenografts in NOD Scid mice by 70%. Conclusions: Our study provides new mechanistic insights into MH's therapeutic potential against NSCLC.
Collapse
Affiliation(s)
- Raghuram Kandimalla
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Disha N. Moholkar
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | | | - Neha Tyagi
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Ramesh Gupta
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (R.K.); (D.N.M.); (F.A.)
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
17
|
Liu X, Peng Y, Chen R, Zhou Y, Zou X, Xia M, Wu X, Yu M. Transcriptomic analysis reveals transcription factors implicated in radon-induced lung carcinogenesis. Toxicol Res (Camb) 2024; 13:tfae161. [PMID: 39371682 PMCID: PMC11447380 DOI: 10.1093/toxres/tfae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Background Radon, a potent carcinogen, is a significant catalyst for lung cancer development. However, the molecular mechanisms triggering radon-induced lung cancer remain elusive. Methods Utilizing a radon exposure concentration of 20,000 Bq/m3 for 20 min/session, malignant transformation was induced in human bronchial epithelial cells (BEAS-2B). Results Radon-exposed cells derived from passage 25 (BEAS-2B-Rn) exhibited enhanced proliferation and increased colony formation. Analysis of differential gene expression (DEG) through transcription factors revealed 663 up-regulated and 894 down-regulated genes in radon-exposed cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed significant alterations in the malignant transformation pathway of cells, including those related to cancer and the PI3K/AKT signaling pathway. A PPI network analysis indicated a significant association of oncogenes, such as CCND1, KIT, and GATA3, with lung cancer among differentially expressed genes. In addition, the stability of the housekeeping gene was determined through RT-qPCR analysis, which also confirmed the results of transcriptome analysis. Conclusions The results suggest that transcription factors may play a pivotal role in conferring a survival advantage to radon-exposed cells. This is achieved by malignant transformation of human bronchial epithelial cells into lung carcinogenesis cell phenotypes.
Collapse
Affiliation(s)
- Xing Liu
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Yuting Peng
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Ruobing Chen
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Yueyue Zhou
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Xihuan Zou
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Mingzhu Xia
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Xinyi Wu
- School of public health, Yangzhou University, No. 136, Jiangyang Middle Road, Hanjiang District, Yangzhou 225009, China
| | - Meng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, No. 368, hanjiang Middle Road, Hanjiang District, Yangzhou 225009, China
| |
Collapse
|
18
|
Tsoupras A, Adamantidi T, Finos MA, Philippopoulos A, Detopoulou P, Tsopoki I, Kynatidou M, Demopoulos CA. Re-Assessing the Role of Platelet Activating Factor and Its Inflammatory Signaling and Inhibitors in Cancer and Anti-Cancer Strategies. FRONT BIOSCI-LANDMRK 2024; 29:345. [PMID: 39473406 DOI: 10.31083/j.fbl2910345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 01/03/2025]
Abstract
Since 2000s, we have outlined the multifaceted role of inflammation in several aspects of cancer, via specific inflammatory mediators, including the platelet activating factor (PAF) and PAF-receptor (PAFR) related signaling, which affect important inflammatory junctions and cellular interactions that are associated with tumor-related inflammatory manifestations. It is now well established that disease-related unresolved chronic inflammatory responses can promote carcinogenesis. At the same time, tumors themselves are able to promote their progression and metastasis, by triggering an inflammation-related vicious cycle, in which PAF and its signaling play crucial role(s), which usually conclude in tumor growth and angiogenesis. In parallel, new evidence suggests that PAF and its signaling also interact with several inflammation-related cancer treatments by inducing an antitumor immune response or, conversely, promoting tumor recurrence. Within this review article, the current knowledge and future perspectives of the implication of PAF and its signaling in all these important aspects of cancer are thoroughly re-assessed. The potential beneficial role of PAF-inhibitors and natural or synthetic modulators of PAF-metabolism against tumors, tumor progression and metastasis are evaluated. Emphasis is given to natural and synthetic molecules with dual anti-PAF and anti-cancer activities (Bio-DAPAC-tives), with proven evidence of their antitumor potency through clinical trials, as well as on metal-based anti-inflammatory mediators that constitute a new class of potent inhibitors. The way these compounds may promote anti-tumor effects and modulate the inflammatory cellular actions and immune responses is also discussed. Limitations and future perspectives on targeting of PAF, its metabolism and receptor, including PAF-related inflammatory signaling, as part(s) of anti-tumor strategies that involve inflammation and immune response(s) for an improved outcome, are also evaluated.
Collapse
Affiliation(s)
- Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Marios Argyrios Finos
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404 Kavala, Greece
| | - Athanassios Philippopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Paraskevi Detopoulou
- Department of Nutritional Sciences and Dietetics, University of the Peloponnese, 24100 Kalamata, Greece
| | - Ifigeneia Tsopoki
- Department of Dietetics and Nutrition, Harokopio University, 17676 Kallithea, Greece
| | - Maria Kynatidou
- Department of Dietetics and Nutrition, Harokopio University, 17676 Kallithea, Greece
| | - Constantinos A Demopoulos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
19
|
Ghani MU, Shi J, Du Y, Zhong L, Cui H. A comprehensive review on the dynamics of protein kinase CK2 in cancer development and optimizing therapeutic strategies. Int J Biol Macromol 2024; 280:135814. [PMID: 39306165 DOI: 10.1016/j.ijbiomac.2024.135814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024]
Abstract
Protein kinase 2 (CK2) is an enzyme ubiquitously present and exhibits extensive kinase activity. It has been strongly linked to tumor progression through the abnormal phosphorylation of key proteins. Research has consistently demonstrated that CK2 is deregulated in various cancer types, with enhanced protein expression and nuclear distribution in tumor cells. CK2 plays a crucial role in a complex network that promotes cell infiltration, migration, proliferation, apoptosis, and cancer progression through multiple pathways, including PI3K/AKT, JAK2/STAT3, ATF4/CDKN1, and HSP90/Cdc37. In addition to its role in cancer growth, there is mounting evidence that CK2 may also affect the immunological dynamics of cancer by altering immune cell functions within the tumor microenvironment, thus facilitating tumor immune evasion. Recent research has increasingly focused on CK2, recognizing it as a therapeutic objective for oncological interventions. This review will critically examine the structure and signaling pathways of CK2, highlighting the significance of further research aimed at enhancing our understanding of the CK2 machinery. Finally, we conclude by refining therapeutic options, notably transitioning from non-pharmacological techniques to strategic CK2 inhibitor use. This development shortens the path to the desired outcome, establishing a pioneering standard in cancer therapy.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Junbo Shi
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yi Du
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing 400715, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
20
|
Zeng B, Gan K, Yu Y, Hu J, Deng Q, Yin C, Gao X. Targeting non-coding RNAs to overcome osimertinib resistance in EGFR-mutated non-small cell lung cancer. Front Oncol 2024; 14:1442237. [PMID: 39324002 PMCID: PMC11422018 DOI: 10.3389/fonc.2024.1442237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Osimertinib, a third-generation inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, exhibits remarkable efficacy in prolonging the survival of patients with non-small cell lung cancer (NSCLC) carrying EGFR mutations, surpassing the efficacy of first- and second-generation EGFR tyrosine kinases. Nevertheless, the emergence of osimertinib resistance is inevitable, necessitating an investigation into the underlying mechanisms. Increasing evidence has revealed that non-coding RNAs (ncRNAs), including microRNAs, long ncRNAs, and circular RNAs, play a significant role in the development and progression of lung cancer. These ncRNAs regulate essential signaling pathways, offering a novel avenue for understanding the fundamental mechanisms of osimertinib resistance. Recent studies have reported the significant impact of ncRNAs on osimertinib resistance, achieved through various mechanisms that modulate treatment sensitivity. We provide a concise overview of the functions and underlying mechanisms of extensively researched ncRNAs in the development of osimertinib resistance and emphasize their potential clinical application in EGFR-mutated NSCLC resistant to osimertinib. Finally, we discuss the obstacles that must be addressed to effectively translate ncRNA-based approaches into clinical practice.
