1
|
Chen S, Wang L, Lyu Q, Shan Q, Han X, Yang Q, Dong Z, Sang X, Yu Q, Lu J, Hao M, Wang K, Cao G. Molecular network strategies combined with MCnebula2 identify potential active compounds from steamed Polygonatum cyrtonema Hua. J Chromatogr A 2025; 1746:465779. [PMID: 39983564 DOI: 10.1016/j.chroma.2025.465779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Polygonatum cyrtonema Hua (PCH) underwent a series of transforms in its composition and had potential biological activities after steamed processing. In this study, LC-MS/MS datasets of chemical components in raw and steamed PCH were collected, and chemical profiling of PCH showed significant differences after steaming. Global Natural Products Social Molecular Network (GNPS-MN) combined with MCnebula2 were further used to annotate compound structures and data visualization. Through molecular network analysis, it is easier to discover the connections deduce the transformation of the components before and after steaming. Afterwards, the activity of transformed components was evaluated through cell models. Based on this strategy, 43 saponins and 31 flavonoid components were labeled in raw and steamed PCH. Among them, 27 saponins and 26 flavonoids were found only in steamed products, and the possible transformed pathways were speculated. Most saponins and flavonoids underwent glycosidic bond cleavage during the steaming process. Cell viability experiments indicated that steamed products improved renal fibrosis better than raw products, and the transformed components have better anti-renal fibrosis activity. This study reveals the influence of steaming on the chemical composition and structure, which provides a basis for subsequent exploration of active ingredients in steamed PCH.
Collapse
Affiliation(s)
- Saiya Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Lu Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiang Lyu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiyuan Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xin Han
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Zhixiang Dong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yu
- IBD centre, Department of Gastroenterology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - JingFeng Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Gang Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
2
|
Xiao MY, Li S, Pei WJ, Gu YL, Piao XL. Natural Saponins on Cholesterol-Related Diseases: Treatment and Mechanism. Phytother Res 2025; 39:1292-1318. [PMID: 39754504 DOI: 10.1002/ptr.8432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 01/06/2025]
Abstract
Saponins are compounds composed of lipophilic aglycones linked to hydrophilic sugars. Natural saponins are isolated from plants and some Marine organisms. As important cholesterol-lowering drugs, natural saponins have attracted wide attention for their therapeutic potential in a variety of cholesterol-related metabolic diseases. To review the effects of natural saponins on cholesterol-related metabolic diseases, and to deepen the understanding of the cholesterol-lowering mechanism of saponins. The literature related to saponins and cholesterol-lowering diseases was collected using keywords "saponins" and "cholesterol" from PubMed, Web of Science, and Google Scholar from January 2000 to May 2024. The total number of articles related to saponins and cholesterol-lowering diseases was 240 after excluding irrelevant articles. Natural saponins can regulate cholesterol to prevent and treat a variety of diseases, such as atherosclerosis, diabetes, liver disease, hyperlipidemia, cancer, and obesity. Mechanistically, natural saponins regulate cholesterol synthesis and uptake through the AMPK/SREBP2/3-hydroxy-3-methyl-glutaryl coenzyme A reductase pathway and PCSK9/LDLR pathway, and regulate cholesterol efflux and esterification targeting Liver X receptor/ABC pathway and ACAT family. Natural saponins have broad application prospects in regulating cholesterol metabolism, for the development of more cholesterol-lowering drugs provides a new train of thought. However, it is still necessary to further explore the molecular mechanism and expand clinical trials to provide more evidence.
Collapse
Affiliation(s)
- Man-Yu Xiao
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Si Li
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Wen-Jing Pei
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Yu-Long Gu
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|
3
|
Sun CY, Li YT, Liu D, Chen CW, Liao ML. Gastroprotective potential of the aqueous extract of nine-steaming and nine-sun-drying processed Polygonatum cyrtonema Hua against alcoholic gastric injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119103. [PMID: 39542190 DOI: 10.1016/j.jep.2024.119103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonatum (Huangjing) genus has been used as both food and medicine in China for 2000 years, which was regarded as a "Top-grade" herb in the Shennong Bencao Jing. The most commonly used species is the rhizome of Polygonatum cyrtonema Hua (PC) that is traditionally utilized to invigorate Qi, nourish Yin, moisten lung, and tonify spleen and kidney. AIM OF THE STUDY Excessive alcohol consumption causes severe upper-gastrointestinal diseases, notably gastric mucosal damage characterized by hemorrhagic gastritis, which lacks safe and effective intervention. This study aims to investigate the gastroprotective effects of nine-steaming and nine-drying processed Polygonatum cyrtonema Hua (PPC) on alcohol-induced gastric mucosal damage in mice. MATERIALS AND METHODS PPC extract was chemically characterized by UPLC-QE-MS analysis. ICR mice were subjected to an ethanol-induced gastric lesion model and were orally administered PPC aqueous extract for 5 consecutive days. After treatment, gastric tissues were stained with hematoxylin and eosin (H&E), and the pro-inflammatory and oxidative stress factors were determined using ELISA and Multiplex assay, while the gene expressions of gastric tissues were detected by RNA-seq and Western blotting. RESULTS PPC reduced the alcohol concentration of liquor in vitro and protected against alcohol-induced gastric mucosal lesion in mice. Notably, PPC aqueous extract relieved alcohol-induced pro-inflammatory and oxidative stress factors, including interleukin 6 (IL-6), IL-8, keratinocyte-derived chemokine (KC), monocyte chemotactic protein-1 (MCP-1), superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA). RNA-sequencing analysis revealed that ethanol exposure activated mitogen-activated protein kinases (MAPKs), tumor necrosis factor (TNF), and IL-17 signaling pathways in gastric tissue, and these activated signaling pathways were inhibited by the PPC treatment. Consistently, Western blot data showed that PPC treatment suppressed the activation of extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinases (JNK), TNF-α and IL-17A pathways in gastric tissue. CONCLUSION In conclusion, the aqueous extract of PPC exerted a gastroprotective effect against alcohol-induced gastric injury by alleviating inflammation and oxidative stress, potentially through the inhibition of the MAPKs, IL-17 and TNF-α pathways. These findings supported the future development of PPC as an effective intervention for alcohol-induced gastric damage.
Collapse
Affiliation(s)
- Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Yu-Ting Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Cun-Wu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China.
| | - Mao-Liang Liao
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China.
| |
Collapse
|
4
|
Li X, Zhang Q, Li Y, Qin L, Wu D, Tan D, Xie J, Wu J, Yang Q, Lu Y, Zhao Y, Fan Q, Wu X, He Y. Utilizing High-Resolution Mass Spectrometry Data Mining Strategy in R Programming Language for Rapid Annotation of Absorbed Prototypes and Metabolites of Gypenosides. Molecules 2025; 30:779. [PMID: 40005091 PMCID: PMC11858763 DOI: 10.3390/molecules30040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The rapid and accurate annotation of the complex compounds and metabolites in natural products remains a significant challenge. In this study, we developed an integrated strategy to efficiently and accurately profile both the prototypes and metabolites of natural products in vivo. And this was achieved by establishing a gypenosides constituent database and utilizing R programming language to combine sample selection, virtual metabolite database construction, polygon mass defect filtering, and Kendrick mass defect filtering. In addition, the annotation strategy was successfully applied to identify the prototypes and metabolites of gypenosides in mice serum. As a case study, gypenoside LXXV was used to validate the feasibility of this approach. The results demonstrated 36 prototypes and 108 metabolites were annotated from the serum by the established annotation strategy. The prototype and eight metabolites of gypenoside LXXV were further confirmed, indicating that the proposed strategy is available. This study provides a novel approach for the rapid and accurate identification of prototypes and metabolites of natural products and offers new insights into the metabolic processes of gypenosides in vivo.
Collapse
Affiliation(s)
- Xiaoshan Li
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563009, China; (X.L.); (Q.Z.); (Y.L.); (L.Q.); (D.W.); (D.T.); (J.X.); (Q.Y.); (Y.Z.); (Q.F.)
| | - Qianru Zhang
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563009, China; (X.L.); (Q.Z.); (Y.L.); (L.Q.); (D.W.); (D.T.); (J.X.); (Q.Y.); (Y.Z.); (Q.F.)
| | - Yuqin Li
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563009, China; (X.L.); (Q.Z.); (Y.L.); (L.Q.); (D.W.); (D.T.); (J.X.); (Q.Y.); (Y.Z.); (Q.F.)
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563009, China; (X.L.); (Q.Z.); (Y.L.); (L.Q.); (D.W.); (D.T.); (J.X.); (Q.Y.); (Y.Z.); (Q.F.)
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563009, China; (X.L.); (Q.Z.); (Y.L.); (L.Q.); (D.W.); (D.T.); (J.X.); (Q.Y.); (Y.Z.); (Q.F.)
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563009, China; (X.L.); (Q.Z.); (Y.L.); (L.Q.); (D.W.); (D.T.); (J.X.); (Q.Y.); (Y.Z.); (Q.F.)
| | - Jian Xie
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563009, China; (X.L.); (Q.Z.); (Y.L.); (L.Q.); (D.W.); (D.T.); (J.X.); (Q.Y.); (Y.Z.); (Q.F.)
| | - Jiajia Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Qingping Yang
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563009, China; (X.L.); (Q.Z.); (Y.L.); (L.Q.); (D.W.); (D.T.); (J.X.); (Q.Y.); (Y.Z.); (Q.F.)
| | - Yanliu Lu
- Key Lab of the Basic Pharmacology of The Ministry of Education, Zunyi Medical University, Zunyi 563009, China;
| | - Yongxia Zhao
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563009, China; (X.L.); (Q.Z.); (Y.L.); (L.Q.); (D.W.); (D.T.); (J.X.); (Q.Y.); (Y.Z.); (Q.F.)
| | - Qingjie Fan
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563009, China; (X.L.); (Q.Z.); (Y.L.); (L.Q.); (D.W.); (D.T.); (J.X.); (Q.Y.); (Y.Z.); (Q.F.)
| | - Xingdong Wu
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563009, China; (X.L.); (Q.Z.); (Y.L.); (L.Q.); (D.W.); (D.T.); (J.X.); (Q.Y.); (Y.Z.); (Q.F.)
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi 563009, China; (X.L.); (Q.Z.); (Y.L.); (L.Q.); (D.W.); (D.T.); (J.X.); (Q.Y.); (Y.Z.); (Q.F.)
