1
|
Abdelaziz HM, Abdelmageed ME, Suddek GM. Trimetazidine improves dexamethasone-induced insulin resistance and associated hepatic abnormalities in rats. Life Sci 2025; 375:123747. [PMID: 40404121 DOI: 10.1016/j.lfs.2025.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/25/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
INTRODUCTION Glucocorticoids (GC) are a widely prescribed anti-inflammatory and immunosuppressive medicine in clinics. The side effects GC of mostly insulin resistance (IR), dysregulated lipid metabolism and fatty liver, remain the major concern in patients. Understanding the mechanism of GC-induced hepatic steatosis is expected to provide an intervention target to avoid this side effect. AIM The present study aims to explore the beneficial effects of trimetazidine (TMZ) to combat DEXA-induced steatohepatitis and metabolic abnormalities. METHODS An in vivo IR model was established using male Wistar rats, which were administered TMZ at doses of 10 and 20 mg/kg for a duration of 14 days. Subsequently, from day 7 to day 14 of the study, the rats received DEXA (1 mg/kg, intraperitoneal (i.p.) injection). There were 5 groups, with each group consisting of 6 animals, as outlined: control group, TMZ control group, DEXA group, TMZ 10 + DEXA group, TMZ 20 + DEXA group. On the 14th day of the experiment, serum and hepatic samples were collected. RESULTS The findings indicate a marked reduction in OGTT results, fasting serum glucose and insulin levels, ALT and AST levels following treatment with TMZ. TMZ treatment also attenuated oxidative stress markers and improved the lipid profile. Additionally, the hepatic concentrations of high-mobility group box1 (HMGB1), phosphorylated Janus kinase 1 (p-JAK1), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), and levels of NF-κB-p65 and interleukin-6 (IL-6) were significantly diminished by TMZ when compared with the DEXA-treated group. Furthermore, TMZ lowered B cell/lymphoma 2 (BCL-2) and caspase-3 levels and attenuated liver histopathological changes. CONCLUSION This study demonstrated that TMZ significantly improved DEXA-induced hepatic alterations by modulating the HMGB1/p-JAK1/p-STAT3/NF-κB pathway in liver. Our findings provide new evidence supporting the application of TMZ for treating DEXA-induced IR and hepatic steatosis.
Collapse
Affiliation(s)
- Howida M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - G M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
2
|
Liang Y, Xu Z, Wang W. Oxidative balance score is associated with the risk of diabetic kidney disease in patients with type 2 diabetes mellitus: evidence from NHANES 2007-2018. Front Nutr 2024; 11:1499044. [PMID: 39749355 PMCID: PMC11693591 DOI: 10.3389/fnut.2024.1499044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Objective The oxidative balance score (OBS) is a comprehensive measure of oxidative stress that is calculated from the combined prooxidant and antioxidant scores of 16 dietary components and four lifestyle factors. This study aimed to evaluate the relationship between OBS and the risk of diabetic kidney disease (DKD) in individuals with Type 2 diabetes mellitus (T2DM). Methods Data were obtained from the NHANES. A cross-sectional study was conducted using multiple logistic regression. Covariate effects of this relationship were also examined using subgroup analysis. Results We evaluated 3,669 T2DM participants, among whom DKD prevalence was 30.87%. In a fully adjusted logistic regression model, the risk of DKD among participants with OBS, lifestyle OBS, and dietary OBS in the highest quartile group was 0.50 times (95% CI: 0.39 to 0.65), 0.54 times (95% CI: 0.41-0.71), and 0.45 times (95% CI: 0.32-0.63), respectively, than that in the lowest quartile group, respectively. In addition, participants who scored in the top quartiles of OBS were more likely to possess higher levels of education and income. A stratified analysis demonstrated the robustness of these findings. Conclusion OBS negatively correlates with the risk of DKD among individuals with T2DM.
