1
|
Chen L, Wei T, Liu X, Cui L, Hu C, Quan Y. Methyltransferase-like enzyme 14 exacerbates retinal ganglion cell damage and diabetic retinopathy through N6-methyladenosine-dependent upregulation of pleckstrin homology domain and leucine rich repeat protein phosphatase 2. Toxicol Appl Pharmacol 2025; 498:117304. [PMID: 40118255 DOI: 10.1016/j.taap.2025.117304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
N6-methyladenosine (m6A) modification of pleckstrin homology domain and leucine rich repeat protein phosphatase 2 (PHLPP2), mediated by methyltransferase-like enzyme 14 (METTL14), plays a critical role in regulating PHLPP2 expression across various pathological conditions. This study aims to ascertain whether METTL14 influences m6A methylation of PHLPP2 in diabetic retinopathy (DR) and to delineate the precise function of the METTL14/PHLPP2 axis in disease progression. METTL14 levels were observed to be elevated in retinas of DR rats and in HG-stimulated RGCs, coinciding with an increase in PHLPP2 m6A modification. Knockdown of METTL14 resulted in significant reductions in PHLPP2 expression and its m6A modification. Silencing METTL14 mitigated HG-induced damage in RGCs, which was linked to the inhibition of apoptosis, oxidative stress and inflammation. This protective effect could be negated through the restoration of PHLPP2. METTL14 knockdown modulated the AKT/GSK-3β/Nrf2 signal cascade through PHLPP2. Silencing METTL14 resulted in the downregulation of METTL14 and PHLPP2 in the retinas of DR rats, ameliorated visual function impairment and reduced the pathological alterations. These protective effects of METTL14 silencing against DR were also weakened when PHLPP2 was restored. Overall, these results suggest that suppressing METTL14 improves HG-induced damage in RGCs and protects against DR by downregulating PHLPP2 through m6A modification.
Collapse
Affiliation(s)
- Li Chen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Ting Wei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Xuan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Lijun Cui
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Conghui Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Yumeng Quan
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| |
Collapse
|
2
|
Han N, Yu N, Yu L. Aberrant expression of TRIM44, transcriptionally regulated by KLF9, contributes to the process of diabetic retinopathy. J Transl Med 2025; 23:433. [PMID: 40217303 PMCID: PMC11992793 DOI: 10.1186/s12967-025-06436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the common cause of diabetic vascular complications and it causes blindness. Until now, there are still some patients with DR who lack effective treatment. Tripartite motif containing 44 (TRIM44) has been shown to play a significant role in endothelial cells. However, the role of TRIM44 in DR remains unknown. METHODS Diabetes was induced in rats through the administration of an intraperitoneal injection of 65 mg/kg of streptozotocin (STZ). Rat retinal microvascular endothelial cells (RMECs) were subjected to stimulation under high glucose (HG) conditions. A thorough proteomic investigation and bioinformatic analysis were performed to identify the differentially expressed proteins (DEPs) in rat RMECs after blocking TRIM44. A dual luciferase reporter assay was employed to assess the luciferase activity of TRIM44. RESULTS TRIM44 was highly expressed in the retinal tissues of rats with diabetes and HG-induced RMECs. In vivo assays suggested that TRIM44 silencing improved the pathological alterations of DR rats as demonstrated by the downregulated expression of isolectin-B4 and VEGFA, along with a decrease in acellular capillaries within the retinal tissues. Knockdown of TRIM44 markedly reduced cell viability, proliferation, migration, invasion, and angiogenesis in HG-evoked RMECs. Mechanistically, TRIM44 was demonstrated to be activated transcriptionally by KLF transcription factor 9 (KLF9), a known facilitator of angiogenesis in DR. In HG-induced cells, the loss of TRIM44 resulted in the reverse of the endothelial cell function caused by KLF9 overexpression. After the comprehensive analysis, 64 upregulated and 38 downregulated DEPs were screened out for a series of functional enrichment analyses. CONCLUSIONS Collectively, this study demonstrates that TRIM44 knockdown suppressed diabetes-induced retinal vascular dysfunction in DR.
Collapse
Affiliation(s)
- Ning Han
- Department of Ophthalmology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, Jilin, China
| | - Na Yu
- Department of Blood Transfusion, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Li Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, Jilin, China.
| |
Collapse
|
3
|
Liu J, Yu X, Chudhary M, Qi H, Zhang N, Zhong S, Zhao Q, Ren X, Kong H, Kong L. Correlations of Thioredoxin and Thioredoxin Interacting Protein with Type 2 Diabetes Mellitus Complicated with Diabetic Retinopathy. Curr Eye Res 2025:1-9. [PMID: 40207568 DOI: 10.1080/02713683.2025.2487069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
PURPOSE To investigate the relationship between Thioredoxin (Trx), Thioredoxin interacting protein (Txnip), and the severity of diabetic retinopathy (DR). METHODS The study involved a total of 101 eyes, comprising of 31 healthy controls, 24 diabetic patients with no clinically detectable retinopathy (NDR group), 26 patients with non-proliferative DR (NPDR group), and 20 patients with proliferative DR (PDR group), including 62 males and 49 females, average aged 61.65 ± 9.4. Retinal morphology was evaluated using spectral domain optical coherence tomography (SD-OCT), while retinal function was assessed using full-field electroretinogram (ffERG) to record the amplitudes and implicit time. The correlation between serum Trx, Txnip, and DR was analyzed using Spearman correlation analysis. RESULTS In the early stage of DR, there was no significant difference in macular retinal thickness between groups; in the PDR group, there was a significant increase compared to both the NDR and control groups, particularly in the central fovea (p < 0.0001). Additionally, the amplitude and implicit time of oscillatory potentials exhibited a significant difference between the NDR and control groups at an early stage of DR (p < 0.001). Furthermore, the amplitude of rod and cone ERG decreased significantly in the early stage of DR, while the implicit time began to decline in the NPDR stage. The serum levels of Trx and Txnip exhibited a positive correlation with the progression of DR (r = 0.851, 0.762). Conversely, a negative correlation was observed between the serum levels of Trx and Txnip and the amplitudes of ERG, while a positive correlation was observed with the implicit time of ERG. CONCLUSIONS The serum levels of Trx and Txnip exhibit a positive correlation with retinopathy associated with type 2 diabetes mellitus (T2DM), and thus may be utilized as a potential target for the timely diagnosis and treatment of DR.
Collapse
Affiliation(s)
- Jiasu Liu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, LiaoNing Provence, China
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, LiaoNing Provence, China
| | - Xuebin Yu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, LiaoNing Provence, China
| | - Maryam Chudhary
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, LiaoNing Provence, China
| | - Hui Qi
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, LiaoNing Provence, China
| | - Na Zhang
- Department of Otorhinolaryngology, The Second Hospital of Dalian Medical University, Dalian, LiaoNing Provence, China
| | - Shiwen Zhong
- Department of Otorhinolaryngology, The Second Hospital of Dalian Medical University, Dalian, LiaoNing Provence, China
| | - Qi Zhao
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, LiaoNing Provence, China
| | - Xiang Ren
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, LiaoNing Provence, China
| | - Hui Kong
- Department of Otorhinolaryngology, The Second Hospital of Dalian Medical University, Dalian, LiaoNing Provence, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University, Dalian, LiaoNing Provence, China
| |
Collapse
|
4
|
Luo S, Xia L, Wang Y, Tang Y, Dong J, Liu R, Feng L. Visual Deficits in Type 2 Diabetes Mellitus Without Retinopathy: From Retinal Structure to Higher-Level Visual Functions. Transl Vis Sci Technol 2025; 14:10. [PMID: 40067290 PMCID: PMC11918064 DOI: 10.1167/tvst.14.3.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Purpose The purpose of this study was to evaluate deficits at varying levels of visual system in diabetes without clinical retinopathy (NoDR) and to explore the optimal method for detecting early diabetic visual disorders among functional and retinal structural assessments included. Methods This cross-sectional study examined eyes by the Early Treatment of Diabetic Retinopathy Study (ETDRS) charts, visual psychophysical tests, optical coherence tomography (OCT), and OCT angiography (OCTA). Visual psychophysical metrics included grating acuity (GA), and contrast sensitivity to first-order motion stimuli (1stM), second-order contrast-modulated stationary stimuli (2ndS), and second-order motion stimuli (2ndM). Generalized linear mixed effect (GLME) models were applied to assess group effects and linear relationships between measurements. The receiver operating characteristic (ROC) analysis was utilized to identify the optimal classifier for detecting NoDR. Results Fifty-three eyes of 33 patients with NoDR and 40 eyes of 27 healthy controls were included. The NoDR group showed significant reductions in various visual functions, including ETDRS acuity, GA, 2ndS, and 2ndM (P values < 0.001), and microvascular changes in foveal vascular density (FD-300), the acircularity index (AI) of the foveal avascular zone, and the parafoveal superficial capillary plexus density (P values < 0.05). GLME models revealed these retinal variations were not significantly correlated with early diabetic visual function abnormalities. ROC analysis demonstrated the integration of GA and FD-300 (area under the curve [AUC] = 0.911) is the most effective classifier for detecting early diabetic visual dysfunctions. Conclusions In addition to retinal defects, both low- and higher-order visual function disorders along the visual pathway exist in patients with NoDR. Combining functional and structural measurements may provide more accurate assessments for detecting early diabetic visual disorders. Translational Relevance Sophisticated visual psychophysical measurements, including grating acuity and second-order function, could be applied for detecting early diabetic visual disorders.
Collapse
Affiliation(s)
- Sha Luo
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Lin Xia
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yue Wang
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yong Tang
- Department of Medical Technology, Anhui Medical College, Hefei, Anhui, People's Republic of China
| | - Jiong Dong
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Rong Liu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Lixia Feng
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
5
|
D'Angelo A, Lixi F, Vitiello L, Gagliardi V, Pellegrino A, Giannaccare G. The Role of Diet and Oral Supplementation for the Management of Diabetic Retinopathy and Diabetic Macular Edema: A Narrative Review. BIOMED RESEARCH INTERNATIONAL 2025; 2025:6654976. [PMID: 40041571 PMCID: PMC11876532 DOI: 10.1155/bmri/6654976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/08/2025] [Indexed: 03/06/2025]
Abstract
Globally, diabetic retinopathy (DR) and diabetic macular edema (DME) are the leading causes of visual loss in working people. Current treatment approaches mostly target proliferative DR and DME, such as intravitreal injections of antivascular endothelial growth factor agents and laser photocoagulation. Before DR progresses into the more severe, sight-threatening proliferative stage, patients with early stages of the disease must get early and appropriate care. It has been suggested that nutraceuticals, which are natural functional foods with minimal adverse effects, may help diabetic patients with DR and DME. Several in vitro and in vivo studies were carried out over the last years, showing the potential benefits of several nutraceuticals in DR due to their neuroprotective, vasoprotective, anti-inflammatory, and antioxidant properties. Although most of the research is restricted to animal models and many nutraceuticals have low bioavailability, these compounds may adjuvate and implement conventional DR therapies. The purpose of this review is (i) to summarize the complex pathophysiology underlying DR and DME and (ii) to examine the main natural-derived molecules and dietary habits that can assist conventional therapies for the clinical management of DR and DME.