| |
Collapse
|
5
|
Rehman AU. Chemical profile and in vivo anti-hyperlipidaemic activity of chloroform fraction of Zygophyllum indicum in Triton X-100 induced hyperlipidaemic rats. Nat Prod Res 2025; 39:654-664. [PMID: 38018814 DOI: 10.1080/14786419.2023.2286612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Anti-hyperlipidaemic effect of chloroform fraction of aerial parts of Zygophyllum indicum (Fagonia indica Burm.f.) was studied in rats. Adult Wistar albino rats were distributed into five groups. Rats of all groups except group I were given an intraperitoneal injection (Triton X-100) to induce hyperlipidaemia. Groups (I and II) served as normal and hyperlipidaemic control groups respectively. Group III and group IV were administered with 250 and 500 mg/kg chloroform fraction of the plant respectively after 18 h of inducing hyperlipidaemia. Group V was given 10 mg/kg of the standard atorvastatin. Chloroform fraction had significant (p < 0.05) hypolipidaemic effects on lipid profile and biochemical parameters with a protective effect on the liver in comparison to group II. F. indica with hypolipidaemic effect is useful in the management of hyperlipidaemia. Chloroform fraction with its constituents can be used as an antihyperlipidaemic supplement in developing countries for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Atiq-Ur- Rehman
- University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
- Salar College of Pharmacy, Amna Inayat Medical College Faizpur Interchange, Lahore, Sheikhupura, Pakistan
| |
Collapse
|
6
|
Yue Z, Xiang W, Duping D, Yuanyuan G, Xuanyi C, Juan L, Xiaojuan H. Integrating 16S rDNA and metabolomics to uncover the therapeutic mechanism of electroacupuncture in type 2 diabetic rats. Front Microbiol 2025; 15:1436911. [PMID: 39834366 PMCID: PMC11743489 DOI: 10.3389/fmicb.2024.1436911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025] Open
Abstract
Objective This study aimed to investigate the impact of electroacupuncture (EA) on blood glucose levels, gut microbiota, short-chain fatty acids (SCFAs), and glucagon-like peptide-1 (GLP-1) in a rat model of type 2 diabetes mellitus (T2DM). Methods Forty Sprague-Dawley (SD) rats were randomly assigned to five groups (n = 8/group) using a random number table: normal control, T2DM model, electroacupuncture (EA), EA + antibiotics (EA + A), and antibiotics (A). The normal rats received a standard diet and saline gavage, while the other groups were fed a high-fat diet and emulsion. The EA + A and A groups received additional antibiotic solution gavage. The normal, model, and A groups were immobilized and restrained for 30 min, six times per week, for 4 weeks. The EA and EA + A groups received EA treatment at specific acupoints for 30 min, six times per week, for 4 weeks. EA parameters were continuous waves at 10 Hz and 1-2 mA. During the intervention, water and food consumption, body weight, fasting blood glucose (FBG), and oral glucose tolerance test (OGTT) were monitored. Pancreatic tissue was examined using hematoxylin and eosin (H&E) staining. Fecal microbial communities were analyzed by 16S rDNA sequencing, and short-chain fatty acids (SCFAs) were measured using gas chromatography-mass spectrometry (GC-MS). Serum levels of fasting insulin (FINS), glycated hemoglobin (HbA1c), and glucagon-like peptide-1 (GLP-1) were determined using enzyme-linked immunosorbent assay (ELISA). Results EA significantly improved daily water intake, food consumption, and body weight in T2DM rats (p < 0.01). EA also reduced FBG, the area under the curve of the OGTT, FINS, and homeostasis model assessment of insulin resistance (HOMA-IR) in T2DM rats (p < 0.05). The ELISA results showed a lower concentration of HbA1c in the EA group (p < 0.05). EA improved the overall morphology and area of pancreatic islets, increased the number of β-cell nuclei, and alleviated β-cell hypertrophy. The abundance of operational taxonomic units (OTUs) in the EA group increased than the model group (p < 0.05), and EA upregulated the Shannon, Chao1, and Ace indices (p < 0.05). EA increased the concentrations of acetic acid, butyric acid, and GLP-1 (p < 0.05). Correlation analysis revealed negative associations between Lactobacillaceae (R = -0.81, p = 0.015) and Lactobacillus (R = -0.759, p = 0.029) with FBG. Peptostreptococcaceae and Romboutsia were negatively correlated with HbA1c (R = -0.81, p = 0.015), while Enterobacteriaceae was positively correlated with OGTT (R = 0.762, p = 0.028). GLP-1 was positively correlated with acetic acid (R = 0.487, p = 0.001), butyric acid (R = 0.586, p = 0.000), isovaleric acid (R = 0.374, p = 0.017), valeric acid (R = 0.535, p = 0.000), and caproic acid (R = 0.371, p = 0.018). Antibiotics disrupted the intestinal microbiota structure and weakened the therapeutic effects of EA. Conclusion EA effectively improved glucose metabolism in T2DM rats. The hypoglycemic effects of EA were associated with the regulation of gut microbiota, SCFAs, and GLP-1.
Collapse
Affiliation(s)
- Zhang Yue
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wang Xiang
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Deng Duping
- Department of Rehabilitation Medicine, Meishan Hospital of Traditional Chinese Medicine, Meishan, China
| | - Gong Yuanyuan
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Xuanyi
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Juan
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Xiaojuan
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Chen M, Ouyang Y, Yang Y, Liu Z, Zhao M. Impact of sleep problems on the cardiometabolic risks: an integrated epidemiological and metabolomics study. Diabetol Metab Syndr 2024; 16:267. [PMID: 39523349 PMCID: PMC11552365 DOI: 10.1186/s13098-024-01505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND We investigated the association between sleep problems and cardiometabolic risks and the potential linking effect of metabolites and metabolic pathways based on multi-layered research, including observational, mendelian randomization (MR), and metabolomics analysis. METHODS A cross-sectional analysis of the 2015-2018 National Health and Nutrition Examination Survey (NHANES) dataset was conducted to identify the association between sleep problems and cardiometabolic risks. A subsequent MR study based on genetic data was performed to explore the causal correlation of significant associations in the NHANES study. The underlying alteration of metabolism was explored by constructing zebrafish models and wide-targeted metabolomics analysis. RESULTS The cross-sectional analysis of the NHANES database revealed a significant association of snoring with obesity [OR = 2.65, 95% confidence intervals (CI): 1.87, 3.74]; sleep apnea with hypertension (OR = 1.68, 95% CI: 1.14, 2.48) and obesity (OR = 1.44, 95% CI: 1.05, 1.96); trouble sleeping with hypertension (OR = 1.84, 95% CI: 1.18, 2.86), obesity (OR = 1.56, 95% CI: 1.07, 2.26), and type 2 diabetes (T2DM) (OR = 1.52, 95% CI: 1.02, 2.25). MR analysis verified the causal relationship between genetically proxied sleep apnea or snoring and obesity. The decreased activity levels and altered expression levels of six circadian genes (bmal1b, cry1aa, cry1ab, clock1a, per1b, per2) were identified in the zebrafish of the sleep disorder group. Multiple metabolites related to disturbed glucose metabolism (e.g., 20-HETE), lipid metabolism (e.g., inosine), and vascular-related metabolites (e.g., riboflavin) were finally identified, indicating the latent effect of metabolism. CONCLUSIONS This study identified the chain of sleep-circadian rhythm-metabolism-cardiometabolic risks. These findings can promote improved prevention implementation and therapeutic strategies.
Collapse
Affiliation(s)
- Mingcong Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yuzhen Ouyang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yang Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zihao Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
8
|
Sun H, Wang Z, Tu B, Shao Z, Li Y, Han D, Jiang Y, Zhang P, Zhang W, Wu Y, Wu X, Liu CM. Capsaicin reduces blood glucose and prevents prostate growth by regulating androgen, RAGE/IGF-1/Akt, TGF-β/Smad signalling pathway and reversing epithelial-mesenchymal transition in streptozotocin-induced diabetic mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7659-7671. [PMID: 38700794 DOI: 10.1007/s00210-024-03092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 10/04/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease. Diabetes increases the risk of benign prostatic hyperplasia (BPH). Capsaicin is extracted from chili peppers and possesses many pharmacological properties, including anti-diabetic, pain-relieving, and anti-cancer properties. This study aimed to investigate the effects of capsaicin on glucose metabolism and prostate growth in T2DM mice and uncover the related mechanisms. Mice model of diabetes was established by administering a high-fat diet and streptozotocin. Oral administration of capsaicin for 2 weeks inhibited prostate growth in testosterone propionate (TP)-treated mice. Furthermore, oral administration of capsaicin (5 mg/kg) for 2 weeks decreased fasting blood glucose, prostate weight, and prostate index in diabetic and TP-DM mice. Histopathological alterations were measured using hematoxylin & eosin (H&E) staining. The protein expression of 5α-reductase type II, androgen receptor (AR), and prostate-specific antigen (PSA) were upregulated in diabetic and TP-DM mice, but capsaicin reversed these effects. Capsaicin decreased the protein expression of p-AKT, insulin-like growth factor-1 (IGF-1), IGF-1R, and the receptor for advanced glycation end products (RAGE) in diabetic and TP-DM mice. Capsaicin also regulated epithelial-mesenchymal transition (EMT) and modulated the expression of fibrosis-related proteins, including E-cadherin, N-cadherin, vimentin, fibronectin, α-SMA, TGFBR2, TGF-β1, and p-Smad in TP-DM mice. In this study, capsaicin alleviated diabetic prostate growth by attenuating EMT. Mechanistically, capsaicin affected EMT by regulating RAGE/IGF-1/AKT, AR, and TGF-β/Smad signalling pathways. These results provide with new therapeutic approach for treating T2DM or T2DM-induced prostate growth.
Collapse
Affiliation(s)
- Hui Sun
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
- College of Chemistry and Bio-Engineering, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - ZiTong Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - BingHua Tu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - ZiChen Shao
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
- College of Chemistry and Bio-Engineering, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - YiDan Li
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
- College of Chemistry and Bio-Engineering, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - Di Han
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
- College of Chemistry and Bio-Engineering, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - YinJie Jiang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - Peng Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - WeiChang Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - YunYan Wu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - XiaoMing Wu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China
| | - Chi-Ming Liu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, Jiangxi Province, China.
| |
Collapse
|
9
|
Lu Q, Zhu R, Zhou L, Zhang R, Li Z, Xu P, Wang Z, Wu G, Ren J, Jiao D, Song Y, Li J, Wang W, Liang R, Ma X, Sun Y. Gut dysbiosis contributes to the development of Budd-Chiari syndrome through immune imbalance. mSystems 2024; 9:e0079424. [PMID: 39166878 PMCID: PMC11406926 DOI: 10.1128/msystems.00794-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
UNLABELLED Budd-Chiari syndrome (B-CS) is a rare and lethal condition characterized by hepatic venous outflow tract blockage. Gut microbiota has been linked to numerous hepatic disorders, but its significance in B-CS pathogenesis is uncertain. First, we performed a case-control study (Ncase = 140, Ncontrol = 63) to compare the fecal microbiota of B-CS and healthy individuals by metagenomics sequencing. B-CS patients' gut microbial composition and activity changed significantly, with a different metagenomic makeup, increased potentially pathogenic bacteria, including Prevotella, and disease-linked microbial function. Imbalanced cytokines in patients were demonstrated to be associated with gut dysbiosis, which led us to suspect that B-CS is associated with gut microbiota and immune dysregulation. Next, 16S ribosomal DNA sequencing on fecal microbiota transplantation (FMT) mice models examined the link between gut dysbiosis and B-CS. FMT models showed damaged liver tissues, posterior inferior vena cava, and increased Prevotella in the disturbed gut microbiota of FMT mice. Notably, B-CS-FMT impaired the morphological structure of colonic tissues and increased intestinal permeability. Furthermore, a significant increase of the same cytokines (IL-5, IL-6, IL-9, IL-10, IL-17A, IL-17F, and IL-13) and endotoxin levels in B-CS-FMT mice were observed. Our study suggested that gut microbial dysbiosis may cause B-CS through immunological dysregulation. IMPORTANCE This study revealed that gut microbial dysbiosis may cause Budd-Chiari syndrome (B-CS). Gut dysbiosis enhanced intestinal permeability, and toxic metabolites and imbalanced cytokines activated the immune system. Consequently, the escalation of causative factors led to their concentration in the portal vein, thereby compromising both the liver parenchyma and outflow tract. Therefore, we proposed that gut microbial dysbiosis induced immune imbalance by chronic systemic inflammation, which contributed to the B-CS development. Furthermore, Prevotella may mediate inflammation development and immune imbalance, showing potential in B-CS pathogenesis.
Collapse
Affiliation(s)
- Qinwei Lu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Lin Zhou
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
- Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruifang Zhang
- Department of Ultrasound Diagnosis, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Endovascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Xu
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Wang
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Wu
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzhuang Ren
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dechao Jiao
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Song
- Department of Vascular Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Xiuxian Ma
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China
- Key Lab of Hepatobiliary and Pancreatic Diseases, Zhengzhou, China
| |
Collapse
|
10
|
Wang ZL, Lao J, Xie ZN, He W, Zhong C, Zhang SH, Jin J. Fermentation of Polygonati Rhizoma aqueous extract using Lactiplantibacillus plantarum under the condition of eutrophication. Arch Microbiol 2024; 206:359. [PMID: 39033087 DOI: 10.1007/s00203-024-04082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
In this experiment, the eutrophication system was established by adding sucrose and yeast powder, and the pH and dissolved oxygen were measured in a bioreactor in real time to study the effect of aerobic environment on the fermentation process of Polygonati Rhizoma extract by Lactiplantibacillus plantarum. To further analyze metabolic changes, UPLC-Q-Exactive MS was used for metabolomic analysis and metabolic profiling. Multivariate analysis was performed using principal component analysis and Orthogonal projections to latent structures discriminant analysis. Finally, 313 differential metabolites were selected, 196 of which were annotated through database matching. After fermentation, the content of short-chain fatty acids, lactic acid, and their derivatives increased significantly, and there were 13 kinds and 4 kinds, respectively. Both compounds and their derivatives are beneficial to the intestinal flora. Consequently, incorporating L. plantarum into the aerobic fermentation process of Polygonati Rhizoma extract within the eutrophic system is potentially advantageous in enhancing the impact of its fermentation solution on the gut microbiota and its effects on human health. Our findings for this kind of edible and medicinal material research and development offer useful insights.