Collapse
Affiliation(s)
- Beilei Zeng
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Kelun Gan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yuanhang Yu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jianping Hu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiao Deng
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chong Yin
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xi Gao
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
21
|
Chen Z, Wang C, Li M, Cai S, Liu X. SPRED3 regulates the NF-κB signaling pathway in thyroid cancer and promotes the proliferation. Sci Rep 2024; 14:20506. [PMID: 39227612 PMCID: PMC11372091 DOI: 10.1038/s41598-024-61075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/30/2024] [Indexed: 09/05/2024] Open
Abstract
SPRED3 (Sprouty-related EVH1 domain containing 3) mutants are depicted in various cancers, however, nothing is known about its biofunction in thyroid cancer (THCA). Bioinformatic analyses were conducted to ascertain the level of SPRED3 expression in THCA tissues and its importance in the prognosis of THCA patients. Flag-SPRED3 plasmid and SPRED3-knockout vector were developed to overexpress or deplete the SPRED3 expression in THCA cells. The function of SPRED3 on THCA cell proliferation was examined using the colony formation assay and CCK8 assay. The effect of SPRED3 expression on the transcriptional activity of NF-κB was also examined using luciferase reporter assays. High SPRED3 expression was associated with unfavorable clinical outcomes, advanced tumor characteristics, and traditional molecular markers of papillary thyroid cancer in THCA patients. Genetic analysis revealed differences in mutation rates in key genes between SPRED3-high and SPRED3-low THCA cases. It is also revealed that SPRED3 influenced the immune microenvironment, with increased stromal and immune scores and altered immune cell infiltration. Functionally, SPRED3 overexpression enhanced THCA cell viability and colony formation, while its depletion reduced cell growth and proliferation. In vivo experiments in mice confirmed the inhibitory effect of SPRED3 depletion on tumor growth. Mechanically, we found that SPRED3 activated the NF-κB signaling. For the first time, we found that SPRED3 promotes THCA cell proliferation via the NF-κB signaling pathway. This finding may provide insight into SPRED3's prognostic potential in thyroid cancer and provide the rationale for SPRED3-targeted druggable interventions.
Collapse
Affiliation(s)
- Zhiping Chen
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Congren Wang
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Mingzhu Li
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Shaoyang Cai
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Xiaoyu Liu
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
22
|
Kanzaki R, Watari H, Omura A, Kawagishi S, Tanaka R, Maniwa T, Fujii M, Okami J. Significance of Pulmonary Artery Dilatation in Lung Cancer Patients With Chronic Obstructive Pulmonary Disease Who Underwent Pulmonary Resection. ANNALS OF THORACIC SURGERY SHORT REPORTS 2024; 2:448-452. [PMID: 39790438 PMCID: PMC11708679 DOI: 10.1016/j.atssr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 01/12/2025]
Abstract
Background The significance of pulmonary artery (PA) diameter in patients with non-small cell lung cancer (NSCLC) and chronic obstructive pulmonary disease (COPD) who undergo pulmonary resection has not been elucidated. Methods Data of 357 patients with NSCLC and COPD who underwent pulmonary resection were retrospectively reviewed. The main PA diameter, determined by preoperative computed tomography, relative to the body surface area (PBR), was used as an index of PA dilatation, and patients were divided into 2 groups using median values. The relationship between the PBR and short- and long-term outcomes was also analyzed. Results The mean age was 70.8 years, and 82% of the patients were men. The median main PA diameter was 24 mm (range, 17-43 mm), and the median PBR was 14.5 (range, 10.4-28.6). Lobectomy or more was performed in 276 patients (78%) and sublobar resection in 81 patients (22%). The postoperative complication rates did not differ between the low- and high-PBR groups (33% vs 32%, P = .91). The relapse-free survival (RFS) and overall survival (OS) rates of the low-PBR group were significantly better than those of the high-PBR group (5-year RFS: 76% vs 59%, P = .0003; 5-year OS: 88% vs 72%, P = .0010). A multivariable analysis identified high PBR as a poor prognostic factor for both RFS and OS. Conclusions PA dilatation was associated with poor long-term outcomes and was an independent poor prognostic factor for both RFS and OS in NSCLC patients with COPD who underwent pulmonary resection.
Collapse
Affiliation(s)
- Ryu Kanzaki
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Hirokazu Watari
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Akiisa Omura
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Sachi Kawagishi
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Ryo Tanaka
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Tomohiro Maniwa
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Makoto Fujii
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Jiro Okami
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
23
|
Fan X, Qi A, Zhang M, Jia Y, Li S, Han D, Liu Y. Expression and clinical significance of CLDN7 and its immune-related cells in breast cancer. Diagn Pathol 2024; 19:113. [PMID: 39175074 PMCID: PMC11340154 DOI: 10.1186/s13000-024-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND CLDN is a core component of tight junctions (TJs). Abnormal expressions of CLDNs are commonly detected in various types of tumors. CLDNs are of interest as a potential therapeutic target. CLDNs are closely associated with most cancers of epithelial origin, especially when CLDN7 promotes cancer cell metastasis, such as in gastric, cervical, and ovarian cancers.Its expression and prognosis in breast cancer (BC) remain unknown.The purpose of this study was to investigate the expression pattern of CLDN7 and related immune factors in BC and shed light on a better therapeutic avenue for BC patients. METHOD The cBioPortal, GEPIA, and TCGA databases were used to comprehensively assess the expression of CLDN7 in BC. The Kaplan-Meier Plotter (KMP) database was applied to examine the relationship among the CLDN7 overexpression (OE), prognosis, and overall survival (OS) of BC patients. Immunohistochemical staining was performed on 92 BC tissue samples and 20 benign breast tumors to verify the expression level of CLDN-7 protein and its correlation with clinicopathological features and prognosis. TIMER2.0 was used to analyze the correlation between the CLDN7 OE and immune gene activation using BC-related transcriptomic data. Enrichment analyses of CLDN7-related immune pathways were conducted using online databases. The risk of expression of CLDN7-related immune genes was assessed and differentially expressed (DE) genes were included in the construction of the risk prognosis nomogram. RESULTS Both database analysis and clinical sample validation results showed that CLDN7 was significantly overexpressed (OE) in BC, and the OE was correlated with poor DFS in BC patients (p < 0.05). TIMER2.0 analysis indicated that CLDN7 OE was negatively associated with the activation of B-cells, CD4+ T-cells, and CD8+ T-cells but positively with the M0 macrophages. Pathway enrichment analysis suggested that CLDN7-related immune factors were mostly involved in the NF-κB and T-cell receptor (TCR) signaling pathways. Univariate Cox regression was used to analyze the correlation between 52 CLDN7 related genes and OS, and 22 genes that are related to prognosis were identified. Prognostic genes were included in the prognostic nomogram of BC with a C-index of 0.76 to predict the 3-year and 5-year OS probabilities of BC individuals. CONCLUSIONS These findings provide evidence for the role of CLDN7-linked tumor immunity, suggesting that CLDN7 might be a potential immunotherapeutic target for BC, and its association with immune markers could shed light on the better prognosis of BC.
Collapse
Affiliation(s)
- Xiaojie Fan
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Aifeng Qi
- Shijiazhuang Hospital of Traditional Chinese Medicine, No.233, zhongshan Road, Shijiazhuang, 050011, PR China
| | - Meng Zhang
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Ying Jia
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Shi Li
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Dandan Han
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China
| | - Yueping Liu
- Departments of Pathology, the Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, PR China.
| |
Collapse
|
24
|
Jash M, Ghosh S, Roy R, Mukherjee N, Sen S, Ghosh S. Next generation antimitotic β-carboline derivatives modulate microtubule dynamics and downregulate NF-κB, ERK 1/2 and phospho HSP 27. Life Sci 2024; 351:122836. [PMID: 38879159 DOI: 10.1016/j.lfs.2024.122836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
AIM Exploring the efficacy of β-carboline-based molecular inhibitors in targeting microtubules for the development of novel anticancer therapeutics. MATERIALS AND METHODS We synthesized a series of 1-Aryl-N-substituted-β-carboline-3-carboxamide compounds and evaluated their cytotoxicity against human lung carcinoma (A549) cells using the MTT assay. Normal lung fibroblast cells (WI-38) were used to assess compound selectivity. The mechanism of action of MJ-211 was elucidated through Western blot analysis of key pro-apoptotic and cell cycle regulatory proteins. Additionally, the inhibitory effect of MJ-211 on multicellular 3D spheroid growth of A549 cells was evaluated. KEY FINDINGS Lead compound MJ-211 exhibited remarkable cytotoxicity against A549 cells with an IC50 of 4.075 μM at 24 h treatment and IC50 of 1.7 nM after 72 h of treatment, while demonstrating selectivity towards normal WI-38 cells. MJ-211 activated pro-apoptotic factors Bim and p53, and suppressed Cyclin B1, Phospho HSP 27, BubR1, Mad 2, ERK1/2, and NF-κB, indicating its potent antimitotic and pro-apoptotic effects. MJ-211 significantly suppressed the migration of cells and inhibited the growth of A549 cell-derived multicellular 3D spheroids, highlighting its efficacy in a more physiologically relevant model. SIGNIFICANCE Cytotoxic effect of MJ-211 against cancer cells, selectivity towards normal cells, and ability to modulate key regulatory proteins involved in apoptosis and cell cycle progression underscore its potential as a promising template for further anticancer lead optimization. Moreover, the inhibitory effect of MJ-211 on multicellular spheroid growth suggests its efficacy in combating tumor heterogeneity and resistance mechanisms, thereby offering a promising avenue for future anticancer drug development.