Collapse
Affiliation(s)
- Angela D'Angelo
- Department of Clinical Sciences and Community Health–Department of Excellence 2023–2027, University of Milan, Milan, Italy
| | - Filippo Lixi
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Cagliari, Italy
| | - Livio Vitiello
- Department of Head and Neck, Eye Unit, “Luigi Curto” Hospital-Azienda Sanitaria Locale Salerno, Polla, Italy
| | - Vincenzo Gagliardi
- Department of Head and Neck, Eye Unit, “Luigi Curto” Hospital-Azienda Sanitaria Locale Salerno, Polla, Italy
| | - Alfonso Pellegrino
- Department of Head and Neck, Eye Unit, “Luigi Curto” Hospital-Azienda Sanitaria Locale Salerno, Polla, Italy
| | - Giuseppe Giannaccare
- Department of Surgical Sciences, Eye Clinic, University of Cagliari, Cagliari, Italy
| |
Collapse
|
6
|
Yang T, Zhang N, Yang N. Single-cell sequencing in diabetic retinopathy: progress and prospects. J Transl Med 2025; 23:49. [PMID: 39806376 PMCID: PMC11727737 DOI: 10.1186/s12967-024-06066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic retinopathy is a major ocular complication of diabetes, characterized by progressive retinal microvascular damage and significant visual impairment in working-age adults. Traditional bulk RNA sequencing offers overall gene expression profiles but does not account for cellular heterogeneity. Single-cell RNA sequencing overcomes this limitation by providing transcriptomic data at the individual cell level and distinguishing novel cell subtypes, developmental trajectories, and intercellular communications. Researchers can use single-cell sequencing to draw retinal cell atlases and identify the transcriptomic features of retinal cells, enhancing our understanding of the pathogenesis and pathological changes in diabetic retinopathy. Additionally, single-cell sequencing is widely employed to analyze retinal organoids and single extracellular vesicles. Single-cell multi-omics sequencing integrates omics information, whereas stereo-sequencing analyzes gene expression and spatiotemporal data simultaneously. This review discusses the protocols of single-cell sequencing for obtaining single cells from retina and accurate sequencing data. It highlights the applications and advancements of single-cell sequencing in the study of normal retinas and the pathological changes associated with diabetic retinopathy. This underscores the potential of these technologies to deepen our understanding of the pathogenesis of diabetic retinopathy that may lead to the introduction of new therapeutic strategies.
Collapse
Affiliation(s)
- Tianshu Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road, Wuhan, Hubei, 430060, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road, Wuhan, Hubei, 430060, China
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road, Wuhan, Hubei, 430060, China.
| |
Collapse
|
7
|
Lee CY, Yang CH. The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications. Int J Mol Sci 2025; 26:378. [PMID: 39796231 PMCID: PMC11720318 DOI: 10.3390/ijms26010378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies. Fractalkine (CX3CL1), a chemokine with dual roles as a membrane-bound adhesion molecule and a soluble chemoattractant, has emerged as a potential therapeutic target. Its receptor, CX3CR1, is expressed on immune cells and mediates processes such as immune cell recruitment and microglial activation through intracellular signaling pathways. In DR, soluble fractalkine plays critical roles in retinal inflammation, angiogenesis, and neuroprotection, balancing tissue damage and repair. In DR, elevated fractalkine levels are associated with retinal inflammation and endothelial dysfunction. Experimental studies suggest that fractalkine deficiency exacerbates the severity of diabetic retinopathy (DR), whereas exogenous fractalkine appears to reduce inflammation, oxidative stress, and neuronal damage. However, its role in pathological angiogenesis within DR remains unclear and warrants further investigation. Preclinical evidence indicates that fractalkine may hold therapeutic potential, particularly in mitigating tissue injury and inflammation associated with early-stage DR.
Collapse
Affiliation(s)
- Cheng-Yung Lee
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Hospital, No. 25, Ln. 442, Sec. 1, Jingguo Rd., North Dist., Hsinchu City 300195, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road Section 1, Taipei City 10051, Taiwan
| |
Collapse
|
8
|
Lin CH, Wu MR, Tanasa B, Prakhar P, Deng B, Davis AE, Li L, Xia A, Shan Y, Fort PE, Wang S. Induction of a Müller Glial Cell-Specific Protective Pathway Safeguards the Retina From Diabetes-Induced Damage. Diabetes 2025; 74:96-107. [PMID: 39446557 DOI: 10.2337/db24-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Diabetes can lead to cell type-specific responses in the retina, including vascular lesions, glial dysfunction, and neurodegeneration, all of which contribute to retinopathy. However, the molecular mechanisms underlying these cell type-specific responses, and the cell types that are sensitive to diabetes have not been fully elucidated. Using single-cell transcriptomics, we profiled the transcriptional changes induced by diabetes in different retinal cell types in rat models as the disease progressed. Rod photoreceptors, a subtype of amacrine interneurons, and Müller glial cells (MGs) exhibited rapid responses to diabetes at the transcript levels. Genes associated with ion regulation were upregulated in all three cell types, suggesting a common response to diabetes. Furthermore, focused studies revealed that although MG initially increased the expression of genes playing protective roles, they cannot sustain this beneficial effect. We explored one of the candidate protective genes, Zinc finger protein 36 homolog (Zfp36), and observed that depleting Zfp36 in rat MGs in vivo using adeno-associated virus-based tools exacerbated diabetes-induced phenotypes, including glial reactivation, neurodegeneration, and vascular defects. Overexpression of Zfp36 slowed the development of these phenotypes. This work unveiled retinal cell types that are sensitive to diabetes and demonstrated that MGs can mount protective responses through Zfp36. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Cheng-Hui Lin
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Man-Ru Wu
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Bogdan Tanasa
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Praveen Prakhar
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Boxiong Deng
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Alexander E Davis
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Liang Li
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Alexander Xia
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| | - Yang Shan
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA
| |
Collapse
|
9
|
Pemp B, Palkovits S, Sacu S, Schmidl D, Garhöfer G, Schmetterer L, Schmidt-Erfurth U. Associations of retinal neurovascular dysfunction with inner retinal layer thickness in non-proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2024; 262:3761-3771. [PMID: 38878068 PMCID: PMC11608174 DOI: 10.1007/s00417-024-06552-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 12/01/2024] Open
Abstract
PURPOSE Neurovascular coupling impairment and inner retinal layer thinning are early detectable retinal changes in diabetes, and both worsen during progression of diabetic retinopathy (DR). However, direct interactions between these features have not been investigated so far. Therefore, we aimed to analyze associations between the retinal functional hyperemic response to light stimulation and the thickness of individual neuroretinal layers in eyes with early non-proliferative DR. METHODS Thirty patients with type 1 diabetes featuring mild (n = 15) or moderate (n = 15) non-proliferative DR and 14 healthy subjects were included in this cross-sectional study. Retinal vessel diameters were measured before and during illumination with flickering light using a dynamic vessel analyzer. Individual layer thickness in the macula was analyzed from spectral domain optical coherence tomography. RESULTS Flicker light-induced vessel dilation was significantly reduced in patients compared to healthy controls (veins: 3.0% vs. 6.1%, p < 0.001; arteries: 1.3% vs. 5.1%, p = 0.005). Univariately, the response in retinal veins of diabetes patients correlated significantly with ganglion cell layer (GCL) thickness (r = 0.46, p = 0.010), and negatively with hemoglobin A1c (HbA1c) levels (r=-0.41, p = 0.023) and age (r=-0.38, p = 0.037), but not with baseline diameters, glucose levels, or diabetes duration. In a multiple regression model only GCL thickness (p = 0.017, β = 0.42) and HbA1c (p = 0.045, β=-0.35) remained significantly associated with the vascular flicker light response. CONCLUSION The results indicate that thinner GCL and worse glycemic control both contribute to reduced retinal neurovascular coupling in patients with clinical signs of DR. Progression of neurovascular dysfunction in DR might be related to structural degeneration of the neurovascular complex in the inner retina.
Collapse
Affiliation(s)
- Berthold Pemp
- Department of Ophthalmology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
| | - Stefan Palkovits
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Ophthalmology, Hanusch Hospital Vienna, Vienna, Austria
| | - Stefan Sacu
- Department of Ophthalmology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Singapore Eye Research Institute, Singapore, Singapore
- National University of Singapore, Duke-NUS Medical School, Singapore, Singapore
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ursula Schmidt-Erfurth
- Department of Ophthalmology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| |
Collapse
|
10
|
Vujosevic S, Lupidi M, Donati S, Astarita C, Gallinaro V, Pilotto E. Role of inflammation in diabetic macular edema and neovascular age-related macular degeneration. Surv Ophthalmol 2024; 69:870-881. [PMID: 39029747 DOI: 10.1016/j.survophthal.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Diabetic macular edema (DME) and neovascular age-related macular degeneration (nAMD) are multifactorial disorders that affect the macula and cause significant vision loss. Although inflammation and neoangiogenesis are hallmarks of DME and nAMD, respectively, they share some biochemical mediators. While inflammation is a trigger for the processes that lead to the development of DME, in nAMD inflammation seems to be the consequence of retinal pigment epithelium and Bruch membrane alterations. These pathophysiologic differences may be the key issue that justifies the difference in treatment strategies. Vascular endothelial growth factor inhibitors have changed the treatment of both diseases, however, many patients with DME fail to achieve the established therapeutic goals. From a clinical perspective, targeting inflammatory pathways with intravitreal corticosteroids has been proven to be effective in patients with DME. On the contrary, the clinical relevance of addressing inflammation in patients with nAMD has not been proven yet. We explore the role and implication of inflammation in the development of nAMD and DME and its therapeutical relevance.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences University of Milan, Milan, Italy; Eye Clinic, IRCCS MultiMedica, Milan, Italy
| | - Marco Lupidi
- Eye Clinic, Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy.
| | - Simone Donati
- Department of Medicine and Surgery, University of Insubria of Varese, Varese, Italy
| | - Carlo Astarita
- AbbVie S.r.l., SR 148 Pontina, Campoverde, LT 04011, Italy
| | | | - Elisabetta Pilotto
- Department of Neuroscience-Ophthalmology, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Wang S, Bao N, Li M, Liu D, Tao L. Ets2 Exacerbates Diabetic Retinopathy by Aggravating the Proliferation of Endothelial Cells and Inflammatory Response. Biochem Genet 2024:10.1007/s10528-024-10938-8. [PMID: 39432129 DOI: 10.1007/s10528-024-10938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024]
Abstract
Proliferative diabetic retinopathy (PDR), the most common type of diabetic retinopathy, is a main cause of visual and impairment blindness. Abnormal neovascularization, endothelial dysfunction, and vascular inflammation are important mechanisms for the development of PDR. Ets2 regulates angiogenesis-related genes and inflammation, however, the effect of Ets2 in PDR procession has not been clarified. Thus, this study is performed to investigate whether Ets2 exerts key functions in PDR. In this study, 10-week-old mice were used for establishing STZ-induced diabetic mice, and Ets2 expression was analyzed in retina tissues. Besides, newborn mice were applied to construct oxygen-induced retinopathy (OIR) models. The Ets2 expression, oxidative stress, and inflammation were detected in retina tissues. We found that Ets2 was highly expressed in retina tissues both in diabetic mice and OIR mice. Oxidative stress and inflammatory processes are two factors contributing to the pathogenesis of PDR. In retinal tissues of OIR mice, Ets2 knockdown inhibited expression of inflammatory mediators VEGFA, IL-6, and IL-8, and biomarkers of oxidative stress MCP-1, VCAM-1, and iNOS. ROS production was also inhibited by silencing Ets2. Ets2 deficiency inhibited endothelial cell proliferation in the retina. Furthermore, Ets2 knockdown contributed to suppressing the expression of angiogenesis-related genes VEGFA, JUNB, MMP-9, Tie2, Ang-2, and EphB4. Our study highlights that Ets2 accelerates PDR procession by promoting the proliferation of endothelial cells, oxidative stress, and inflammation, which provides a novel target against PDR.
