1
|
Lee SY, Wang LJ, Yen CF. Identification of diagnostic and therapeutic biomarkers for attention-deficit/hyperactivity disorder. Kaohsiung J Med Sci 2025; 41:e12931. [PMID: 39764705 DOI: 10.1002/kjm2.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 04/02/2025] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common psychiatric condition among children and adolescents, often associated with a high risk of psychiatric comorbidities. Currently, ADHD diagnosis relies exclusively on clinical presentation and patient history, underscoring the need for clinically relevant, reliable, and objective biomarkers. Such biomarkers may enable earlier diagnosis and lead to improved treatment outcomes. Our research team has focused on identifying potential biomarkers for ADHD by investigating its possible pathomechanisms, with consideration of the aforementioned criteria. Given the significant sex-related differences in ADHD prevalence (male predominance) and the age-related variability in its symptomatology, we explored the role of neuroendocrine systems in ADHD. Specifically, we examined the epigenetic regulation mechanism involved in ADHD pathogenesis and developed a diagnostic model based on peripheral microRNA. Additionally, we investigated the role of microbiota dysbiosis in the pathophysiology of ADHD and provided novel insights into its management. This paper presents a summary of our findings on potential biomarkers for ADHD. By analyzing blood, salivary, and fecal samples, we identified several promising biomarkers that may serve as objective parameters for improving the diagnostic accuracy for ADHD. Further research involving larger cohort studies is required to confirm the reliability of these biomarkers.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Psychiatry, School of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Cheng-Fang Yen
- Department of Psychiatry, School of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
2
|
Kim D, Yadav D, Song M. An updated review on animal models to study attention-deficit hyperactivity disorder. Transl Psychiatry 2024; 14:187. [PMID: 38605002 PMCID: PMC11009407 DOI: 10.1038/s41398-024-02893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neuropsychiatric disorder affecting both children and adolescents. Individuals with ADHD experience heterogeneous problems, such as difficulty in attention, behavioral hyperactivity, and impulsivity. Recent studies have shown that complex genetic factors play a role in attention-deficit hyperactivity disorders. Animal models with clear hereditary traits are crucial for studying the molecular, biological, and brain circuit mechanisms underlying ADHD. Owing to their well-managed genetic origins and the relative simplicity with which the function of neuronal circuits is clearly established, models of mice can help learn the mechanisms involved in ADHD. Therefore, in this review, we highlighting the important genetic animal models that can be used to study ADHD.
Collapse
Affiliation(s)
- Daegeon Kim
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea.
| |
Collapse
|
3
|
Wren GH, Davies W. X-linked ichthyosis: New insights into a multi-system disorder. SKIN HEALTH AND DISEASE 2022; 2:e179. [PMID: 36479267 PMCID: PMC9720199 DOI: 10.1002/ski2.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
Background X-linked ichthyosis (XLI) is a rare genetic condition almostexclusively affecting males; it is characterised by abnormal desquamation and retentionhyperkeratosis, and presents with polygonal brown scales. Most cases resultfrom genetic deletions within Xp22.31 spanning the STS (steroid sulfatase)gene, with the remaining cases resulting from STS-specific mutations. For manyyears it has been recognised that individuals with XLI are at increased risk ofcryptorchidism and corneal opacities. Methods We discuss emerging evidence that such individuals are alsomore likely to be affected by a range of neurodevelopmental and psychiatrictraits, by cardiac arrhythmias, and by rare fibrotic and bleeding-relatedconditions. We consider candidate mechanisms that may confer elevatedlikelihood of these individual conditions, and propose a novel commonbiological risk pathway. Results Understanding the prevalence, nature and co-occurrence ofcomorbidities associated with XLI is critical for ensuring early identificationof symptoms and for providing the most effective genetic counselling andmultidisciplinary care for affected individuals. Conclusion Future work in males with XLI, and in new preclinical andcellular model systems, should further clarify underlying pathophysiologicalmechanisms amenable to therapeutic intervention.
Collapse
Affiliation(s)
| | - William Davies
- School of PsychologyCardiff UniversityCardiffUK
- School of MedicineCardiff UniversityCardiffUK
- Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
- Neuroscience and Mental Health Innovation InstituteCardiff UniversityCardiffUK
| |
Collapse
|
4
|
Achterberg EJM, van Oldeniel RJ, van Tilborg E, Verharen JPH, Nijboer CH, Vanderschuren LJMJ. Cognitive performance during adulthood in a rat model of neonatal diffuse white matter injury. Psychopharmacology (Berl) 2022; 239:745-764. [PMID: 35064798 PMCID: PMC8891199 DOI: 10.1007/s00213-021-06053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022]
Abstract
RATIONALE Infants born prematurely risk developing diffuse white matter injury (WMI), which is associated with impaired cognitive functioning and an increased risk of autism spectrum disorder. Recently, our rat model of preterm diffuse WMI induced by combined fetal inflammation and postnatal hypoxia showed impaired motor performance, anxiety-like behaviour and autism-like behaviour in juvenile rats, especially males. Immunohistochemistry showed delayed myelination in the sensory cortex and impaired oligodendrocyte differentiation. OBJECTIVE To assess long-term cognitive deficits in this double-hit rat model of diffuse WMI, animals were screened on impulsivity, attention and cognitive flexibility in adulthood using the 5-choice serial reaction time task (5CSRTT) and a probabilistic reversal learning task, tests that require a proper functioning prefrontal cortex. Thereafter, myelination deficits were evaluated by immunofluorescent staining in adulthood. RESULTS Overall, little effect of WMI or sex was found in the cognitive tasks. WMI animals showed subtle differences in performance in the 5CSRTT. Manipulating 5CSRTT parameters resulted in performance patterns previously seen in the literature. Sex differences were found in perseverative responses and omitted trials: female WMI rats seem to be less flexible in the 5CSRTT but not in the reversal learning task. Males collected rewards faster in the probabilistic reversal learning task. These findings are explained by temporally rather than permanently affected myelination and by the absence of extensive injury to prefrontal cortical subregions, confirmed by immunofluorescent staining in both adolescence and adulthood. CONCLUSION This rat model of preterm WMI does not lead to long-term cognitive deficits as observed in prematurely born human infants.
Collapse
Affiliation(s)
- E J Marijke Achterberg
- Department of Population Health Sciences, Unit Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM, Utrecht, The Netherlands.
| | - Ralf J van Oldeniel
- Department of Population Health Sciences, Unit Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM, Utrecht, The Netherlands
- Department for Developmental Origins of Disease, University Medical Center, Utrecht Brain Center, Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584EA, Utrecht, The Netherlands
| | - Erik van Tilborg
- Department for Developmental Origins of Disease, University Medical Center, Utrecht Brain Center, Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584EA, Utrecht, The Netherlands
| | - Jeroen P H Verharen
- Helen Wills Neuroscience Institute, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Cora H Nijboer
- Department for Developmental Origins of Disease, University Medical Center, Utrecht Brain Center, Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584EA, Utrecht, The Netherlands
| | - Louk J M J Vanderschuren
- Department of Population Health Sciences, Unit Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584CM, Utrecht, The Netherlands
| |
Collapse
|
5
|
Rahi V, Kumar P. Animal models of attention-deficit hyperactivity disorder (ADHD). Int J Dev Neurosci 2021; 81:107-124. [PMID: 33428802 DOI: 10.1002/jdn.10089] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a heterogeneous neuropsychiatric disorder characterized by three primary symptoms hyperactivity, attention deficit, and impulsiveness, observed in both children and adults. In childhood, this disorder is more common in boys than in girls, and at least 75% will continue to suffer from the disorder until adulthood. Individuals with ADHD generally have poor academic, occupational, and social functioning resulting from developmentally inappropriate levels of hyperactivity and impulsivity, as well as impaired ability to maintain attention on motivationally relevant tasks. Very few drugs available in clinical practice altogether abolish the symptoms of ADHD, therefore, to find new drugs and target it is essential to understand the neuropathological, neurochemical, and genetic alterations that lead to the progression of ADHD. With this contrast, an animal study is the best approach because animal models provide relatively fast invasive manipulation, rigorous hypothesis testing, as well as it provides a better angle to understand the pathological mechanisms involved in disease progression. Moreover, animal models, especially for ADHD, serve with good predictive validity would allow the assessment and development of new therapeutic interventions, with this aim, the present review collect the various animal models on a single platform so that the research can select an appropriate model to pursue his study.