Collapse
Affiliation(s)
| | | | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Khalili-Hezarjaribi H, Bahrami AR, Sh Saljooghi A, Matin MM. Modified mesoporous silica nanocarriers containing superparamagnetic iron oxide nanoparticle, 5-fluorouracil or oxaliplatin, and metformin as a radiosensitizer, significantly impact colorectal cancer radiation therapy. Int J Pharm 2024; 666:124838. [PMID: 39419365 DOI: 10.1016/j.ijpharm.2024.124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
This study investigates the anticancer effects of SPION-based silica nanoparticles carrying 5-fluorouracil (5-FU) or oxaliplatin (OX), and metformin (MET) on colorectal cancer cells. Nanocarriers were equipped with pH-responsive gold gatekeepers for controlled release, PEGylation for longer circulation, and folic acid (FA) for targeted delivery. The effects were evaluated by investigating cell viability, cellular uptake, flow cytometry, and clonogenic assay in vitro. The efficacy of the system was also tested in vivo on C57BL/6 mice bearing HT-29 tumors, and potential side effects were evaluated. Nanocarriers were synthesized with hydrodynamic diameters of 79.8 nm for 5-FU and 85.2 nm for OX; zeta potentials of -21 and -22 mV, respectively, and remained stable after 72 h. Encapsulation efficiencies were 85 % for 5-FU, 80 % for OX, and 83 % for MET, with loading capacities of 44 %, 38 %, and 41 %, respectively. Drug release in acidic buffer was 38.7 % for 5-FU, 32.8 % for OX, and 43.5 % for MET. MTT assay showed increased toxicity due to FA conjugation, while PEGylation reduced the hemolysis activity. Targeted nanocarriers demonstrated superior cellular uptake and tumor localization compared to non-targeted variants. The combination of 5-FU-MET and OX-MET nanocarriers with radiation therapy (RT) demonstrated the greatest effect on their antitumor activity, accompanied by minimal side effects indicating effective tumor targeting in vivo. MRI and CT imaging further supported these findings. This study underscores the synergistic impact of MET alongside RT on the inhibition of cancer cells and tumor growth for both targeted 5-FU and OX nanocarriers reflecting the significant radiosensitizing properties of MET.
Collapse
Affiliation(s)
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
4
|
Mwaheb MA, Reda NM, El-Wetidy MS, Sheded AH, Al-Otibi F, Al-Hamoud GA, Said MA, Aidy EA. Versatile properties of Opuntia ficus-indica (L.) Mill. flowers: In vitro exploration of antioxidant, antimicrobial, and anticancer activities, network pharmacology analysis, and In-silico molecular docking simulation. PLoS One 2024; 19:e0313064. [PMID: 39495776 PMCID: PMC11534206 DOI: 10.1371/journal.pone.0313064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Opuntia ficus-indica (L.) Mill. has been used in folk medicine against several diseases. The objectives of the present study were to investigate the chemical composition of the methanolic extract of O. ficus-indica (L.) Mill. flowers and their antioxidant, antimicrobial, and anticancer properties. Besides, network pharmacology and molecular docking were used to explore the potential antitumor effect of active metabolites of O. ficus-indica (L.) Mill. against breast and liver cancer. The results revealed many bioactive components known for their antimicrobial and anticancer properties. Furthermore, scavenging activity was obtained, which indicated strong antioxidant properties. The plant extract exhibited antimicrobial activities against Aspergillus brasiliensis (MIC of 0.625 mg/mL), Candida albicans, Saccharomyces cerevisiae, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa at MICs of 1.25 mg/mL. The results revealed proapoptotic activities of the O. ficus-indica (L.) Mill. extract against MCF7, MDA-MB-231, and HepG2 cell lines, where it induced significant early apoptosis and cell cycle arrest at sub-G1 phases, besides increasing the expression levels of p53, cyclin D1, and caspase 3 (p <0.005). The network pharmacology and molecular docking analysis revealed that the anticancer components of O. ficus-indica (L.) Mill. flower extract targets the PI3K-Akt pathway. More investigations might be required to test the mechanistic pathways by which O. ficus-indica (L.) Mill. might exhibit its biological activities in vivo.