Collapse
Affiliation(s)
- Song Wang
- Department of Ophthalmology, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Ning Bao
- Department of Ophthalmology, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Mohan Li
- Department of Ophthalmology, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Dongwei Liu
- Department of Ophthalmology, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China
| | - Liming Tao
- Department of Ophthalmology, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui, China.
| |
Collapse
|
12
|
D'Amico AG, Maugeri G, Magrì B, Bucolo C, D'Agata V. Targeting the PINK1/Parkin pathway: A new perspective in the prevention and therapy of diabetic retinopathy. Exp Eye Res 2024; 247:110024. [PMID: 39117133 DOI: 10.1016/j.exer.2024.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes characterized by neurovascular impairment of the retina. The dysregulation of the mitophagy process occurs before apoptotic cell death and the appearance of vascular damage. In particular, mitochondrial alterations happen during DR development, supporting the hypothesis that mitophagy is negatively correlated to disease progression. This process is mainly regulated by the PTEN-induced putative kinase protein 1 (PINK1)/Parkin pathway whose activation promotes mitophagy. In this review, we will summarize the evidence reported in the literature demonstrating the involvement of the PINK1/Parkin pathway in diabetic retinopathy-induced retinal degeneration.
Collapse
Affiliation(s)
- Agata Grazia D'Amico
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy
| | - Benedetta Magrì
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95100, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100, Catania, Italy.
| |
Collapse
|
13
|
Sampani K, Mujat M, Patel AH, Kang C, Iftimia N, Chatziralli I, Sun JK. Characterizing Vascular Wall and Lumen Caliber in Eyes with Diabetic Retinopathy Based on Adaptive Optics Scanning Laser Ophthalmoscopy. Diagnostics (Basel) 2024; 14:2020. [PMID: 39335699 PMCID: PMC11431547 DOI: 10.3390/diagnostics14182020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
(200/200) Purpose: Our aim was to evaluate structural alterations of retinal arterioles due to type 1 diabetes (T1D) and/or diabetic retinopathy (DR) under AOSLO imaging. METHODS Each study eye underwent mydriasis and AOSLO imaging in a single-visit study. The instrument's arrangement of four offset aperture images provided two orthogonal split-detector images and enabled isotropic analysis of the arteriolar boundaries. For each arteriole, we calculated the wall-to-lumen ratio (WLR), mean wall thickness, and luminal and external diameters. RESULTS In total, we enrolled 5 (20.8%) healthy control eyes and 19 eyes of patients with T1D. The DR distribution was: four (16.7%) no-DR, nine (37.5%%) mild or moderate nonproliferative DR (NPDR), and six (25%) severe NPDR or proliferative DR. Mean wall thickness increased significantly in eyes with T1D compared to healthy controls (p = 0.0006) and in eyes with more advanced DR (p = 0.0004). The WLR was significantly higher in eyes with T1D (p = 0.002) or more severe DR (p = 0.004). There was no significant relationship between T1D status or DR severity and any of the arteriolar diameters. CONCLUSIONS In this preliminary study, there appeared to be increases in the WLR and mean wall thickness in eyes with T1D and more severe DR than in the controls and eyes with no/less severe DR. Future studies may further elucidate the relationship between the retinal arteriolar structure and physiologic alterations in DR.
Collapse
Affiliation(s)
- Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mircea Mujat
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA
| | - Ankit H. Patel
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA
| | - Chaerim Kang
- Program in Liberal Medical Education, Brown University, Providence, RI 02903, USA
- Division of Ophthalmology, Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Nicusor Iftimia
- Physical Sciences, Inc., 20 New England Business Center, Andover, MA 01810, USA
| | - Irini Chatziralli
- 2nd Department of Ophthalmology, University of Athens, 12462 Athens, Greece
| | - Jennifer K. Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Rizzuti M, Melzi V, Brambilla L, Quetti L, Sali L, Ottoboni L, Meneri M, Ratti A, Verde F, Ticozzi N, Comi GP, Corti S, Abati E. Shaping the Neurovascular Unit Exploiting Human Brain Organoids. Mol Neurobiol 2024; 61:6642-6657. [PMID: 38334812 PMCID: PMC11338975 DOI: 10.1007/s12035-024-03998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Brain organoids, three-dimensional cell structures derived from pluripotent stem cells, closely mimic key aspects of the human brain in vitro, providing a powerful tool for studying neurodevelopment and disease. The neuroectodermal induction protocol employed for brain organoid generation primarily gives rise to the neural cellular component but lacks the vital vascular system, which is crucial for the brain functions by regulating differentiation, migration, and circuit formation, as well as delivering oxygen and nutrients. Many neurological diseases are caused by dysfunctions of cerebral microcirculation, making vascularization of human brain organoids an important tool for pathogenetic and translational research. Experimentally, the creation of vascularized brain organoids has primarily focused on the fusion of vascular and brain organoids, on organoid transplantation in vivo, and on the use of microfluidic devices to replicate the intricate microenvironment of the human brain in vitro. This review summarizes these efforts and highlights the importance of studying the neurovascular unit in a forward-looking perspective of leveraging their use for understanding and treating neurological disorders.
Collapse
Affiliation(s)
- Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Melzi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Brambilla
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Quetti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sali
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Linda Ottoboni
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
| | - Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Federico Verde
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nicola Ticozzi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
15
|
Hu A, Schmidt MHH, Heinig N. Microglia in retinal angiogenesis and diabetic retinopathy. Angiogenesis 2024; 27:311-331. [PMID: 38564108 PMCID: PMC11303477 DOI: 10.1007/s10456-024-09911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/18/2024] [Indexed: 04/04/2024]
Abstract
Diabetic retinopathy has a high probability of causing visual impairment or blindness throughout the disease progression and is characterized by the growth of new blood vessels in the retina at an advanced, proliferative stage. Microglia are a resident immune population in the central nervous system, known to play a crucial role in regulating retinal angiogenesis in both physiological and pathological conditions, including diabetic retinopathy. Physiologically, they are located close to blood vessels and are essential for forming new blood vessels (neovascularization). In diabetic retinopathy, microglia become widely activated, showing a distinct polarization phenotype that leads to their accumulation around neovascular tufts. These activated microglia induce pathogenic angiogenesis through the secretion of various angiogenic factors and by regulating the status of endothelial cells. Interestingly, some subtypes of microglia simultaneously promote the regression of neovascularization tufts and normal angiogenesis in neovascularization lesions. Modulating the state of microglial activation to ameliorate neovascularization thus appears as a promising potential therapeutic approach for managing diabetic retinopathy.
Collapse
Affiliation(s)
- Aiyan Hu
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany.
| | - Nora Heinig
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany.
| |
Collapse
|
16
|
Ren Y, Liang H, Xie M, Zhang M. Natural plant medications for the treatment of retinal diseases: The blood-retinal barrier as a clue. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155568. [PMID: 38795692 DOI: 10.1016/j.phymed.2024.155568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Retinal diseases significantly contribute to the global burden of visual impairment and blindness. The occurrence of retinal diseases is often accompanied by destruction of the blood‒retinal barrier, a vital physiological structure responsible for maintaining the stability of the retinal microenvironment. However, detailed summaries of the factors damage the blood‒retinal barrier and treatment methods involving natural plant medications are lacking. PURPOSE To comprehensively summarize and analyze the protective effects of active substances in natural plant medications on damage to the blood-retina barrier that occurs when retinal illnesses, particularly diabetic retinopathy, and examine their medicinal value and future development prospects. METHODS In this study, we searched for studies published in the ScienceDirect, PubMed, and Web of Science databases. The keywords used included natural plant medications, plants, natural herbs, blood retinal barrier, retinal diseases, diabetic retinopathy, age-related macular degeneration, and uveitis. Chinese herbal compound articles, non-English articles, warning journals, and duplicates were excluded from the analysis. RESULTS The blood‒retinal barrier is susceptible to high glucose, aging, immune responses, and other factors that destroy retinal homeostasis, resulting in pathological changes such as apoptosis and increased vascular permeability. Existing studies have shown that the active compounds or extracts of many natural plants have the effect of repairing blood-retinal barrier dysfunction. Notably, berberine, puerarin, and Lycium barbarum polysaccharides exhibited remarkable therapeutic effects. Additionally, curcumin, astragaloside IV, hesperidin, resveratrol, ginsenoside Rb1, luteolin, and Panax notoginseng saponins can effectively protect the blood‒retinal barrier by interfering with distinct pathways. The active ingredients found in natural plant medications primarily repair the blood‒retinal barrier by modulating pathological factors such as oxidative stress, inflammation, pyroptosis, and autophagy, thereby alleviating retinal diseases. CONCLUSION This review summarizes a series of plant extracts and plant active compounds that can treat retinal diseases by preventing and treating blood‒retinal barrier damage and provides reference for the research of new drugs for treating retinal diseases.
Collapse
Affiliation(s)
- Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Mengjun Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
17
|
Reddy SK, Devi V, Seetharaman ATM, Shailaja S, Bhat KMR, Gangaraju R, Upadhya D. Cell and molecular targeted therapies for diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1416668. [PMID: 38948520 PMCID: PMC11211264 DOI: 10.3389/fendo.2024.1416668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetic retinopathy (DR) stands as a prevalent complication in the eye resulting from diabetes mellitus, predominantly associated with high blood sugar levels and hypertension as individuals age. DR is a severe microvascular complication of both type I and type II diabetes mellitus and the leading cause of vision impairment. The critical approach to combatting and halting the advancement of DR lies in effectively managing blood glucose and blood pressure levels in diabetic patients; however, this is seldom achieved. Both human and animal studies have revealed the intricate nature of this condition involving various cell types and molecules. Aside from photocoagulation, the sole therapy targeting VEGF molecules in the retina to prevent abnormal blood vessel growth is intravitreal anti-VEGF therapy. However, a substantial portion of cases, approximately 30-40%, do not respond to this treatment. This review explores distinctive pathophysiological phenomena of DR and identifiable cell types and molecules that could be targeted to mitigate the chronic changes occurring in the retina due to diabetes mellitus. Addressing the significant research gap in this domain is imperative to broaden the treatment options available for managing DR effectively.
Collapse
Affiliation(s)
- Shivakumar K. Reddy
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Amritha T. M. Seetharaman
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - S. Shailaja
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kumar M. R. Bhat
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
18
|
Zhong Y, Yang Y, Zhang L, Ma D, Wen K, Cai J, Cai Z, Wang C, Chai X, Zhong J, Liang B, Huang Y, Xian H, Li Z, Yang X, Chen D, Zhang G, Huang Z. Revealing new insights: Two-center evidence of microplastics in human vitreous humor and their implications for ocular health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171109. [PMID: 38387563 DOI: 10.1016/j.scitotenv.2024.171109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Microplastics (MPs), an emerging environmental contaminant, have raised growing health apprehension due to their detection in various human biospecimens. Despite extensive research into their prevalence in the environment and the human body, the ramifications of their existence within the enclosed confines of the human eye remain largely unexplored. Herein, we assembled a cohort of 49 patients with four ocular diseases (macular hole, macular epiretinal membrane, retinopathy and rhegmatogenous retinal detachment) from two medical centers. After processing the samples with an optimized method, we utilized Laser Direct Infrared (LD-IR) spectroscopy and Pyrolysis Gas Chromatography/Mass Spectrometry (Py-GC/MS) to analyze 49 vitreous samples, evaluating the characteristics of MPs within the internal environment of the human eye. Our results showed that LD-IR scanned a total of 8543 particles in the composite sample from 49 individual vitreous humor samples, identifying 1745 as plastic particles, predominantly below 50 μm. Concurrently, Py-GC/MS analysis of the 49 individual samples corroborated these findings, with nylon 66 exhibiting the highest content, followed by polyvinyl chloride, and detection of polystyrene. Notably, correlations were observed between MP levels and key ocular health parameters, particularly intraocular pressure and the presence of aqueous humor opacities. Intriguingly, individuals afflicted with retinopathy demonstrated heightened ocular health risks associated with MPs. In summary, this research provides significant insights into infiltration of MP pollutants within the human eye, shedding light on their potential implications for ocular health and advocating for further exploration of this emerging health risk.
Collapse
Affiliation(s)
- Yizhou Zhong
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuhang Yang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Linan Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Dahui Ma
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Kailiang Wen
- Meizhou city Meijiang district Shenmei Eye Hospital, Meizhou 514031, China
| | - Jiachun Cai
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Zhanmou Cai
- Meizhou city Meijiang district Shenmei Eye Hospital, Meizhou 514031, China
| | - Cui Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Xiaoyan Chai
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China
| | - Jingwen Zhong
- Meizhou city Meijiang district Shenmei Eye Hospital, Meizhou 514031, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Da Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China.