Collapse
Affiliation(s)
- Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Puneet Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
6
|
Sepers B, Erven JAM, Gawehns F, Laine VN, van Oers K. Epigenetics and Early Life Stress: Experimental Brood Size Affects DNA Methylation in Great Tits (Parus major). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.609061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Early developmental conditions are known to have life-long effects on an individual’s behavior, physiology and fitness. In altricial birds, a majority of these conditions, such as the number of siblings and the amount of food provisioned, are controlled by the parents. This opens up the potential for parents to adjust the behavior and physiology of their offspring according to local post-natal circumstances. However, the mechanisms underlying such intergenerational regulation remain largely unknown. A mechanism often proposed to possibly explain how parental effects mediate consistent phenotypic change is DNA methylation. To investigate whether early life effects on offspring phenotypes are mediated by DNA methylation, we cross-fostered great tit (Parus major) nestlings and manipulated their brood size in a natural study population. We assessed genome-wide DNA methylation levels of CpG sites in erythrocyte DNA, using Reduced Representation Bisulfite Sequencing (RRBS). By comparing DNA methylation levels between biological siblings raised in enlarged and reduced broods and between biological siblings of control broods, we assessed which CpG sites were differentially methylated due to brood size. We found 32 differentially methylated sites (DMS) between siblings from enlarged and reduced broods, a larger number than in the comparison between siblings from control broods. A considerable number of these DMS were located in or near genes involved in development, growth, metabolism, behavior and cognition. Since the biological functions of these genes line up with previously found effects of brood size and food availability, it is likely that the nestlings in the enlarged broods suffered from nutritional stress. We therefore conclude that early life stress might directly affect epigenetic regulation of genes related to early life conditions. Future studies should link such experimentally induced DNA methylation changes to expression of phenotypic traits and assess whether these effects affect parental fitness to determine if such changes are also adaptive.
Collapse
|
7
|
Davies W. The contribution of Xp22.31 gene dosage to Turner and Klinefelter syndromes and sex-biased phenotypes. Eur J Med Genet 2021; 64:104169. [PMID: 33610733 DOI: 10.1016/j.ejmg.2021.104169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 11/27/2022]
Abstract
Turner syndrome (TS) is a rare developmental condition in females caused by complete, or partial, loss of the second sex chromosome; it is associated with a number of phenotypes including short stature, ovarian failure and infertility, as well as neurobehavioural and cognitive manifestations. In contrast, Klinefelter syndrome (KS) arises from an excess of X chromosome material in males (typical karyotype is 47,XXY); like TS, KS is associated with infertility and hormonal imbalance, and behavioural/neurocognitive differences from gonadal sex-matched counterparts. Lower dosage of genes that escape X-inactivation may partially explain TS phenotypes, whilst overdosage of these genes may contribute towards KS-related symptoms. Here, I discuss new findings from individuals with deletions or duplications limited to Xp22.31 (a region escaping X-inactivation), and consider the extent to which altered gene dosage within this small interval (and of the steroid sulfatase (STS) gene in particular) may influence the phenotypic profiles of TS and KS. The expression of X-escapees can be higher in female than male tissues; I conclude by considering how lower Xp22.31 gene dosage in males may increase their likelihood of exhibiting particular phenotypes relative to females. Understanding the genetic contribution to specific phenotypes in rare disorders such as TS and KS, and to more common sex-biased phenotypes, will be important for developing more effective, and more personalised, therapeutic approaches.
Collapse
Affiliation(s)
- William Davies
- School of Psychology, Cardiff University, Cardiff, UK; Division of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
8
|
Thippeswamy H, Davies W. A new molecular risk pathway for postpartum mood disorders: clues from steroid sulfatase-deficient individuals. Arch Womens Ment Health 2021; 24:391-401. [PMID: 33219387 PMCID: PMC8116278 DOI: 10.1007/s00737-020-01093-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
Postpartum mood disorders develop shortly after childbirth in a significant proportion of women. These conditions are associated with a range of symptoms including abnormally high or low mood, irritability, cognitive disorganisation, disrupted sleep, hallucinations/delusions, and occasionally suicidal or infanticidal ideation; if not treated promptly, they can substantially impact upon the mother's health, mother-infant bonding, and family dynamics. The biological precipitants of such disorders remain unclear, although large changes in maternal immune and hormonal physiology following childbirth are likely to play a role. Pharmacological therapies for postpartum mood disorders can be effective, but may be associated with side effects, concerns relating to breastfeeding, and teratogenicity risks when used prophylactically. Furthermore, most of the drugs that are used to treat postpartum mood disorders are the same ones that are used to treat mood episodes during non-postpartum periods. A better understanding of the biological factors predisposing to postpartum mood disorders would allow for rational drug development, and the identification of predictive biomarkers to ensure that 'at risk' mothers receive earlier and more effective clinical management. We describe new findings relating to the role of the enzyme steroid sulfatase in maternal postpartum behavioural processes, and discuss how these point to a novel molecular risk pathway underlying postpartum mood disorders. Specifically, we suggest that aberrant steroid hormone-dependent regulation of neuronal calcium influx via extracellular matrix proteins and membrane receptors involved in responding to the cell's microenvironment might be important. Testing of this hypothesis might identify novel therapeutic targets and predictive biomarkers.
Collapse
Affiliation(s)
- Harish Thippeswamy
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India
| | - William Davies
- Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK. .,School of Psychology, Cardiff University, Tower Building, 70, Park Place, Cardiff, CF10 3AT, UK. .,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
9
|
Arnold AP. Four Core Genotypes and XY* mouse models: Update on impact on SABV research. Neurosci Biobehav Rev 2020; 119:1-8. [PMID: 32980399 PMCID: PMC7736196 DOI: 10.1016/j.neubiorev.2020.09.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
The impact of two mouse models is reviewed, the Four Core Genotypes and XY* models. The models are useful for determining if the causes of sex differences in phenotypes are either hormonal or sex chromosomal, or both. Used together, the models also can distinguish between the effects of X or Y chromosome genes that contribute to sex differences in phenotypes. To date, the models have been used to uncover sex chromosome contributions to sex differences in a wide variety of phenotypes, including brain and behavior, autoimmunity and immunity, cardiovascular disease, metabolism, and Alzheimer's Disease. In some cases, use of the models has been a strategy leading to discovery of specific X or Y genes that protect from or exacerbate disease. Sex chromosome and hormonal factors interact, in some cases to reduce the effects of each other. Future progress will come from more extensive application of these models, and development of similar models in other species.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, UCLA, 610 Charles Young Drive South, Los Angeles, CA, 90095-7239, United States.
| |
Collapse
|
10
|
Aarde SM, Genner RM, Hrncir H, Arnold AP, Jentsch JD. Sex chromosome complement affects multiple aspects of reversal-learning task performance in mice. GENES BRAIN AND BEHAVIOR 2020; 20:e12685. [PMID: 32648356 DOI: 10.1111/gbb.12685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/11/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Determining the mechanisms by which the sex-chromosome complement (SCC) affects learning, attention, and impulsivity has implications for observed sex differences in prevalence, severity, and prognosis of psychiatric/neurodevelopmental disorders and syndromes associated with sex-chromosome aneuploidy. Here, Four Core Genotypes (FCG) mice were evaluated in order to assess the separable and/or interacting effects of gonads (testes vs. ovaries) and their secretions and/or SCC (XX vs. XY) acting via non-gonadal mechanisms on behavior. We tested FCG mice on a reversal-learning task that enables the quantification of aspects of learning, attention and impulsivity. Across testing phases (involving the initial acquisition of a spatial discrimination and subsequent reversal learning), overall error rate was larger in XY compared with XX mice. Although XX and XY groups did not differ in the total number of trials required in order to reach a preset performance criterion, analyses of reversal error types showed more perseverative errors in XY than XX mice, with no difference in regressive errors. Additionally, prepotent-response latencies during the reversal phase were shorter in XY males, as compared with both XX gonadal males and females of either SCC, and failures to sustain the observing response were more frequent in XY mice than XX mice during the acquisition phase. These results indicate that SCC affects the characteristic pattern of response selection during acquisition and reversal performance without affecting the overall learning rate. More broadly, these results show direct effects of the SCC on cognitive processes that are relevant to psychiatric/neurodevelopmental disorders and syndromes associated with sex-chromosome aneuploidies.
Collapse
Affiliation(s)
- Shawn M Aarde
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California, USA
| | - Rylee M Genner
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California, USA
| | - Haley Hrncir
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California, USA
| | - James D Jentsch
- Department of Psychology, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
11
|
Brcic L, Underwood JF, Kendall KM, Caseras X, Kirov G, Davies W. Medical and neurobehavioural phenotypes in carriers of X-linked ichthyosis-associated genetic deletions in the UK Biobank. J Med Genet 2020; 57:692-698. [PMID: 32139392 PMCID: PMC7525778 DOI: 10.1136/jmedgenet-2019-106676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/20/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND X-linked ichthyosis (XLI) is an uncommon dermatological condition resulting from a deficiency of the enzyme steroid sulfatase (STS), often caused by X-linked deletions spanning STS. Some medical comorbidities have been identified in XLI cases, but small samples of relatively young patients has limited this. STS is highly expressed in subcortical brain structures, and males with XLI and female deletion carriers appear at increased risk of developmental/mood disorders and associated traits; the neurocognitive basis of these findings has not been examined. METHODS Using the UK Biobank resource, comprising participants aged 40-69 years recruited from the general UK population, we compared multiple medical/neurobehavioural phenotypes in males (n=86) and females (n=312) carrying genetic deletions spanning STS (0.8-2.5 Mb) (cases) to male (n=190 577) and female (n=227 862) non-carrier controls. RESULTS We identified an elevated rate of atrial fibrillation/flutter in male deletion carriers (10.5% vs 2.7% in male controls, Benjamini-Hochberg corrected p=0.009), and increased rates of mental distress (p=0.003), irritability (p<0.001) and depressive-anxiety traits (p<0.05) in male deletion carriers relative to male controls completing the Mental Health Questionnaire. While academic attainment was unaffected, male and female deletion carriers exhibited impaired performance on the Fluid Intelligence Test (Cohen's d≤0.05, corrected p<0.1). Neuroanatomical analysis in female deletion carriers indicated reduced right putamen and left nucleus accumbens volumes (Cohen's d≤0.26, corrected p<0.1). CONCLUSION Adult males with XLI disease-causing deletions are apparently at increased risk of cardiac arrhythmias and self-reported mood problems; altered basal ganglia structure may underlie altered function and XLI-associated psychiatric/behavioural phenotypes. These results provide information for genetic counselling of deletion-carrying individuals and reinforce the need for multidisciplinary medical care.