Collapse
Affiliation(s)
- Mai Ali Mwaheb
- Botany Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Nashwa Mohamed Reda
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Asmaa H. Sheded
- Organic Chemistry Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| | - Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah A. Al-Hamoud
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Esraa A. Aidy
- Cancer Biology Department, Medical Biochemistry and Molecular Biology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Zhang H, Zhao X, Wei W, Shen C. Nimbolide protects against diabetic cardiomyopathy by regulating endoplasmic reticulum stress and mitochondrial function via the Akt/mTOR pathway. Tissue Cell 2024; 90:102478. [PMID: 39053131 DOI: 10.1016/j.tice.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/07/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Nimbolide has been demonstrated to possess protective properties against gestational diabetes mellitus and diabetic retinopathy. However, the role and molecular mechanism of nimbolide in diabetic cardiomyopathy (DCM) remain unknown. Diabetes was induced in rats via a single injection of streptozotocin (STZ) and then the diabetic rats were administered nimbolide (5 mg/kg and 20 mg/kg) or dimethyl sulfoxide daily for 12 weeks. H9c2 cardiomyocytes were exposed to high glucose (25 mM glucose) to mimic DCM in vitro. The protective effects of nimbolide against DCM were evaluated in vivo and in vitro. The potential molecular mechanism of nimbolide in DCM was further explored. We found that nimbolide dose-dependently decreased blood glucose and improved body weight of diabetic rats. Additionally, nimbolide dose-dependently improved cardiac function, alleviated myocardial injury/fibrosis, and inhibited endoplasmic reticulum (ER) stress and apoptosis in diabetic rats. Moreover, nimbolide dose-dependently improved mitochondrial function and activated the Akt/mTOR signaling. We consistently demonstrated the cardioprotective effects of nimbolide in an in vitro model of DCM. The involvement of ER stress and mitochondrial pathways were further confirmed by using inhibitors of ER stress and mitochondrial division. By applying a specific Akt inhibitor SC66, the cardioprotective effects of nimbolide were partially blocked. Our study indicated that nimbolide alleviated DCM by activating Akt/mTOR pathway. Nimbolide may be a novel therapeutic agent for DCM treatment.
Collapse
Affiliation(s)
| | | | - Wei Wei
- Hainan Second Health School, Wuzhishan 572200, China
| | - Chunjian Shen
- Department of Cardiothoracic Surgery, The Fourth People's Hospital of Shenyang, Shenyang 110000, China.
| |
Collapse
|
6
|
Feng Y, Ren Y, Zhang X, Yang S, Jiao Q, Li Q, Jiang W. Metabolites of traditional Chinese medicine targeting PI3K/AKT signaling pathway for hypoglycemic effect in type 2 diabetes. Front Pharmacol 2024; 15:1373711. [PMID: 38799166 PMCID: PMC11116707 DOI: 10.3389/fphar.2024.1373711] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease characterized by insulin resistance, with high morbidity and mortality worldwide. Due to the tightly intertwined connection between the insulin resistance pathway and the PI3K/AKT signaling pathway, regulating the PI3K/AKT pathway and its associated targets is essential for hypoglycemia and the prevention of type 2 diabetes mellitus. In recent years, metabolites isolated from traditional Chinese medicine has received more attention and acceptance for its superior bioactivity, high safety, and fewer side effects. Meanwhile, numerous in vivo and in vitro studies have revealed that the metabolites present in traditional Chinese medicine possess better bioactivities in regulating the balance of glucose metabolism, ameliorating insulin resistance, and preventing type 2 diabetes mellitus via the PI3K/AKT signaling pathway. In this article, we reviewed the literature related to the metabolites of traditional Chinese medicine improving IR and possessing therapeutic potential for type 2 diabetes mellitus by targeting the PI3K/AKT signaling pathway, focusing on the hypoglycemic mechanism of the metabolites of traditional Chinese medicine in type 2 diabetes mellitus and elaborating on the significant role of the PI3K/AKT signaling pathway in type 2 diabetes mellitus. In order to provide reference for clinical prevention and treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Yi C, Liang H, Xu G, Zhu J, Wang Y, Li S, Ren M, Chen X. Appropriate dietary phenylalanine improved growth, protein metabolism and lipid metabolism, and glycolysis in largemouth bass (Micropterus salmoides). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:349-365. [PMID: 36367675 DOI: 10.1007/s10695-022-01138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was aimed to determine the appropriate level of dietary phenylalanine and explored the influences of phenylalanine on target rapamycin (TOR) signaling and glucose and lipid metabolism in largemouth bass. Six isonitrogenous/isoenergetic diets with graded phenylalanine levels (1.45% (control group), 1.69%, 1.98%, 2.21%, 2.48%, and 2.76%) were designed. Experimental feed was used to feed juvenile largemouth bass (initial body weight 19.5 ± 0.98 g) for 8 weeks. The final body weight, specific growth rate (SGR), feed efficiency ratio (FER), and weight gain (WG) reached their highest values in the 1.98% dietary phenylalanine group and then declined with increasing phenylalanine addition. No significant difference was found in the whole-body composition of largemouth bass between different dietary phenylalanine groups. Compared with the control group, 1.69% dietary phenylalanine significantly reduced the contents of plasma glucose (GLU) and total protein (TP), and total cholesterol (TC) contents increased significantly in the 1.98% dietary phenylalanine group (P < 0.05). The key gene expressions of TOR signaling pathway and lipid metabolism