Collapse
Affiliation(s)
- Zi-Ling Wang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jia Lao
- Resgreen Group International Inc., Changsha, 410329, China
| | - Zhen-Ni Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Wei He
- Resgreen Group International Inc., Changsha, 410329, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
- Hunan Shenzhou Chinese Medicine Inc., Zhangjiajie, 427200, China
| | - Shui-Han Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China.
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
11
|
Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:413-444. [PMID: 38937158 DOI: 10.1016/j.joim.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
The property theory of traditional Chinese medicine (TCM) has been practiced for thousands of years, playing a pivotal role in the clinical application of TCM. While advancements in energy metabolism, chemical composition analysis, machine learning, ion current modeling, and supercritical fluid technology have provided valuable insight into how aspects of TCM property theory may be measured, these studies only capture specific aspects of TCM property theory in isolation, overlooking the holistic perspective inherent in TCM. To systematically investigate the modern interpretation of the TCM property theory from multidimensional perspectives, we consulted the Chinese Pharmacopoeia (2020 edition) to compile a list of Chinese materia medica (CMM). Then, using the Latin names of each CMM and gut microbiota as keywords, we searched the PubMed database for relevant research on gut microbiota and CMM. The regulatory patterns of different herbs on gut microbiota were then summarized from the perspectives of the four natures, the five flavors and the meridian tropism. In terms of the four natures, we found that warm-natured medicines promoted the colonization of specific beneficial bacteria, while cold-natured medicines boosted populations of some beneficial bacteria while suppressing pathogenic bacteria. Analysis of the five flavors revealed that sweet-flavored and bitter-flavored CMMs positively influenced beneficial bacteria while inhibiting harmful bacteria. CMMs with different meridian tropism exhibited complex modulative patterns on gut microbiota, with Jueyin (Liver) and Taiyin (Lung) meridian CMMs generally exerting a stronger effect. The gut microbiota may be a biological indicator for characterizing the TCM property theory, which not only enhances our understanding of classic TCM theory but also contributes to its scientific advancement and application in healthcare. Please cite this article as: Yang YN, Zhan JG, Cao Y, Wu CM. From ancient wisdom to modern science: Gut microbiota sheds light on property theory of traditional Chinese medicine. J Integr Med 2024; 22(4): 413-445.
Collapse
Affiliation(s)
- Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia-Guo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chong-Ming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
12
|
Liu R, Zhang X, Cai Y, Xu S, Xu Q, Ling C, Li X, Li W, Liu P, Liu W. Research progress on medicinal components and pharmacological activities of polygonatum sibiricum. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118024. [PMID: 38484952 DOI: 10.1016/j.jep.2024.118024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonatum sibiricum, commonly known as Siberian Solomon's seal, is a traditional herb widely used in various traditional medical systems, especially in East Asia. In ancient China, the use of polygonatum sibiricum in medicine and food was mentioned in Li Shizhen's Bencao Gangmu of traditional Chinese medicine (TCM). It was also used in history of India in Vedic medicine. The plant is rich in bioactive substances such as polysaccharides, saponins, flavonoid and alkaloids. AIM OF THE REVIEW The aim of this review is to understand the pharmacological and pharmacokinetics research progress of the major components of polygonatum sibiricum, and to prospect its potential application and development in the treatment of various diseases. MATERIALS AND METHODS We conducted a systematic literature search against major online databases on the Web, including PubMed, ancient books, patents, PubMed, Wiley, Google Scholar, Web of Science, and others. We select the pharmacological process and mechanism of the main components of polygonatum sibiricum in a variety of diseases, and make a strict but careful supplement and in-depth elaboration to this review. RESULTS Several studies have demonstrated the strong antioxidant properties of polygonatum extract, which can be attributed to the presence of flavonoids and other polyphenol compounds; for diabetes and other metabolic-related diseases, polygonatum saponins have particular advantages in regulating intestinal flora and lipoprotein concentration in organisms. In addition, the polysaccharides extracted from this plant have a strong anti-inflammatory effect, which is related to its ability to regulate proinflammatory cytokine and mediators. In the aspect of anti-tumor effect, polygonatum derivatives can induce cancer cell apoptosis mainly by adjusting the cell membrane potential and cell cycle. It is worth noting that the combined action of the main components of polygonatum also offers promising solutions for the treatment of the disease. CONCLUSION Polygonatum polysaccharide has therapeutic effects on many diseases by adjusting cell signal pathways, polygonatum sibiricum have significant advantages in regulating intestinal flora, inducing apoptosis of tumor cells, activating antioxidant processes, etc. Further research and basic exploration are needed to prove the function and mechanisms of the main components of polygonatum sibiricum on related diseases. The study on the immunomodulatory properties of polygonatum revealed its potentiality of enhancing immune function, which made it an interesting subject for further exploration in the field of immunotherapy.
Collapse
Affiliation(s)
- Ruilian Liu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China; The Hospital Affiliated to Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan Province, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China.
| | - Xili Zhang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China.
| | - Yuhan Cai
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China.
| | - Shuang Xu
- The Hospital Affiliated to Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan Province, PR China.
| | - Qian Xu
- The Hospital Affiliated to Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan Province, PR China.
| | - Chengli Ling
- The Hospital Affiliated to Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan Province, PR China.
| | - Xin Li
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China.
| | - Wenjiao Li
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China.
| | - Pingan Liu
- Hunan Academy of Chinese Medicine, Changsha, 410013, Hunan Province, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China.
| | - Wenlong Liu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China.
| |
Collapse
|
13
|
Jiang P, Di Z, Huang W, Xie L. Modulating the Gut Microbiota and Metabolites with Traditional Chinese Medicines: An Emerging Therapy for Type 2 Diabetes Mellitus and Its Complications. Molecules 2024; 29:2747. [PMID: 38930814 PMCID: PMC11206945 DOI: 10.3390/molecules29122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, an estimated 537 million individuals are affected by type 2 diabetes mellitus (T2DM), the occurrence of which is invariably associated with complications. Glucose-lowering therapy remains the main treatment for alleviating T2DM. However, conventional antidiabetic agents are fraught with numerous adverse effects, notably elevations in blood pressure and lipid levels. Recently, the use of traditional Chinese medicines (TCMs) and their constituents has emerged as a preferred management strategy aimed at curtailing the progression of diabetes and its associated complications with fewer adverse effects. Increasing evidence indicates that gut microbiome disturbances are involved in the development of T2DM and its complications. This regulation depends on various metabolites produced by gut microbes and their interactions with host organs. TCMs' interventions have demonstrated the ability to modulate the intestinal bacterial microbiota, thereby restoring host homeostasis and ameliorating metabolic disorders. This review delves into the alterations in the gut microbiota and metabolites in T2DM patients and how TCMs treatment regulates the gut microbiota, facilitating the management of T2DM and its complications. Additionally, we also discuss prospective avenues for research on natural products to advance diabetes therapy.
Collapse
Affiliation(s)
- Peiyan Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhenghan Di
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Wenting Huang
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lan Xie
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Sati P, Dhyani P, Sharma E, Attri DC, Jantwal A, Devi R, Calina D, Sharifi-Rad J. Gut Microbiota Targeted Approach by Natural Products in Diabetes Management: An Overview. Curr Nutr Rep 2024; 13:166-185. [PMID: 38498287 DOI: 10.1007/s13668-024-00523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW This review delves into the complex interplay between obesity-induced gut microbiota dysbiosis and the progression of type 2 diabetes mellitus (T2DM), highlighting the potential of natural products in mitigating these effects. By integrating recent epidemiological data, we aim to provide a nuanced understanding of how obesity exacerbates T2DM through gut flora alterations. RECENT FINDINGS Advances in research have underscored the significance of bioactive ingredients in natural foods, capable of restoring gut microbiota balance, thus offering a promising approach to manage diabetes in the context of obesity. These findings build upon the traditional use of medicinal plants in diabetes treatment, suggesting a deeper exploration of their mechanisms of action. This comprehensive manuscript underscores the critical role of targeting gut microbiota dysbiosis in obesity-related T2DM management and by bridging traditional knowledge with current scientific evidence; we highlighted the need for continued research into natural products as a complementary strategy for comprehensive diabetes care.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Eshita Sharma
- Department of Biochemistry and Molecular Biology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Arvind Jantwal
- Department of Pharmaceutical Sciences, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, Punjab, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
15
|
Jiang X, Li X, Li S, Wang M, Zhao Y, He S, Liu J, Fan W. Potential mechanism of probiotic fermentation of Auricularia cornea var. Li./blueberry to reduce obesity induced by a high-fat diet. Food Chem X 2024; 21:101160. [PMID: 38379806 PMCID: PMC10876580 DOI: 10.1016/j.fochx.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/31/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
The primary objective of this research was to investigate the effects of fermented Auricularia cornea var. Li./blueberry (FACB) on the gut microbiota of these super-large mouse models. The study, found that the groups who were given different amounts of FACB saw a significant reduction in their triglyceride and total cholesterol levels. There was a noteworthy increase in the ranks of high-density lipoprotein cholesterol (HDL-C) (P < 0.05). Furthermore, it was noted that FACB influenced the gut microbiota of the obese rats, improving in both the variety and quantity of short-chain fatty acids present in their intestines. This research provided the inaugural evidence of FACB's potential as an effective anti-obesity agent in a high-fat diet model, implying it could serve as a preventive measure against obesity.
Collapse
Affiliation(s)
- Xintong Jiang
- College of Life Sciences and Engineering, Lanzhou University of Technology, Gansu 730050, China
| | - Xue Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Minghui Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yunzhu Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - SiHan He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Wenguang Fan
- College of Life Sciences and Engineering, Lanzhou University of Technology, Gansu 730050, China
| |
Collapse
|
16
|
Waly HSA, Abdelfattah MG, Abou Khalil NS, Ragab SMM. Role of Eruca sativa L. seeds in boosting the reproductive performance of male Japanese quails (Coturnix c. japonica). J Anim Physiol Anim Nutr (Berl) 2024; 108:527-540. [PMID: 38054786 DOI: 10.1111/jpn.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Herein we attempt to shed light on the potential improving effect of Eruca sativa seeds (ESS) on the reproductive aspects of male Japanese quails. To accomplish this objective, two groups of quails were supplemented with ESS powder at doses of 5 and 10 g/kg feed from 7 days to 140 days of age, in addition to the control group, which did not receive treatment. Forty males were reared singly in cages to evaluate sperm characters and 32 males were raised with 64 females to evaluate fertility and sperm penetrability. Sixty-six phytochemical compounds were found according to gas chromatography-mass spectrometry analysis of ESS. The most plentiful ones are 13-docosenoic acid methyl ester, 9-octadecenoic acid methyl ester, and linoleic acid methyl ester. Both 5 g/kg and 10 g/kg doses of ESS showed similar effectiveness in enhancing various reproductive parameters, including gonadal index, sperm characteristics, fertility, libido, and cloacal gland attributes. However, some aspects like sperm concentration and testosterone levels exhibited a dose-dependent response. There is no significant change in mortality rate of supplemented groups compared to the control one. ESS also caused a reduction in feed intake and an enhancement in feed conversion ratio without affecting final body weight and body weight gain. This suggests potential nutritional benefits beyond reproductive health. The low-dose-fed group showed a significant reduction in total cholesterol and malondialdehyde compared to the high-dose-fed and unfed groups. The higher dose notably increased total antioxidant capacity compared to the lower dose and control group. Despite the positive effects on male reproductive parameters, there wasn't a significant impact on hatchability percentage, indicating that while male fertility improved, it might not have directly affected the viability of the eggs. Overall, the study suggests that ESS could be a safe and promising addition to the diet of male Japanese quails to enhance their reproductive capabilities without adverse effects. The findings could have implications for poultry farming by potentially improving breeding efficiency and health outcomes in quails.