Collapse
Affiliation(s)
- Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, India; Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India; iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India.
| |
Collapse
|
25
|
Jayab NA, Abed A, Talaat IM, Hamoudi R. The molecular mechanism of NF-κB dysregulation across different subtypes of renal cell carcinoma. J Adv Res 2024:S2090-1232(24)00314-X. [PMID: 39094893 DOI: 10.1016/j.jare.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The nuclear factor kappa B (NF-κB) is a critical pathway that regulates various cellular functions, including immune response, proliferation, growth, and apoptosis. Furthermore, this pathway is tightly regulated to ensure stability in the presence of immunogenic triggers or genotoxic stimuli. The lack of control of the NF-κB pathway can lead to the initiation of different diseases, mainly autoimmune diseases and cancer, including Renal cell carcinoma (RCC). RCC is the most common type of kidney cancer and is characterized by complex genetic composition and elusive molecular mechanisms. AIM OF REVIEW The current review summarizes the mechanism of NF-κB dysregulation in different subtypes of RCC and its impact on pathogenesis. KEY SCIENTIFIC CONCEPT OF REVIEW This review highlights the prominent role of NF-κB in RCC development and progression by driving the expression of multiple genes and interplaying with different pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. In silico analysis of RCC cohorts and molecular studies have revealed that multiple NF-κB members and target genes are dysregulated. The dysregulation includes receptors such as TLR2, signal-transmitting members including RelA, and target genes, for instance, HIF-1α. The lack of effective regulatory mechanisms results in a constitutively active NF-κB pathway, which promotes cancer growth, migration, and survival. In this review, we comprehensively summarize the role of dysregulated NF-κB-related genes in the most common subtypes of RCC, including clear cell RCC (ccRCC), chromophobe RCC (chRCC), and papillary RCC (PRCC).
Collapse
Affiliation(s)
- Nour Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Alaa Abed
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, 21131 Alexandria, Egypt.
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Center of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, 27272 Sharjah, United Arab Emirates; BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, 27272 Sharjah, United Arab Emirates; Division of Surgery and Interventional Science, University College London, London, United Kingdom; ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| |
Collapse
|
26
|
Song Y, Zhang H, Geng J, Chen H, Bo Y, Lu X. Clotrimazole inhibits growth of multiple myeloma cells in vitro via G0/G1 arrest and mitochondrial apoptosis. Sci Rep 2024; 14:15406. [PMID: 38965397 PMCID: PMC11224322 DOI: 10.1038/s41598-024-66367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Patients with multiple myeloma (MM) experience relapse and drug resistance; therefore, novel treatments are essential. Clotrimazole (CTZ) is a wide-spectrum antifungal drug with antitumor activity. However, CTZ's effects on MM are unclear. We investigated CTZ's effect on MM cell proliferation and apoptosis induction mechanisms. CTZ's effects on MM.1S, NCI- H929, KMS-11, and U266 cell growth were investigated using Cell Counting Kit-8 (CCK-8) assay. The apoptotic cell percentage was quantified with annexin V-fluorescein isothiocyanate/7-amino actinomycin D staining. Mitochondrial membrane potential (MMP) and cell cycle progression were evaluated. Reactive oxygen species (ROS) levels were measured via fluorescence microscopy. Expression of apoptosis-related and nuclear factor (NF)-κB signaling proteins was analyzed using western blotting. The CCK-8 assay indicated that CTZ inhibited cell proliferation based on both dose and exposure time. Flow cytometry revealed that CTZ decreased apoptosis and MMP and induced G0/G1 arrest. Immunofluorescence demonstrated that CTZ dose-dependently elevated in both total and mitochondrial ROS production. Western blotting showed that CTZ enhanced Bax and cleaved poly ADP-ribose polymerase and caspase-3 while decreasing Bcl-2, p-p65, and p-IκBα. Therefore, CTZ inhibits MM cell proliferation by promoting ROS-mediated mitochondrial apoptosis, inducing G0/G1 arrest, inhibiting the NF-κB pathway, and has the potential for treating MM.
Collapse
Affiliation(s)
- Yang Song
- Chinese People's Liberation Army Medical School, Beijing, 100853, China
| | - Hui Zhang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Jie Geng
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Haoran Chen
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030000, China
| | - Yang Bo
- Department of Hematology, Second Medical Center, People's Liberation Army General Hospital, Beijing, 100853, China
| | - Xuechun Lu
- Department of Hematology, Second Medical Center, People's Liberation Army General Hospital, Beijing, 100853, China.
| |
Collapse
|
27
|
Kaur R, Suresh PK. Chemoresistance Mechanisms in Non-Small Cell Lung Cancer-Opportunities for Drug Repurposing. Appl Biochem Biotechnol 2024; 196:4382-4438. [PMID: 37721630 DOI: 10.1007/s12010-023-04595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 09/19/2023]
Abstract
Globally, lung cancer contributes significantly to the public health burden-associated mortality. As this form of cancer is insidious in nature, there is an inevitable diagnostic delay leading to chronic tumor development. Non-small cell lung cancer (NSCLC) constitutes 80-85% of all lung cancer cases, making this neoplasia form a prevalent subset of lung carcinoma. One of the most vital aspects for proper diagnosis, prognosis, and adequate therapy is the precise classification of non-small cell lung cancer based on biomarker expression profiling. This form of biomarker profiling has provided opportunities for improvements in patient stratification, mechanistic insights, and probable druggable targets. However, numerous patients have exhibited numerous toxic side effects, tumor relapse, and development of therapy-based chemoresistance. As a result of these exacting situations, there is a dire need for efficient and effective new cancer therapeutics. De novo drug development approach is a costly and tedious endeavor, with an increased attrition rate, attributed, in part, to toxicity-related issues. Drug repurposing, on the other hand, when combined with computer-assisted systems biology approach, provides alternatives to the discovery of new, efficacious, and safe drugs. Therefore, in this review, we focus on a comparison of the conventional therapy-based chemoresistance mechanisms with the repurposed anti-cancer drugs from three different classes-anti-parasitic, anti-depressants, and anti-psychotics for cancer treatment with a primary focus on NSCLC therapeutics. Certainly, amalgamating these novel therapeutic approaches with that of the conventional drug regimen in NSCLC-affected patients will possibly complement/synergize the existing therapeutic modalities. This approach has tremendous translational significance, since it can combat drug resistance and cytotoxicity-based side effects and provides a relatively new strategy for possible application in therapy of individuals with NSCLC.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - P K Suresh
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
28
|
Hou Y, Wang H, Wu J, Guo H, Chen X. Dissecting the pleiotropic roles of reactive oxygen species (ROS) in lung cancer: From carcinogenesis toward therapy. Med Res Rev 2024; 44:1566-1595. [PMID: 38284170 DOI: 10.1002/med.22018] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Lung cancer is a major cause of morbidity and mortality. The specific pulmonary structure to directly connect with ambient air makes it more susceptible to damage from airborne toxins. External oxidative stimuli and endogenous reactive oxygen species (ROS) play a crucial role in promoting lung carcinogenesis and development. The biological properties of higher ROS levels in tumor cells than in normal cells make them more sensitive and vulnerable to ROS injury. Therefore, the strategy of targeting ROS has been proposed for cancer therapy for decades. However, it is embarrassing that countless attempts at ROS-based therapies have had very limited success, and no FDA approval in the anticancer list was mechanistically based on ROS manipulation. Even compared with the untargetable proteins, such as transcription factors, ROS are more difficult to be targeted due to their chemical properties. Thus, the pleiotropic roles of ROS provide therapeutic potential for anticancer drug discovery, while a better dissection of the mechanistic action and signaling pathways is a prerequisite for future breakthroughs. This review discusses the critical roles of ROS in cancer carcinogenesis, ROS-inspired signaling pathways, and ROS-based treatment, exemplified by lung cancer. In particular, an eight considerations rule is proposed for ROS-targeting strategies and drug design and development.
Collapse
Affiliation(s)
- Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Heng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Hongwei Guo
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
- Department of Pharmaceutical Sciences, University of Macau, Taipa, Macao, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, China
| |
Collapse
|
29
|
Długosz-Pokorska A, Janecki T, Janecka A, Gach-Janczak K. New uracil analog as inhibitor/modulator of ABC transporters or/and NF-κB in taxol-resistant MCF-7/Tx cell line. J Cancer Res Clin Oncol 2024; 150:328. [PMID: 38914845 PMCID: PMC11196363 DOI: 10.1007/s00432-024-05833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE The global increase in breast cancer cases necessitates ongoing exploration of advanced therapies. Taxol (Tx), an initial breast cancer treatment, induces mitotic arrest but faces limitations due to side effects and the development of resistance. Addressing Tx resistance involves understanding the complex molecular mechanisms, including alterations in tubulin dynamics, NF-κB signaling, and overexpression of ABC transporters (ABCB1 and ABCG2), leading to multidrug resistance (MDR). METHODS Real-time PCR and ELISA kits were used to analyze ABCB1, ABCG2 and NF-κB gene and protein expression levels, respectively. An MDR test assessed the resistance cell phenotype. RESULTS MCF-7/Tx cells exhibited a 24-fold higher resistance to Tx. Real-time PCR and ELISA analysis revealed the upregulation of ABCB1, ABCG2, and NF-κB. U-359 significantly downregulated both ABCB1 and ABCG2 gene and protein levels. Co-incubation with Tx and U-359 further decreased the mRNA and protein expression of these transporters. The MDR test indicated that U-359 increased MDR dye retention, suggesting its potential as an MDR inhibitor. U-359 and Tx, either individually or combined, modulated NF-κBp65 protein levels. CONCLUSION The development of a Taxol-resistant MCF-7 cell line provided valuable insights. U-359 demonstrated effectiveness in reducing the expression of ABC transporters and NF-κB, suggesting a potential solution for overcoming multidrug resistance in breast cancer cells. The study recommends a strategy to enhance the sensitivity of cancer cells to chemotherapy by integrating U-359 with traditional drugs.