Collapse
Affiliation(s)
- Lucija Brcic
- School of Psychology, Cardiff University, Cardiff, UK
| | - Jack Fg Underwood
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Kimberley M Kendall
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - William Davies
- School of Psychology, Cardiff University, Cardiff, UK .,MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
12
|
Gokcen C, Erbagci AB, Mutluer T, Orkmez M, Correll CU. Mullerian inhibiting substance, sex hormone binding globulin and sex hormone levels in stimulant-naïve, first-diagnosed prepubertal boys with attention-deficit/hyperactivity disorder: comparison with matched healthy controls as well as before and after oros-methylpenidate treatment. Int J Psychiatry Clin Pract 2019; 23:251-257. [PMID: 31339400 DOI: 10.1080/13651501.2019.1602657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: Attention-Deficit/Hyperactivity Disorder (ADHD) is a complex neurodevelopmental disorder with strong male predominance. Since Müllerian Inhibiting Substance (MIS) produces sex-linked bias in animal studies, we aimed to investigate the role of MIS, Sex Hormone Binding Globulin (SHBG) and sex hormone levels in boys with ADHD.Methods: We compared prepubertal, psychostimulant-naïve boys with ADHD with age-matched healthy control boys (HCs). Patients were re-evaluated after 30 days of methylphenidate treatment assessing ADHD severity, and serum MIS, testosterone, estradiol, and albumin concentrations.Results: Compared to 30 HCs, with ADHD (n = 49, age = 6.9 ± 0.2 years) had lower SHBG (p = .014), and higher free testosterone (p = 0.006) and bioavailable testosterone (p = .002) percentages. Methylphenidate improved ADHD measures (all p < .0001) and abnormal baseline hormonal levels, increasing SHBG levels (p = .024), and lowering free (p = .001) and bioavailable testosterone (p = .016) percentages so that only free testosterone percentages remained higher versus HCs post-treatment (p = .02).Conclusions: Compared to age- and sex-matched HCs, prepubertal, stimulant-naïve boys with ADHD had significantly lower SHBG and higher free and bioavailable testosterone percentages, suggesting a possible contribution of sex hormones to ADHD. Osmotic-release oral system methylphenidate treatment for 30 days significantly improved ADHD symptoms and abnormal sex hormone levels, normalizing SHBG and bioavailable testosterone percentages that were similar to HCs while free testosterone remained elevated versus HCs.Key pointsCompare to healthy matched controls prepubertal stimulant-naïve boys with ADHD had significantly lower SHBG and higher free and bioavailable testosterone percentages, suggesting a possible effect on sex hormones to ADHD.After 30-day methylphenidate treatment, ADHD symptoms significantly improved, and SHBG and bioavailable testosterone percentages normalized which were similar to HCs, while free testosterone remained elevated versus HCs.We found a negative relationship between MIS levels and hyperactivity scores in ADHD boys. This finding suggests that MIS may contribute to hyperactivity symptoms, either directly by affecting behavior or indirectly by affecting sex hormone levels.
Collapse
Affiliation(s)
- Cem Gokcen
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Ayse Binnur Erbagci
- Department of Medical Biochemistry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Tuba Mutluer
- Child and Adolescent Psychiatry Clinic, Koc University Hospital, Istanbul, Turkey
| | - Mustafa Orkmez
- Department of Medical Biochemistry, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA.,Hofstra Northwell School of Medicine, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA.,The Feinstein Institute for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY, USA.,Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Aarde SM, Hrncir H, Arnold AP, Jentsch JD. Reversal Learning Performance in the XY ∗ Mouse Model of Klinefelter and Turner Syndromes. Front Behav Neurosci 2019; 13:201. [PMID: 31551728 PMCID: PMC6742981 DOI: 10.3389/fnbeh.2019.00201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022] Open
Abstract
Klinefelter syndrome (KS; 47, XXY) and Turner syndrome (TS; 45, XO) are caused by two relatively common sex chromosome aneuploidies. These conditions are associated with an increased odds of neuropsychiatric disorders, including attention deficit/hyperactivity disorder (ADHD), as well as impairments in cognition that include learning delays, attentional dysfunction and impulsivity. We studied cognitive functions in the XY∗ mouse model, which allows comparison of XXY to XY males (KS model), and XO to XX females (TS model). We evaluated adult mice with and without gonads, using a version of an operant reversal-learning task (RLT) that can be used to measure various facets of learning, impulsivity and attention. In the KS model, only one measure related to impulsivity – perseverative responding under reversal conditions – reliably discriminated gonadally intact XXY and XY mice. In contrast, a fundamental learning impairment (more trials to criterion in acquisition phase) in XXY mice, as compared to XY, was observed in gonadectomized subjects. No other task measures showed differences consistent with KS. In the TS mouse model, XO mice did not show a pattern of results consistent with TS, similar to past observations. Thus, the application of this RLT to these XY∗ models reveals only limited behavioral impairments relevant to KS.
Collapse
Affiliation(s)
- Shawn M Aarde
- Department of Integrative Biology and Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Haley Hrncir
- Department of Integrative Biology and Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - James D Jentsch
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
14
|
Humby T, Davies W. Brain Gene Expression in a Novel Mouse Model of Postpartum Mood Disorder. Transl Neurosci 2019; 10:168-174. [PMID: 31410299 PMCID: PMC6689211 DOI: 10.1515/tnsci-2019-0030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/26/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Steroid sulfatase (STS) cleaves sulfate groups from steroid hormones; its expression/activity increases in late pregnancy and into the postpartum period. STS-deficient human and mouse mothers display elevated psychopathology and abnormal behaviour respectively; in mice, these effects can be partially normalised by antipsychotic (ziprasidone) administration. METHODOLOGY We compared brain gene expression in new mouse mothers administered the STS inhibitor 667-Coumate, or vehicle; significant changes were followed-up with pathway analysis and quantitative polymerase chain reaction (qPCR). Finally, the effects of combined 667-Coumate and ziprasidone administration on expression of the most robustly differentially-expressed genes were examined. RESULTS Surprisingly, no between-group gene expression changes were detected at a False Discovery Rate (FDR)-corrected p<0.1. 1,081 unique expression changes were detected at p<0.05, two top hits were verified by qPCR, and pathway analysis indicated enrichment of genes involved in olfactory transduction. The expression of Stoml3 and Cyp2g1 was unaffected by ziprasidone administration. CONCLUSIONS Postpartum behavioural abnormalities in STS-deficient mothers are likely to be the culmination of many small gene expression changes. Our data are consistent with the idea that olfactory function is key to maternal behaviour in mice, and suggest that aberrant expression of olfactory system genes may underlie abnormal maternal behaviour in STS-deficient women.
Collapse
Affiliation(s)
- Trevor Humby
- School of Psychology, Cardiff University, Cardiff CF10 3AT, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, CardiffCF24 4HQ, UK
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, UK
| | - William Davies
- School of Psychology, Cardiff University, Cardiff CF10 3AT, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, CardiffCF24 4HQ, UK
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, UK
| |
Collapse
|
15
|
Cavenagh A, Chatterjee S, Davies W. Behavioural and psychiatric phenotypes in female carriers of genetic mutations associated with X-linked ichthyosis. PLoS One 2019; 14:e0212330. [PMID: 30768640 PMCID: PMC6377116 DOI: 10.1371/journal.pone.0212330] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
X-linked ichthyosis (XLI) is a rare X-linked dermatological condition arising from deficiency for the enzyme steroid sulfatase (STS). STS is normally expressed in the brain, and males with XLI exhibit personality differences from males in the general population, and are at increased risk of developmental and mood disorders. As the STS gene escapes X-inactivation, female carriers of XLI-associated genetic mutations have reduced STS expression/activity relative to non-carrier females, and could manifest similar behavioural phenotypes to males with XLI. Additionally, as STS activity normally increases in female tissues towards late pregnancy and into the puerperium, carrier females could theoretically present with increased rates of postpartum psychopathology. Using a worldwide online survey comprising custom-designed demographic questionnaires and multiple validated psychological questionnaires, we collected detailed self-reported information on non-postpartum and postpartum behaviour in confirmed adult (>16yrs) female carriers of genetic mutations associated with XLI (n = 94) for statistical comparison to demographically-matched previously-published normative data from female controls (seven independent studies, 98≤n≤2562), adult males with XLI (n = 58), and to newly-obtained online survey data from a general population sample of mothers from the United Kingdom and United States of America (n = 263). The pattern of results in carrier females relative to controls was remarkably similar to that previously observed in males with XLI, with evidence for increased rates of developmental and mood disorders, and elevated levels of inattention, impulsivity, autism-related traits and general psychological distress. Carrier females exhibited a significantly elevated rate of postpartum mental health conditions (notably mild depression) relative to controls which could not be accounted for by social factors. Our data confirm the psychological profile associated with XLI-associated mutations, and suggest that female carriers may be at increased risk of psychopathology, including in the postpartum period. These findings are relevant to families affected by XLI, to clinicians involved in the care of these families, and to genetic counsellors.