Collapse
Affiliation(s)
- Hanan S A Waly
- Laboratory of Physiology, Department of Zoology and Entomology, Faculty of Science, Assuit University, Assiut, Egypt
| | | | - Nasser S Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Basic Medical Sciences, Faculty of Physical Therapy, Merit University, Sohag, Egypt
| | - Sohair M M Ragab
- Laboratory of Physiology, Department of Zoology and Entomology, Faculty of Science, Assuit University, Assiut, Egypt
| |
Collapse
|
17
|
Zhang Q, Yang Z, Su W. Review of studies on polysaccharides, lignins and small molecular compounds from three Polygonatum Mill. (Asparagaceae) spp. in crude and processed states. Int J Biol Macromol 2024; 260:129511. [PMID: 38242391 DOI: 10.1016/j.ijbiomac.2024.129511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Since ancient times, Polygonatum Mill. (Asparagaceae) has been utilized as a medicinal and culinary resource in China. Its efficacy in treating various illnesses has been well documented. Traditional processing involves the Nine-Steam-Nine-Bask method, which results in a reduction of toxicity and enhanced effectiveness of Polygonatum. Many substances, such as polysaccharides, lignins, saponins, homoisoflavones, alkaloids, and others, have been successfully isolated from Polygonatum. This review presents the research progress on the chemical composition of three crude and processed Polygonatum, including Polygonatum sibiricum Redouté (P. sibiricum), Polygonatum kingianum Collett & Hemsl (P. kingianum), and Polygonatum cyrtonema Hua (P. cyrtonema). The review also includes the pharmacology of Polygonatum, specifically on the pharmacology of polysaccharides both before and after processing. Its objective is to provide a foundation for uncovering the significance of the processing procedure, and to facilitate the development and utilization of Polygonatum in clinical practice.
Collapse
Affiliation(s)
- Qihong Zhang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zouyue Yang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
18
|
Cheng Y, Tian S, Chen Y, Xie J, Hu X, Wang Y, Xie J, Huang H, Yang C, Si J, Yu Q. Structural characterization and in vitro fermentation properties of polysaccharides from Polygonatum cyrtonema. Int J Biol Macromol 2024; 258:128877. [PMID: 38134995 DOI: 10.1016/j.ijbiomac.2023.128877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Polysaccharides, the major active ingredient and quality control indicator of Polygomatum cyrtonema are in need of elucidation for its in vitro fermentation characteristics. This study aimed to investigate the structural characteristics of the homogeneous Polygomatum cyrtonema polysaccharide (PCP-80 %) and its effects on human intestinal bacteria and short chain fatty acids (SCFAs) production during the in vitro fermentation. The results revealed that PCP-80 % was yielded in 10.44 % and the molecular weight was identified to be 4.1 kDa. PCP-80 % exhibited a smooth, porous, irregular sheet structure and provided good thermal stability. The analysis of Gas chromatograph-mass spectrometer (GC-MS) suggested that PCP-80 % contained six glycosidic bonds, with 2,1-linked-Fruf residues accounted for a largest proportion. Nuclear magnetic resonance (NMR) provided additional evidence that the partial structure of PCP-80 % probably consists of →1)-β-D-Fruf-(2 → as the main chain, accompanied by side chains dominated by →6)-β-D-Fruf-(2→. Besides, PCP-80 % promoted the production of SCFAs and increased the relative abundance of beneficial bacteria such as Megamonas, Bifidobacterium and Phascolarctobacterium during in vitro colonic fermentation, which changed the composition of the intestinal microbiota. These findings indicated that Polygomatum cyrtonema polysaccharides were able to modulate the structure and composition of the intestinal bacteria flora and had potential probiotic properties.
Collapse
Affiliation(s)
- Yanan Cheng
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shenglan Tian
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiayan Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Hairong Huang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Chaoran Yang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jingyu Si
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
19
|
Mao Y, Pan S, Song Y, Wang W, Li N, Feng B, Zhang J. Exploring the mechanism of Jingshen Xiaoke decoction in treating T2DM mice based on network pharmacology and molecular docking. Technol Health Care 2024; 32:163-179. [PMID: 37092194 DOI: 10.3233/thc-220630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Jingshen Xiaoke decoction (JS) was prepared by studying the classic prescriptions of famous scholars in the past dynasties to prevent and treat diabetes. The related mechanism of JS against hyperlipidemia has yet to be revealed. OBJECTIVE To investigate the mechanism of action of JS in treating diabetes mellitus by using bioinformatics methods. METHODS A database was used to search the active ingredients and targets of the JS and targets for type 2 diabetes mellitus (T2DM). The protein interaction between the intersection targets, and the constructed the PPI network diagram was analyzed using the STRING database. Furthermore, the gene annotation tool DAVID was used to enrich the intersecting targets for the Gene ontology (GO) function and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway. Finally, Maestro software was used for molecular docking to verify the binding ability of the active ingredients to the core target genes. RESULTS A total of 45 active ingredients in JS were screened out corresponding to 239 effective targets, of which 64 targets were potential targets for treating T2DM. The analysis of PPI network diagram analysis revealed that the ingredients' active components are quercetin, β-sitosterol, stigmasterol, luteolin, and 7-Methoxy-2-methyl isoflavone. GO functional enrichment analysis indicated 186 biological processes (BP), 23 molecular functions (MF) and 13 cellular components (CC). KEGG pathway enrichment analysis revealed the enrichment of 59 signal pathways. The molecular docking results demonstrated that the active ingredients and core targets had a good docking affinity with a binding activity less than -7 kcal/mol. Finally, the western blotting illustrated that JS could up-regulate the liver PI3K/AKT-signaling pathway. CONCLUSION JS can regulate glucolipid metabolism, reduce the inflammatory response, improve insulin resistance and modulate the immune response through PI3K/AKT signaling pathway treating of T2DM and its complications effects.
Collapse
Affiliation(s)
- Yongpo Mao
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
- Chongqing Three Gorges Medical College, Chongqing, China
- School of Early Childhood Development, Chongqing Preschool Education College, China
| | - Shengwang Pan
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yiming Song
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chinese Medicine Health Application Technology Promotion Center in Chongqing Three Gorges Reservoir Area, Chongqing, China
| | - Ning Li
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chinese Medicine Health Application Technology Promotion Center in Chongqing Three Gorges Reservoir Area, Chongqing, China
| | - Binbin Feng
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chinese Medicine Health Application Technology Promotion Center in Chongqing Three Gorges Reservoir Area, Chongqing, China
| | - Jianhai Zhang
- Chongqing Three Gorges Medical College, Chongqing, China
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
- Chinese Medicine Health Application Technology Promotion Center in Chongqing Three Gorges Reservoir Area, Chongqing, China
| |
Collapse
|
20
|
Du C, Zuo F, Cao Y, Zang Y. Anti-diabetic effects of natural and modified 'Ganzhou' navel orange peel pectin on type 2 diabetic mice via gut microbiota. Food Funct 2023; 14:10977-10990. [PMID: 38014521 DOI: 10.1039/d3fo04118b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Pectin, a kind of dietary fiber, has attracted much attention owing to its beneficial effect on human health in recent years. In this study, the effects of both 'Ganzhou' navel orange peel pectin (GOP) and modified GOP (MGOP) on type 2 diabetes (T2DM) were investigated. The results indicated that GOP and MGOP intervention had positive effects on T2DM in C57BL/6 mice. After modification, pectin can be changed into low methoxy pectin (LMP) and the content of GalA can increase, which endow MGOP with significant effects on improving lipid metabolism (TC, TG, and LDL-C decreased by 30.46%, 50%, and 37.56%, respectively, and HDL-C increased by 56%) and OGTT, further reducing insulin resistance (insulin decreased by 74.35%). In addition, MGOP was superior to GOP in improving oxidative stress (GSH and GSH-Px increased by 52.05% and 29.08% respectively, and MDA decreased by 84.02%), inhibiting inflammation and promoting SCFA synthesis. 16S rRNA analysis showed that MGOP changed the composition of intestinal microbiota in diabetic mice, decreased the abundance of Alistipes, Helicobacter and Oscillibacter, and increased the relative abundance of Dubosiella, Akkermansiaceae, and Atopobiaceae. The phenotypes of the gut microbiome also changed accordingly, which showed that MGOP significantly inhibited the growth of Gram-negative bacteria and potential pathogenic bacteria and reversed the related complications. Taken together, our findings revealed that MGOP intake regulated lipid metabolism and oxidative stress and improved the gut health of mice, with promising effects against T2DM and related complications.
Collapse
Affiliation(s)
- Chao Du
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| | - Feng Zuo
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| | - Yang Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| | - Yanqing Zang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| |
Collapse
|
21
|
Luo M, Hu Z, Liu Z, Tian X, Chen J, Yang J, Liu L, Lin C, Li D, He Q. Methyl protodioscin reduces c-Myc to ameliorate diabetes mellitus erectile dysfunction via downregulation of AKAP12. Diabetes Res Clin Pract 2023; 206:111012. [PMID: 37967586 DOI: 10.1016/j.diabres.2023.111012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Diabetes mellitus erectile dysfunction (DMED) is one of common complications of diabetes. We aimed to investigate the potential efficacy of methyl protodioscin (MPD) in DMED and explored the underlying mechanism. METHODS Diabetic mice were induced by streptozotocin, while vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) were stimulated with high glucose. MPD was administrated in vitro and in vivo to verify its efficacy on DMED. The interaction of c-Myc and AKAP12 was determined by luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS c-Myc and AKAP12 were upregulated in penile tissues in DMED mice. In high glucose-stimulated VSMCs or VECs, MPD intervention enhanced cell viability, inhibited apoptosis, decreased c-Myc and AKAP12, as well as elevated p-eNOS Ser1177. MPD-induced apoptosis inhibition, AKAP12 reduction and p-eNOSSer1177 elevation were reversed by AKAP12 overexpression. c-Myc functioned as a positive regulator of AKAP12. Overexpression of c-Myc reversed the effects induced by MPD in vitro, which was neutralized by AKAP12 silencing. MPD ameliorated erectile function in diabetic mice via inhibiting AKAP12. CONCLUSIONS MPD improved erectile dysfunction in streptozotocin-caused diabetic mice by regulating c-Myc/AKAP12 pathway, indicating that MPD could be developed as a promising natural agent for the treatment of DMED.
Collapse
Affiliation(s)
- Min Luo
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Zongren Hu
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, PR China
| | - Ziyu Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, PR China
| | - Xiaoying Tian
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China
| | - Jisong Chen
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China
| | - Jichang Yang
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Gooeto Internet-Based Hospital, Changsha 410217, Hunan Province, PR China
| | - Lumei Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, PR China
| | - Chengxiong Lin
- Huairen Hospital of Traditional Chinese Medicine, Huaihua 418099, Hunan Province, PR China
| | - Dian Li
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, PR China
| | - Qinghu He
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; Department of Rehabilitation Medicine and Health Care, Hunan University of Medicine, Huaihua 418000, Hunan Province, PR China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, PR China.
| |
Collapse
|
22
|
Wang X, Sun R, Liu R, Liu R, Sui W, Geng J, Zhu Q, Wu T, Zhang M. Sodium alginate-sodium hyaluronate-hydrolyzed silk for microencapsulation and sustained release of kidney tea saponin: The regulation of human intestinal flora in vitro. Int J Biol Macromol 2023; 249:126117. [PMID: 37541481 DOI: 10.1016/j.ijbiomac.2023.126117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Kidney tea saponin (KTS) exhibits considerable efficacy in lowering glucose levels; however, it does not have widespread applications owing to its low intestinal utilization. Therefore, in the present study, we prepared sodium alginate (SA)/sodium hyaluronate (HA)/hydrolyzed silk (SF) gel beads for the effective encapsulation and targeted intestinal release of KTS. The gel beads exhibited an encapsulation rate of 90.67 % ± 0.27 % and a loading capacity of 3.11 ± 0.21 mg/mL; furthermore, the release rate of KTS was 95.46 % ± 0.02 % after 8 h of simulated digestion. Fourier transform infrared spectroscopy revealed that the hydroxyl in SA/HA/SF-KTS was shifted toward the strong peak; this was related to KTS encapsulation. Furthermore, scanning electron microscopy revealed that the gel bead space network facilitates KTS encapsulation. In addition, the ability of KTS and the gel beads to inhibit α-amylase (IC50 = 0.93 and 1.37 mg/mL, respectively) and α-glucosidase enzymes (IC50 = 1.17 and 0.93 mg/mL, respectively) was investigated. In vitro colonic fermentation experiments revealed that KTS increased the abundance of Firmicutes/Bacteroidetes and butyric acid-producing bacteria. The study showed that the developed gel-loading system plays a vital role in delivering bioactive substances, achieving slow release, and increasing the abundance and diversity of intestinal flora.