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
19
|
Yang W, Qiu C, Lv H, Zhang Z, Yao T, Huang L, Wu G, Zhang X, Chen J, He Y. Sirt3 Protects Retinal Pigment Epithelial Cells From High Glucose-Induced Injury by Promoting Mitophagy Through the AMPK/mTOR/ULK1 Pathway. Transl Vis Sci Technol 2024; 13:19. [PMID: 38517447 PMCID: PMC10981157 DOI: 10.1167/tvst.13.3.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Purpose The regulation of mitophagy by Sirt3 has rarely been studied in ocular diseases. In the present study, we determined the effects of Sirt3 on AMPK/mTOR/ULK1 signaling pathway-mediated mitophagy in retinal pigment epithelial (RPE) cells in a high glucose environment. Methods The mRNA expression levels of Sirt3, AMPK, mTOR, ULK1, and LC3B in RPE cells under varying glucose conditions were measured by real-time polymerase chain reaction (RT-PCR). The expressions of Sirt3, mitophagy protein, and AMPK/mTOR/ULK1 signaling pathway-related proteins were detected by Western blotting. Lentivirus (LV) transfection mediated the stable overexpression of Sirt3 in cell lines. The experimental groups were NG (5.5 mM glucose), hypertonic, HG (30 mM glucose), HG + LV-GFP, and HG + LV-Sirt3. Western blotting was performed to detect the expressions of mitophagy proteins and AMPK/mTOR/ULK1-related proteins in a high glucose environment during the overexpression of Sirt3. Reactive oxygen species (ROS) production in a high glucose environment was measured by DCFH-DA staining. Mitophagy was detected by labeling mitochondria and lysosomes with MitoTracker and LysoTracker probes, respectively. Apoptosis was detected by flow cytometry. Results Sirt3 expression was reduced in the high glucose group, inhibiting the AMPK/mTOR/ULK1 pathway, with diminished mitophagy and increased intracellular ROS production. The overexpression of Sirt3, increased expression of p-AMPK/AMPK and p-ULK1/ULK1, and decreased expression of p-mTOR/mTOR inhibited cell apoptosis and enhanced mitophagy. Conclusions Sirt3 protected RPE cells from high glucose-induced injury by activating the AMPK/mTOR/ULK1 signaling pathway. Translational Relevance By identifying new targets of action, we aimed to establish effective therapeutic targets for diabetic retinopathy treatment.
Collapse
Affiliation(s)
- Wei Yang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan , China
| | - Chen Qiu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan , China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan , China
| | - Zhiru Zhang
- Department of Ophthalmology, People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Tianyu Yao
- Department of Ophthalmology, The Second People's Hospital of Yibin, Yibin, Sichuan, China
| | - Li Huang
- Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China
| | - Guihong Wu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan , China
| | - Xueqin Zhang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan , China
| | - Jie Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue He
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan , China
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
20
|
Chen Y, Zhao T, Han M, Chen Y. Gigantol protects retinal pigment epithelial cells against high glucose-induced apoptosis, oxidative stress and inflammation by inhibiting MTDH-mediated NF-kB signaling pathway. Immunopharmacol Immunotoxicol 2024; 46:33-39. [PMID: 37681978 DOI: 10.1080/08923973.2023.2247545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE As a frequent complication of diabetes mellitus (DM), diabetic retinopathy (DR) is now one of the major causes of blindness. Recent reports have shown that retinal pigment epithelial cell (RPEC) damage plays an essential part in DR development and progression. This work intended to explore the potential effects of Gigantol on high glucose (HG)-stimulated RPEC damage and identify potential mechanisms. METHODS Cell viability, cell damage, and cell apoptosis were evaluated by CCK-8, lactate dehydrogenase (LDH) and flow cytometry assays. The levels of oxidative stress biomarkers and pro-inflammatory cytokines were assessed using corresponding commercial kits and ELISA. Additionally, the levels of MTDH and NF-kB signaling pathway-related proteins were detected by western blotting. RESULTS Gigantol dose-dependently enhanced cell viability and decreased apoptosis in HG-challenged ARPE-19 cells. Also, Gigantol notably relieved oxidative stress and inflammatory responses in ARPE-19 cells under HG conditions. Gigantol dose-dependently suppressed MTDH expression. In addition, MTDH restoration partially counteracted the protective effects of Gigantol on ARPE-19 cells subject to HG treatment. Mechanically, Gigantol inactivated the NF-kB signaling pathway, which was partly restored after MTDH overexpression. CONCLUSION Our findings suggested that Gigantol protected against HG-induced RPEC damage by inactivating the NF-kB signaling via MTDH inhibition, offering a potent therapeutic drug for DR treatment.
Collapse
Affiliation(s)
- You Chen
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Tong Zhao
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Mengyu Han
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| | - Yi Chen
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
21
|
Fang Y, Wang Q, Zhang L, Xie L. SIPA1 promotes angiogenesis by regulating VEGF secretion in Müller cells through STAT3 activation. Heliyon 2024; 10:e24869. [PMID: 38312659 PMCID: PMC10834823 DOI: 10.1016/j.heliyon.2024.e24869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Diabetic retinopathy (DR) is a prevalent complication of diabetes that can lead to vision loss. The chronic hyperglycemia associated with DR results in damage to the retinal microvasculature. Müller cells, as a kind of macroglia, play a crucial role in regulating the retinal vascular microenvironment. The objective of this study was to investigate the role of signal-induced proliferation-associated protein 1 (SIPA1) in regulating angiogenesis in Müller cells. Through proteomics, database analysis, endothelial cell function tests, and Western blot detection, we observed an up-regulation of SIPA1 expression in Müller cells upon high glucose stimulation. SIPA1 expression contributed to VEGF secretion in Müller cells and regulated the mobility of retinal vascular endothelial cells. Further investigation of the dependence of SIPA1 on VEGF secretion revealed that SIPA1 activated the phosphorylation STAT3, leading to its translocation into the nucleus. Overexpression of SIPA1 combined with the STAT3 inhibitor STATTIC demonstrated the regulation of SIPA1 in VEGF expression, dependent on STAT3 activation. These findings suggest that SIPA1 promotes the secretion of pro-angiogenic factors in Müller cells by activating the STAT3 signaling pathway, thereby highlighting SIPA1 as a potential therapeutic target for DR.
Collapse
Affiliation(s)
- Yanhong Fang
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Qionghua Wang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Lanyue Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Lin Xie
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Wang Q, Zhang L, Shen Q, Zeng C, Fang Y, Ou K. 5-Bromo-3,4-dihydroxybenzaldehyde stabilizes diabetic retinal neurovascular units by inhibiting the inflammatory microenvironment. Biomed Pharmacother 2023; 168:115657. [PMID: 37839106 DOI: 10.1016/j.biopha.2023.115657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a leading cause of blindness characterized by damage to the retinal neurovascular unit, which is caused by hyperglycemia-induced metabolic and inflammatory responses. 5-Bromo-3,4-dihydroxybenzaldehyde (BDB) is a compound derived from marine red algae and known for its anti-inflammatory effects. METHODS This study aimed to investigate the potential protective effects of BDB on DR using primary human retinal vascular endothelial cells and retinal tissue explants. The analysis involved assessing vascular integrity, expression of tight junction protein, hyperglycemia-induced permeability, and retinal ganglion cell (RGC) apoptosis. The protective effect of BDB in maintaining the diabetic retinal neurovascular units was verified using type 1 diabetic mouse models. Additionally, the inhibitory effect of BDB on the levels of inflammatory cytokines TNF-α, IL-1β, and IL-6 were examined. RESULTS In vitro experiments revealed that BDB promoted vascular integrity, inhibited the transcription of pro-inflammatory factors, and alleviated hyperglycemia-induced permeability. BDB also protected RGC from hyperglycemia-induced apoptosis. In diabetic mice models, BDB treatment maintained the integrity of diabetic retinal neurovascular units and inhibited the secretion of TNF-α, IL-1β, and IL-6. CONCLUSION BDB demonstrated a protective effect on DR by inhibiting the secretion of inflammatory factors, suggesting its potential as a therapeutic agent for the treatment of DR. Further research is warranted to validate its safety and efficacy for clinical application.
Collapse
Affiliation(s)
- Qionghua Wang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Lanyue Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Qiang Shen
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Chunqin Zeng
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yanhong Fang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China.
| | - Kepeng Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China; Chongqing Academy of Chinese Materia Medica, Chongqing, China..
| |
Collapse
|
23
|
Johnston TP, Edwards G, Koulen P. Synergism of mechanisms underlying early-stage changes in retina function in male hyperglycemic db/db mice in the absence and presence of chemically-induced dyslipidemia. Sci Rep 2023; 13:17347. [PMID: 37833428 PMCID: PMC10576038 DOI: 10.1038/s41598-023-44446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
The study was designed to quantify retina function in a spontaneous mutation mouse model of diabetes, in which sustained dyslipidemia was induced chemically. The goal of the study was to identify if dyslipidemia in the presence of hyperglycemia resulted in either a synergistic, or a merely additive, exacerbation of retinal and visual dysfunctions in diabetes. Two cohorts of mice, male C57BL/6 and C57BL/KsJ-db/db mice were divided into two groups each. One group of each strain received the triblock copolymer, poloxamer 407 (P-407), administered by intraperitoneal injection ("WT P-407" and "db/db P-407" groups) with saline as a control in the remaining two groups ("WT" and "db/db" groups). Blood glucose, total cholesterol (TC) and total triglyceride (TG) levels were quantified using enzyme-based colorimetric assays. Retina function was measured using electroretinography (ERG) and visual acuity was determined by behaviorally assessing parameters of the optomotor reflex. TC and TG levels were normal in both saline controls (WT) and db/db mice but were significantly elevated in the WT P-407 group (p < 0.01 for TC; p < 0.001 for TG), while levels of the same lipids were further elevated in the db/db P-407 group when compared to the WT P-407 group levels (p < 0.001 for both TC and TG). Behavioral assessment of the optomotor reflex indicated reduced visual acuity for the db/db P-407 group when compared to either the WT P-407 or the db/db groups (p < 0.001, p < 0.0001). ERG measurements of scotopic retina function showed a significant decline in the scotopic b-wave amplitude of the WT P-407 animals (p < 0.01) and a further reduction for the db/db P-407 group when compared to controls (p < 0.0001). Very significant, strong correlations between scotopic b-wave amplitude and implicit time to TC (r = - 0.8376, p = < 0.0001 and r = 0.7069, p = 0.0022, respectively) and TG levels (r = - 0.8554, p = < 0.0001 and r = 0.7150, p = 0.0019, respectively) were found. Dyslipidemia in the presence of hyperglycemia synergistically exacerbated the severity of retinal dysfunction in diabetes. P-407 administration significantly elevated plasma TC and TG levels in male wild-type (WT) and diabetic mice (db/db), but the resulting hyperlipidemia was more significantly pronounced in the diabetic mice. While elevated plasma lipid and blood glucose levels were individually correlated with a decline in retinal function, the combination of both exacerbated retinal dysfunction. This model of combined hyperglycemia and dyslipidemia can be used to dissect individual contributions of features of the metabolic syndrome to the pathogenesis of retinal dysfunction in diabetes.