Collapse
Affiliation(s)
- Alice Cavenagh
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Sohini Chatterjee
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - William Davies
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Pavone P, Corsello G, Marino S, Ruggieri M, Falsaperla R. Microcephaly/Trigonocephaly, Intellectual Disability, Autism Spectrum Disorder, and Atypical Dysmorphic Features in a Boy with Xp22.31 Duplication. Mol Syndromol 2019; 9:253-258. [PMID: 30733660 PMCID: PMC6362926 DOI: 10.1159/000493174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2018] [Indexed: 12/23/2022] Open
Abstract
The Xp22.31 segment of the short arm of the human X chromosome is a region of high instability with frequent rearrangement. The duplication of this region has been found in healthy people as well as in individuals with varying degrees of neurological impairment. The incidence has been reported in a range of 0.4-0.44% of the patients with neurological impairment. Moreover, there is evidence that Xp22.31 duplication may cause a common phenotype including developmental delay, intellectual disability, feeding difficulty, autistic spectrum disorders, hypotonia, seizures, and talipes. We report on a patient with microcephaly and trigonocephaly, moderate intellectual disability, speech and language delay, and poor social interaction in addition to minor but atypical dysmorphic features. This report provides further insight into the pathogenicity of the Xp22.31 duplication by extending knowledge of its clinical features. This case, in association with those reported in the literature, indicates that the Xp22.31 duplication may contribute to cause pathological phenotypes with minor facial dysmorphisms, microcephaly, and intellectual disability as main features.
Collapse
Affiliation(s)
- Piero Pavone
- Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, A.U.O. Policlinico-Vittorio Emanuele Catania, Catania, Italy
| | - Giovanni Corsello
- Department of Maternal and Child Health, University of Palermo, Palermo, Italy
| | - Silvia Marino
- University Hospital, A.U.O. Policlinico-Vittorio Emanuele Catania, Catania, Italy
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System, Section of Pediatrics and Child Neuropsychiatry, A.U.O. Policlinico-Vittorio Emanuele Catania, Catania, Italy
| | - Raffaele Falsaperla
- University Hospital, A.U.O. Policlinico-Vittorio Emanuele Catania, Catania, Italy
| |
Collapse
|
17
|
Davies W. SULFATION PATHWAYS: The steroid sulfate axis and its relationship to maternal behaviour and mental health. J Mol Endocrinol 2018; 61:T199-T210. [PMID: 29440314 DOI: 10.1530/jme-17-0219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022]
Abstract
Steroid hormones can exist in functionally dissociable sulfated and non-sulfated (free) forms and can exert profound effects on numerous aspects of mammalian physiology; the ratio of free-to-sulfated steroids is governed by the antagonistic actions of steroid sulfatase (STS) and sulfotransferase (SULT) enzymes. Here, I examine evidence from human and animal model studies, which suggests that STS and its major substrate (dehydroepiandrosterone sulfate, DHEAS) and product (DHEA) can influence brain function, behaviour and mental health, before summarising how the activity of this axis varies throughout mammalian pregnancy and the postpartum period. I then consider how the steroid sulfate axis might impact upon normal maternal behaviour and how its dysfunction might contribute towards risk of postpartum psychiatric illness. Understanding the biological substrates underlying normal and abnormal maternal behaviour will be important for maximising the wellbeing of new mothers and their offspring.
Collapse
Affiliation(s)
- William Davies
- School of PsychologyCardiff University, Cardiff, UK
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical NeurosciencesSchool of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research InstituteCardiff University, Cardiff, UK
| |
Collapse
|
18
|
Foster PA, Mueller JW. SULFATION PATHWAYS: Insights into steroid sulfation and desulfation pathways. J Mol Endocrinol 2018; 61:T271-T283. [PMID: 29764919 DOI: 10.1530/jme-18-0086] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
Sulfation and desulfation pathways represent highly dynamic ways of shuttling, repressing and re-activating steroid hormones, thus controlling their immense biological potency at the very heart of endocrinology. This theme currently experiences growing research interest from various sides, including, but not limited to, novel insights about phospho-adenosine-5'-phosphosulfate synthase and sulfotransferase function and regulation, novel analytics for steroid conjugate detection and quantification. Within this review, we will also define how sulfation pathways are ripe for drug development strategies, which have translational potential to treat a number of conditions, including chronic inflammatory diseases and steroid-dependent cancers.
Collapse
Affiliation(s)
- Paul A Foster
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
19
|
Malik A, Amer AB, Salama M, Haddad B, Alrifai MT, Balwi MA, Davies W, Eyaid W. X-linked ichthyosis associated with psychosis and behavioral abnormalities: a case report. J Med Case Rep 2017; 11:267. [PMID: 28934990 PMCID: PMC5609014 DOI: 10.1186/s13256-017-1420-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/08/2017] [Indexed: 01/21/2023] Open
Abstract
Background X-linked ichthyosis is a dermatological condition caused by deficiency for the enzyme steroid sulfatase. Previously, X-linked ichthyosis/steroid sulfatase deficiency has been associated with developmental and neurological phenotypes. Here, we show for the first time, that X-linked ichthyosis may be comorbid with an additional psychiatric phenotype (psychosis). Case presentation We report the case of an 11-year-old Saudi Arabian boy with X-linked ichthyosis associated with psychosis, mental retardation, autism spectrum disorder, inattentive attention deficit hyperactivity disorder, and epilepsy. Genetic analysis revealed a 1.68 Mb deletion encompassing STS in 95% of cells while biochemical analysis revealed correspondingly low steroid sulfatase activity consistent with a diagnosis of X-linked ichthyosis. The psychotic symptoms could be reasonably well controlled by administration of an atypical antipsychotic. Conclusions This report describes a case of comorbid X-linked ichthyosis and psychosis (most closely corresponding to early-onset schizophrenia) for the first time, and suggests that deficiency for steroid sulfatase and contiguous genes may increase vulnerability to psychosis as well as other psychological disorders.
Collapse
Affiliation(s)
- Amna Malik
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Ahmed Bait Amer
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Mohammed Salama
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Bander Haddad
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Muhammad T Alrifai
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Mohammed Al Balwi
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - William Davies
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK. .,School of Psychology, Cardiff University, Cardiff, UK. .,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK. .,MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Wafaa Eyaid
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia. .,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia. .,King AbdulAziz Medical City, Riyadh, Saudi Arabia. .,Department of Pediatrics MC 1510, King AbdulAziz Medical City, King Fahad National Guard Hospital, P.O Box 22490, Riyadh, 11426, Saudi Arabia.
| |
Collapse
|
20
|
Green T, Naylor PE, Davies W. Attention deficit hyperactivity disorder (ADHD) in phenotypically similar neurogenetic conditions: Turner syndrome and the RASopathies. J Neurodev Disord 2017; 9:25. [PMID: 28694877 PMCID: PMC5502326 DOI: 10.1186/s11689-017-9205-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/18/2017] [Indexed: 11/17/2022] Open
Abstract
Background ADHD (attention deficit hyperactivity disorder) is a common neurodevelopmental disorder. There has been extensive clinical and basic research in the field of ADHD over the past 20 years, but the mechanisms underlying ADHD risk are multifactorial, complex and heterogeneous and, as yet, are poorly defined. In this review, we argue that one approach to address this challenge is to study well-defined disorders to provide insights into potential biological pathways that may be involved in idiopathic ADHD. Main body To address this premise, we selected two neurogenetic conditions that are associated with significantly increased ADHD risk: Turner syndrome and the RASopathies (of which Noonan syndrome and neurofibromatosis type 1 are the best-defined with regard to ADHD-related phenotypes). These syndromes were chosen for two main reasons: first, because intellectual functioning is relatively preserved, and second, because they are strikingly phenotypically similar but are etiologically distinct. We review the cognitive, behavioural, neural and cellular phenotypes associated with these conditions and examine their relevance as a model for idiopathic ADHD. Conclusion We conclude by discussing current and future opportunities in the clinical and basic research of these conditions, which, in turn, may shed light upon the biological pathways underlying idiopathic ADHD.