Collapse
MESH Headings
- Humans
- Paclitaxel/pharmacology
- Drug Resistance, Neoplasm/drug effects
- NF-kappa B/metabolism
- MCF-7 Cells
- Female
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Antineoplastic Agents, Phytogenic/pharmacology
- Drug Resistance, Multiple/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Angelika Długosz-Pokorska
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Tomasz Janecki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|
30
|
Wang Y, Deng X, Xie J, Lu T, Qian R, Guo Z, Zeng X, Liao J, Ding Z, Zhou M, Niu X. The COP9 signalosome stabilized MALT1 promotes Non-Small Cell Lung Cancer progression through activation of NF-κB pathway. Cell Biol Toxicol 2024; 40:45. [PMID: 38864940 PMCID: PMC11169058 DOI: 10.1007/s10565-024-09888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
MALT1 has been implicated as an upstream regulator of NF-κB signaling in immune cells and tumors. This study determined the regulatory mechanisms and biological functions of MALT1 in non-small cell lung cancer (NSCLC). In cell culture and orthotopic xenograft models, MALT1 suppression via gene expression interference or protein activity inhibition significantly impaired malignant phenotypes and enhanced radiation sensitivity of NSCLC cells. CSN5, the core subunit of COP9 signalosome, was firstly verified to stabilize MALT1 via disturbing the interaction with E3 ligase FBXO3. Loss of FBXO3 in NSCLC cells reduced MALT1 ubiquitination and promoted its accumulation, which was reversed by CSN5 interference. An association between CSN5/FBXO3/MALT1 regulatory axis and poor prognosis in NSCLC patients was identified. Our findings revealed the detail mechanism of continuous MALT1 activation in NF-κB signaling, highlighting its significance as predictor and potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong Province, China
| | - Xuyi Deng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jing Xie
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tianhao Lu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rui Qian
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhi Guo
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xin Zeng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jing Liao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Xinli Niu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China.
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong Province, China.
| |
Collapse
|
31
|
Medeiros M, Guenka S, Bastos D, Oliveira KL, Brassesco MS. Amicis Omnia Sunt Communia: NF-κB Inhibition as an Alternative to Overcome Osteosarcoma Heterogeneity. Pharmaceuticals (Basel) 2024; 17:734. [PMID: 38931401 PMCID: PMC11206879 DOI: 10.3390/ph17060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor heterogeneity poses a significant challenge in osteosarcoma (OS) treatment. In this regard, the "omics" era has constantly expanded our understanding of biomarkers and altered signaling pathways (i.e., PI3K/AKT/mTOR, WNT/β-catenin, NOTCH, SHH/GLI, among others) involved in OS pathophysiology. Despite different players and complexities, many commonalities have been described, among which the nuclear factor kappa B (NF-κB) stands out. Its altered activation is pervasive in cancer, with pleiotropic action on many disease-relevant traits. Thus, in the scope of this article, we highlight the evidence of NF-κB dysregulation in OS and its integration with other cancer-related pathways while we summarize the repertoire of compounds that have been described to interfere with its action. In silico strategies were used to demonstrate that NF-κB is closely coordinated with other commonly dysregulated signaling pathways not only by functionally interacting with several of their members but also by actively participating in the regulation of their transcription. While existing inhibitors lack selectivity or act indirectly, the therapeutic potential of targeting NF-κB is indisputable, first for its multifunctionality on most cancer hallmarks, and secondly, because, as a common downstream effector of the many dysregulated pathways influencing OS aggressiveness, it turns complex regulatory networks into a simpler picture underneath molecular heterogeneity.
Collapse
Affiliation(s)
- Mariana Medeiros
- Cell Biology Department, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil;
| | - Sophia Guenka
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - David Bastos
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - Karla Laissa Oliveira
- Regional Blood Center, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14051-140, São Paulo, Brazil;
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| |
Collapse
|
32
|
Philip S, Sherin DR, Kumar TKM, Badisha Banu TC, Roy RM. Molecular docking and simulation studies of some pyrazolone-based bioactive ligands targeting the NF- κ B signaling pathways. Mol Divers 2024; 28:1459-1469. [PMID: 37338672 DOI: 10.1007/s11030-023-10668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
NF-κB has become a predominant regulator responsible for multiple physiological and pathological processes. NF-κB signaling pathway has canonical and non-canonical components which strategize the cancer-related metabolic processes. Non-canonical NF-κB pathways are known to contribute towards the chemoresistance of cancer cells. Consequently, NF-κB can be utilized as a potential therapeutic target for modifying the behaviour of tumor cells. In view of this, we herein report a series of pyrazolone-based bioactive ligands that potentially target NF- κB and, thereby, unveil their anticancer properties. The pharmacological screening of the synthesized compounds were carried out using various virtual screening techniques. The anticancer studies of synthesized pyrazolones showed that APAU exhibited the most potent effect against the MCF-7 cells with an IC50 value of 30 μg/ml. Molecular docking studies revealed that the pyrazolones inhibited cell proliferation by targeting the NFκB signaling pathway. The molecular dynamics simulation studies predicted the stability and flexibility of pyrazolone-based bioactive ligands.
Collapse
Affiliation(s)
- Surya Philip
- Department of Chemistry, Mar Thoma College, Tiruvalla, Kerala, 689103, India.
| | - D R Sherin
- Kerala University of Digital Sciences, Innovation and Technology (KUDSIT), Thiruvananthapuram, 695581, India
| | - T K Manoj Kumar
- Kerala University of Digital Sciences, Innovation and Technology (KUDSIT), Thiruvananthapuram, 695581, India
| | - T C Badisha Banu
- Department of Chemistry, Mar Thoma College, Tiruvalla, Kerala, 689103, India
| | - Reny Mary Roy
- Department of Chemistry, Mar Thoma College, Tiruvalla, Kerala, 689103, India
| |
Collapse
|
33
|
Zhong Y, Luo B, Hong M, Hu S, Zou D, Yang Y, Wei S, Faruque MO, Dong S, Zhu X, Li X, Li Y, Hu X. Oxymatrine induces apoptosis in non-small cell lung cancer cells by downregulating TRIM46. Toxicon 2024; 244:107773. [PMID: 38795848 DOI: 10.1016/j.toxicon.2024.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Sophora flavescens Aiton, a traditional Chinese medicine that was supposed to predominantly play an anti-inflammatory role, has been used to treat multiple diseases, including cancer, for over two thousand years. Recently, it has attracted increasing attention due to the anti-tumor properties of Oxymatrine, one of the most active alkaloids extracted from S. flavescens. This study aims to explore it's anti-tumor effects in non-small cell lung cancer (NSCLC) and the underlying mechanisms. We first investigated the effects of oxymatrine on cell apoptosis in lung cancer cell lines A549 and PC9 as well as explored related genes in regulating the apoptosis by transcriptome analysis. Subsequently, to further study the role of TRIM46, we constructed two types of TRIM46 over-expression cells (A549TRIM46+ and PC9TRIM46+ cells) and then investigated the effect of TRIM46 on oxymatrine-induced apoptosis. Moreover, we explored the effect of TRIM46 on downstream signaling pathways. Transcriptome analysis suggested that shared differentially expressed genes (DEGs) in A549 and PC9 cells treated with oxymatrine were CACNA1I, PADI2, and TRIM46. According to TCGA database analysis, the abundance of TRIM46 expression was higher than CACNA1I, and PADI2 in lung cancer tissues, then was selected as the final DEG for subsequent studies. We observed that oxymatrine resulted in down-expression of TRIM46 as well as induced the apoptosis of the cancer cells in a dose- and time-dependent manner. Meanwhile, we found that apoptosis induced by oxymatrine was inhibited by over-expressing TRIM46. Furthermore, our study indicated that the NF-κB signaling pathway was involved in apoptosis suppressed by TRIM46. We conclude that TRIM46 is the direct target of oxymatrine to induce anti-tumor apoptosis and may activate the downstream NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430079, China
| | - Biaobiao Luo
- Institute of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Min Hong
- Institute of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430079, China
| | - Dian Zou
- Institute of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yang Yang
- Institute of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shaozhong Wei
- Department of Gastrointestinal Surgery & Colorectal Cancer Center, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430079, China
| | - Mohammad Omar Faruque
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430079, China
| | - Xianmin Zhu
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430079, China
| | - Xiaoyu Li
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430079, China
| | - Yuanxiang Li
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430079, China.