Collapse
Affiliation(s)
- Thomas P Johnston
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, Kansas City, MO, 64108, USA
| | - Genea Edwards
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Peter Koulen
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
24
|
Nagai N, Mushiga Y, Ozawa Y. Evaluating fine changes in visual function of diabetic eyes using spatial-sweep steady-state pattern electroretinography. Sci Rep 2023; 13:13686. [PMID: 37608045 PMCID: PMC10444753 DOI: 10.1038/s41598-023-40686-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
The visual function of diabetic eyes was assessed to evaluate spatial-sweep steady-state pattern electroretinography (swpPERG) as a potential high-sensitivity analysis method. Data from 24 control eyes, 28 diabetic eyes without diabetic retinopathy (DR), and 30 diabetic eyes with DR (all with best-corrected visual acuity [BCVA] better than logMAR 0.05; median age, 51) in response to spatial-patterned and contrast-reversed stimuli of sizes 1 (thickest) to 6 were converted into the frequency domain using a Fourier transform and expressed as signal-to-noise ratios (SNRs). SNRs of diabetic eyes, both with and without DR, were lower than those of controls (P < 0.05), and those of DR eyes were lower than those of diabetic eyes without DR (P < 0.05). The SNRs were correlated with ganglion cell layer volume measured using optical coherence tomography (OCT) and foveal vascular length density at the superficial retinal layer measured using OCT angiography (P < 0.05 or < 0.01, according to stimulus size). Therefore, swpPERG SNRs could detect fine reductions in visual function in diabetic eyes and were particularly low in DR eyes. Moreover, SNRs were correlated with inner retinal morphological changes in diabetic eyes, both with and without DR. swpPERG may therefore be useful for detecting fine fluctuations in visual function in diabetic eyes.
Collapse
Affiliation(s)
- Norihiro Nagai
- Department of Ophthalmology, St. Luke's International Hospital, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yasuaki Mushiga
- Department of Ophthalmology, St. Luke's International Hospital, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoko Ozawa
- Department of Ophthalmology, St. Luke's International Hospital, Tokyo, Japan.
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
- Department of Clinical Regenerative Medicine, Eye Center, Fujita Medical Innovation Center Tokyo, Fujita Health University School of Medicine, 7-16-14 Ginza, Chuoku, Tokyo, 104-8313, Japan.
| |
Collapse
|
25
|
Ersoz MG, Kırık F, Isik B, Ozdemir H. HENLE FIBER LAYER THICKNESS AND AREA MEASUREMENT IN TYPE 2 DIABETES MELLITUS WITH AND WITHOUT RETINOPATHY USING A MODIFIED DIRECTIONAL OPTICAL COHERENCE TOMOGRAPHY STRATEGY. Retina 2023; 43:1097-1106. [PMID: 36913623 DOI: 10.1097/iae.0000000000003778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
PURPOSE To investigate the thicknesses and areas of Henle fiber layer (HFL), outer nuclear layer, and outer plexiform layer in the eyes of patients with diabetes with no diabetic retinopathy, in eyes with nonproliferative diabetic retinopathy without diabetic macular edema, and in healthy eyes using a modified directional optical coherence tomography strategy. METHODS In this prospective study, the no diabetic retinopathy group included 79 participants, the nonproliferative diabetic retinopathy group comprised 68 participants, and the control group had 58 participants. Thicknesses and areas of Henle fiber layer, outer nuclear layer, and outer plexiform layer were measured on a horizontal single optical coherence tomography scan centered on the fovea using directional optical coherence tomography. RESULTS The foveal, parafoveal, and total HFL were significantly thinner in the nonproliferative diabetic retinopathy group than in the no diabetic retinopathy group and the control group (all P < 0.05). The no diabetic retinopathy group had significantly thinner foveal HFL thickness and area compared with the control group (all P < 0.05). The nonproliferative diabetic retinopathy group had significantly thicker outer nuclear layer thickness and area in all regions than the other groups (all P < 0.05). The outer plexiform layer measurements did not differ between the groups (all P > 0.05). CONCLUSION Directional optical coherence tomography provides isolated thickness and area measurement of HFL. In patients with diabetes, the HFL is thinner, and HFL thinning begins before the presence of diabetic retinopathy.
Collapse
Affiliation(s)
- M Giray Ersoz
- Department of Ophthalmology, Biruni University Medical School, Istanbul, Turkey; and
| | - Furkan Kırık
- Department of Ophthalmology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Burcu Isik
- Department of Ophthalmology, Biruni University Medical School, Istanbul, Turkey; and
| | - Hakan Ozdemir
- Department of Ophthalmology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
26
|
Ramos H, Hernández C, Simó R, Simó-Servat O. Inflammation: The Link between Neural and Vascular Impairment in the Diabetic Retina and Therapeutic Implications. Int J Mol Sci 2023; 24:ijms24108796. [PMID: 37240138 DOI: 10.3390/ijms24108796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The etiology of diabetic retinopathy (DR) is complex, multifactorial and compromises all the elements of the retinal neurovascular unit (NVU). This diabetic complication has a chronic low-grade inflammatory component involving multiple inflammatory mediators and adhesion molecules. The diabetic milieu promotes reactive gliosis, pro-inflammatory cytokine production and leukocyte recruitment, which contribute to the disruption of the blood retinal barrier. The understanding and the continuous research of the mechanisms behind the strong inflammatory component of the disease allows the design of new therapeutic strategies to address this unmet medical need. In this context, the aim of this review article is to recapitulate the latest research on the role of inflammation in DR and to discuss the efficacy of currently administered anti-inflammatory treatments and those still under development.
Collapse
Affiliation(s)
- Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| |
Collapse
|
27
|
Hikisz P, Jacenik D. Diet as a Source of Acrolein: Molecular Basis of Aldehyde Biological Activity in Diabetes and Digestive System Diseases. Int J Mol Sci 2023; 24:6579. [PMID: 37047550 PMCID: PMC10095194 DOI: 10.3390/ijms24076579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Acrolein, a highly reactive α,β-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
28
|
Li Y, Wang K, Zhu X, Cheng Z, Zhu L, Murray M, Zhou F. Ginkgo biloba extracts protect human retinal Müller glial cells from t-BHP induced oxidative damage by activating the AMPK-Nrf2-NQO-1 axis. J Pharm Pharmacol 2023; 75:385-396. [PMID: 36583518 DOI: 10.1093/jpp/rgac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/25/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Retinal Müller glial cell loss is almost involved in all retinal diseases, especially diabetic retinopathy (DR). Oxidative stress significantly contributes to the development of Müller glial cell loss. Ginkgo biloba extracts (GBE) have been reported to possess antioxidant property, beneficial in treating human retinal diseases. However, little is known about its role in Müller glial cells. This study investigated the protective effect of GBE (prepared from ginkgo biloba dropping pills) in human Müller glial cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative stress and its underlying molecular mechanism. METHODS MIO-M1 cells were pretreated with or without GBE prior to the exposure to t-BHP-induced oxidative stress. Cell viability, cell death profile and lipid peroxidation were subsequently assessed. Protein expression of the key anti-oxidative signalling factors were investigated. KEY FINDINGS We showed that GBE can effectively protect human MIO-M1 cells from t-BHP-induced oxidative injury by improving cell viability, reducing intracellular ROS accumulation and suppressing lipid peroxidation, which effect is likely mediated through activating AMPK-Nrf2-NQO-1 antioxidant respondent axis. CONCLUSIONS Our study is the first to reveal the great potentials of GBE in protecting human retinal Müller glial cell loss against oxidative stress. GBE might be used to prevent human retinal diseases particularly DR.
Collapse
Affiliation(s)
- Yue Li
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, 214063, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, 214063, China
| | - Zhengqi Cheng
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, NSW, 2000, Australia
| | - Michael Murray
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| |
Collapse
|
29
|
Yang X, Huang Z, Xu M, Chen Y, Cao M, Yi G, Fu M. Autophagy in the retinal neurovascular unit: New perspectives into diabetic retinopathy. J Diabetes 2023; 15:382-396. [PMID: 36864557 PMCID: PMC10172025 DOI: 10.1111/1753-0407.13373] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 03/04/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most prevalent retinal disorders worldwide, and it is a major cause of vision impairment in individuals of productive age. Research has demonstrated the significance of autophagy in DR, which is a critical intracellular homeostasis mechanism required for the destruction and recovery of cytoplasmic components. Autophagy maintains the physiological function of senescent and impaired organelles under stress situations, thereby regulating cell fate via various signals. As the retina's functional and fundamental unit, the retinal neurovascular unit (NVU) is critical in keeping the retinal environment's stability and supporting the needs of retinal metabolism. However, autophagy is essential for the normal NVU structure and function. We discuss the strong association between DR and autophagy in this review, as well as the many kinds of autophagy and its crucial physiological activities in the retina. By evaluating the pathological changes of retinal NVU in DR and the latest advancements in the molecular mechanisms of autophagy that may be involved in the pathophysiology of DR in NVU, we seek to propose new ideas and methods for the prevention and treatment of DR.
Collapse
Affiliation(s)
- Xiongyi Yang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Zexin Huang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Mei Xu
- The Second People's Hospital of Jingmen, Jingmen, Hubei, People's Republic of China
| | - Yanxia Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Mingzhe Cao
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, P. R. China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
30
|
Saha B, Roy A, Beltramo E, Sahoo OS. Stem cells and diabetic retinopathy: From models to treatment. Mol Biol Rep 2023; 50:4517-4526. [PMID: 36842153 DOI: 10.1007/s11033-023-08337-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
Diabetic retinopathy is a common yet complex microvascular disease, caused as a complication of diabetes mellitus. Associated with hyperglycemia and subsequent metabolic abnormalities, advanced stages of the disease lead to fibrosis, subsequent visual impairment and blindness. Though clinical postmortems, animal and cell models provide information about the progression and prognosis of diabetic retinopathy, its underlying pathophysiology still needs a better understanding. In addition to it, the loss of pericytes, immature retinal angiogenesis and neuronal apoptosis portray the disease treatment to be challenging. Indulged with cell loss of both vascular and neuronal type cells, novel therapies like cell replacement strategies by various types of stem cells have been sightseen as a possible treatment of the disease. This review provides insight into the pathophysiology of diabetic retinopathy, current models used in modelling the disease, as well as the varied aspects of stem cells in generating three-dimensional retinal models. Further outlook on stem cell therapy and the future directions of stem cell treatment in diabetic retinopathy have also been contemplated.
Collapse
Affiliation(s)
- Bihan Saha
- National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Akshita Roy
- Autonomous State Medical College, Fatehpur, 212601, Uttar Pradesh, India
| | - Elena Beltramo
- Department of Medical Sciences, University of Turin, 10124, Turin, Italy
| | - Om Saswat Sahoo
- National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India.
| |
Collapse
|
31
|
Gomułka K, Ruta M. The Role of Inflammation and Therapeutic Concepts in Diabetic Retinopathy-A Short Review. Int J Mol Sci 2023; 24:ijms24021024. [PMID: 36674535 PMCID: PMC9864095 DOI: 10.3390/ijms24021024] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Diabetic retinopathy (DR) as a microangiopathy is the most common complication in patients with diabetes mellitus (DM) and remains the leading cause of blindness among adult population. DM in its complicated pathomechanism relates to chronic hyperglycemia, hypoinsulinemia, dyslipidemia and hypertension-all these components in molecular pathways maintain oxidative stress, formation of advanced glycation end-products, microvascular changes, inflammation, and retinal neurodegeneration as one of the key players in diabetes-associated retinal perturbations. In this current review, we discuss the natural history of DR with special emphasis on ongoing inflammation and the key role of vascular endothelial growth factor (VEGF). Additionally, we provide an overview of the principles of diabetic retinopathy treatments, i.e., in laser therapy, anti-VEGF and steroid options.