Collapse
Affiliation(s)
- Tamar Green
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, USA
| | - Paige E Naylor
- Department of Clinical Psychology, Palo Alto University, Palo Alto, CA USA
| | - William Davies
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.,School of Psychology, Cardiff University, Tower Building, 70, Park Place, Cardiff, CF10 3AT UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
21
|
Huang H, Guadagna S, Mereu M, Ciampoli M, Pruzzo G, Ballard T, Papaleo F. A schizophrenia relevant 5-Choice Serial Reaction Time Task for mice assessing broad monitoring, distractibility and impulsivity. Psychopharmacology (Berl) 2017; 234:2047-2062. [PMID: 28378204 DOI: 10.1007/s00213-017-4611-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/19/2017] [Indexed: 02/06/2023]
Abstract
The 5-Choice Serial Reaction Time Task (5-CSRTT) is an automated test for rodents allowing the assessment of multiple cognitive measures. Originally designed to assess cognitive deficits relevant to attention deficit hyperactivity disorder, it has been widely used in the investigation of neural systems of attention. In the current study, we have set up a modified version, which reduced the training phase to only 8-9 days with minimal food deprivation and without single-housing. Furthermore, based on evidence that patients with schizophrenia are more impaired in broad monitoring abilities than in sustained attention, we successfully developed a protocol replicating the Spatial Attentional Resource Allocation Task (SARAT), used in humans to assess broad monitoring. During this task, when the target appeared at a single pre-cued location, mice selectively responded faster. Instead, increasing the number of validly cued locations proportionately decreased accuracy. We then validated a protocol which is relevant for neuropsychiatric disorders in which additional irrelevant pre-cue lights selectively disrupted attention (distractibility). Finally, we improved previously used protocols changing inter-trial intervals from 5 to 7 s by randomly presenting this shift only in 20% of the trials. This resulted in a selective effect on premature responses (impulsivity), with important implications for schizophrenia as well as for other mental disorders. Therefore, this revised 5-CSRTT reduced training and stress on the animals while selectively measuring different cognitive functions with translational validity to schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Huiping Huang
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Simone Guadagna
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Maddalena Mereu
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Largo Meneghetti, 2, 35131, Padova, Italy
| | - Mariasole Ciampoli
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Giacomo Pruzzo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Theresa Ballard
- Neuroscience, Ophthalmology and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| |
Collapse
|
22
|
de la Peña JB, Dela Peña IJ, Custodio RJ, Botanas CJ, Kim HJ, Cheong JH. Exploring the Validity of Proposed Transgenic Animal Models of Attention-Deficit Hyperactivity Disorder (ADHD). Mol Neurobiol 2017; 55:3739-3754. [PMID: 28534274 DOI: 10.1007/s12035-017-0608-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/09/2017] [Indexed: 12/31/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common, behavioral, and heterogeneous neurodevelopmental condition characterized by hyperactivity, impulsivity, and inattention. Symptoms of this disorder are managed by treatment with methylphenidate, amphetamine, and/or atomoxetine. The cause of ADHD is unknown, but substantial evidence indicates that this disorder has a significant genetic component. Transgenic animals have become an essential tool in uncovering the genetic factors underlying ADHD. Although they cannot accurately reflect the human condition, they can provide insights into the disorder that cannot be obtained from human studies due to various limitations. An ideal animal model of ADHD must have face (similarity in symptoms), predictive (similarity in response to treatment or medications), and construct (similarity in etiology or underlying pathophysiological mechanism) validity. As the exact etiology of ADHD remains unclear, the construct validity of animal models of ADHD would always be limited. The proposed transgenic animal models of ADHD have substantially increased and diversified over the years. In this paper, we compiled and explored the validity of proposed transgenic animal models of ADHD. Each of the reviewed transgenic animal models has strengths and limitations. Some fulfill most of the validity criteria of an animal model of ADHD and have been extensively used, while there are others that require further validation. Nevertheless, these transgenic animal models of ADHD have provided and will continue to provide valuable insights into the genetic underpinnings of this complex disorder.
Collapse
Affiliation(s)
- June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Irene Joy Dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Raly James Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
23
|
Polo-Antúnez A, Arroyo-Carrera I. Severe Neurological Phenotype in a Girl with Xp22.31 Triplication. Mol Syndromol 2017; 8:219-223. [PMID: 28690489 DOI: 10.1159/000475795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2017] [Indexed: 11/19/2022] Open
Abstract
The Xp22.31 duplication is a copy number variant which is challenging to categorize as pathogenic or benign. There is an increasing number of patients with the duplication and a neurobehavioral phenotype, but the duplication is almost always inherited from a parent, who in some cases is phenotypically normal. Also, the duplication is detected in the general population, though in a smaller percentage than in clinically ascertained populations. The Xp22.31 triplication has only been identified in 3 individuals of a large cohort of developmental delay cases but never in the control cohorts or general population. We report a severely affected female with an Xp22.31 tetrasomy, inherited from duplications identified in both phenotypically normal parents. Although our study has limitations, it suggests that the Xp22.31 triplication seems to be more penetrant than the duplication and is associated with a neurological phenotype.
Collapse
Affiliation(s)
| | - Ignacio Arroyo-Carrera
- Neonatology Unit, San Pedro de Alcántara Hospital, Cáceres, Spain.,CIBER de Enfermedades Raras (CIBERER) (U724), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Polymorphisms of STS gene and SULT2A1 gene and neurosteroid levels in Han Chinese boys with attention-deficit/hyperactivity disorder: an exploratory investigation. Sci Rep 2017; 7:45595. [PMID: 28367959 PMCID: PMC5377367 DOI: 10.1038/srep45595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/28/2017] [Indexed: 11/16/2022] Open
Abstract
This study examined the relationships among polymorphisms of the STS gene and SULT2A1 gene, dehydroepiandrosterone (DHEA) and its sulfated form (DHEA-S), and characteristics of attention-deficit/hyperactivity disorder (ADHD). We used cheek swabs to obtain the genomic DNA of 200 ADHD male probands (mean age: 8.7 years), 192 patients’ mothers and 157 patients’ fathers. Three SNPs in the STS gene (rs6639786, rs2270112, and rs17268988) and one SNP in the SULT2A1 gene (rs182420) were genotyped. Saliva samples were collected from the ADHD patients to analyze DHEA and DHEA-S levels. The behavioral symptoms were evaluated with the Swanson, Nolan, and Pelham, and Version IV Scale for ADHD (SNAP-IV), and the neuropsychological function was assessed using the Conners’ Continuous Performance Tests (CPT). We found the C allele of rs2270112 within the STS gene to be over-transmitted in males with ADHD. Polymorphisms of rs182420 within the SULT2A1 gene were not associated with ADHD. In addition, the C allele carriers of rs2270112 demonstrated significantly higher DHEA-S levels than the G allele carriers. Levels of DHEA were positively correlated with attention as measured by the CPT. These findings support a potential role in the underlying biological pathogenesis of ADHD with regard to STS polymorphisms and neurosteroid levels.
Collapse
|
25
|
Humby T, Fisher A, Allen C, Reynolds M, Hartman A, Giegling I, Rujescu D, Davies W. A genetic variant within STS previously associated with inattention in boys with attention deficit hyperactivity disorder is associated with enhanced cognition in healthy adult males. Brain Behav 2017; 7:e00646. [PMID: 28293481 PMCID: PMC5346528 DOI: 10.1002/brb3.646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The enzyme steroid sulfatase (STS) converts sulfated steroids to their non-sulfated forms. Deficiency for this enzyme is associated with inattention but preserved response control. The polymorphism rs17268988 within the X-linked STS gene is associated with inattentive, but not other, symptoms in boys with attention deficit hyperactivity disorder (ADHD). METHODS We initially tested whether rs17268988 genotype was associated with attention, response control, and underlying aspects of cognition, using questionnaires and neuropsychological tasks, in two independent cohorts of healthy adult males. In an additional analysis based upon existing data, the performance of mice with genetic or pharmacological manipulations of the STS axis under attentionally demanding conditions was investigated. RESULTS G-allele carriers at rs17268988 exhibited reduced reaction time, enhanced attention, and reduced reaction time variability relative to C-allele carriers. Mice with genetic or pharmacological manipulations of the STS axis were shown to have perturbed reaction time variability. DISCUSSION Our findings provide additional support for an association between rs17268988 genotype and attention, which may be partially mediated by reaction time variability; they also indicate that, in contrast to the situation in boys with ADHD, in healthy men, the G-allele at rs17268988 is associated with enhanced cognition. As reaction time variability is a predictor of well-being, rs17268988 genotype may represent a biomarker for long-term health.
Collapse
Affiliation(s)
- Trevor Humby
- School of Psychology Cardiff University Cardiff UK
| | - Amelia Fisher
- Division of Psychological Medicine and Clinical Neurosciences Medical Research Council Centre for Neuropsychiatric Genetics and Genomics School of Medicine Cardiff University Cardiff UK
| | | | | | - Annette Hartman
- Department of Psychiatry Martin Luther University of Halle Halle Germany
| | - Ina Giegling
- Department of Psychiatry Martin Luther University of Halle Halle Germany
| | - Dan Rujescu
- Department of Psychiatry Martin Luther University of Halle Halle Germany
| | - William Davies
- School of Psychology Cardiff University Cardiff UK; Division of Psychological Medicine and Clinical Neurosciences Medical Research Council Centre for Neuropsychiatric Genetics and Genomics School of Medicine Cardiff University Cardiff UK; Neuroscience and Mental Health Research Institute Cardiff University Cardiff UK
| |
Collapse
|
26
|
Garbacz WG, Jiang M, Xie W. Sex-Dependent Role of Estrogen Sulfotransferase and Steroid Sulfatase in Metabolic Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:455-469. [PMID: 29224107 DOI: 10.1007/978-3-319-70178-3_21] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sulfonation and desulfation are two opposing processes that represent an important layer of regulation of estrogenic activity via ligand supplies. Enzymatic activities of families of enzymes, known as sulfotransferases and sulfatases, lead to structural and functional changes of the steroids, thyroids, xenobiotics, and neurotransmitters. Estrogen sulfotransferase (EST) and steroid sulfatase (STS) represent negative and positive regulation of the estrogen activity, respectively. This is because EST-mediated sulfation deactivates estrogens, whereas STS-mediated desulfation converts the inactive estrogen sulfates to active estrogens. In addition to the known functions of estrogens, EST and STS in reproductive processes, regulation of estrogens and other signal molecules especially at the local tissue levels has gained increased attention in the context of metabolic disease in recent years. EST expression is detectable in the subcutaneous adipose tissue in both obese women and men, and the expression of EST is markedly induced in the livers of rodent models of obesity and type 2 diabetes. STS was found to be upregulated in patients with chronic inflammatory liver diseases. Interestingly, the tissue distribution and the transcriptional regulation of EST and STS exhibit obvious sex and species specificity. EST ablation produces completely opposite metabolic phenotype in female and male obese mice. Adipogenesis is also differentially regulated by EST in murine and human adipocytes. This chapter focuses on the recent progress in our understanding of the expression and regulation EST and STS in the context of metabolic homeostasis.