Collapse
Affiliation(s)
- Xintong Wang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ronghao Sun
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ran Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jieting Geng
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
23
|
Zhao L, Xu C, Zhou W, Li Y, Xie Y, Hu H, Wang Z. Polygonati Rhizoma with the homology of medicine and food: A review of ethnopharmacology, botany, phytochemistry, pharmacology and applications. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116296. [PMID: 36841378 DOI: 10.1016/j.jep.2023.116296] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonati Rhizoma (PR), which contains rich national cultural connotations, is a traditional Chinese medicine with homology of medicine and food. It has been used for a long time as a tonic in China's multi-ethnic medical system, and is also used to treat diseases such as premature graying hair, deficiency of blood and essence, diabetes, hypertension, etc. Meanwhile, PR is often used as food in China, India, South Korea and other Asian countries, which can satisfy hunger and provide many health benefits. AIM OF THE REVIEW This paper systematically reviewed the ethnopharmacology, botany, phytochemistry, pharmacology and related applications research of PR, and provided a reference for the comprehensive applications of PR, including basic research, product development and clinical applications. This paper also refined the national application characteristics of PR, such as rich plant resources, special chemical components and anti-hidden hungry, which laid a foundation for its high value and high connotation development in the future. MATERIALS AND METHODS The literature information was collected systematically from the electronic scientific databases, including PubMed, Science Direct, Google Scholar, Web of Science, Geen Medical, China National Knowledge Infrastructure, as well as other literature sources, such as classic books of herbal medicine. RESULTS A comprehensive analysis of the above literature confirmed that PR has been used in the ethnic medicine system of Asian countries such as China for thousands of years. In this paper, 12 species including official species that can be used as PR are summarized, which provide rich plant resources for PR. The chemical components in PR are divided into nutritional components and active components. The former not only contains non-starch polysaccharides and fructo-oligosaccharides, which account for about 50% in PR and are recognized as high-quality diet in the world, but also contains inorganic elements and mineral elements. And a total of 199 kinds active ingredients, including saponins, flavonoids, alkaloids, etc., were sorted out by us. The above ingredients make PR have a special property of anti-hidden hunger. Studies have shown that PR has a wide range of pharmacological activities, such as immune regulation, blood glucose regulation, lipid-lowering, antioxidant, anti-tumor, antibacterial, etc. It has been widely used in medicine, food, cosmetics, gardens and other fields. CONCLUSIONS PR, as a classic medicinal material of the same origin, is widely used in the traditional ethnic medicine system. It contains abundant potential plant resources, chemical components and pharmacological activities. This paper also suggests that PR with high application value in food industry, has the potential to become a high-quality coarse grain. Exploring the way of grain and industrialization of PR is beneficial to fully develop the economic value of PR.
Collapse
Affiliation(s)
- Linxian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Weiling Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
24
|
Wang W, Zheng Z, Chen J, Duan T, He H, Tang S. Characterization of metabolite landscape distinguishes wild from cultivated Polygonati Rhizomes by UHPLC-Q-TOF-MS untargeted metabolomics. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
25
|
Zhang Y, Hao R, Chen J, Li S, Huang K, Cao H, Farag MA, Battino M, Daglia M, Capanoglu E, Zhang F, Sun Q, Xiao J, Sun Z, Guan X. Health benefits of saponins and its mechanisms: perspectives from absorption, metabolism, and interaction with gut. Crit Rev Food Sci Nutr 2023; 64:9311-9332. [PMID: 37216483 DOI: 10.1080/10408398.2023.2212063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Saponins, consisting of sapogenins as their aglycones and carbohydrate chains, are widely found in plants and some marine organisms. Due to the complexity of the structure of saponins, involving different types of sapogenins and sugar moieties, investigation of their absorption and metabolism is limited, which further hinders the explanation of their bioactivities. Large molecular weight and complex structures limit the direct absorption of saponins rendering their low bioavailability. As such, their major modes of action may be due to interaction with the gastrointestinal environment, such as enzymes and nutrients, and interaction with the gut microbiota. Many studies have reported the interaction between saponins and gut microbiota, that is, the effects of saponins on changing the composition of gut microbiota, and gut microbiota playing an indispensable role in the biotransformation of saponins into sapogenins. However, the metabolic routes of saponins by gut microbiota and their mutual interactions are still sparse. Thus, this review summarizes the chemistry, absorption, and metabolic pathways of saponins, as well as their interactions with gut microbiota and impacts on gut health, to better understand how saponins exert their health-promoting functions.
Collapse
Affiliation(s)
- Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Ruojie Hao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Junda Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, China
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maria Daglia
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, China
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Esra Capanoglu
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Fan Zhang
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Qiqi Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Zhenliang Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| |
Collapse
|
26
|
Zhou W, Liu P, Xu W, Ran L, Yan Y, Lu L, Zeng X, Cao Y, Mi J. A purified fraction of polysaccharides from the fruits of Lycium barbarum L. improves glucose homeostasis and intestinal barrier function in high-fat diet-fed mice. Food Funct 2023. [PMID: 37203380 DOI: 10.1039/d3fo00262d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
High-fat diet (HFD) consumption can induce intestinal barrier dysfunction and disrupt glucose metabolism. Our previous studies have demonstrated that polysaccharides obtained from the fruits of Lycium barbarum L. (LBPs) could suppress acute experimental diabetes as well as colitis in mice. In the present study, the modulating effects of a purified fraction of LBPs, named LBPs-4, on glucose homeostasis and intestinal barrier function in mice fed with a HFD were investigated. Our results indicated that the oral administration of LBP-4 (200 mg per kg per day) improved hyperglycemia, glucose intolerance, insulin resistance and islet β-cell hyperplasia in HFD-fed mice. Moreover, LBPs-4 intervention enhanced the intestinal barrier integrity by increasing the expression levels of zonula occludens 1 and claudin-1 and the number of goblet cells in the colon. LBPs-4 also modulated the composition of gut microbiota by increasing the relative abundances of butyrate producer Allobaculum and acetate producer Romboutsia. The results of fecal transplantation experiments, transferring of microbiota from LBPs-4-fed donor mice to HFD-fed recipient mice, validated the cause-effect relationship between LBPs-4-evoked changes in the gut microbiota and improvement of glucose homeostasis and intestinal barrier function. Collectively, these findings suggested that LBPs-4 might be developed as promising prebiotics to improve glucose metabolism and gut health.
Collapse
Affiliation(s)
- Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Peiyun Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Linwu Ran
- Laboratory Animal Center of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yamei Yan
- Institute of Wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan, 750004, Ningxia, China.
| | - Lu Lu
- Institute of Wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan, 750004, Ningxia, China.
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Youlong Cao
- Institute of Wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan, 750004, Ningxia, China.
| | - Jia Mi
- Institute of Wolfberry Engineering and Technology, Ningxia Academy of Agriculture and Forestry, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
27
|
Li M, Cheng D, Peng C, Huang Y, Geng J, Huang G, Wang T, Xu A. Therapeutic mechanisms of the medicine and food homology formula Xiao-Ke-Yin on glucolipid metabolic dysfunction revealed by transcriptomics, metabolomics and microbiomics in mice. Chin Med 2023; 18:57. [PMID: 37202792 DOI: 10.1186/s13020-023-00752-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND In recent decades, the prevalence of metabolic diseases, particularly diabetes, hyperlipidemia, obesity, and non-alcoholic fatty liver disease (NAFLD), has increased dramatically, causing great public health and economic burdens worldwide. Traditional Chinese medicine (TCM) serves as an effective therapeutic choice. Xiao-Ke-Yin (XKY) is a medicine and food homology TCM formula consisting of nine "medicine and food homology" herbs and is used to ameliorate metabolic diseases, such as insulin resistance, diabetes, hyperlipidemia and NAFLD. However, despite its therapeutic potential in metabolic disorders, the underlying mechanisms of this TCM remain unclear. This study aimed to evaluate the therapeutic effectiveness of XKY on glucolipid metabolism dysfunction and explore the potential mechanisms in db/db mice. METHODS To verify the effects of XKY, db/db mice were treated with different concentrations of XKY (5.2, 2.6 and 1.3 g/kg/d) and metformin (0.2 g/kg/d, a hypoglycemic positive control) for 6 weeks, respectively. During this study, we detected the body weight (BW) and fasting blood glucose (FBG), oral glucose tolerance test (OGTT), insulin tolerance test (ITT), daily food intake and water intake. At the end of the animal experiment, blood samples, feces, liver and intestinal tissue of mice in all groups were collected. The potential mechanisms were investigated by using hepatic RNA sequencing, 16 S rRNA sequencing of the gut microbiota and metabolomics analysis. RESULTS XKY efficiently mitigated hyperglycemia, IR, hyperlipidemia, inflammation and hepatic pathological injury in a dose dependent manner. Mechanistically, hepatic transcriptomic analysis showed that XKY treatment significantly reversed the upregulated cholesterol biosynthesis which was further confirmed by RT-qPCR. Additionally, XKY administration maintained intestinal epithelial homeostasis, modulated gut microbiota dysbiosis, and regulated its metabolites. In particular, XKY decreased secondary bile acid producing bacteria (Clostridia and Lachnospircaeae) and lowered fecal secondary bile acid (lithocholic acid (LCA) and deoxycholic acid (DCA)) levels to promote hepatic bile acid synthesis by inhibiting the LCA/DCA-FXR-FGF15 signalling pathway. Furthermore, XKY regulated amino acid metabolism including arginine biosynthesis, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and tryptophan metabolism likely by increasing Bacilli, Lactobacillaceae and Lactobacillus, and decreasing Clostridia, Lachnospircaeae, Tannerellaceae and Parabacteroides abundances. CONCLUSION Taken together, our findings demonstrate that XKY is a promising "medicine food homology" formula for ameliorating glucolipid metabolism and reveal that the therapeutic effects of XKY may due to its downregulation of hepatic cholesterol biosynthesis and modulation of the dysbiosis of the gut microbiota and metabolites.
Collapse
Affiliation(s)
- Mei Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ding Cheng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chuan Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
28
|
Zang Y, Du C, Xin R, Cao Y, Zuo F. Anti-diabetic effect of modified 'Guanximiyou' pummelo peel pectin on type 2 diabetic mice via gut microbiota. Int J Biol Macromol 2023; 242:124865. [PMID: 37207756 DOI: 10.1016/j.ijbiomac.2023.124865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
This study aimed to investigate the mechanisms of nature and modified 'Guanximiyou' pummelo peel pectin (GGP and MGGP) in alleviating T2DM through in vitro and in vivo. After modification, pectin was transformed from high methoxy pectin (HMP) to low methoxy pectin (LMP), and the content of galacturonic acid was increased. These made MGGP have stronger antioxidant capacity and better inhibition effect on corn starch digestion in vitro. In vivo experiments have shown that both GGP and MGGP inhibited the development of diabetes after 4 weeks of ingestion. However, MGGP can more effectively reduce blood glucose and regulate lipid metabolism, and has significant antioxidant capacity and the ability to promote SCFAs secretion. In addition, 16S rRNA analysis showed that MGGP changed the composition of intestinal microbiota in diabetic mice, decreased the abundance of Proteobacteria, and increased the relative abundance of Akkermansia, Lactobacillus, Oscillospirales and Ruminococcaceae. The phenotypes of the gut microbiome also changed accordingly, indicating that MGGP can inhibit the growth of pathogenic bacteria, alleviate intestinal functional metabolic disorders and reverse the potential risk of related complications. Altogether, our findings demonstrate that MGGP, as a dietary polysaccharide, may inhibit the development of diabetes by reversing the imbalance of gut microbiota.