Collapse
Affiliation(s)
- Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, ul. M. Curie-Skłodowskiej 66, 50-369 Wrocław, Poland
- Correspondence:
| | - Michał Ruta
- Clinical Department of Ophthalmology, 4th Military Clinical Hospital with Polyclinic, ul. Rudolfa Weigla 5, 50-981 Wrocław, Poland
| |
Collapse
|
32
|
Peng H, Han W, Ma B, Dai S, Long J, Zhou S, Li H, Chen B. Autophagy and senescence of rat retinal precursor cells under high glucose. Front Endocrinol (Lausanne) 2023; 13:1047642. [PMID: 36686430 PMCID: PMC9846177 DOI: 10.3389/fendo.2022.1047642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Backgrounds Diabetic retinopathy (DR) is a common diabetic ocular disease characterized by retinal ganglion cell (RGC) changes. An abnormal environment, hyperglycemia, may progressively alter the structure and function of RGCs, which is a primary pathological feature of retinal neurodegeneration in DR. Accumulated studies confirmed autophagy and senescence play a vital role in DR; however, the underlying mechanisms need to be clarified. Methods This study included the microarray expression profiling dataset GSE60436 from Gene Expression Omnibus (GEO) to conduct the bioinformatics analysis. The R software was used to identify autophagy-related genes (ARGs) that were differentially expressed in fibrovascular membranes (FVMs) and normal retinas. Co-expression and tissue-specific expression were elicited for the filtered genes. The genes were then analyzed by ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Set Enrichment Analysis (GSEA). R28 cells were cultured with high glucose, detected by reverse transcription-quantitative (RT-qPCR) and stained by apoptosis kit. Results In the retina, 31 differentially expressed ARGs (24 up-regulated genes) were discovered and enriched. The enrichment results revealed that differentially expressed ARGs were significantly enriched in autophagy, apoptosis, aging, and neural function. Four hub genes (i.e., TP53, CASP1, CCL2, and CASP1) were significantly up-regulated. Upregulation of cellular autophagy and apoptosis level was detected in the hyperglycemia model in vitro. Conclusions Our results provide evidence for the autophagy and cellular senescence mechanisms involved in retinal hyperglycemia injury, and the protective function of autophagy is limited. Further study may favour understanding the disease progression and neuroprotection of DR.
Collapse
Affiliation(s)
- Hanhan Peng
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Wentao Han
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Benteng Ma
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Shirui Dai
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Jianfeng Long
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Shu Zhou
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Haoyu Li
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| | - Baihua Chen
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, China
| |
Collapse
|
33
|
Association of candidate genes (ALR2, RAGE, and VEGF) polymorphisms with diabetic retinopathy in type 2 diabetic patients of Khyber Pakhtunkhwa, Pakistan. Mol Biol Rep 2023; 50:227-234. [PMID: 36319788 DOI: 10.1007/s11033-022-08057-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
AIM To evaluate the aldose reductase (ALR2, rs759853), receptor for advanced glycation end products (RAGE, rs2070600), and vascular endothelial growth factor (VEGF, rs833061) association with diabetic retinopathy in type 2 diabetic patients of Khyber Pakhtunkhwa population. METHODS A case-control study was conducted on a total of 550 subjects consisting of 186 with diabetic retinopathy (DR) having type 2 diabetes, 180 had type 2 diabetes (T2DM), and 184 healthy controls (HC). All the samples were subjected to DNA isolation using salting-out method followed by SNP genotyping through Tetra-ARMS PCR. Chi square and Exact Fischer tests were used for alleles and genotypes distribution. Odd ratio and confidence interval values were found out by online software Medcalc Odd ratio Calculator. RESULTS Multiple parameters such as random blood sugar (RBS) (p < 0.001), fasting blood sugar (FBS) (p < 0.001), HbA1c (p < 0.001), total cholesterol (p < 0.001), LDL (p < 0.001), HDL (p < 0.001), BMI (p < 0.001) and hypertension (p = 0.018) exhibited strong association with DR as compared to DM and HC. Our results displayed that the VEGF-rs833061 and RAGE- rs2070600 exhibited significant association (p < 0.05) with an increased DR risk, when compared with T2DM. In contrast, ALR2 didn't display association with DR (p > 0.05) when compared with T2DM, but showed association (p < 0.05) when compared with HC. CONCLUSION Statistically significant association was observed in VEGF-rs833061 and RAGE-rs2070600 with DR in type 2 diabetic patients. While, ALR2- rs759853 didn't exhibit significant association with DR. This is the first study to report the association of candidate genes (ALR2, VEGF and RAGE) with DR in type 2 diabetes of Khyber Pakhtunkhwa population. More similar research studies are recommended with larger data sets in other ethnicities both national and international.
Collapse
|
34
|
GRP75 Modulates Endoplasmic Reticulum-Mitochondria Coupling and Accelerates Ca 2+-Dependent Endothelial Cell Apoptosis in Diabetic Retinopathy. Biomolecules 2022; 12:biom12121778. [PMID: 36551205 PMCID: PMC9776029 DOI: 10.3390/biom12121778] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Endoplasmic reticulum (ER) and mitochondrial dysfunction play fundamental roles in the pathogenesis of diabetic retinopathy (DR). However, the interrelationship between the ER and mitochondria are poorly understood in DR. Here, we established high glucose (HG) or advanced glycosylation end products (AGE)-induced human retinal vascular endothelial cell (RMEC) models in vitro, as well as a streptozotocin (STZ)-induced DR rat model in vivo. Our data demonstrated that there was increased ER-mitochondria coupling in the RMECs, which was accompanied by elevated mitochondrial calcium ions (Ca2+) and mitochondrial dysfunction under HG or AGE incubation. Mechanistically, ER-mitochondria coupling was increased through activation of the IP3R1-GRP75-VDAC1 axis, which transferred Ca2+ from the ER to the mitochondria. Elevated mitochondrial Ca2+ led to an increase in mitochondrial ROS and a decline in mitochondrial membrane potential. These events resulted in the elevation of mitochondrial permeability and induced the release of cytochrome c from the mitochondria into the cytoplasm, which further activated caspase-3 and promoted apoptosis. The above phenomenon was also observed in tunicamycin (TUN, ER stress inducer)-treated cells. Meanwhile, BAPTA-AM (calcium chelator) rescued mitochondrial dysfunction and apoptosis in DR, which further confirmed of our suspicions. In addition, 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, was shown to reverse retinal dysfunction in STZ-induced DR rats in vivo. Taken together, our findings demonstrated that DR fueled the formation of ER-mitochondria coupling via the IP3R1-GRP75-VDAC1 axis and accelerated Ca2+-dependent cell apoptosis. Our results demonstrated that inhibition of ER-mitochondrial coupling, including inhibition of GRP75 or Ca2+ overload, may be a potential therapeutic target in DR.
Collapse
|
35
|
Ren J, Zhang S, Pan Y, Jin M, Li J, Luo Y, Sun X, Li G. Diabetic retinopathy: Involved cells, biomarkers, and treatments. Front Pharmacol 2022; 13:953691. [PMID: 36016568 PMCID: PMC9396039 DOI: 10.3389/fphar.2022.953691] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss and blindness worldwide, is caused by retinal neurovascular unit dysfunction, and its cellular pathology involves at least nine kinds of retinal cells, including photoreceptors, horizontal and bipolar cells, amacrine cells, retinal ganglion cells, glial cells (Müller cells, astrocytes, and microglia), endothelial cells, pericytes, and retinal pigment epithelial cells. Its mechanism is complicated and involves loss of cells, inflammatory factor production, neovascularization, and BRB impairment. However, the mechanism has not been completely elucidated. Drug treatment for DR has been gradually advancing recently. Research on potential drug targets relies upon clear information on pathogenesis and effective biomarkers. Therefore, we reviewed the recent literature on the cellular pathology and the diagnostic and prognostic biomarkers of DR in terms of blood, protein, and clinical and preclinical drug therapy (including synthesized molecules and natural molecules). This review may provide a theoretical basis for further DR research.
Collapse
Affiliation(s)
- Jiahui Ren
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yunfeng Pan
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Jiaxin Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Guang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| |
Collapse
|
36
|
Fang W, Huang X, Wu K, Zong Y, Yu J, Xu H, Shi J, Wei J, Zhou X, Jiang C. Activation of the GABA-alpha receptor by berberine rescues retinal ganglion cells to attenuate experimental diabetic retinopathy. Front Mol Neurosci 2022; 15:930599. [PMID: 36017075 PMCID: PMC9396352 DOI: 10.3389/fnmol.2022.930599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThe aim of this study was to investigate the role and mechanism of berberine (BBR) in the protection of injured retinal ganglion cells (RGCs) in diabetic retinopathy (DR).MethodsExperimental diabetic retinopathy rat model was successfully induced by a single intraperitoneal injection of streptozotocin (STZ, 60 mg/kg) in male SD rats with sufficient food and water for 8 weeks. Animals were randomly divided into four groups: (1) non-diabetic, (2) diabetic, (3) diabetic + BBR + PBS, and (4) diabetic + BBR + SR95531. BBR (100 mg/kg) was given daily by gavage to rats in the group (3) and group (4) for 8 weeks, and weekly intravitreal injections were conducted to rats in the group (3) with 5 μL of 1×PBS and rats in the group (4) with 5 μL of GABA-alpha receptor antagonist SR95531 to investigate the underlying mechanisms. The survival and apoptosis of RGCs were observed by fluorescence gold labeling technology and TUNEL staining. Visual function was evaluated by visual electrophysiological examination. Western blotting and immunofluorescence staining were used to analyze the expression of GABA-alpha receptors in RGCs.ResultsIn an animal model, BBR can increase the survival of RGCs, reduce RGCs apoptosis, and significantly improve the visual function. The reduction of GABA, PKC-α, and Bcl-2 protein expression caused by DR can be considerably increased by BBR. SR95531 inhibits BBR's protective effect on RGC and visual function, as well as its upregulation of PKC-α and Bcl-2.ConclusionBBR is a promising preventive or adjuvant treatment for DR complications, and its key protective effect may involve the regulation of RGC apoptosis through the GABA-alpha receptor/protein kinase C-alpha (GABAAR/PKC-α) pathway.
Collapse
Affiliation(s)
- Wangyi Fang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- Department of Ophthalmology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojing Huang
- Department of Ophthalmology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Kaicheng Wu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yuan Zong
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Huan Xu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiemei Shi
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiaojiao Wei
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Xujiao Zhou
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- Eye Institute, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- Xujiao Zhou
| | - Chunhui Jiang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
- *Correspondence: Chunhui Jiang
| |
Collapse
|
37
|
Liu XY, Peng J, He F, Tursun X, Li SP, Xin XL, Aisa HA. Shabyar Ameliorates High Glucose Induced Retinal Pigment Epithelium Injury Through Suppressing Aldose Reductase and AMPK/mTOR/ULK1 Autophagy Pathway. Front Pharmacol 2022; 13:852945. [PMID: 35620285 PMCID: PMC9127207 DOI: 10.3389/fphar.2022.852945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022] Open
Abstract
Shabyar (SBA) is a traditional medicine formula for relieving vision loss caused by factors including diabetic retinopathy (DR) in clinics. However, the mechanism of it on retina protective effect still unclear. The present study aimed to investigate whether its protective effect was related to aldose reductase (AR) inhibition and retinal pigment epithelial cell injury mediated by autophagy or not. Human retinal pigment epithelial cells (ARPE-19) induced by high glucose was used as a model in vitro, with Epalrestat (EPL, AR inhibitor) and Difrarel (DFR, DR therapeutic drug) as positive controls. Western blotting and Polyol pathway products assay showed that SBA reduced the expression of AR protein and the content of ROS, and sorbitol, increased the level of Na+-K+-ATPase and alleviated cell edema. Western blotting and DCFH-DA probe assay showed that SBA decreased pAMPK/AMPK and pULK1/ULK1 which associated with autophagy initiation, down-regulated Beclin-1, Atg3, Atg5, Atg7, LC3 II and Bax/Bcl2 ratio, and up-regulated pmTOR/mTOR, SQSTM1/p62 and mitochondrial membrane potential (MMP), reduces intracellular autophagosomes. Real-Time PCR assay showed that SBA had no significant effect on mRNA expression of AR and mTOR. These data demonstrated that SBA treatment inhibits the autophagy of ARPE-19 through the AMPK/mTOR/ULK1 signaling pathway, and reduced early-stage apoptosis occurred by high glucose. These findings reveal the protective role and mechanism of SBA on retinal pigment epithelium, and provide experimental basis for the clinical application of SBA in the treatment of DR.