| | - Xuebo Hu
- Institute of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
34
|
Li Z, Liu J, Wang P, Zhang B, He G, Yang L. HAMP predicts a pivotal role in modulating the malignant behaviors of non-small cell lung cancer cells. Aging (Albany NY) 2024; 16:8524-8540. [PMID: 38787358 PMCID: PMC11164495 DOI: 10.18632/aging.205819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/23/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Hepcidin antimicrobial peptide (HAMP) is a small peptide hormone recognized for its role in iron metabolism and cancer treatment. The purpose of this study was to examine the influence of HAMP in NSCLC. METHODS The profile of NSCLC cells and tissues was characterized via HAMP. Gain- or loss-of-function cell models of HAMP were constructed, and CCK8, colony formation, and Transwell analyses were used to confirm the influence of HAMP on NSCLC cells. Upstream and downstream HAMP mechanisms in NSCLC were also analysed. Dual-luciferase reporter and pull-down assays confirmed the associations of miR-873-5p with HAMP, miR-873-5p, and the lncRNA KCNQ1OT1/SNHG14/XIST. Moreover, a xenograft model was established in nude mice for confirming the role of HAMP in NSCLC cell growth. RESULTS In addition, HAMP expression increased in NSCLC cells and tissues. In terms of cellular functions, the HAMP-overexpressing group exhibited elevated NSCLC cell proliferation, invasion, and migration. HAMP knockdown reversed these changes. Bioinformatics analysis indicated that miR-873-5p targeted HAMP, which affected the nuclear factor kappa B (NF-κB) pathway in NSCLC. HAMP activated the NF-κB pathway, which was negatively modulated by miR-873-5p. NF-κB inhibitor JSH-23 can partly suppress the proliferation, invasion, and migration in HAMP-overexpressed cells. Moreover, miR-873-5p was the target miRNA of long noncoding RNAs (lncRNAs), which included KCNQ1OT1, SNHG14, and XIST, and these three lncRNAs promoted HAMP. CONCLUSION Noncoding RNA-mediated HAMP promotes NSCLC cell proliferation, migration, and invasion by initiating the NF-κB pathway.
Collapse
Affiliation(s)
- Zhifeng Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jinglei Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Ping Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Boyu Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Guanghui He
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Liwei Yang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
35
|
Gong Y, Luo G, Zhang S, Chen Y, Hu Y. Transcriptome sequencing analysis reveals miR-30c-5p promotes ferroptosis in cervical cancer and inhibits growth and metastasis of cervical cancer xenografts by targeting the METTL3/KRAS axis. Cell Signal 2024; 117:111068. [PMID: 38286198 DOI: 10.1016/j.cellsig.2024.111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
Cervical cancer is the most common malignant tumor in the female reproductive system worldwide, and its molecular mechanisms remain complex and poorly understood. Various techniques, including transcriptome sequencing, RT-qPCR, ELISA, immunofluorescence, Western blot, CCK-8 assay, Transwell assay, and xenograft models, were employed to investigate gene/miRNA expression, cellular proliferation, migration, and the interactions between miR-30c-5p, METTL3, and KRAS. Our transcriptome sequencing results demonstrated a significant downregulation of miR-30c-5p in cervical cancer cells. Further investigations using RNA pull-down, dual-luciferase reporter assay, Me-RIP, and PAR-CLIP confirmed METTL3 as one of the downstream targets of miR-30c-5p, while KRAS was identified as an iron-death suppressor gene susceptible to m6A modification. Notably, our Me-RIP analysis demonstrated the involvement of METTL3 in m6A modification of KRAS. In vitro experiments revealed that miR-30c-5p facilitated ferroptosis in cervical cancer cells by inhibiting the METTL3/KRAS axis, thus suppressing proliferation and migration. Additionally, in vivo studies demonstrated that miR-30c-5p repressed the growth and metastasis of cervical cancer xenografts through the inhibition of the METTL3/KRAS axis. Overall, this study highlights the critical role of miR-30c-5p in modulating cervical cancer progression by targeting the METTL3/KRAS axis, providing new insights into the molecular mechanisms underlying cervical cancer growth and metastasis.
Collapse
Affiliation(s)
- Yangmei Gong
- The First Affiliated Hospital, Center for a combination of Obstetrics and Gynecology & Reproductive medicine, Henyang Medical School, University of South China, Hengyang 421001, China
| | - Guifang Luo
- The First Affiliated Hospital, Center for a combination of Obstetrics and Gynecology & Reproductive medicine, Henyang Medical School, University of South China, Hengyang 421001, China
| | - Shufen Zhang
- The First Affiliated Hospital, Center for a combination of Obstetrics and Gynecology & Reproductive medicine, Henyang Medical School, University of South China, Hengyang 421001, China
| | - Yijing Chen
- The First Affiliated Hospital, Center for a combination of Obstetrics and Gynecology & Reproductive medicine, Henyang Medical School, University of South China, Hengyang 421001, China
| | - Yi Hu
- The First Affiliated Hospital, Center for a combination of Obstetrics and Gynecology & Reproductive medicine, Henyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
36
|
Guo H, Guo L, Li L, Li N, Lin X, Wang Y. Identification of key genes and molecular mechanisms of chronic urticaria based on bioinformatics. Skin Res Technol 2024; 30:e13624. [PMID: 38558219 PMCID: PMC10982677 DOI: 10.1111/srt.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 04/04/2024]
Abstract
Chronic urticaria (CU) is characterized by persistent skin hives, redness, and itching, enhanced by immune dysregulation and inflammation. Our main objective is identifying key genes and molecular mechanisms of chronic urticaria based on bioinformatics. We used the Gene Expression Omnibus (GEO) database and retrieved two GEO datasets, GSE57178 and GSE72540. The raw data were extracted, pre-processed, and analyzed using the GEO2R tool to identify the differentially expressed genes (DEGs). The samples were divided into two groups: healthy samples and CU samples. We defined cut-off values of log2 fold change ≥1 and p < .05. Analyses were performed in the Kyoto Encyclopaedia of Genes and Genomes (KEGG), the Database for Annotation, Visualization and Integrated Discovery (DAVID), Metascape, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and CIBERSOFT databases. We obtained 1613 differentially expressed genes. There were 114 overlapping genes in both datasets, out of which 102 genes were up-regulated while 12 were down-regulated. The biological processes included activation of myeloid leukocytes, response to inflammations, and response to organic substances. Moreover, the KEGG pathways of CU were enriched in the Nuclear Factor-Kappa B (NF-kB) signaling pathway, Tumor Necrosis Factor (TNF) signaling pathway, and Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling pathway. We identified 27 hub genes that were implicated in the pathogenesis of CU, such as interleukin-6 (IL-6), Prostaglandin-endoperoxide synthase 2 (PTGS2), and intercellular adhesion molecule-1 (ICAM1). The complex interplay between immune responses, inflammatory pathways, cytokine networks, and specific genes enhances CU. Understanding these mechanisms paves the way for potential interventions to mitigate symptoms and improve the quality of life of CU patients.
Collapse
Affiliation(s)
- Haichao Guo
- Department of Acupuncture and MoxibustionThe First Affiliated Hospital of Hebei University of Chinese MedicineShijiazhuangHebeiChina
- Department of DermatologyXingtai Hospital of Traditional Chinese MedicineXingtaiHebeiChina
| | - Lifang Guo
- Department of DermatologyXingtai Hospital of Traditional Chinese MedicineXingtaiHebeiChina
| | - Li Li
- Department of DermatologyXingtai Hospital of Traditional Chinese MedicineXingtaiHebeiChina
| | - Na Li
- Department of PsychiatryThe First Affiliated Hospital of Hebei University of Chinese MedicineShijiazhuangHebeiChina
| | - Xiaoyun Lin
- Department of Acupuncture and MoxibustionThe First Affiliated Hospital of Hebei University of Chinese MedicineShijiazhuangHebeiChina
| | - Yanjun Wang
- Department of Acupuncture and MoxibustionThe First Affiliated Hospital of Hebei University of Chinese MedicineShijiazhuangHebeiChina
| |
Collapse
|
37
|
Li L, Gong S. The discovery of a novel IκB kinase β inhibitor based on pharmacophore modeling, virtual screening and biological evaluation. Future Med Chem 2024; 16:531-544. [PMID: 38385164 DOI: 10.4155/fmc-2023-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 02/23/2024] Open
Abstract
Background: IκB kinase β (IKKβ) plays a pivotal role in the NF-κB signaling pathway and is considered a promising therapeutic target for various diseases. Materials & methods: The authors developed and validated a 3D pharmacophore model of IKKβ inhibitors via the HypoGen algorithm in Discovery Studio 2019, then performed virtual screening, molecular docking and kinase assays to identify hit compounds from the ChemDiv database. The compound with the highest inhibitory activity was further evaluated in adjuvant-induced arthritis rat models. Results: Among the four hit compounds, Hit 4 had the highest IKKβ inhibitory activity (IC50 = 30.4 ± 3.8), and it could significantly ameliorate joint inflammation and damage in vivo. Conclusion: The identified compound, Hit 4, can be optimized as a therapeutic agent for inflammatory diseases.