Collapse
Affiliation(s)
- Yanqing Zang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Chao Du
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Ru Xin
- Heilongjiang Nursing College, Daqing, Heilongjiang 150086, China
| | - Yang Cao
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| | - Feng Zuo
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
29
|
Bioactive compounds from Polygonatum genus as anti-diabetic agents with future perspectives. Food Chem 2023; 408:135183. [PMID: 36566543 DOI: 10.1016/j.foodchem.2022.135183] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is one of the most serious health problems worldwide. Species in the genus Polygonatum are traditional food and medicinal plants, which play an important role in controlling blood glucose. In this reveiw, we systematically summarized the traditional and modern applications of the genus Polygonatum in DM, focused on the material bases of polysaccharides, flavonoids and saponins. We highlighted their mechanisms of action in preventing obese diabetes, improving insulin resistance, promoting insulin secretion, regulating intestinal microecology, inhibiting advanced glycation end products (AGEs) accumulation, suppressing carbohydrate digestion and obsorption and modulating gluconeogenesis. Based on the safety and efficacy of this 'medicinal food' and its utility in the prevention and treatment of diabetes, we proposed a research and development program that includs diet design (supplementary food), medical nutrition therapy and new drugs, which could provide new pathways for the use of natural plants in prevention and treatment of DM.
Collapse
|
30
|
Fan H, Chen M, Dai T, Deng L, Liu C, Zhou W, Chen J. Phenolic compounds profile of Amomum tsaoko Crevost et Lemaire and their antioxidant and hypoglycemic potential. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
31
|
Liao S, Fan Z, Huang X, Ma Y, Huang F, Guo Y, Chen T, Wang P, Chen Z, Yang M, Yang T, Xie J, Si J, Liu J. Variations in the morphological and chemical composition of the rhizomes of Polygonatum species based on a common garden experiment. Food Chem X 2023; 17:100585. [PMID: 36824147 PMCID: PMC9941356 DOI: 10.1016/j.fochx.2023.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Polygonatum species have great potential in fighting chronic and hidden hunger. In this study, five Polygonatum species collected from different populations were cultivated in a common garden for 4 years. The species mainly differed in yield, saponin and polysaccharide contents, stem diameter, leaf width, inflorescence length, and floret inflorescence length. P. cyrtonema (PC) provides high-quality yield when planted in Zhejiang, with output as high as 7.5 tons per hectare and a promising breeding potential. Moreover, stem diameter can be used as an indicator of the harvest in the screening of varieties. In addition, the formation of plant genetic traits from different provenances is affected by the climatic factors of the origin. Furthermore, near-infrared spectroscopy combined with chemometrics for polysaccharide and saponin quantitation provides a rapid assessment of PC quality. Our findings provide a scientific basis for the development and sustainable utilization of PC as a high-yielding and high-quality forest crop.
Collapse
Affiliation(s)
- Shuhui Liao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zhiwei Fan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
- Guizhou Botanical Garden, Guiyang, Guizhou 550004, China
| | - Xiujing Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yuru Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Fangyan Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yuntao Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Tianqi Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Pan Wang
- Pan'an Traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang 322300, China
| | - Zilin Chen
- Pan'an Traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang 322300, China
| | - Meisen Yang
- Xiushan Traditional Chinese Medicine Industry Center, Chongqing 409900, China
| | - Tongguang Yang
- Xiushan Traditional Chinese Medicine Industry Center, Chongqing 409900, China
- Xiushan Jiawo Agricultural Development Co., Ltd, Chongqing 409902, China
| | - Jianqiu Xie
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang 323000, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
32
|
Luo J, Chen Z, Guo Q, Chai Y, Bao Y. Effects of saponins isolated from Polygonatum sibiricum on H 2O 2-induced oxidative damage in RIN-m5F cells and its protective effect on pancreas. Food Chem Toxicol 2023; 175:113724. [PMID: 36935075 DOI: 10.1016/j.fct.2023.113724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
The damage of islet cells caused by oxidative stress is closely related to diabetes. The aim of this study is to investigate the protective effect of saponins isolated from polygonatum sibiricum (PSS) on pancreas injury by using in vitro and in vivo models. The oxidative stress model of RIN-m5F cells induced by H2O2 was established. We found that PSS could decrease the apoptosis of RIN-m5F cells under oxidative stress. After PSS treatment, ROS and MDA levels in cells significantly decreased. Moreover, the levels of SOD and GSH were significantly increased. PSS could increase the insulin secretion level of cells under oxidative stress. The expression level of intracellular Bcl-2 increased, and the expression levels of Bax, caspase-3, caspase-8, and caspase-9 decreased significantly. In addition, the type 2 diabetes mouse model was established. The results showed that PSS had a protective effect on the injury of the pancreas in T2DM mice. PSS can relieve oxidative stress and high glucose-mediated pancreas cytotoxicity. PSS may be a promising candidate for diabetes intervention and functional foods.
Collapse
Affiliation(s)
- Jiayuan Luo
- School of Forestry, Northeast Forestry University, Harbin, 150040, PR China
| | - Zefu Chen
- School of Forestry, Northeast Forestry University, Harbin, 150040, PR China
| | - Qingqi Guo
- School of Forestry, Northeast Forestry University, Harbin, 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, 150040, PR China
| | - Yangyang Chai
- School of Forestry, Northeast Forestry University, Harbin, 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, 150040, PR China.
| | - Yihong Bao
- School of Forestry, Northeast Forestry University, Harbin, 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin, 150040, PR China
| |
Collapse
|
33
|
Comprehensive in silico analysis of the probiotics, and preparation of compound probiotics-Polygonatum sibiricum saponin with hypoglycemic properties. Food Chem 2023; 404:134569. [DOI: 10.1016/j.foodchem.2022.134569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
34
|
In vitro hypoglycemic and antioxidant activities of steamed Polygonatum cyrtonema Hua with various steaming degrees: Relationship with homoisoflavonoids. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
35
|
Chen AS, Liu DH, Hou HN, Yao JN, Xiao SC, Ma XR, Li PZ, Cao Q, Liu XK, Zhou ZQ, Wang P. Dietary pattern interfered with the impacts of pesticide exposure by regulating the bioavailability and gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159936. [PMID: 36336046 DOI: 10.1016/j.scitotenv.2022.159936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 05/15/2023]
Abstract
Dietary intake is an essential way for pesticides to enter the human body. The effects of dietary pattern on the risks of pesticides and what diet can reduce the damage are largely unknown. Here, it is found that Mediterranean diet and Vegetarian diet could alleviate insulin resistance and obesity induced by chlorpyrifos, while Western diet could aggravate that. Gut microbiota and chlorpyrifos bioavailability mediated by the diets were involved in these effects. Both the dietary pattern and chlorpyrifos could change the composition of gut microbiota. Chlorpyrifos caused gut dysbacteriosis which was an important reason for the induced metabolic syndrome. Mediterranean diet and Vegetarian diet could maintain gut microbiota homeostasis and increase intestinal bacteria producing short-chain fatty acids, repair the gut microbiota and intestinal barrier damaged by chlorpyrifos. High dietary fat intake increased the bioavailability of chlorpyrifos, which aggravated the gut dysbacteriosis and destruction of intestinal integrity. Thus, the amount of endotoxin entering the blood increased and caused low-grade inflammation, which was also an important pathway of metabolic syndrome. The results suggested that although it was almost impossible to avoid the exposure to pesticides in modern life, healthy diets could regulate beneficial gut microbiota and alleviate the risk of pesticide exposure.
Collapse
Affiliation(s)
- Ai Song Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Dong Hui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Hao Nan Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Jia Ning Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Shou Chun Xiao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xiao Ran Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Pei Ze Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Qian Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xue Ke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Zhi Qiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China.
| |
Collapse
|
36
|
Liu J, Chen C, Tu W, Liu W, Zhang Y. Analysis of the microscopic interactions between processed Polygonatum cyrtonema polysaccharides and water. J Mol Graph Model 2023; 118:108350. [PMID: 36194990 DOI: 10.1016/j.jmgm.2022.108350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
The dissolution and microscopic interactions of processed Polygonatum cyrtonema polysaccharides in water are extremely important because they strongly influence the process to extract these polysaccharides from water. In this paper, molecular dynamics simulation methods were used to analyse the influence of extraction temperature, concentration and molecular weight on the radial distribution function (RDF), mean square displacement (MSD), diffusion coefficient (D), radius of gyration (Rg), and microstructure of processed Polygonatum cyrtonema polysaccharides in water as well as the intrinsic viscosity (η), hydrogen bond characteristics and microscopic interactions in the solutions. The research results showed that the extraction temperature, concentration and molecular weight of the polysaccharides had important effects on the RDF, MSD, D, Rg, η, hydrogen bond characteristics and the microstructure of the polysaccharide molecules, but there were some major differences. The order of the influence of the factors affecting the dissolution of polysaccharides in water was temperature > concentration > molecular weight. Extraction temperature, material fluid ratio and molecular weight had greater influence on the fluidity and dissolution state of the polysaccharides in water. As the solute concentration and molecular weight increased, hydrogen bonds between polysaccharides and water inhibited their dissolution and diffusion. Properly increasing the temperature, reducing the concentration and selecting low molecular weight polysaccharides enhanced the dissolution and diffusion of the polysaccharides in the solution system. Molecular weight was the main factor affecting the η of the polysaccharide solutions. These results can provide theoretical guidance for the extraction or tea brewing process of Polygonatum cyrtonema polysaccharides in future work.
Collapse
Affiliation(s)
- Jun Liu
- School of Resources and Environment, Nanchang University, Nanchang, 330031, Jiangxi, China.
| | - Changzhou Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wenfeng Tu
- School of Resources and Environment, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Wei Liu
- Jiangxi Shanbaotang Food Technology Co., Ltd., Nanchang, 330044, Jiangxi, China
| | - Yanru Zhang
- School of Material Science and Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| |
Collapse
|
37
|
Chen Y, Zhao Y, Shen X, Zhao F, Qi J, Zhong Z, Li D. Bifidobacterium lactis Probio-M8 ameliorated the symptoms of type 2 diabetes mellitus mice by changing ileum FXR-CYP7A1. Open Med (Wars) 2022. [DOI: 10.1515/med-2022-0576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
The aim of this study was to investigate the effect of Bifidobacterium lactis Probio-M8 on glucolipid metabolism and gut microbiota (GM) composition in type 2 diabetes mellitus (T2DM) mice. The glucolipid metabolic profiles were analyzed. The 16S rRNA gene sequencing was employed to investigate GM. The levels of farnesyl X receptor (FXR) and cytochrome p450 7A1 (CYP7A1) were detected by quantitative polymerase chain reaction and western blot assays. The total bile acids (TBAs), ceramide (CE), glucagon-like peptide-1 (GLP-1), and fibroblast growth factor (FGF)-15 were also detected. The morphological features of liver and pancreas were also analyzed. Compared with the model group, Probio-M8 restored body weight, food intake and water intake, as well as improved hyperglycemia symptoms, serum glucolipid parameters, and the composition of intestinal microbes in T2DM diabetic mice. Moreover, the reduced level of FXR and the increased level of CYP7A1 in T2DM mice were reversed by Probio-M8 treatment. The increased levels of TBA and CE and the reduced levels of GLP-1 and FGF-15 in T2DM mice were altered after Probio-M8 stimulation. Besides, the altered morphology of liver and ileum in T2DM mice was alleviated by Probio-M8 treatment. Taken together, we suggested that the symptoms of T2DM could be ameliorated by Probio-M8 in T2DM mice.