Collapse
Affiliation(s)
- Xiao Yan Liu
- The State Key Laboratory Basis Xinjiang Indigenous Medicinal Plant Resource, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China.,Xinjiang Institute of Materia Medica, Urumqi, China
| | - Jun Peng
- The State Key Laboratory Basis Xinjiang Indigenous Medicinal Plant Resource, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei He
- The State Key Laboratory Basis Xinjiang Indigenous Medicinal Plant Resource, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Xirali Tursun
- Institute of Xinjiang Traditional Uyghur Medicine, Urumqi, China
| | - Shu Ping Li
- The State Key Laboratory Basis Xinjiang Indigenous Medicinal Plant Resource, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Xue Lei Xin
- The State Key Laboratory Basis Xinjiang Indigenous Medicinal Plant Resource, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Haji Akber Aisa
- The State Key Laboratory Basis Xinjiang Indigenous Medicinal Plant Resource, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
38
|
Chen Y, Sun J, Zhang Z, Liu X, Wang Q, Yu Y. The potential effects and mechanisms of hispidulin in the treatment of diabetic retinopathy based on network pharmacology. BMC Complement Med Ther 2022; 22:141. [PMID: 35590353 PMCID: PMC9121581 DOI: 10.1186/s12906-022-03593-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background Diabetic retinopathy (DR), one of the most common and severe microvascular complication of diabetes mellitus (DM), is mainly caused by diabetic metabolic disorder. So far, there is no effective treatment for DR. Eriocauli Flos, a traditional Chinese herb, has been used in treating the ophthalmic diseases including DR. However, the active ingredients and molecular mechanisms of Eriocauli Flos to treat diabetic retinopathy remain elusive. Methods Here, the systems pharmacology model was developed via constructing network approach. 8 active components which were screened by oral bioavailability (OB ≥ 30%) and drug-likeness (DL ≥ 0.18) and 154 targets were selected from Eriocauli Flos through TCMSP database. Another 3593 targets related to DR were obtained from Genecards, OMIM, TTD, and Drugbank databases. The 103 intersecting targets of DR and Eriocauli Flos were obtained by Draw Venn Diagram. In addition, protein-protein interaction network was established from STRING database and the compound-target network was constructed by Cytoscape which screened top 12 core targets with cytoNCA module. Then the overlapping targets were analyzed by GO and KEGG enrichment. Moreover, two core targets were selected to perform molecular docking simulation. Subsequently, CCK8 assay, RT-PCR and Western blotting were applied to further reveal the mechanism of new candidate active component from Eriocauli Flos in high glucose-induced HRECs. Results The results showed that the overlapping targets by GO analysis were enriched in cellular response to chemical stress, response to oxidative stress, response to reactive oxygen species, reactive oxygen species metabolic process and so on. Besides, the overlapping targets principally regulated pathways such as AGE-RAGE signaling pathway in diabetic complications, lipid atherosclerosis, fluid shear stress and atherosclerosis, and PI3K-Akt signaling pathway. Molecular docking exhibited that VEGFA and TNF-α, had good bindings to the great majority of compounds, especially the compound hispidulin. In vitro, hispidulin ameliorated high-glucose induced proliferation by down-regulating the expression of p-ERK, p-Akt, and VEGFA; meanwhile inhibited the mRNA levels of TNF-α. Conclusions In this study, through network pharmacology analysis and experimental validation, we found that hispidulin maybe has a potential targeted therapy effect for DR by decreasing the expression of p-Akt, p-ERK, and VEGFA, which resulted in ameliorating the proliferation in HRECs. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03593-2.
Collapse
Affiliation(s)
- Yao Chen
- Department of Histology Anatomy and HistoEmbryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Jiaojiao Sun
- Department of Histology Anatomy and HistoEmbryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Zhiyun Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical China, Luzhou, Sichuan, 646000, People's Republic of China
| | - Xiaotong Liu
- Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Qiaozhi Wang
- Department of Histology Anatomy and HistoEmbryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| | - Yang Yu
- Department of Histology Anatomy and HistoEmbryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China. .,Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China. .,Jiangyang City Construction College, Luzhou, Sichuan, 646000, People's Republic of China.
| |
Collapse
|
39
|
Li B, Ning B, Yang F, Guo C. Nerve Growth Factor Promotes Retinal Neurovascular Unit Repair: A Review. Curr Eye Res 2022; 47:1095-1105. [PMID: 35499266 DOI: 10.1080/02713683.2022.2055084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Purpose: The purpose of this paper is to investigate how the imbalance of neurogenic factor (NGF) and its precursor (pro-NGF) mediates structural and functional impairment of retinal neurovascular unit (RNVU) that plays a role in retinal degenerative diseases.Methods: A literature search of electronic databases was performed.Results: The pro-apoptotic effect of pro-NGF and the pro-growth effect of NGF are essential for the pathological and physiological activities of RNVU. Studies show that NGF-based treatment of retinal degenerative diseases, including glaucoma, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy, has achieved remarkable efficacy.Conclusions: RNVU plays a complex and multifaceted role in retinal degenerative diseases. The exploration of the differential signaling expression of proNGF-NGF homeostasis under physiological and pathological conditions, and the corresponding pathological processes induced by its regulation, has prompted us to focus on earlier retinal neuroprotective therapeutic strategies to prevent retinal degenerative diseases.
Collapse
Affiliation(s)
- Baohua Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Bobiao Ning
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Fan Yang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Chengwei Guo
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| |
Collapse
|
40
|
Mori A, Yano E, Nishikiori M, Fujino S, Nakahara T. N-methyl-D-aspartic acid receptor-mediated vasodilation is attenuated in the retinas of diabetic rats. Curr Eye Res 2022; 47:1193-1199. [PMID: 35485610 DOI: 10.1080/02713683.2022.2072896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Activation of N-methyl-d-aspartic acid (NMDA) receptors enhances nitric oxide (NO) production in retinal neuronal cells, and in turn, NO released from neuronal cells induces glial cell-mediated dilation of retinal arterioles in rats. The purpose of this study was to examine how neuronal cell-dependent, glial cell-mediated vasodilation is impacted in diabetic rat retinas. MATERIALS AND METHODS Diabetes was induced in 6-week-old male Wistar rats by combining streptozotocin injection and D-glucose feeding. Two weeks later, the dilator function of retinal arterioles was assessed. RESULTS Compared with non-diabetic rats, the dilator responses of retinal arterioles induced by intravitreal injection of NMDA and NOR3, an NO donor, were reduced in diabetic rats. Following the blockade of large-conductance Ca2+-activated K+ (BKCa) channels with iberiotoxin, no significant difference in the retinal vasodilator response to NOR3 was observed between non-diabetic and diabetic rats. Intravitreal injection of 14,15-epoxyeicosatrienoic acid, a vasodilatory factor released from glial cells, dilated retinal arterioles, and the response was diminished by diabetes. CONCLUSION These findings suggest that the impaired BKCa channel function in vascular cells is responsible for the diminished neuronal cell-dependent, glial cell-mediated dilation of retinal arterioles during the early stage of diabetes.
Collapse
Affiliation(s)
- Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.,Present address: Asami Mori, Ph.D., Laboratory of Medical Pharmacology, Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma-Sciences, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan
| | - Erika Yano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masato Nishikiori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Saho Fujino
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
41
|
LncRNAS—modulators of neurovascular units in diabetic retinopathy. Eur J Pharmacol 2022; 925:174937. [DOI: 10.1016/j.ejphar.2022.174937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023]
|
42
|
Carpi-Santos R, de Melo Reis RA, Gomes FCA, Calaza KC. Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:617. [PMID: 35453302 PMCID: PMC9027671 DOI: 10.3390/antiox11040617] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic retinopathy is a neurovascular complication of diabetes and the main cause of vision loss in adults. Glial cells have a key role in maintenance of central nervous system homeostasis. In the retina, the predominant element is the Müller cell, a specialized cell with radial morphology that spans all retinal layers and influences the function of the entire retinal circuitry. Müller cells provide metabolic support, regulation of extracellular composition, synaptic activity control, structural organization of the blood-retina barrier, antioxidant activity, and trophic support, among other roles. Therefore, impairments of Müller actions lead to retinal malfunctions. Accordingly, increasing evidence indicates that Müller cells are affected in diabetic retinopathy and may contribute to the severity of the disease. Here, we will survey recently described alterations in Müller cell functions and cellular events that contribute to diabetic retinopathy, especially related to oxidative stress and inflammation. This review sheds light on Müller cells as potential therapeutic targets of this disease.
Collapse
Affiliation(s)
- Raul Carpi-Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Ricardo A. de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Flávia Carvalho Alcantara Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Karin C. Calaza
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niteroi 24210-201, RJ, Brazil
| |
Collapse
|
43
|
Neuroprotective Effects of Nicotinamide (Vitamin B3) on Neurodegeneration in Diabetic Rat Retinas. Nutrients 2022; 14:nu14061162. [PMID: 35334819 PMCID: PMC8950738 DOI: 10.3390/nu14061162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023] Open
Abstract
The loss of inner retinal neurons is an initial event in diabetic retinopathy. In diabetic retinas, oxidative stress is increased, which could lead to increased oxidative DNA damage. Nicotinamide is a precursor to nicotinamide adenine dinucleotide, which contributes to the DNA damage response. We investigated whether nicotinamide plays a neuroprotective role in diabetic retinal neurodegeneration in terms of DNA repair. Male Sprague Dawley rats with streptozotocin-induced diabetes were orally administered nicotinamide (500 mg/kg/day) for 4 or 12 weeks. Oxidative stress exhibited by dihydroethidium was upregulated at 4 and 12 weeks after onset of diabetes, and nicotinamide treatment reduced oxidative stress at 4 weeks after induction of diabetes. Oxidative DNA damage measured by 8-hydroxy-2′-deoxyguanosine (8-OHdG) increased at 4 and 12 weeks after induction of diabetes and decreased following nicotinamide treatment. The elevated expression of glial fibrillary acidic protein (GFAP) induced by diabetes was attenuated by nicotinamide treatment. In Western blot analysis, the increased expression of cleaved PARP-1 in diabetes was attenuated by nicotinamide treatment at 12 weeks after induction of diabetes. The diabetes-induced apoptosis of inner retinal cells detected by the TUNEL assay was reduced by nicotinamide treatment. In conclusion, nicotinamide attenuated retinal neurodegeneration in diabetes, probably by reducing oxidative DNA damage and supporting DNA repair.