was significantly inhibited by 2.21% dietary phenylalanine (P < 0.05). The 1.98% dietary phenylalanine group showed significantly increased expression of genes related to insulin signaling pathway and factors involved in fatty acid synthesis (P < 0.05). Furthermore, 2.76% dietary phenylalanine group inhibited glucose metabolism by lowering the key gene expressions of glucose metabolism (P < 0.05). According to quadratic regression analyses based on the WG and FER, the appropriate level of dietary phenylalanine for largemouth bass were 2.00% and 2.02% of the diet (4.23% and 4.27% dietary protein), respectively, with a constant amount of tyrosine (1.33%). Hence, the total aromatic amino acid requirements were 3.33% and 3.35% of the diet (equivalent to 7.03% and 7.09% of the protein content), which may provide a theoretical basis for the development of largemouth bass feed formulas. Therefore, the growth and metabolism of largemouth bass could be promoted by controlling the content of phenylalanine in the diet, or the imbalance of phenylalanine can form a specific pathological model.
Collapse
Affiliation(s)
- Changguo Yi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 21408, Jiangsu, China
| | - Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 21408, Jiangsu, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jian Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 21408, Jiangsu, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yongli Wang
- Tongwei Agricultural Development Co., LTD., Chengdu, 610093, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs On Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, China
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 21408, Jiangsu, China.
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Xiaoru Chen
- Tongwei Agricultural Development Co., LTD., Chengdu, 610093, China.
| |
Collapse
|
8
|
Matou-Nasri S, Aldawood M, Alanazi F, Khan AL. Updates on Triple-Negative Breast Cancer in Type 2 Diabetes Mellitus Patients: From Risk Factors to Diagnosis, Biomarkers and Therapy. Diagnostics (Basel) 2023; 13:2390. [PMID: 37510134 PMCID: PMC10378597 DOI: 10.3390/diagnostics13142390] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is usually the most malignant and aggressive mammary epithelial tumor characterized by the lack of expression for estrogen receptors and progesterone receptors, and the absence of epidermal growth factor receptor (HER)2 amplification. Corresponding to 15-20% of all breast cancers and well-known by its poor clinical outcome, this negative receptor expression deprives TNBC from targeted therapy and makes its management therapeutically challenging. Type 2 diabetes mellitus (T2DM) is the most common ageing metabolic disorder due to insulin deficiency or resistance resulting in hyperglycemia, hyperinsulinemia, and hyperlipidemia. Due to metabolic and hormonal imbalances, there are many interplays between both chronic disorders leading to increased risk of breast cancer, especially TNBC, diagnosed in T2DM patients. The purpose of this review is to provide up-to-date information related to epidemiology and clinicopathological features, risk factors, diagnosis, biomarkers, and current therapy/clinical trials for TNBC patients with T2DM compared to non-diabetic counterparts. Thus, in-depth investigation of the diabetic complications on TNBC onset, development, and progression and the discovery of biomarkers would improve TNBC management through early diagnosis, tailoring therapy for a better outcome of T2DM patients diagnosed with TNBC.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Maram Aldawood
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Post Graduate and Zoology Department, King Saud University, Riyadh 12372, Saudi Arabia
| | - Fatimah Alanazi
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Abdul Latif Khan
- Tissue Biobank, KAIMRC, MNG-HA, Riyadh 11481, Saudi Arabia
- Pathology and Clinical Laboratory Medicine, King Abdulaziz Medical City (KAMC), Riyadh 11564, Saudi Arabia
| |
Collapse
|
9
|
Targeting PI3K/AKT signaling pathway in obesity. Biomed Pharmacother 2023; 159:114244. [PMID: 36638594 DOI: 10.1016/j.biopha.2023.114244] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Obesity is a disorder with an increasing prevalence, which impairs the life quality of patients and intensifies societal health care costs. The development of safe and innovative prevention strategies and therapeutic approaches is thus of great importance. The complex pathophysiology of obesity involves multiple signaling pathways that influence energy metabolism in different tissues. The phosphatidylinositol 3-kinases (PI3K)/protein kinase B (AKT) pathway is critical for the metabolic homeostasis and its function in insulin-sensitive tissues is described in the context of health, obesity and obesity-related complications. The PI3K family participates in the regulation of diverse physiological processes including but not limited to cell growth, survival, differentiation, autophagy, chemotaxis, and metabolism depending on the cellular context. AKT is downstream of PI3K in the insulin signaling pathway, and promotes multiple cellular processes by targeting a plethora of regulatory proteins that control glucose and lipid metabolism. Natural products are essential for prevention and treatment of many human diseases, including obesity. Anti-obesity natural compounds effect multiple pathophysiological mechanisms involved in obesity development. Numerous recent preclinical studies reveal the advances in using plant secondary metabolites to target the PI3K/AKT signaling pathway for obesity management. In this paper the druggability of PI3K as a target for compounds with anti-obesity potential is evaluated. Perspectives on the strategies and limitations for clinical implementation of obesity management using natural compounds modulating the PI3K/AKT pathway are suggested.