Collapse
Affiliation(s)
- Wojciech G Garbacz
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mengxi Jiang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Fizet J, Cassel JC, Kelche C, Meunier H. A review of the 5-Choice Serial Reaction Time (5-CSRT) task in different vertebrate models. Neurosci Biobehav Rev 2016; 71:135-153. [DOI: 10.1016/j.neubiorev.2016.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/25/2023]
|
28
|
Hormonal modulation of novelty processing in women: Enhanced under working memory load with high dehydroepiandrosterone-sulfate-to-dehydroepiandrosterone ratios. Neurosci Lett 2016; 634:98-103. [PMID: 27717832 DOI: 10.1016/j.neulet.2016.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/11/2016] [Accepted: 10/02/2016] [Indexed: 11/21/2022]
Abstract
Several studies have suggested that dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEAS) may enhance working memory and attention, yet current evidence is still inconclusive. The balance between both forms of the hormone might be crucial regarding the effects that DHEA and DHEAS exert on the central nervous system. To test the hypothesis that higher DHEAS-to-DHEA ratios might enhance working memory and/or involuntary attention, we studied the DHEAS-to-DHEA ratio in relation to involuntary attention and working memory processing by recording the electroencephalogram of 22 young women while performing a working memory load task and a task without working memory load in an audio-visual oddball paradigm. DHEA and DHEAS were measured in saliva before each task. We found that a higher DHEAS-to-DHEA ratio was related to enhanced auditory novelty-P3 amplitudes during performance of the working memory task, indicating an increased processing of the distracter, while on the other hand there was no difference in the processing of the visual target. These results suggest that the balance between DHEAS and DHEA levels modulates involuntary attention during the performance of a task with cognitive load without interfering with the processing of the task-relevant visual stimulus.
Collapse
|
29
|
Chatterjee S, Humby T, Davies W. Behavioural and Psychiatric Phenotypes in Men and Boys with X-Linked Ichthyosis: Evidence from a Worldwide Online Survey. PLoS One 2016; 11:e0164417. [PMID: 27711218 PMCID: PMC5053497 DOI: 10.1371/journal.pone.0164417] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/23/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND X-linked ichthyosis (XLI) is a rare dermatological condition arising from deficiency for the enzyme steroid sulfatase (STS). Preliminary evidence in boys with XLI, and animal model studies, suggests that individuals lacking STS are at increased risk of developmental disorders and associated traits. However, the behavioural profile of children with XLI is poorly-characterised, and the behavioural profile of adults with XLI has not yet been documented at all. MATERIALS AND METHODS Using an online survey, advertised worldwide, we collected detailed self- or parent-reported information on behaviour in adult (n = 58) and younger (≤18yrs, n = 24) males with XLI for comparison to data from their non-affected brothers, and age/gender-matched previously-published normative data. The survey comprised demographic and background information (including any prior clinical diagnoses) and validated questionnaires assaying phenotypes of particular interest (Adult ADHD Self-Report Scale v1.1, Barrett Impulsiveness Scale-11, adult and adolescent Autism Quotient, Kessler Psychological Distress Scales, and Disruptive Behaviour Disorder Rating Scale). RESULTS Individuals with XLI generally exhibited normal sensory function. Boys with XLI were at increased risk of developmental disorder, whilst adults with the condition were at increased risk of both developmental and mood disorders. Both adult and younger XLI groups scored significantly more highly than male general population norms on measures of inattention, impulsivity, autism-related traits, psychological distress and disruptive behavioural traits. CONCLUSIONS These findings indicate that both adult and younger males with XLI exhibit personality profiles that are distinct from those of males within the general population, and suggest that individuals with XLI may be at heightened risk of psychopathology. The data are consistent with the notion that STS is important in neurodevelopment and ongoing brain function, and with previous work suggesting high rates of developmental disorders in boys with XLI. Our results suggest that individuals with XLI may require medical care from multidisciplinary teams, and should help to inform genetic counselling for the condition.
Collapse
Affiliation(s)
- Sohini Chatterjee
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Trevor Humby
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - William Davies
- MRC Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
31
|
Itohara S, Kobayashi Y, Nakashiba T. Genetic factors underlying attention and impulsivity: mouse models of attention-deficit/hyperactivity disorder. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2014.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Cox KH, Bonthuis PJ, Rissman EF. Mouse model systems to study sex chromosome genes and behavior: relevance to humans. Front Neuroendocrinol 2014; 35:405-19. [PMID: 24388960 PMCID: PMC4079771 DOI: 10.1016/j.yfrne.2013.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
Sex chromosome genes directly influence sex differences in behavior. The discovery of the Sry gene on the Y chromosome (Gubbay et al., 1990; Koopman et al., 1990) substantiated the sex chromosome mechanistic link to sex differences. Moreover, the pronounced connection between X chromosome gene mutations and mental illness produces a strong sex bias in these diseases. Yet, the dominant explanation for sex differences continues to be the gonadal hormones. Here we review progress made on behavioral differences in mouse models that uncouple sex chromosome complement from gonadal sex. We conclude that many social and cognitive behaviors are modified by sex chromosome complement, and discuss the implications for human research. Future directions need to include identification of the genes involved and interactions with these genes and gonadal hormones.
Collapse
Affiliation(s)
- Kimberly H Cox
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Paul J Bonthuis
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Emilie F Rissman
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| |
Collapse
|
33
|
Davies W, Humby T, Trent S, Eddy JB, Ojarikre OA, Wilkinson LS. Genetic and pharmacological modulation of the steroid sulfatase axis improves response control; comparison with drugs used in ADHD. Neuropsychopharmacology 2014; 39:2622-32. [PMID: 24842408 PMCID: PMC4140762 DOI: 10.1038/npp.2014.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/10/2014] [Accepted: 05/02/2014] [Indexed: 02/08/2023]
Abstract
Maladaptive response control is a feature of many neuropsychiatric conditions, including attention deficit hyperactivity disorder (ADHD). As ADHD is more commonly diagnosed in males than females, a pathogenic role for sex-linked genes has been suggested. Deletion or point mutation of the X-linked STS gene, encoding the enzyme steroid sulfatase (STS) influences risk for ADHD. We examined whether deletion of the Sts gene in the 39,X(Y*)O mouse model, or pharmacological manipulation of the STS axis, via administration of the enzyme substrate dehydroepiandrosterone sulfate or the enzyme inhibitor COUMATE, influenced behavior in a novel murine analog of the stop-signal reaction time task used to detect inhibitory deficits in individuals with ADHD. Unexpectedly, both the genetic and pharmacological treatments resulted in enhanced response control, manifest as highly specific effects in the ability to cancel a prepotent action. For all three manipulations, the effect size was comparable to that seen with the commonly used ADHD therapeutics methylphenidate and atomoxetine. Hence, converging genetic and pharmacological evidence indicates that the STS axis is involved in inhibitory processes and can be manipulated to give rise to improvements in response control. While the precise neurobiological mechanism(s) underlying the effects remain to be established, there is the potential for exploiting this pathway in the treatment of disorders where failures in behavioral inhibition are prominent.