Collapse
Affiliation(s)
- Luyao Li
- Xi'an Jiaotong University, Xi'an, China
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
| | - Shouping Gong
- Xi'an Jiaotong University, Xi'an, China
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China
- Xi'an Medical University, Xi'an, China
| |
Collapse
|
38
|
Wang S, Wang J, Chen Z, Luo J, Guo W, Sun L, Lin L. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis Oncol 2024; 8:31. [PMID: 38341519 DOI: 10.1038/s41698-024-00522-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Tumor drug resistance emerges from the interaction of two critical factors: tumor cellular heterogeneity and the immunosuppressive nature of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) constitute essential components of the TME. M2-like TAMs are essential in facilitating tumor metastasis as well as augmenting the drug resistance of tumors. This review encapsulates the mechanisms that M2-like TAMs use to promote tumor drug resistance. We also describe the emerging therapeutic strategies that are currently targeting M2-like TAMs in combination with other antitumor drugs, with some still undergoing clinical trial evaluation. Furthermore, we summarize and analyze various existing approaches for developing novel drugs that target M2-like TAMs to overcome tumor resistance, highlighting how targeting M2-like TAMs can effectively stop tumor growth, metastasis, and overcome tumor drug resistance.
Collapse
Affiliation(s)
- Shujing Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingrui Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Chen
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiamin Luo
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Guo
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
39
|
Srivastava AK, Srivastava S, Kumar V, Ghosh S, Yadav S, Malik R, Roy P, Prasad R. Identification and mechanistic exploration of structural and conformational dynamics of NF-kB inhibitors: rationale insights from in silico and in vitro studies. J Biomol Struct Dyn 2024; 42:1485-1505. [PMID: 37054525 DOI: 10.1080/07391102.2023.2200490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
Increased expression of target genes that code for proinflammatory chemical mediators results from a series of intracellular cascades triggered by activation of dysregulated NF-κB signaling pathway. Dysfunctional NF-kB signaling amplifies and perpetuates autoimmune responses in inflammatory diseases, including psoriasis. This study aimed to identify therapeutically relevant NF-kB inhibitors and elucidate the mechanistic aspects behind NF-kB inhibition. After virtual screening and molecular docking, five hit NF-kB inhibitors opted, and their therapeutic efficacy was examined using cell-based assays in TNF-α stimulated human keratinocyte cells. To investigate the conformational changes of target protein and inhibitor-protein interaction mechanisms, molecular dynamics (MD) simulations, binding free energy calculations together with principal component (PC) analysis, dynamics cross-correlation matrix analysis (DCCM), free energy landscape (FEL) analysis and quantum mechanical calculations were carried out. Among identified NF-kB inhibitors, myricetin and hesperidin significantly scavenged intracellular ROS and inhibited NF-kB activation. Analysis of the MD simulation trajectories of ligand-protein complexes revealed that myricetin and hesperidin formed energetically stabilized complexes with the target protein and were able to lock NF-kB in a closed conformation. Myricetin and hesperidin binding to the target protein significantly impacted conformational changes and internal dynamics of amino acid residues in protein domains. Tyr57, Glu60, Lys144 and Asp239 residues majorly contributed to locking the NF-kB in a closed conformation. The combinatorial approach employing in silico tools integrated with cell-based approaches substantiated the binding mechanism and NF-kB active site inhibition by the lead molecule myricetin, which can be explored as a viable antipsoriatic drug candidate associated with dysregulated NF-kB.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Kumar Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shubham Srivastava
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Viney Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Souvik Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Siddharth Yadav
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Ruchi Malik
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
40
|
Giacomarra M, La Torre M, Montana G. Effects of Inhibition of IKK Kinase Phosphorylation On the Cellular Defence System and HSP90 Activity. Inflammation 2024; 47:74-83. [PMID: 37640833 PMCID: PMC10799094 DOI: 10.1007/s10753-023-01894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The present study was conceived to examine the effects of inhibition of BMS-345541 mediated IKK kinase phosphorylation on the cellular defence system as well as on anti-inflammatory response and HSP90 activity. The analysis was conducted in A549 cell line, since such cells carry a homozygous Keap1 mutation (G333C) that alters its interaction with Nrf2. Recent data have highlighted that Keap1, HSP90 protein and IKK kinase interact reciprocally and particularly Keap1 protein is involved in HSP90 and anti-oxidative pathway regulation. The activities of COX2 and HO1 were investigated by real time and immunoblot analysis along with the synthesis and activity of inducible forms of heat shock protein HSP90. Pre-treatment with IKK kinase inhibitor proved to be a protective means to lower the activity of inflammatory cascade, so preventing the formation of excessive amounts of pro-inflammatory molecules. The inhibitor of IKK kinase BMS-345541 was added to cultured A549 cells before the Escherichia coli lipopolysaccharide (LPS) addition. The viability of the cells was determined after 1-24 h incubation with BMS-345541 at concentrations ranging from 1,25-5 µM. It was found that 1 µM concentration does not significantly affected cell viability (data not shown). As a result, the treatment with 1 μM of BMS-345541 induces the inhibition of IKK phosphorylation. In the A549 cells treated with BMS-345541 and LPS, COX2 activity is not induced: mRNA and protein levels have not increased, while there is an increase in the level of HSP90, HO1 proteins and mRNA. The results suggest that the IKK inhibition is effective in the reduction of the inflammatory response thanks to mechanisms involving both the heat shock cellular defense system and the antioxidative pathway.
Collapse
Affiliation(s)
- Miriam Giacomarra
- Istituto di Ricerca e Innovazione Biomedica, Consiglio Nazionale delle Ricerche (CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Martina La Torre
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Farmacologia Traslazionale, 00133, Rome, Italy
| | - Giovanna Montana
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Farmacologia Traslazionale, 00133, Rome, Italy.
| |
Collapse
|
41
|
Zhou X, Zhao M, Fan Y, Xu Y. Identification of a necroptosis-related gene signature for making clinical predictions of the survival of patients with lung adenocarcinoma. PeerJ 2024; 12:e16616. [PMID: 38213773 PMCID: PMC10782958 DOI: 10.7717/peerj.16616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a major pathological subtype of malignant lung cancer with a poor prognosis. Necroptosis is a caspase-independent programmed cell death mode that plays a pivotal role in cancer oncogenesis and metastasis. Here, we explore the prognostic values of different necroptosis-related genes (NRGs) in LUAD. Methods mRNA expression data and related clinical information for LUAD samples were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. NRGs were identified using the GeneCards database. Least absolute shrinkage and selection operator Cox regression and multivariate Cox analysis were used to construct a prognostic risk model. Time-dependent receiver-operating characteristic curves and a nomogram were constructed to validate the predictive values of the prognostic signatures. A necroptosis-related protein-protein interaction network was visualised using the STRING database and Cytoscape software. Functional analyses, including Gene Ontology, Kyoto Encyclopaedia of Genes and Genomes pathway enrichment, gene set enrichment, and gene set variation analyses, were conducted to explore the underlying molecular mechanisms. Finally, the mRNA expression of the prognostic signatures in LUAD cell lines was assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. Results A prognostic model was established for eight NRGs (CALM1, DDX17, FPR1, OGT, PGLYRP1, PRDX1, TUFM, and CPSF3) based on TCGA-cohort data and validated with the GSE68465 cohort. Patients with low-risk scores had better survival outcomes than those with high-risk scores (p = 0.00013). The nomogram was used to predict the prognosis of patients with LUAD. The prediction curves for 1-, 3-, and 5-year OS showed good predictive performance and the accuracy of the nomograms increased over time. RT-qPCR results demonstrated that these eight genes, especially CALM1, PRDX1, and PGLYRP1, were differentially expressed in LUAD cells. Conclusion We constructed a reliable eight-NRG signature that provides new insights for guiding clinical practice in the prognosis and treatment of LUAD.
Collapse
Affiliation(s)
- Xiaoping Zhou
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yingzi Fan
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ying Xu
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
42
|
Cong B, Cagan RL. Cell competition and cancer from Drosophila to mammals. Oncogenesis 2024; 13:1. [PMID: 38172609 PMCID: PMC10764339 DOI: 10.1038/s41389-023-00505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Throughout an individual's life, somatic cells acquire cancer-associated mutations. A fraction of these mutations trigger tumour formation, a phenomenon partly driven by the interplay of mutant and wild-type cell clones competing for dominance; conversely, other mutations function against tumour initiation. This mechanism of 'cell competition', can shift clone dynamics by evaluating the relative status of clonal populations, promoting 'winners' and eliminating 'losers'. This review examines the role of cell competition in the context of tumorigenesis, tumour progression and therapeutic intervention.