Collapse
|
10
|
Zhao Y, Song P, Yin S, Fan T, Li F, Ge X, Liu T, Xu W, Xu S, Chen L. Onchidium struma polysaccharides exhibit hypoglycemic activity and modulate the gut microbiota in mice with type 2 diabetes mellitus. Food Funct 2023; 14:1937-1951. [PMID: 36691957 DOI: 10.1039/d2fo02450k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Onchidium struma polysaccharides (OsPs) are natural biologically active compounds, and our previous work showed that they can inhibit the activity of α-glucosidase in vitro, showing potential hypoglycemic activity. However, the effects of OsPs on type 2 diabetes mellitus (T2DM) in vivo remain unknown. Thus, the anti-diabetic activity of OsPs was evaluated in the present study in diabetic mice. The results showed that OsPs can significantly ameliorate the features of T2DM in mice by improving the levels of fasting blood glucose (FBG), oral glucose tolerance test (OGTT), and pro-inflammatory factors, and ameliorating insulin resistance. Furthermore, OsPs can significantly improve biochemical indicators, decrease the contents of total cholesterol (TC) and triglyceride (TG), and reduce lipid accumulation in the liver. The possible mechanism of the prevention and treatment of T2DM by OsPs may involve the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT-1) signaling pathway. OsPs can regulate the dysbiosis of gut microbiota and reverse the abundance of Lactobacillus in mice with T2DM. Moreover, OsPs significantly increased the concentration of short-chain fatty acids (SCFAs) in mice with T2DM. Our results indicate that OsPs can be used as a novel food supplement for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Yunfeng Zhao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Peilin Song
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. .,Public Analysis Department, Pharmaceutical Research Institute of Jumpcan Pharmaceutical Group Co., Ltd, Taizhou, Jiangsu 225300, China
| | - Shuai Yin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Tianyong Fan
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xiaodong Ge
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Tingting Liu
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng 224051, China
| | - Wei Xu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. .,Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng 224051, China
| | - Su Xu
- Department of Anorectal Surgery, Yancheng Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224001, China.
| | - Ligen Chen
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. .,Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
11
|
Omale S, Amagon KI, Johnson TO, Bremner SK, Gould GW. A systematic analysis of anti-diabetic medicinal plants from cells to clinical trials. PeerJ 2023; 11:e14639. [PMID: 36627919 PMCID: PMC9826616 DOI: 10.7717/peerj.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Background Diabetes is one of the fastest-growing health emergencies of the 21st century, placing a severe economic burden on many countries. Current management approaches have improved diabetic care, but several limitations still exist, such as decreased efficacy, adverse effects, and the high cost of treatment, particularly for developing nations. There is, therefore, a need for more cost-effective therapies for diabetes management. The evidence-based application of phytochemicals from plants in the management of diseases is gaining traction. Methodology Various plants and plant parts have been investigated as antidiabetic agents. This review sought to collate and discuss published data on the cellular and molecular effects of medicinal plants and phytochemicals on insulin signaling pathways to better understand the current trend in using plant products in the management of diabetes. Furthermore, we explored available information on medicinal plants that consistently produced hypoglycemic effects from isolated cells to animal studies and clinical trials. Results There is substantial literature describing the effects of a range of plant extracts on insulin action and insulin signaling, revealing a depth in knowledge of molecular detail. Our exploration also reveals effective antidiabetic actions in animal studies, and clear translational potential evidenced by clinical trials. Conclusion We suggest that this area of research should be further exploited in the search for novel therapeutics for diabetes.