Collapse
Affiliation(s)
- William Davies
- Behavioral Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK,MRC Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Trevor Humby
- Behavioral Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK,MRC Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Simon Trent
- Behavioral Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK,MRC Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Jessica B Eddy
- Behavioral Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK,MRC Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Obah A Ojarikre
- MRC National Institute for Medical Research, London, Cardiff, UK
| | - Lawrence S Wilkinson
- Behavioral Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK,MRC Centre for Neuropsychiatric Genetics and Genomics and Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK,School of Psychology, Cardiff University, Tower Building, Cardiff CF10 3AT, UK, Tel: +44 (0)29 2087 0357, Fax: +44 (0)29 2087 4858, E-mail:
| |
Collapse
|
34
|
Molina-Carballo A, Justicia-Martínez F, Moreno-Madrid F, Cubero-Millán I, Machado-Casas I, Moreno-García L, León J, Luna-Del-Castillo JDD, Uberos J, Muñoz-Hoyos A. Differential responses of two related neurosteroids to methylphenidate based on ADHD subtype and the presence of depressive symptomatology. Psychopharmacology (Berl) 2014; 231:3635-45. [PMID: 24599397 DOI: 10.1007/s00213-014-3514-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/15/2014] [Indexed: 11/25/2022]
Abstract
RATIONALE Attention deficit with hyperactivity disorder is a neurodevelopmental disorder associated with alterations in the prefrontal cortex via dopaminergic and noradrenergic neurotransmission. Neurosteroids (e.g. allopregnanolone and dehydroepiandrosterone) modulate the release of multiple neurotransmitters. OBJECTIVE This study aims to determine the baseline concentrations and daily variations in allopregnanolone and dehydroepiandrosterone in children with attention deficit hyperactivity disorder (ADHD) and to determine the effect of chronic administration of methylphenidate on clinical symptoms and on the concentrations of these two neurosteroids. METHODS We included 148 children aged 5 to 14 years, subdivided into two groups: ADHD group (n = 107, with a diagnosis of ADHD (DSM-IV-TR criteria), further classified in subtypes by an "attention deficit and hyperactivity scale" and subgroups by the "Children's Depression Inventory") and a control group (n = 41). The clinical workup included blood samples that were drawn at 20:00 and 09:00 hours, at inclusion in both groups, and after 4.61 ± 2.29 months of treatment only in the ADHD group, for measurements for allopregnanolone and dehydroepiandrosterone. Factorial analysis, adjusted for age and gender, was performed by using Stata 12.0. RESULTS Methylphenidate induced the doubling of allopregnanolone levels in the predominantly inattentive ADHD patients without depressive symptoms (27.26 ± 12.90 vs. 12.67 ± 6.22 ng/ml, morning values). Although without statistical differences, baseline dehydroepiandrosterone levels were higher and slightly increased after methylphenidate in the ADHD subtype with depressive symptoms (7.74 ± 11.46 vs. 6.18 ± 5.99 ng/ml, in the morning), opposite to the lower baseline levels, and further decrease after methylphenidate in the inattentive subtype with depressive symptoms. CONCLUSIONS Different neurosteroids may have different baseline concentrations and differential responses to methylphenidate treatment as a function of ADHD subtype and subgroup. These differential responses may be a clinical marker of ADHD subtype and/or co-morbidities.
Collapse
Affiliation(s)
- Antonio Molina-Carballo
- Servicio de Neuropediatría, Neuropsicología y Atención Temprana, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Complejo Hospitalario Granada, Granada, Spain,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Davies W. Sex differences in attention Deficit Hyperactivity Disorder: candidate genetic and endocrine mechanisms. Front Neuroendocrinol 2014; 35:331-46. [PMID: 24680800 DOI: 10.1016/j.yfrne.2014.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/13/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a developmental condition characterised by severe inattention, pathological impulsivity and hyperactivity; it is relatively common affecting up to 6% of children, and is associated with a risk of long-term adverse educational and social consequences. Males are considerably more likely to be diagnosed with ADHD than females; the course of the disorder and its associated co-morbidities also appear to be sensitive to sex. Here, I discuss fundamental biological (genetic and endocrine) mechanisms that have been shown to, or could theoretically, contribute towards these sexually dimorphic phenomena. Greater understanding of how and why the sexes differ with respect to ADHD vulnerability should allow us to identify and characterise novel protective and risk factors for the disorder, and should ultimately facilitate improved diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- William Davies
- Behavioural Genetics Group, Neuroscience and Mental Health Research Institute, Schools of Psychology and Medicine, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK; Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
| |
Collapse
|
36
|
Esplin ED, Li B, Slavotinek A, Novelli A, Battaglia A, Clark R, Curry C, Hudgins L. Nine patients with Xp22.31 microduplication, cognitive deficits, seizures, and talipes anomalies. Am J Med Genet A 2014; 164A:2097-103. [DOI: 10.1002/ajmg.a.36598] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 04/13/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Edward D. Esplin
- Division of Medical Genetics, Department of Pediatrics; Stanford University School of Medicine; Stanford California
| | - Ben Li
- Division of Medical Genetics, Department of Pediatrics; University of California San Francisco; San Francisco California
| | - Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics; University of California San Francisco; San Francisco California
| | - Antonio Novelli
- Mendel Laboratory, IRCCS Casa Sollievo della Sofferenza Hospital; San Giovanni Rotondo (FG) Italy
| | - Agatino Battaglia
- The Stella Maris Clinical Research Institute for Child and Adolescent Neurology and Psychiatry; Calambrone (Pisa) Italy
| | - Robin Clark
- Division of Medical Genetics, Department of Pediatrics; Loma Linda University; Loma Linda California
| | - Cynthia Curry
- Division of Medical Genetics, Department of Pediatrics; UCSF Fresno; Fresno California
| | - Louanne Hudgins
- Division of Medical Genetics, Department of Pediatrics; Stanford University School of Medicine; Stanford California
| |
Collapse
|
37
|
Trent S, Fry JP, Ojarikre OA, Davies W. Altered brain gene expression but not steroid biochemistry in a genetic mouse model of neurodevelopmental disorder. Mol Autism 2014; 5:21. [PMID: 24602487 PMCID: PMC3946266 DOI: 10.1186/2040-2392-5-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/19/2014] [Indexed: 12/02/2022] Open
Abstract
Background The 39,XY*O mouse, which lacks the orthologues of the ADHD and autism candidate genes STS (steroid sulphatase) and ASMT (acetylserotonin O-methyltransferase), exhibits behavioural phenotypes relevant to developmental disorders. The neurobiology underlying these phenotypes is unclear, although there is evidence for serotonergic abnormalities in the striatum and hippocampus. Methods Using microarray and quantitative gene expression analyses, and gas chromatography–mass spectrometry, we compared brain gene expression and steroid biochemistry in wildtype (40,XY) and 39,XY*O adult mice to identify non-obvious genetic and endocrine candidates for between-group differences in behaviour and neurochemistry. We also tested whether acute STS inhibition by COUMATE in wildtype (40,XY) adult male mice recapitulated any significant gene expression or biochemical findings from the genetic comparison. Data were analysed by unpaired t-test or Mann Whitney U-test depending on normality, with a single factor of KARYOTYPE. Results Microarray analysis indicated seven robust gene expression differences between the two groups (Vmn2r86, Sfi1, Pisd-ps1, Tagap1, C1qc, Metap1d, Erdr1); Erdr1 and C1qc expression was significantly reduced in the 39,XY*O striatum and hippocampus, whilst the expression of Dhcr7 (encoding 7-dehydrocholesterol reductase, a modulator of serotonin system development), was only reduced in the 39,XY*O hippocampus. None of the confirmed gene expression changes could be recapitulated by COUMATE administration. We detected ten free, and two sulphated steroids in 40,XY and 39,XY*O brain; surprisingly, the concentrations of all of these were equivalent between groups. Conclusions Our data demonstrate that the mutation in 39,XY*O mice: i) directly disrupts expression of the adjacent Erdr1 gene, ii) induces a remarkably limited suite of downstream gene expression changes developmentally, with several of relevance to associated neurobehavioural phenotypes and iii) does not elicit large changes in brain steroid biochemistry. It is possible that individuals with STS/ASMT deficiency exhibit a similarly specific pattern of gene expression changes to the 39,XY*O mouse, and that these contribute towards their abnormal neurobiology. Future work may focus on whether complement pathway function, mitochondrial metabolism and cholesterol biosynthesis pathways are perturbed in such subjects.
Collapse
Affiliation(s)
| | | | | | - William Davies
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
38
|
Akutagava-Martins GC, Salatino-Oliveira A, Kieling CC, Rohde LA, Hutz MH. Genetics of attention-deficit/hyperactivity disorder: current findings and future directions. Expert Rev Neurother 2014; 13:435-45. [DOI: 10.1586/ern.13.30] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Lustig C, Kozak R, Sarter M, Young JW, Robbins TW. CNTRICS final animal model task selection: control of attention. Neurosci Biobehav Rev 2013; 37:2099-110. [PMID: 22683929 PMCID: PMC3490036 DOI: 10.1016/j.neubiorev.2012.05.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 04/14/2012] [Accepted: 05/24/2012] [Indexed: 02/05/2023]
Abstract
Schizophrenia is associated with impaired attention. The top-down control of attention, defined as the ability to guide and refocus attention in accordance with internal goals and representations, was identified by the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative as an important construct for task development and research. A recent CNTRICS meeting identified three tasks commonly used with rodent models as having high construct validity and promise for further development: The 5-choice serial reaction time task, the 5-choice continuous performance task, and the distractor condition sustained attention task. Here we describe their current status, including data on their neural substrates, evidence for sensitivity to neuropharmacological manipulations and genetic influences, and data from animal models of the cognitive deficits of schizophrenia. A common strength is the development of parallel human tasks to facilitate connections to the neural circuitry and drug development research done in these animal models. We conclude with recommendations for the steps needed to improve testing so that it better represents the complex biological and behavioral picture presented by schizophrenia.