Collapse
Affiliation(s)
- Bojie Cong
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, UK.
| | - Ross L Cagan
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, UK
| |
Collapse
|
43
|
Liang KH, Luo YH, Wang ML, Chiou SH, Chen YM, Hsu HS. A multiomic investigation of lung adenocarcinoma molecular subtypes. J Chin Med Assoc 2024; 87:33-39. [PMID: 37991388 DOI: 10.1097/jcma.0000000000001029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma-an aggressive and life-threatening malignancy-is a type of non-small-cell lung cancer. Despite medical advancements, the prognosis of lung adenocarcinoma remains unfavorable, likely because of its heterogeneous nature. Furthermore, few subtype-specific treatments are available for lung adenocarcinoma. This study was conducted to explore the molecular subtypes of lung adenocarcinoma. METHODS We performed a joint analysis of transcriptome and proteome data from East Asian patients with lung adenocarcinoma (nonsmokers, 86.5%). RESULTS Four novel subtypes were identified based on distinct molecular characteristics: subtypes I, II, III, and IV. In patients with subtype I lung adenocarcinoma, eukaryotic translation initiation factor 4 gamma 1 activates cell proliferation; inhibiting this factor suppresses tumor growth, and reducing its level induces autophagy. Subtype II is characterized by Kristen rat sarcoma viral oncogene homolog-activating oncogenesis; the onset age of this subtype is the lowest among all subtypes. Subtype III manifests as an advanced disease at diagnosis; it is characterized by a core serum response-related oncogenic signature, which indicates poor overall survival in Western patients with lung cancer. Subtype IV is more common in men than in women; it has astroglial characteristics. A Connectivity Map analysis revealed that the oncogenic expression patterns corresponding to subtypes I, II, III, and IV can be reversed by the inhibitors of Inhibitor of κB (IκB) kinase (eg, withaferin A), mammalian target of rapamycin (eg, everolimus), Src proto-oncogene (Src) (eg, saracatinib), and Transforming Growth Factor (TGF)-β/Smad (eg, LY-364947), respectively. CONCLUSION This study introduced an innovative multiomics data analysis pipeline. Using this approach, we successfully identified four molecular subtypes of lung adenocarcinoma and their candidate therapeutic agents. The newly identified subtypes can be combined with the current biomarkers to generate a comprehensive roadmap for treatment decision-making.
Collapse
Affiliation(s)
- Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, College of Phmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yung-Hung Luo
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, College of Phmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Han-Shui Hsu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General, Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
44
|
Long T, Li J, Yin T, Liu K, Wang Y, Long J, Wang J, Cheng L. A genetic variant in gene NDUFAF4 confers the risk of non-small cell lung cancer by perturbing hsa-miR-215 binding. Mol Carcinog 2024; 63:145-159. [PMID: 37787384 DOI: 10.1002/mc.23642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Hsa-microRNA-215 (hsa-miR-215) plays multiple roles in carcinogenesis through regulating its target genes. Genetic variants in hsa-miR-215 target sites thus may affect hsa-miR-215-mRNA interactions, result in altered expression of target genes and even influence cancer susceptibility. This study aimed to investigate the associations of genetic variants which located in the binding sites of hsa-miR-215 with non-small cell lung cancer (NSCLC) susceptibility in the Chinese population and reveal the potential regulatory mechanism of functional variants in NSCLC development. The candidate genetic variants were predicted and screened through bioinformatics analysis based on the degree of complementarity of hsa-miR-215 sequences. The potential effects of genetic variants on the binding ability of hsa-miR-215 and target genes were also predicted. A case-control study with 932 NSCLC patients and 1036 healthy controls was conducted to evaluate the association of candidate genetic variants with NSCLC susceptibility, and an independent case-control study with 552 NSCLC cases and 571 controls were used to further validate the promising associations. Dual luciferase reporter gene assay was applied to explore the regulation of the genetic variants on transcription activity of target gene. Cell phenotyping experiments in vitro and RNA sequencing (RNA-seq) were then carried out to preliminarily explore the potential regulatory mechanisms of the target genes in NSCLC. A total of five candidate genetic variants located in the binding sites of hsa-miR-215 were screened. The two-stage case-control study showed that a variant rs1854268 A > T, which located in the 3' untranslated (3'UTR) region of NDUFAF4 gene, was associated with decreased risk of NSCLC (additive model, odds ratio [OR] = 0.83, 95% confidence interval [CI]: 0.75-0.92, p < 0.001). Functional annotation displayed that rs1854268 A > T might downregulate the expression of NDUFAF4 by enhancing the binding affinity of hsa-miR-215-5p to NDUFAF4 mRNA. Additionally, transient knockdown of the NDUFAF4 could inhibit lung cancer cell migration and promote lung cancer cell apoptosis. Further RNA-seq analysis revealed that the knockdown of NDUFAF4 may affect NSCLC development by downregulating the nuclear factor kappa B (NF-κB) and phosphoinositide 3 kinase-AKT (PI3K-AKT) signaling pathways. Moreover, the overexpression of CCND1 could partially attenuate the effects of NDUFAF4 knock down on lung cancer cell migration and apoptosis, indicating that CCND1 may be involved in the tumor-promoting effects of NDUFAF4 as a downstream molecule of NDUFAF4 gene. In conclusion, the genetic variant rs1854268 (A > T) on NDUFAF4 confers NSCLC susceptibility by altering the binding affinity of hsa-miR-215-5p, thus regulating the expression of NDUFAF4 and subsequently influencing downstream tumor molecules and pathways such as CCND1, NF kappa B, and PI3K-AKT signaling pathways.
Collapse
Affiliation(s)
- Tingting Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongxin Yin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Li L, Qiu H. Asperulosidic Acid Restrains Hepatocellular Carcinoma Development and Enhances Chemosensitivity Through Inactivating the MEKK1/NF-κB Pathway. Appl Biochem Biotechnol 2024; 196:1-17. [PMID: 37097403 DOI: 10.1007/s12010-023-04500-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Asperulosidic acid (ASPA) is a plant-extracted iridoid terpenoid with tumor-suppressive and anti-inflammatory properties. At present, the antitumor function of ASPA and its related mechanisms in hepatocellular carcinoma (HCC) cells were explored. Human normal hepatocytes HL-7702 and HCC cells (Huh7 and HCCLM3) were treated with varying concentrations (0 to 200 μg/mL) of ASPA. Cell viability, proliferation, apoptosis, migration, and invasion were checked. The expression of proteins was detected by Western blot. Furthermore, the effect of ASPA (100 μg/mL) on the sensitivity of HCC cells to chemotherapeutic agents, including doxorubicin and cisplatin, was evaluated. A subcutaneous xenografted tumor model was set up in nude mice, and the antitumor effects of ASPA were evaluated. ASPA hindered HCC cells' proliferation, migration, and invasion, and amplified their apoptosis and sensitivity to chemotherapeutic agents. Additionally, ASPA inactivated the MEKK1/NF-κB pathway. Overexpression of MEKK1 increased HCC proliferation, migration, and invasion and facilitated chemoresistance. ASPA treatment alleviated the carcinogenic effect mediated by MEKK1 overexpression. MEKK1 knockdown slowed down HCC progression. However, ASPA could not exert additional antitumor effects in MEKK1 knockdown cells. In vivo results displayed that ASPA substantially curbed tumor growth and inactivated the MEKK1/NF-κB pathway in mice. All over, ASPA exerts antitumor effects in HCC by suppressing the MEKK1/NF-κB pathway.
Collapse
Affiliation(s)
- Liang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, No.1882 South Zhong Huan Road, Jiaxing City, Zhejiang Province, 314001, China
| | - Huiwen Qiu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, No.1882 South Zhong Huan Road, Jiaxing City, Zhejiang Province, 314001, China.
| |
Collapse
|
46
|
Xiong H, Chen G, Fang K, Gu W, Qiu F. Neuronatin Promotes the Progression of Non-small Cell Lung Cancer by Activating the NF-κB Signaling. Curr Cancer Drug Targets 2024; 24:1128-1143. [PMID: 38299400 DOI: 10.2174/0115680096271746240103063325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND AND OBJECTIVES Understanding the regulatory mechanisms involving neuronatin (NNAT) in non-small cell lung cancer (NSCLC) is an ongoing challenge. This study aimed to elucidate the impact of NNAT knockdown on NSCLC by employing both in vitro and in vivo approaches. METHODS To investigate the role of NNAT, its expression was silenced in NSCLC cell lines A549 and H226. Subsequently, various parameters, including cell proliferation, invasion, migration, and apoptosis, were assessed. Additionally, cell-derived xenograft models were established to evaluate the effect of NNAT knockdown on tumor growth. The expression of key molecules, including cyclin D1, B-cell leukemia/lymphoma 2 (Bcl-2), p65, matrix metalloproteinase (MMP) 2, and nerve growth factor (NGF) were examined both in vitro and in vivo. Nerve fiber density within tumor tissues was analyzed using silver staining. RESULTS Upon NNAT knockdown, a remarkable reduction in NSCLC cell proliferation, invasion, and migration was observed, accompanied by elevated levels of apoptosis. Furthermore, the expression of cyclin D1, Bcl-2, MMP2, and phosphorylated p65 (p-p65) showed significant downregulation. In vivo, NNAT knockdown led to substantial inhibition of tumor growth and a concurrent decrease in cyclinD1, Bcl-2, MMP2, and p-p65 expression within tumor tissues. Importantly, NNAT knockdown also led to a decrease in nerve fiber density and downregulation of NGF expression within the xenograft tumor tissues. CONCLUSION Collectively, these findings suggest that neuronatin plays a pivotal role in driving NSCLC progression, potentially through the activation of the nuclear factor-kappa B signaling cascade. Additionally, neuronatin may contribute to the modulation of tumor microenvironment innervation in NSCLC. Targeting neuronatin inhibition emerges as a promising strategy for potential anti-NSCLC therapeutic intervention.