Collapse
Affiliation(s)
- Simeon Omale
- African Centre for Excellence in Phytomedicine, University of Jos, Jos, Nigeria
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Kennedy I. Amagon
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Titilayo O. Johnson
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
| | - Shaun Kennedy Bremner
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Gwyn W. Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
12
|
Drissi B, Mahdi I, Yassir M, Ben Bakrim W, Bouissane L, Sobeh M. Cubeb ( Piper cubeba L.f.): A comprehensive review of its botany, phytochemistry, traditional uses, and pharmacological properties. Front Nutr 2022; 9:1048520. [PMID: 36483927 PMCID: PMC9725028 DOI: 10.3389/fnut.2022.1048520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 06/21/2024] Open
Abstract
Piper cubeba L.f. (Piperaceae), known as cubeb, is a popular traditional herbal medicine used for the treatment of many diseases, especially digestive and respiratory disorders. The plant is rich in essential oil, found mainly in fruits, and this makes it economically important. Many traditional utilizations have been also validated from the plant and its isolated compounds owing to their antioxidant, antibacterial, anti-inflammatory and anticancer effects. These biological activities are attributed to the phytochemicals (phenolic compounds, lignans and alkaloids) and the essential oil of the plant. The present work aims to provide an up-to-date review on the traditional uses, phytochemistry and pharmacology of the plant and discusses the future perspectives to promote its valorization for nutritional- and health-promoting effects.
Collapse
Affiliation(s)
- Badreddine Drissi
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Ismail Mahdi
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Mouna Yassir
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Widad Ben Bakrim
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
13
|
Health benefits of functional plant polysaccharides in metabolic syndrome: An overview. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Yu Y, Ma T, Lv L, Jia L, Ruan H, Chen H, Zhang J, Gao L. Oleanolic acid targets the regulation of PI3K/AKT/mTOR pathway and activates autophagy in chondrocytes to improve osteoarthritis in rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
15
|
Yassir M, Bakrim WB, Mahmoud MF, Drissi B, Kouisni L, Sobeh M. Watery Rose Apple: A Comprehensive Review of Its Traditional Uses, Nutritional Value, Phytochemistry, and Therapeutic Merits against Inflammation-Related Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7502185. [PMID: 35677104 PMCID: PMC9168099 DOI: 10.1155/2022/7502185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 12/16/2022]
Abstract
The myrtle family, Myrtaceae, constitutes over 5500 species, and Syzygium is considered the largest genus of the flowering plants within the family. The watery rose apple, Syzygium aqueum, is a traditional medicinal plant with various bioactive compounds distributed in all plant parts. These include phenolic compounds, flavonoids, tannins, terpenoids, and essential oils. S. aqueum extracts and their isolated compounds showed multiple beneficial biological effects such as antibacterial, antifungal, antidiabetic, analgesic, antimalarial, antioxidant, anti-inflammatory, and anticancer activities. This review is aimed at discussing all the available information about the nutritional value, traditional uses, and therapeutic properties of the leaves, fruit, and stem bark of the plant, in addition to the distribution of phytoconstituents in its different parts as well as recommend future research directions on this species to promote its clinical uses.