Collapse
|
44
|
Liu Y, Yang Q, Fu H, Wang J, Yuan S, Li X, Xie P, Hu Z, Liu Q. Müller glia-derived exosomal miR-9-3p promotes angiogenesis by restricting sphingosine-1-phosphate receptor S1P 1 in diabetic retinopathy. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:491-504. [PMID: 35036060 PMCID: PMC8728524 DOI: 10.1016/j.omtn.2021.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023]
Abstract
Diabetic retinopathy is a heterogeneous retinal degenerative disease with the microvascular dysfunction being recognized as a hallmark of the advanced stage. In this study, we demonstrated that exosomes collected from the vitreous humor of proliferative diabetic retinopathy patients promoted proliferation, migration and tube formation ability of primary human retinal endothelial cells via its elevated miR-9-3p expression level. Müller glia cells were further recognized as the sole source of the aberrantly expressed miR-9-3p, and both in vitro and in vivo experiments validated that Müller glia-derived exosomes aggravate vascular dysfunction under high glucose. Mechanistically, exosomal miRNA-9-3p was transferred to retinal endothelial cells and bound to the sphingosine-1-phosphate receptor S1P1 coding sequence, which subsequently activated VEGFR2 phosphorylation and internalization in the presence or absence of exogenous VEGF-A. We successfully orchestrated the dynamic crosstalk between retinal Müller glia cells and endothelial cells in pathological condition, which may provide a novel biomarker or promising therapeutic agents for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qin Yang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haixin Fu
- Department of Ophthalmology, The Huai'an Hospital of Huai'an City, Huai'an 223200, China
| | - Jingfan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinsheng Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
45
|
Ren X, Lv J, Wang N, Liu J, Gao C, Wu X, Yu Y, Teng Q, Dong W, Kong H, Kong L. Thioredoxin upregulation delays diabetes-induced photoreceptor cell degeneration via AMPK-mediated autophagy and exosome secretion. Diabetes Res Clin Pract 2022; 185:109788. [PMID: 35182712 DOI: 10.1016/j.diabres.2022.109788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
Abstract
AIMS Autophagy and exosome secretion in photoreceptor and RPE cells play an important role during diabetic retinopathy (DR). Thioredoxin (Trx) upregulation delays diabetes-induced photoreceptor cell degeneration, which the effect of autophagy and exosome secretion on it is unclear. Therefore, we investigated the effect of them on Trx upregulation to delay diabetes-induced photoreceptor cell degeneration and to identify the potential therapy for DR in the future. METHODS Trx-transgenic mice and 661w cell were as models. Retinal function and morphology were evaluated by electroretinography and H&E staining. TUNEL staining was used to evaluate apoptosis. The protein expression was detected by Western blotting. TEM and mRFP-GFP-LC3 method were used to analyze autophagy. RESULTS In vitro and in vivo, Trx upregulation can delay diabetes-induced photoreceptor cell degeneration. Moreover, the expression of LC3 and p62 was decreasing and the expression of Alix and CD63 was increasing after Trx overexpression. However, it was inhibited after AMPK inhibitor treatment. Additionally, secreted exosomes from photoreceptor were phagocytosed by RPE cells to regulate its physiological function. CONCLUSIONS Trx upregulation can delay diabetes-induced photoreceptor cell degeneration via AMPK-mediated autophagy and exosome secretion. Secreted exosomes from photoreceptor cells could be phagocytosed and degraded by RPE cells in DR.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Jinjuan Lv
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Nina Wang
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Jiasu Liu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China; The Second Hospital of Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Chuanzhou Gao
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Xiaoli Wu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Yang Yu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Qiufeng Teng
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Wenkang Dong
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Hui Kong
- The Second Hospital of Dalian Medical University, Dalian 116023, LiaoNing Province, China.
| | - Li Kong
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China.
| |
Collapse
|
46
|
Yu Y, Zhu Z, Xie M, Deng L, Xie X, Zhang M. Investigation on the Q-markers of Bushen Huoxue Prescriptions for DR treatment based on chemometric methods and spectrum-effect relationship. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114800. [PMID: 34748867 DOI: 10.1016/j.jep.2021.114800] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic retinopathy (DR) is a kind of complex complication of late diabetes mellitus with high incidence and risk of blindness. Bushen Huoxue Prescription (BHP), which consists of Rehmanniae radix (RR), Salviae miltiorrhizae radix et rhizoma (SMRR), Ginseng radix et rhizome (GRR) and Puerariae lobatae radix (PLR), has an active effect on the treatment of DR. However, the quality markers (Q-markers) of BHP are not entirely clear. PURPOSE This study aimed to screen the Q-markers of BHP for DR treatment based on the establishment of spectrum-effect relationship and verified experiment. MATERIALS AND METHODS In this study, 12 BHP samples (S1-S12) for fingerprint analysis and pharmacological evaluation were prepared according to a four-factor and twelve-level uniform design. High performance liquid chromatography-ultraviolet detector-evaporative light scattering detector (HPLC-UV-ELSD) was employed to analyze the fingerprint on the basis of the characteristics of BHP components. The evaluation of sample similarity was carried out by similarity analysis (SA) and hierarchical cluster analysis (HCA). The pharmacological indicators, including expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) in the retina of Sprague Dawley (SD) rats induced by streptozotocin (STZ), were detected by enzyme-linked immunosorbent assay (ELISA). Besides, the spectrum-effect relationship between common peaks of fingerprints and the pharmacological results was investigated by partial least squares regression (PLSR) and canonical correlation analysis (CCA). The results of spectrum-effect relationship were verified by the expression of VEGF and HIF-1α on primary culture retinal Müller cells induced by hyperglycemia and hypoxia. RESULTS In the HPLC-UV-ELSD fingerprint, 23 common peaks in UV and 14 common peaks in ELSD were identified. The pharmacological results indicated that the expression of VEGF and HIF-1α in the retina of SD rats was inhibited by 12 BHP samples to varying degrees compared with the model group. Based on SA and heatmap of HCA, S4 and S8 were clearly distinguished from other samples. The results of PLSR and CCA revealed that the contents of puerarin, daidzin, salvianolic acid B and ginsenoside Rb1 were inversely correlated with the expression of VEGF and HIF-1α. Hence, the four compounds may be the main active components to prevent and treat DR. The results of intervention on primary culture retinal Müller cells showed that puerarin, daidzin, salvianolic acid B, and ginsenoside Rb1 can significantly inhibit the expression of VEGF and HIF-1α. CONCLUSIONS The spectrum-effect relationship of BHP was successfully established, and the Q-markers of BHP for the prevention and treatment of DR were preliminarily confirmed. It provides a feasible method for the research of quality control.
Collapse
Affiliation(s)
- Yueting Yu
- State Key Lab Southwestern Chinese Med Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Ziyu Zhu
- State Key Lab Southwestern Chinese Med Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Mengjun Xie
- State Key Lab Southwestern Chinese Med Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Liping Deng
- State Key Lab Southwestern Chinese Med Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Mei Zhang
- State Key Lab Southwestern Chinese Med Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
47
|
Huang L, Yao T, Chen J, Zhang Z, Yang W, Gao X, Dan Y, He Y. Effect of Sirt3 on retinal pigment epithelial cells in high glucose through Foxo3a/ PINK1-Parkin pathway mediated mitophagy. Exp Eye Res 2022; 218:109015. [PMID: 35240195 DOI: 10.1016/j.exer.2022.109015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/26/2022] [Accepted: 02/23/2022] [Indexed: 11/04/2022]
Abstract
Sirt3 is closely associated with mitophagy. This study aimed to investigate the effect and potential mechanism of Sirt3 on mitophagy in retinal pigment epithelium (RPE) in a high glucose environment. The expression levels of Sirt3, Foxo3a, PINK1, Parkin and LC3B in RPE subjected to high-glucose (HG, 30 mM D-glucose) conditions were detected by RT-PCR and western blotting. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining was used to detect the level of reactive oxygen species (ROS) in RPE treated with HG. MitoTracker and LysoTracker probes were used to label mitochondria and lysosomes, respectively, to observe the occurrence of autophagy. Sirt3-dependent regulation of mitophagy through the Foxo3a/PINK1-Parkin pathway was further investigated by virus transfection-mediated Sirt3 overexpression and PINK1 silencing. The effect of Sirt3 overexpression on apoptosis was detected by flow cytometry. The Sirt3 expression was decreased, the Foxo3a/PINK1-Parkin pathway was inhibited, intracellular ROS level was increased, and mitophagy was attenuated in RPE under HG condition. Sirt3 overexpression activated the Foxo3a/PINK1-Parkin signaling pathway and mitophagy, and inhibited cell apoptosis. Silencing PINK1 inhibited the effect of Sirt3 overexpression on mitophagy. In summary, Sirt3 can activate mitophagy through the Foxo3a/PINK1-Parkin pathway and reduce HG-induced apoptosis of RPE. This study provides a new direction to understand the pathogenesis and develop a potential therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- Li Huang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Tianyu Yao
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Jie Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, PR China
| | - Zhiru Zhang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Wei Yang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | | | - Yujiao Dan
- Department of Ophthalmology, The People's Hospital of Leshan, PR China
| | - Yue He
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China.
| |
Collapse
|
48
|
Ou K, Li Y, Liu L, Li H, Cox K, Wu J, Liu J, Dick AD. Recent developments of neuroprotective agents for degenerative retinal disorders. Neural Regen Res 2022; 17:1919-1928. [PMID: 35142668 PMCID: PMC8848613 DOI: 10.4103/1673-5374.335140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Retinal degeneration is a debilitating ocular complication characterized by the progressive loss of photoreceptors and other retinal neurons, which are caused by a group of retinal diseases affecting various age groups, and increasingly prevalent in the elderly. Age-related macular degeneration, diabetic retinopathy and glaucoma are among the most common complex degenerative retinal disorders, posing significant public health problems worldwide largely due to the aging society and the lack of effective therapeutics. Whilst pathoetiologies vary, if left untreated, loss of retinal neurons can result in an acquired degeneration and ultimately severe visual impairment. Irrespective of underlined etiology, loss of neurons and supporting cells including retinal pigment epithelium, microvascular endothelium, and glia, converges as the common endpoint of retinal degeneration and therefore discovery or repurposing of therapies to protect retinal neurons directly or indirectly are under intensive investigation. This review overviews recent developments of potential neuroprotectants including neuropeptides, exosomes, mitochondrial-derived peptides, complement inhibitors, senolytics, autophagy enhancers and antioxidants either still experimentally or in clinical trials. Effective treatments that possess direct or indirect neuroprotective properties would significantly lift the burden of visual handicap.
Collapse
Affiliation(s)
- Kepeng Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Youjian Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, China; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ling Liu
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Li
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Katherine Cox
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jiahui Wu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Liu
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew D Dick
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol; Institute of Ophthalmology, University College London, London; National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| |
Collapse
|
49
|
Gut microbiota: A potential therapeutic target for management of diabetic retinopathy? Life Sci 2021; 286:120060. [PMID: 34666038 DOI: 10.1016/j.lfs.2021.120060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is one of the main complications of Diabetes Mellitus (DM), drastically impacting individuals of working age over the years, being one of the main causes of blindness in the world. The existing therapies for its treatment consist of measures that aim only to alleviate the existing clinical signs, associated with the microvasculature. These treatments are limited only to the advanced stages and not to the preclinical ones. In response to a treatment with little resolution and limited for many patients with DM, investigations of alternative therapies that make possible the improvement of the glycemic parameters and the quality of life of subjects with DR, become extremely necessary. Recent evidence has shown that deregulation of the microbiota (dysbiosis) can lead to low-grade, local and systemic inflammation, directly impacting the development of DM and its microvascular complications, including DR, in an axis called the intestine-retina. In this regard, the present review seeks to comprehensively describe the biochemical pathways involved in DR as well as the association of the modulation of these mechanisms by the intestinal microbiota, since direct changes in the microbiota can have a drastic impact on various physiological processes. Finally, emphasize the strong potential for modulation of the gut-retina axis, as therapeutic and prophylactic target for the treatment of DR.
Collapse
|
50
|
Meng C, Gu C, He S, Su T, Lhamo T, Draga D, Qiu Q. Pyroptosis in the Retinal Neurovascular Unit: New Insights Into Diabetic Retinopathy. Front Immunol 2021; 12:763092. [PMID: 34737754 PMCID: PMC8560732 DOI: 10.3389/fimmu.2021.763092] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is prevalent among people with long-term diabetes mellitus (DM) and remains the leading cause of visual impairment in working-aged people. DR is related to chronic low-level inflammatory reactions. Pyroptosis is an emerging type of inflammatory cell death mediated by gasdermin D (GSDMD), NOD-like receptors and inflammatory caspases that promote interleukin-1β (IL-1β) and IL-18 release. In addition, the retinal neurovascular unit (NVU) is the functional basis of the retina. Recent studies have shown that pyroptosis may participate in the destruction of retinal NVU cells in simulated hyperglycemic DR environments. In this review, we will clarify the importance of pyroptosis in the retinal NVU during the development of DR.
Collapse
Affiliation(s)
- Chunren Meng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shuai He
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Tong Su
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Thashi Lhamo
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, China
| | - Deji Draga
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, China
| |
Collapse
|