Collapse
Affiliation(s)
- Ye Chen
- Department of Endocrinology, Inner Mongolia People’s Hospital , Hohhot , 010017, Inner Mongolia , P. R. China
| | - Yaxin Zhao
- Department of Endocrinology, Inner Mongolia People’s Hospital , Hohhot , 010017, Inner Mongolia , P. R. China
| | - Xin Shen
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
| | - Feiyan Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
| | - Jinxin Qi
- Department of Rheumatology and Immunology, Bayannur Hospital , Bayannur , 015000, Inner Mongolia , P. R. China
| | - Zhi Zhong
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University , Hohhot , 010018, Inner Mongolia , P. R. China
| | - Dongmei Li
- Department of Endocrinology, Inner Mongolia People’s Hospital , Hohhot , 010017, Inner Mongolia , P. R. China
| |
Collapse
|
38
|
Li Y, Qin C, Dong L, Zhang X, Wu Z, Liu L, Yang J, Liu L. Whole grain benefit: synergistic effect of oat phenolic compounds and β-glucan on hyperlipidemia via gut microbiota in high-fat-diet mice. Food Funct 2022; 13:12686-12696. [PMID: 36398593 DOI: 10.1039/d2fo01746f] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Increasing evidence has confirmed that whole grain oats are effective in regulating hyperlipidemia. However, which specific ingredient is crucial remains unclear. This study focused on which whole grain components, oat phenolic compounds (OPC) or oat β-glucan (OBG), can regulate lipid metabolism and gut microbiota. The experiment unveiled that OPC and/or OBG not only reduced the body weight and fasting blood glucose (FBG) but also regulated serum and hepatic lipid levels in high-fat-diet (HFD) fed mice. There was no significant difference in the regulatory effects of OPC and OBG (p > 0.05). The combination of OPC and OBG (OPC + OBG) significantly decreased the body weight (p < 0.01) and reduced the blood glucose (p < 0.01) and lipid profile levels (p < 0.01). The real-time quantitative PCR (RT-qPCR) study revealed that OPC + OBG significantly altered mRNA expression related to lipid metabolism. Histopathological analysis showed that OPC + OBG improved liver lipid deposition as well as liver oxidative stress (p < 0.05). In addition, OPC + OBG combination regulated the gut microbiota community phenotype and increased probiotics. OPC + OBG significantly increased the abundance of Bacteroidetes and reduced the abundance of Firmicutes (p < 0.05) compared with the OPC and OBG fed mice. In conclusion, OPC + OBG has a synergistic effect in alleviating hyperlipidemia via lipid metabolism and gut microbiota composition. This finding also provided a potential justification for the advantages of whole grains in preventing hyperlipidemia.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| | - Chuan Qin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| | - Xin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| | - Lingyi Liu
- Department of food science and technology, University of Lincoln, Nebraska, USA
| | - Junsi Yang
- Department of food science and technology, University of Lincoln, Nebraska, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
39
|
Chen Z, Luo J, Jia M, Chai Y, Bao Y. Polygonatum sibiricum saponin Exerts Beneficial Hypoglycemic Effects in Type 2 Diabetes Mice by Improving Hepatic Insulin Resistance and Glycogen Synthesis-Related Proteins. Nutrients 2022; 14:5222. [PMID: 36558381 PMCID: PMC9786127 DOI: 10.3390/nu14245222] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a systemic metabolic disorder characterized by insulin deficiency and insulin resistance. Recently, it has become a significant threat to public health. Polygonatum sibiricum saponin (PSS) has potential hypoglycemic effects, but its specific mechanism needs further study. In this study, PSS significantly decreased the level of blood glucose, water intake, and the organ index in diabetic mice. Meanwhile, PSS effectively reduced the content of total triglyceride (TG), total cholesterol (TCHO), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the blood, and increased the content of high-density lipoprotein cholesterol (HDL-C). This suggests that PSS could reduce the content of blood lipids and initially improve the damage of hepatocytes. We found that PSS alleviated hepatic insulin resistance, repaired islet beta cells, and enabled insulin to play its biological role normally. It also improved oral glucose tolerance and abated serum lipopolysaccharide (LPS) and glycosylated hemoglobin (HbA1c) levels in T2DM mice. Furthermore, studies have found that PSS increased the content of phosphorylated protein kinase B (AKT), thereby promoting the effect of glucose transporter 4 (GLUT-4), and activating glycogen synthase kinase 3beta (GSK-3β) and glycogen synthase (GS) proteins to promote hepatic glycogen synthesis. Finally, we found that PSS could promote the growth of beneficial bacteria such as Bifidobacterium and Lactobacillus, reduce the growth of harmful bacteria such as Enterococcus and Enterobacter, and preliminarily improve the composition of important bacteria in the intestine. These studies indicate that PSS has an excellent hypoglycemic effect, which provides a potential new treatment for T2DM and guidance for more in-depth research.
Collapse
Affiliation(s)
- Zefu Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jiayuan Luo
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Mingjie Jia
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yangyang Chai
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| | - Yihong Bao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
40
|
Tang J, Liang Q, Ren X, Raza H, Ma H. Insights into ultrasound-induced starch-lipid complexes to understand physicochemical and nutritional interventions. Int J Biol Macromol 2022; 222:950-960. [DOI: 10.1016/j.ijbiomac.2022.09.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
|
41
|
Comparative Study of the Phytochemical Profiles of the Rhizomes of Cultivated and Wild-Grown Polygonatum sibiricum. SEPARATIONS 2022. [DOI: 10.3390/separations9120398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The rhizome of Polygonatum sibiricum is a traditional Chinese medicine material and also a popular functional food consumed in China. Due to the increasing demand and overexploitation, the use of the cultivated plant is growing rapidly. However, the difference in phytochemical profile and health benefit between the cultivated and wild-grown P. sibiricum has not been revealed yet. The objectives of this study are to compare the phytochemical profiles of two types of P. sibiricum, i.e., the cultivated and the wild-grown types, by using UHPLC-Q-Orbitrap-MS based untargeted metabolomics approach. We tentatively identified 190 phytochemicals belonging to alkaloids, flavonoids, phenolic acids, and terpenoids from both two types of samples. In general, there is distinctive difference in phytochemical profiles between these two types of samples. Specifically, 33 phytochemicals showed significant differences. Of these phytochemicals, 22 compounds, such as laetanine, p-coumaroyl-beta-D-glucose, geniposide, medicagenic acid, were significantly higher in cultivated type; 11 compounds, such as vicenin-2, kaempferol 7-neohesperidoside, vanillic acid, and obacunone, were significantly higher in wild-grown type samples. This study will expand our knowledge regarding the cultivated of P. sibiricum and facilitate its further application in pharmaceutical and food industries.
Collapse
|
42
|
Hypoglycemic Activity of Self-Assembled Gellan Gum-Soybean Isolate Composite Hydrogel-Embedded Active Substance-Saponin. Foods 2022; 11:foods11223729. [PMID: 36429321 PMCID: PMC9689565 DOI: 10.3390/foods11223729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
In order to avoid hemolysis caused by direct dietary of kidney tea saponin, complex gels based on gellan gum (GG) and soybean isolate protein (SPI) loaded with saponin were created in the present study by using a self-assembly technique. Studies were conducted on the rheological characteristics, encapsulation effectiveness, molecular structure, microstructure, and hypoglycemic activity of GG/SPI-saponin gels. Increasing the concentration of SPI helped to enhance the strength and energy storage modulus (G') of the gels, and the incorporation of high acylated saponin allowed the whole gel to undergo sol-gel interconversion. The encapsulation efficiency showed that GG/SPI-saponin was 84.52 ± 0.78% for saponin. Microstructural analysis results suggested that GG and SPI were bound by hydrogen bonds. The in vitro digestion results also indicated that saponin could be well retained in the stomach and subsequently released slowly in the intestine. In addition, the in vitro hypoglycemic activity results showed that the IC50 of encapsulated saponin against α-glucosidase and α-amylase were at 2.4790 mg/mL and 1.4317 mg/mL, respectively, and may be used to replace acarbose for hypoglycemia.
Collapse
|
43
|
Su J, Wang Y, Yan M, He Z, Zhou Y, Xu J, Li B, Xu W, Yu J, Chen S, Lv G. The beneficial effects of Polygonatum sibiricum Red. superfine powder on metabolic hypertensive rats via gut-derived LPS/TLR4 pathway inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154404. [PMID: 36075182 DOI: 10.1016/j.phymed.2022.154404] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Metabolic hypertension (MH) is characterized by elevated blood pressure accompanied by metabolic abnormalities, with the gut-derived lipopolysaccharide/toll like receptor 4 (LPS/TLR4) pathway an important triggering mechanism. The conventional Chinese plant Polygonatum sibiricum Red. is traditionally used as a medicinal and edible food source. Currently, several studies have examined its anti-obesity and anti-diabetic actions, with potential roles for MH treatment; however, specific P. sibiricum Red. roles in MH and associated mechanisms remain unclear. OBJECTIVES Our purpose was to identify the effects and mechanisms of P. sibiricum Red. superfine powder (PSP) in a MH rat model triggered by high sugar and high fat compounds in an excessive alcohol diet (ACHSFDs). METHODS A MH rat model was induced by ACHSFDs, and PSP was administered daily at 0.5 and 1.0 g/kg doses, respectively. Firstly, the effects of PSP on MH were assessed using blood pressure, serum lipid, and lipid deposition assays in the liver. Changes in intestinal flora were detected by high-throughput 16S rRNA sequencing, while metabolite short-chain fatty acids (SCFAs) and LPS levels were quantified by gas chromatography (GC) and enzyme-linked immunosorbent assay (ELISA), respectively. Hematoxylin & eosin (H&E) staining and transmission electron microscopy (TEM) were performed to evaluate histopathological changes in the rat colon. d-lactic acid (d-LA) levels and tight junction proteins (TJPs) expression were also measured to assess intestinal barrier function. Also, aortic endothelial microstructures, serum endothelin 1 (ET-1), and nitric oxide (NO) levels were investigated to determine vascular endothelial function. Finally, the TLR4/MyD88 signaling pathway in the aorta and gut was evaluated by western blotting, immunohistochemistry (IHC), and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Blood pressure and blood lipid metabolism disorders induced by ACHSFDs in MH rats were improved by PSP administration. Intestinal flora analyses revealed decreased SCFAs and LPS levels following PSP administration, which was accompanied by increased Streptococcus species levels and decreased Desulfobacter and Desulfovibrio species levels. PSP increased SCFAs levels, and the expression of SCFAs receptors GPCR41 and GPCR43 in the colon. Meanwhile, the expression of tight junction proteins (TJPs) such as Claudin-1, occludin were upregulated in the ileum and colon, while TLR4 and MyD88 were downregulated, thereby strengthening intestinal barrier integrity and reducing serum LPS levels. Additionally, PSP treatment improved vascular endothelial function by inhibiting the TLR4/MyD88 pathway in vessels, improving vascular endothelial cell shedding, and regulating the NO and ET-1 balance. CONCLUSIONS We demonstrated the beneficial effects and potential mechanisms of PSP in our MH rat model. Based on gut microbiota structure modulation and intestinal barrier improvements, PSP inhibited LPS-induced vascular TLR4/MyD88 signaling activation to improve vascular endothelial function, which in turn reduced blood pressure. Our study provides valuable insights on PSP therapy for MH.
Collapse
Affiliation(s)
- Jie Su
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yajun Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiqiu Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziwen He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqing Zhou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Wanfeng Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Jingjing Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.
| | - Guiyuan Lv
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
44
|
Liu Y, Hu X, Zheng W, Zhang L, Gui L, Liang G, Zhang Y, Hu L, Li X, Zhong Y, Su T, Liu X, Cheng J, Gong M. Action mechanism of hypoglycemic principle 9-(R)-HODE isolated from cortex lycii based on a metabolomics approach. Front Pharmacol 2022; 13:1011608. [PMID: 36339561 PMCID: PMC9633664 DOI: 10.3389/fphar.2022.1011608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
The 9-(R)-HODE is an active compound isolated from cortex lycii that showed significant hypoglycemic effects in our previous in vitro study. In this study, 9-(R)-HODE’s in vivo hypoglycemic activity and effect on alleviating diabetic complications, together with its molecular mechanism, was investigated using a metabolomics approach. The monitored regulation on dynamic fasting blood glucose, postprandial glucose, body weight, biochemical parameters and histopathological analysis confirmed the hypoglycemic activity and attenuation effect, i.e., renal lesions, of 9-(R)-HODE. Subsequent metabolomic studies indicated that 9-(R)-HODE induced metabolomic alterations primarily by affecting the levels of amino acids, organic acids, alcohols and amines related to amino acid metabolism, glucose metabolism and energy metabolism. By mediating the related metabolism or single molecules related to insulin resistance, e.g., kynurenine, myo-inositol and the branched chain amino acids leucine, isoleucine and valine, 9-(R)-HODE achieved its therapeutic effect. Moreover, the mediation of kynurenine displayed a systematic effect on the liver, kidney, muscle, plasma and faeces. Lipidomic studies revealed that 9-(R)-HODE could reverse the lipid metabolism disorder in diabetic mice mainly by regulating phosphatidylinositols, lysophosphatidylcholines, lysophosphatidylcholines, phosphatidylserine, phosphatidylglycerols, lysophosphatidylglycerols and triglycerides in both tissues and plasma. Treatment with 9-(R)-HODE significantly modified the structure and composition of the gut microbiota. The SCFA-producing bacteria, including Rikenellaceae and Lactobacillaceae at the family level and Ruminiclostridium 6, Ruminococcaceae UCG 014, Mucispirillum, Lactobacillus, Alistipes and Roseburia at the genus level, were increased by 9-(R)-HODE treatment. These results were consistent with the increased SCFA levels in both the colon content and plasma of diabetic mice treated with 9-(R)-HODE. The tissue DESI‒MSI analysis strongly confirmed the validity of the metabolomics approach in illustrating the hypoglycemic and diabetic complications-alleviation effect of 9-(R)-HODE. The significant upregulation of liver glycogen in diabetic mice by 9-(R)-HODE treatment validated the interpretation of the metabolic pathways related to glycogen synthesis in the integrated pathway network. Altogether, 9-(R)-HODE has the potential to be further developed as a promising candidate for the treatment of diabetes.