Collapse
Affiliation(s)
- Mouna Yassir
- Agrobiosciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Widad Ben Bakrim
- Agrobiosciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - BadrEddine Drissi
- Agrobiosciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Mansour Sobeh
- Agrobiosciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| |
Collapse
|
16
|
Khan MW, Zou C, Hassan S, Din FU, Abdoul Razak MY, Nawaz A, Alam Zeb, Wahab A, Bangash SA. Cisplatin and oleanolic acid Co-loaded pH-sensitive CaCO 3 nanoparticles for synergistic chemotherapy. RSC Adv 2022; 12:14808-14818. [PMID: 35702211 PMCID: PMC9109477 DOI: 10.1039/d2ra00742h] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/01/2022] [Indexed: 01/06/2023] Open
Abstract
Despite being one of the most potent anticancer agents, cisplatin (CDDP) clinical usage is limited owing to the acquired resistance and severe adverse effects including nephrotoxicity. The current work has offered a unique approach by designing a pH-sensitive calcium carbonate drug delivery system for CDDP and oleanolic acid (OA) co-delivery, with an enhanced tumor efficacy and reduced unwanted effects. Micro emulsion method was employed to generate calcium carbonate cores (CDDP encapsulated) followed by lipid coating along with the OA loading resulting in the generation of lipid-coated cisplatin/oleanolic acid calcium carbonate nanoparticles (CDDP/OA-LCC NPs). In vitro biological assays confirmed the synergistic apoptotic effect of CDDP and OA against HepG2 cells. It was further verified in vivo through the tumor-bearing nude mice model where NPs exhibited enhanced satisfactory antitumor efficacy in contrast to free drug solutions. In vivo pharmacokinetic study demonstrated that a remarkable long circulation time with a constant therapeutic concentration for both drugs could be achieved via this drug delivery system. In addition, the in vivo imaging study revealed that DiR-loaded NPs were concentrated more in tumors for a longer period of time as compared to other peritoneal tissues in tumor bearing mice, demonstrating the site specificity of the delivery system. On the other hand, hematoxylin and eosin (H&E) staining of Kunming mice kidney tissue sections revealed that OA greatly reduced CDDP induced nephrotoxicity in the formulation. Overall, these results confirmed that our pH-sensitive dual loaded drug delivery system offers a handy direction for effective and safer combination chemotherapy.
Collapse
Affiliation(s)
- Muhammad Waseem Khan
- Institute of Pharmaceutical Sciences, Khyber Medical University Peshawar Pakistan +92-3459146065
| | - Chenming Zou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Said Hassan
- Institute of Biotechnology and Microbiology, Bacha Khan University Charsadda Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-I-Azam University Islamabad 45320 Pakistan
| | - Mahaman Yacoubou Abdoul Razak
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| | - Asif Nawaz
- Faculty of Pharmacy, Gomal University Dera Ismail Khan Pakistan
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and Technology Kohat Pakistan
| | - Sudhair Abbas Bangash
- Faculty of Life Science, Department of Pharmacy, Sarhad University of Science and Information Technology Peshawar Pakistan
| |
Collapse
|
17
|
Mahmoud MF, Ali N, Mostafa I, Hasan RA, Sobeh M. Coriander Oil Reverses Dexamethasone-Induced Insulin Resistance in Rats. Antioxidants (Basel) 2022; 11:441. [PMID: 35326092 PMCID: PMC8944706 DOI: 10.3390/antiox11030441] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
In the present study, we aimed to investigate the effect of coriander oil on dexamethasone-induced insulin resistance in rats and characterize its chemical composition using gas chromatography-mass spectrometry (GC-MS). Rats were divided into five groups (n = 6): Normal control, insulin resistance (IR) control, IR + metformin (50 mg/kg/day, PO, Per Oral), IR + coriander oil low dose (0.5 mL/kg, PO), and IR + coriander oil high dose (1 mL/kg, PO). IR groups were injected with a dose of 10 mg/kg dexamethasone subcutaneously for four consecutive days. All groups received either vehicle or drugs daily for four days. Animal weights and pancreatic weights were measured, and oral glucose tolerance test was performed at the end of study. Fasting glucose, triglycerides (TG), total cholesterol (TC), HDL and insulin levels in serum, MDA, and GSH levels in pancreatic tissue were measured and HOMA-IR was calculated. Immunoexpression of apoptosis markers BAX, and BCL2 was measured in pancreatic tissues and BAX/BCL2 ratio was calculated. Histopathological examination of pancreatic tissues was also performed. Pancreatic weight, serum HDL, pancreatic GSH, and BCL2 were decreased while serum glucose, insulin, TG, TC levels, AUC of OGGT, HOMA-IR, pancreatic MDA, BAX, and BAX/BCL2 ratio were increased in IR rats. Histopathological examination showed congestion, vacuolation and hemorrhage in pancreatic islets. These changes were reversed by metformin and the high dose of coriander oil treatments. The obtained activities could be attributed to the presence of 21 volatile compounds, identified by GC-MS. Our study indicates that coriander oil can be used as an adjuvant antihyperglycemic agent in type 2 diabetes. Further experiments are needed to determine the therapeutic dose and the treatment time.
Collapse
Affiliation(s)
- Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Noura Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Rehab A. Hasan
- Department of Histology, Faculty of Medicine for Girls, Al Azhar University, Cairo 11751, Egypt;
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660, Hay MoulayRachid, Ben-Guerir 43150, Morocco
| |
Collapse
|