Collapse
Affiliation(s)
- Huanwen Xiong
- Department of Respiratory, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Guohua Chen
- Department of Respiratory, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Ke Fang
- Department of Oncology, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Weiguo Gu
- Department of Oncology, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Feng Qiu
- Department of Oncology, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
47
|
Ramar V, Guo S, Hudson B, Liu M. Progress in Glioma Stem Cell Research. Cancers (Basel) 2023; 16:102. [PMID: 38201528 PMCID: PMC10778204 DOI: 10.3390/cancers16010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents a diverse spectrum of primary tumors notorious for their resistance to established therapeutic modalities. Despite aggressive interventions like surgery, radiation, and chemotherapy, these tumors, due to factors such as the blood-brain barrier, tumor heterogeneity, glioma stem cells (GSCs), drug efflux pumps, and DNA damage repair mechanisms, persist beyond complete isolation, resulting in dismal outcomes for glioma patients. Presently, the standard initial approach comprises surgical excision followed by concurrent chemotherapy, where temozolomide (TMZ) serves as the foremost option in managing GBM patients. Subsequent adjuvant chemotherapy follows this regimen. Emerging therapeutic approaches encompass immunotherapy, including checkpoint inhibitors, and targeted treatments, such as bevacizumab, aiming to exploit vulnerabilities within GBM cells. Nevertheless, there exists a pressing imperative to devise innovative strategies for both diagnosing and treating GBM. This review emphasizes the current knowledge of GSC biology, molecular mechanisms, and associations with various signals and/or pathways, such as the epidermal growth factor receptor, PI3K/AKT/mTOR, HGFR/c-MET, NF-κB, Wnt, Notch, and STAT3 pathways. Metabolic reprogramming in GSCs has also been reported with the prominent activation of the glycolytic pathway, comprising aldehyde dehydrogenase family genes. We also discuss potential therapeutic approaches to GSC targets and currently used inhibitors, as well as their mode of action on GSC targets.
Collapse
Affiliation(s)
- Vanajothi Ramar
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (V.R.); (B.H.)
| | - Shanchun Guo
- Department of Chemistry, Xavier University, 1 Drexel Dr., New Orleans, LA 70125, USA;
| | - BreAnna Hudson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (V.R.); (B.H.)
| | - Mingli Liu
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (V.R.); (B.H.)
| |
Collapse
|
48
|
Huang X, Li S, Ding R, Li Y, Li C, Gu R. Antitumor effects of polysaccharides from medicinal lower plants: A review. Int J Biol Macromol 2023; 252:126313. [PMID: 37579902 DOI: 10.1016/j.ijbiomac.2023.126313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide, yet the drugs currently approved for cancer treatment are associated with significant side effects, making it urgent to develop alternative drugs with low side effects. Polysaccharides are natural polymers with ketone or aldehyde groups, which are widely found in plants and have various biological activities such as immunomodulation, antitumor and hypolipidemic. The lower plants have attracted much attention for their outstanding anticancer effects, and many studies have shown that medicinal lower plant polysaccharides (MLPPs) have antitumor activity against various cancers and are promising alternatives with potential development in the food and pharmaceutical fields. Therefore, this review describes the structure and mechanism of action of MLPPs with antitumor activity. In addition, the application of MLPPs in cancer treatment is discussed, and the future development of MLPPs is explored.
Collapse
Affiliation(s)
- Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
49
|
Wang S, Kuperman LL, Song Z, Chen Y, Liu K, Xia Z, Xu Y, Yu Q. An overview of limonoid synthetic derivatives as promising bioactive molecules. Eur J Med Chem 2023; 259:115704. [PMID: 37544186 DOI: 10.1016/j.ejmech.2023.115704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
Limonoids, a class of abundant natural tetracyclic triterpenoids, present diverse biological activity and provide a versatile platform amenable by chemical modifications for clinical use. Among all of the limonoids isolated from natural sources, obacunone, nomilin, and limonin are the primary hub of limonoid-based chemical modification research. To date, more than 800 limonoids analogs have been synthesized, some of which possess promising biological activities. This review not only discusses the synthesis of limonoid derivatives as promising therapeutic candidates and details the pharmacological studies of their underlying mechanisms from 2002 to 2022, but also proposes a preliminary limonoid synthetic structure-activity relationship (SAR) and provides future direction of limonoid derivatization research.
Collapse
Affiliation(s)
- Shaochi Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Laura L Kuperman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Zhihui Song
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Yutian Chen
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kun Liu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zongping Xia
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yungen Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| | - Qiuning Yu
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
50
|
Purnami S, Ramadhani D, Oktariyani TA, Suvifan VA, Tetriana D, Sugoro I, Rahajeng N, Wanandi SI, Wibowo H, Yamaguchi M, Kashiwakura I, Syaifudin M, Widowati R. Immune status of people living in the Tande-Tande sub-village (Indonesia), an area with high indoor radon concentration. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:449-463. [PMID: 37897500 DOI: 10.1007/s00411-023-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
On Earth, there are significant variations in terms of exposure to naturally occurring radiation among different areas. Radon, a naturally-occurring radioactive gas that is the primary cause of lung cancer in nonsmokers and the second most prevalent cause among smokers, poses a considerable risk. Indoor radon, in particular, constitutes the most substantial source of natural radiation to which individuals are exposed. This study assessed the immune status of a population chronically exposed to high indoor radon concentration in Indonesia. Fifty-seven subjects from the Tande-Tande sub-village (high indoor radon concentration area) were compared to fifty-three participants living in the Topoyo village (low concentration area). We contrasted the immunological conditions of these two populations by measuring levels of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-4 (IL-4), and IL-10 in serum. Moreover, we also measured levels of the nuclear factor kappa B (NF-κB), superoxide dismutase (SOD), glutathione peroxidase (GPX), and protein kinase B in its phosphorylated (pAkt) and non-phosphorylated form (Akt) in peripheral blood mononuclear cells (PBMCs) of a subset of participants (31 from each population). TNF-α, IFN-γ, and IL-4 levels in Tande-Tande sub-village inhabitants were significantly lower than those in the control group living in the Topoyo village (p = 0.001, p = 0.017, and p = 0.002). The concentration of IL-10 also tended to be lower in people living in the high indoor radon concentration area, but it did not differ significantly between Tande-Tande sub-village inhabitants and Topoyo inhabitants (p = 0.106). Protein levels of NF-κB, pAkt, and Akt in Tande-Tande sub-village inhabitants also did not differ significantly between Tande-Tande sub-village inhabitants and Topoyo inhabitants (p = 0.234, p = 0.210, and p = 0.657). Similarly, activities of SOD and GPX did not differ significantly between the two populations (p = 0.569 and p = 0.949). Overall, despite their chronic exposure to high indoor radon concentrations, our study revealed no increase in the levels of TNF-α, IFN-γ, IL-10, IL-4, SOD, and GPX in the inhabitants of Tande-Tande sub-village compared with people living in the Topoyo village. Furthermore, our study demonstrated no activation in the Akt pathway, as indicated by the pAkt/Akt ratio observed in PBMC lysates of individuals residing in the Tande-Tande sub-village.
Collapse
Affiliation(s)
- Sofiati Purnami
- Master Program in Biology, Faculty of Biology and Agriculture, Universitas Nasional, Jakarta, Indonesia
- Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Banten, Indonesia
| | - Dwi Ramadhani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Banten, Indonesia
| | - Tiara Andalya Oktariyani
- Departement of Biology, Faculty of Science and Technology, Al-Azhar University of Indonesia, Jakarta, Indonesia
| | - Viria Agesti Suvifan
- Directorate of Strengthening and Partnership of Research and Innovation Infrastructure, Deputy for Research and Innovation Infrastructure, National Research and Innovation Agency, Banten, Indonesia
| | - Devita Tetriana
- Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Banten, Indonesia
| | - Irawan Sugoro
- Research Center for Radiation Process Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Banten, Indonesia
| | - Nastiti Rahajeng
- Directorate of Strengthening and Partnership of Research and Innovation Infrastructure, Deputy for Research and Innovation Infrastructure, National Research and Innovation Agency, Banten, Indonesia
| | - Septelia Inawati Wanandi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Masaru Yamaguchi
- Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori, 036-8564, Japan
| | - Ikuo Kashiwakura
- Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori, 036-8564, Japan
| | - Mukh Syaifudin
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Banten, Indonesia
| | - Retno Widowati
- Department of Biology, Graduate Program, Faculty of Biology and Agriculture, Universitas Nasional, Jakarta, Indonesia.
| |
Collapse
|