Collapse
Affiliation(s)
- Yueqiu Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, China
| | - Xinyi Hu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Zheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Luolan Gui
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Liang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liqiang Hu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Su
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Meng Gong,
| |
Collapse
|
45
|
Hu Y, Chen X, Hu M, Zhang D, Yuan S, Li P, Feng L. Medicinal and edible plants in the treatment of dyslipidemia: advances and prospects. Chin Med 2022; 17:113. [PMID: 36175900 PMCID: PMC9522446 DOI: 10.1186/s13020-022-00666-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Dyslipidemia is an independent risk factor of cardiovascular diseases (CVDs), which lead to the high mortality, disability, and medical expenses in the worldwide. Based on the previous researches, the improvement of dyslipidemia could efficiently prevent the occurrence and progress of cardiovascular diseases. Medicinal and edible plants (MEPs) are the characteristics of Chinese medicine, and could be employed for the disease treatment and health care mostly due to their homology of medicine and food. Compared to the lipid-lowering drugs with many adverse effects, such as rhabdomyolysis and impaired liver function, MEPs exhibit the great potential in the treatment of dyslipidemia with high efficiency, good tolerance and commercial value. In this review, we would like to introduce 20 kinds of MEPs with lipid-lowering effect in the following aspects, including the source, function, active component, target and underlying mechanism, which may provide inspiration for the development of new prescription, functional food and complementary therapy for dyslipidemia.
Collapse
Affiliation(s)
- Ying Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingjuan Chen
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dongwei Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shuo Yuan
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ping Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China.
- China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
46
|
Liu N, Chen M, Song J, Zhao Y, Gong P, Chen X. Effects of Auricularia auricula Polysaccharides on Gut Microbiota Composition in Type 2 Diabetic Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186061. [PMID: 36144789 PMCID: PMC9502302 DOI: 10.3390/molecules27186061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
In previous studies, Auriculariaauricula polysaccharides (AAP) has been found to improve type 2 diabetes mellitus, but its mechanism remains unclear. In this study, we sought to demonstrate that AAP achieves remission by altering the gut microbiota in mice with type 2 diabetes. We successfully constructed a type 2 diabetes mellitus (T2DM) model induced by a high-fat diet (HFD) combined with streptozotocin (STZ), following which fasting blood glucose (FBG) levels and oral glucose tolerance test (OTGG) were observed to decrease significantly after 5 weeks of AAP intervention. Furthermore, AAP enhanced the activities of total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and reduced the content of malondialdehyde (MDA) to alleviate the oxidative stress injury. AAP-M (200 mg/kg/d) displayed the best improvement effect. Moreover, 16S rRNA results showed that AAP decreased the abundance of Firmicutes and increased that of Bacteroidetes. The abundance of beneficial genera such as Faecalibaculum, Dubosiella, Alloprevotella, and those belonging to the family Lachnospiraceae was increased due to the intake of AAP. AAP could reduced the abundance of Desulfovibrio, Enterorhabdus, and Helicobacter. In all, these results suggest that AAP can improve the disorders of glucose and lipid metabolism by regulating the structure of the gut microbiota.
Collapse
Affiliation(s)
- Nannan Liu
- College of Chemistry and Materials Science, Weinan Normal University, Weinan 714099, China
| | - Mengyin Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Juanna Song
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yuanyuan Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: ; Tel.: +86-139-9209-4639
| |
Collapse
|
47
|
Traditional Chinese Medicine Formula Jian Pi Tiao Gan Yin Reduces Obesity in Mice by Modulating the Gut Microbiota and Fecal Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9727889. [PMID: 35979004 PMCID: PMC9377893 DOI: 10.1155/2022/9727889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The current study employed the high-fat diet (HFD) induced murine model to assess the relationship between the effect of Jian Pi Tiao Gan Yin (JPTGY) and the alterations of gut microbiota and fecal metabolism. C57BL/6 mice were used to establish an animal model of obesity via HFD induce. Serum biochemical indicators of lipid metabolism were used to evaluate the pharmacodynamics of JPTGY in obese mice. Bacterial communities and metabolites in the feces specimens from the controls, the Group HFD, and the JPTGY-exposed corpulency group were studied by 16s rDNA genetic sequence in combination with liquid chromatography-mass spectrometry (LC-MS) based untargeted fecal metabolomics techniques. Results revealed that JPTGY significantly decreased the levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and elevated high-density lipoprotein cholesterol (HDL-C). Moreover, JPTGY could up-regulate the abundance and diversity of fecal microbiota, which was characterized by the higher phylum of proteobacteria. Consistently, at the genus levels, JPTGY supplementation induced enrichments in Lachnospiraceae NK4A136 group, Oscillibacter, Turicibacter, Clostridium sensu stricto 1, and Intestinimonas, which were intimately related to 14 pivotal fecal metabolins in respond to JPTGY therapy were determined. What is more, metabolomics further analyses show that the therapeutic effect of JPTGY for obesity involves linoleic acid (LA) metabolism paths, alpha-linolenic acid (ALA) metabolism paths, glycerophospholipid metabolism paths, arachidonic acid (AA) metabolism paths, and pyrimidine metabolism paths, which implied the potential mechanism of JPTGY in treating obesity. It was concluded that the linking of corpulency phenotypes with intestinal flora and fecal metabolins unveils the latent causal link of JPTGY in the treatment of hyperlipidemia and obesity.
Collapse
|
48
|
UHPLC-Q-Orbitrap-MS-Based Metabolomics Reveals Chemical Variations of Two Types of Rhizomes of Polygonatum sibiricum. Molecules 2022; 27:molecules27154685. [PMID: 35897876 PMCID: PMC9331047 DOI: 10.3390/molecules27154685] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
The rhizomes of Polygonatum sibiricum are commonly consumed as food and also used as medicine. However, the metabolic profile of P. sibiricum has not been fully revealed yet. Recently, we developed a novel evergreen species of P. sibiricum. The objectives of this study were to compare the metabolic profiles of two types of P. sibiricum, i.e., the newly developed evergreen type (Gtype) and a wide-type (Wtype), by using UHPLC-Q-Orbitrap-MS-based untargeted metabolomics approach. A total of 263 and 258 compounds in the positive and negative modes of the mass spectra were tentatively identified. Distinctively different metabolomic profiles of these two types of P. sibiricum were also revealed by principal component analysis (PCA) and principal coordinates analysis (PCoA). Furthermore, by using partial least squares discriminant analysis (PLS-DA) modeling, it was found that, as compared with Wtype, Gtype samples had significantly higher content of oxyberberine, proliferin, alpinetin, and grandisin. On the other hand, 15 compounds, including herniarin, kaempferol 7-neohesperidoside, benzyl beta-primeveroside, vanillic acid, biochanin A, neoschaftoside, benzyl gentiobioside, cornuside, hydroxytyrosol-glucuronide, apigenin-pentosyl-glucoside, obacunone, 13-alpha-(21)-epoxyeurycomanone, vulgarin, digitonin, and 3-formylindole, were discovered to have higher abundance in Wtype samples. These distinguishing metabolites suggest the different beneficial health potentials and flavor attributes of the two types of P. sibiricum rhizomes.
Collapse
|
49
|
Hu Y, Yin M, Bai Y, Chu S, Zhang L, Yang M, Zheng X, Yang Z, Liu J, Li L, Huang L, Peng H. An Evaluation of Traits, Nutritional, and Medicinal Component Quality of Polygonatum cyrtonema Hua and P. sibiricum Red. FRONTIERS IN PLANT SCIENCE 2022; 13:891775. [PMID: 35519815 PMCID: PMC9062581 DOI: 10.3389/fpls.2022.891775] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Polygonati rhizoma (Huangjing in Chinese) is a traditional and classic dual-purpose material used in food and medicine. Herbalists in China and Japan have noticed several different rhizome types in Huangjing with different qualities. Rhizome of Polygonatum cyrtonema Hua and P. sibiricum Red. is divided into five types: "Jitou-type" Polygonati rhizoma (JTPR), atypical "Jitou-type" Polygonati rhizoma (AJTPR), "Jiang-type" Polygonati rhizoma (JPR), "Cylinder-type" Polygonati rhizoma (CPR), and "Baiji-type" Polygonati rhizoma (BJPR). This study observed the microstructure and histochemical localization of polysaccharides, saponins, and proteins in Huangjing. Nutritional and medicinal component data and antioxidant capacity (DPPH and ABTS) were analyzed to evaluate the quality of different types of Huangjing. The results showed that the comprehensive quality of the rhizomes, BJPR and JTPR, was better, regardless of their nutritional or medicinal values. Altogether, these results could recommend future breeding efforts to produce Huangjing with improved nutritional and medicinal qualities.
Collapse
Affiliation(s)
- Yan Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Minzhen Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, 2019RU57, China
| | - Yunjun Bai
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ling Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mei Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaowen Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengyang Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Junling Liu
- Anhui Provincial Institute for Food and Drug Control, Hefei, China
| | - Lei Li
- Jinzhai Senfeng Agricultural Technology Development Co., Ltd., Lu’an, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, 2019RU57, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, 2019RU57, China
| |
Collapse
|
50
|
Zhang SS, Zhang NN, Guo S, Liu SJ, Hou YF, Li S, Ho CT, Bai NS. Glycosides and flavonoids from the extract of Pueraria thomsonii Benth leaf alleviate type 2 diabetes in high-fat diet plus streptozotocin-induced mice by modulating the gut microbiota. Food Funct 2022; 13:3931-3945. [PMID: 35289350 DOI: 10.1039/d1fo04170c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Twenty glycoside derivatives and nine flavonoids from the leaves of Pueraria (P. thomsonii) were isolated by column chromatography and characterized by nuclear magnetic resonance spectroscopy (NMR) and high performance liquid chromatography (HPLC). The contents of twenty glycosides and nine flavonoids from the extract of P. thomsonii leaf (PL) were 173.3 mg g-1 and 134.7 mg g-1, respectively. Two flavonoids with the highest content were robinin (49.28 mg g-1) and puerarin (42.87 mg g-1). Six flavonoids, i.e. puerarin, robinin, rutin, quercetin, quercitrin, and kaempferol showed more inhibitory effects against α-glucosidase than acarbose. PL could effectively increase the level of insulin, decrease the content of fasting blood glucose, reduce lipid accumulation in plasma, ameliorate oxidative injury and inflammation, and relieve liver and kidney damage in diabetic mice. Moreover, PL could increase intestinal probiotics to improve metabolic disorders caused by diabetes and decrease the level of Clostridium celatum to relieve inflammation. This study suggested that PL or its glycoside derivatives and flavonoids regulating glycolipid metabolism and inflammation levels might have the potential to be used to control type 2 diabetes.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.,College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| | - Niu-Niu Zhang
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| | - Sen Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| | - Shao-Jing Liu
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.,College of Pharmacy, Xi'an Medical University, 1 Xinwang Road, Shaanxi 710021, China
| | - Yu-Fei Hou
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| | - Shiming Li
- College of Life Sciences, Huanggang Normal University, Hubei 438000, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Nai-Sheng Bai
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Shaanxi 710069, China.
| |
Collapse
|