Collapse
Affiliation(s)
- C Lustig
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | |
Collapse
|
40
|
Trent S, Dean R, Veit B, Cassano T, Bedse G, Ojarikre OA, Humby T, Davies W. Biological mechanisms associated with increased perseveration and hyperactivity in a genetic mouse model of neurodevelopmental disorder. Psychoneuroendocrinology 2013; 38:1370-80. [PMID: 23276394 PMCID: PMC3690523 DOI: 10.1016/j.psyneuen.2012.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/23/2022]
Abstract
Chromosomal deletions at Xp22.3 appear to influence vulnerability to the neurodevelopmental disorders attention deficit hyperactivity disorder (ADHD) and autism. 39,X(Y*)O mice, which lack the murine orthologue of the Xp22.3 ADHD candidate gene STS (encoding steroid sulfatase), exhibit behavioural phenotypes relevant to such disorders (e.g. hyperactivity), elevated hippocampal serotonin (5-HT) levels, and reduced serum levels of dehydroepiandrosterone (DHEA). Here we initially show that 39,X(Y*)O mice are also deficient for the recently-characterised murine orthologue of the Xp22.3 autism candidate gene ASMT (encoding acetylserotonin-O-methyltransferase). Subsequently, to specify potential behavioural correlates of elevated hippocampal 5-HT arising due to the genetic lesion, we compared 39,X(Y*)O MF1 mice to 40,XY MF1 mice on behavioural tasks taxing hippocampal and/or 5-HT function (a 'foraging' task, an object-location task, and the 1-choice serial reaction time task of impulsivity). Although Sts/Asmt deficiency did not influence foraging behaviour, reactivity to familiar objects in novel locations, or 'ability to wait', it did result in markedly increased response rates; these rates correlated with hippocampal 5-HT levels and are likely to index behavioural perseveration, a frequent feature of neurodevelopmental disorders. Additionally, we show that whilst there was no systematic relationship between serum DHEA levels and hippocampal 5-HT levels across 39,X(Y*)O and 40,XY mice, there was a significant inverse linear correlation between serum DHEA levels and activity. Our data suggest that deficiency for genes within Xp22.3 could influence core behavioural features of neurodevelopmental disorders via dissociable effects on hippocampal neurochemistry and steroid hormone levels, and that the mediating neurobiological mechanisms may be investigated in the 39,X(Y*)O model.
Collapse
Affiliation(s)
- Simon Trent
- Behavioural Genetics Group and Neuroscience and Mental Health Research Institute, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK,Institute of Psychological Medicine and Clinical Neurosciences and MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Rachel Dean
- School of Psychology, Cardiff University, Cardiff, UK
| | - Bonnie Veit
- School of Psychology, Cardiff University, Cardiff, UK
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, Medical School, University of Foggia, Foggia, Italy
| | - Gaurav Bedse
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Obah A. Ojarikre
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, London, UK
| | - Trevor Humby
- Behavioural Genetics Group and Neuroscience and Mental Health Research Institute, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK,Institute of Psychological Medicine and Clinical Neurosciences and MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - William Davies
- Behavioural Genetics Group and Neuroscience and Mental Health Research Institute, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK,Institute of Psychological Medicine and Clinical Neurosciences and MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK,Corresponding author at: Henry Wellcome Building, Heath Park Campus, Cardiff CF14 4XN, UK. Tel.: +44 0 29 2068 7047; fax: +44 0 29 2068 7068.
| |
Collapse
|
41
|
Leo D, Gainetdinov RR. Transgenic mouse models for ADHD. Cell Tissue Res 2013; 354:259-71. [PMID: 23681253 PMCID: PMC3785710 DOI: 10.1007/s00441-013-1639-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/15/2013] [Indexed: 12/20/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a developmental disorder characterized by symptoms of inattention, impulsivity and hyperactivity that adversely affect many aspects of life. Whereas the etiology of ADHD remains unknown, growing evidence indicates a genetic involvement in the development of this disorder. The brain circuits associated with ADHD are rich in monoamines, which are involved in the mechanism of action of psychostimulants and other medications used to treat this disorder. Dopamine (DA) is believed to play a major role in ADHD but other neurotransmitters are certainly also involved. Genetically modified mice have become an indispensable tool used to analyze the contribution of genetic factors in the pathogenesis of human disorders. Although rodent models cannot fully recapitulate complex human psychiatric disorders such as ADHD, transgenic mice offer an opportunity to directly investigate in vivo the specific roles of novel candidate genes identified in ADHD patients. Several knock-out and transgenic mouse models have been proposed as ADHD models, mostly based on targeting genes involved in DA transmission, including the gene encoding the dopamine transporter (DAT1). These mutant models provided an opportunity to evaluate the contribution of dopamine-related processes to brain pathology, to dissect the neuronal circuitry and molecular mechanisms involved in the antihyperkinetic action of psychostimulants and to evaluate novel treatments for ADHD. New transgenic models mouse models targeting other genes have recently been proposed for ADHD. Here, we discuss the recent advances and pitfalls in modeling ADHD endophenotypes in genetically altered animals.
Collapse
Affiliation(s)
- Damiana Leo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy,
| | | |
Collapse
|
42
|
Trent S, Davies W. Cognitive, behavioural and psychiatric phenotypes associated with steroid sulfatase deficiency. World J Transl Med 2013; 2:1-12. [DOI: 10.5528/wjtm.v2.i1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/24/2013] [Accepted: 02/08/2013] [Indexed: 02/05/2023] Open
Abstract
The enzyme steroid sulfatase (STS) desulfates a variety of steroid compounds thereby altering their activity. STS is expressed in the skin, and its deficiency in this tissue has been linked to the dermatological condition X-linked ichthyosis. STS is also highly expressed in the developing and adult human brain, and in a variety of steroidogenic organs (including the placenta and gonads); therefore it has the potential to influence brain development and function directly and/or indirectly (through influencing the hormonal milieu). In this review, we first discuss evidence from human and animal model studies suggesting that STS deficiency might predispose to neurobehavioural abnormalities and certain psychiatric disorders. We subsequently discuss potential mechanisms that may underlie these vulnerabilities. The data described herein have potential implications for understanding the complete spectrum of clinical phenotypes associated with X-linked ichthyosis, and may indicate novel pathogenic mechanisms underlying psychological dysfunction in developmental disorders such as attention deficit hyperactivity disorder and Turner syndrome.
Collapse
|
43
|
Using mouse models to investigate sex-linked genetic effects on brain, behaviour and vulnerability to neuropsychiatric disorders. Brain Res Bull 2013; 92:12-20. [DOI: 10.1016/j.brainresbull.2011.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/17/2011] [Accepted: 06/27/2011] [Indexed: 11/20/2022]
|
44
|
Amitai N, Markou A. Comparative effects of different test day challenges on performance in the 5-choice serial reaction time task. Behav Neurosci 2012; 125:764-74. [PMID: 21942437 DOI: 10.1037/a0024722] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 5-choice serial reaction time task (5-CSRTT) is a valuable cognitive test that permits the simultaneous assessment of several different cognitive modalities, including attention, impulse control, processing speed, and cognitive flexibility. Increasing task difficulty on test days through various challenges can further enhance the versatility of this test by selectively enhancing the cognitive load on different aspects of the task. Systematic comparisons of the effects of different test day challenges on 5-CSRTT performance are essential to verify how these challenges affect different task measures and which manipulations are best suited for future studies of different aspects of cognition. We trained Wistar rats in the 5-CSRTT under standard conditions, then challenged them on the test days by (1) decreasing the duration of the stimulus to be detected, (2) increasing the time interval between trials (intertrial interval, ITI), (3) randomly varying the ITI, or (4) adding a flashing light distractor. All test day challenges produced distinct profiles of performance disruption that reflected differential effects on different cognitive modalities. Decreased stimulus duration selectively impaired attentional performance, while increased ITI increased impulsive-like premature responses and decreased trials completed. Variable ITI induced only mild, nonsignificant disruptions in response inhibition and processing speed, while the flashing light distractor produced comprehensive impairment affecting multiple aspects of 5-CSRTT performance, including disrupted attention and increased premature and timeout responses. This improved understanding of the effects of different test day challenges in the 5-CSRTT will allow researchers to use these manipulations of a valuable cognitive test to their full potential.
Collapse
Affiliation(s)
- Nurith Amitai
- Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla 92093-0603, CA, USA
| | | |
Collapse
|
45
|
Does steroid sulfatase deficiency influence postpartum psychosis risk? Trends Mol Med 2012; 18:256-62. [DOI: 10.1016/j.molmed.2012.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/29/2012] [Accepted: 03/05/2012] [Indexed: 01/25/2023]
|
46
|
Altered serotonergic function may partially account for behavioral endophenotypes in steroid sulfatase-deficient mice. Neuropsychopharmacology 2012; 37:1267-74. [PMID: 22189290 PMCID: PMC3306888 DOI: 10.1038/npp.2011.314] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The X-linked gene STS encodes the steroid hormone-modulating enzyme steroid sulfatase. Loss-of-function of STS, and variation within the gene, have been associated with vulnerability to developing attention deficit hyperactivity disorder (ADHD), a neurodevelopmental condition characterized by inattention, severe impulsivity, hyperactivity, and motivational deficits. ADHD is commonly comorbid with a variety of disorders, including obsessive-compulsive disorder. The neurobiological role of steroid sulfatase, and therefore its potential role in ADHD and associated comorbidities, is currently poorly understood. The 39,X(Y)*O mouse, which lacks the Sts gene, exhibits several behavioral abnormalities relevant to ADHD including inattention and hyperactivity. Here, we show that, unexpectedly, 39,X(Y)*O mice achieve higher ratios than wild-type mice on a progressive ratio (PR) task thought to index motivation, but that there is no difference between the two groups on a behavioral task thought to index compulsivity (marble burying). High performance liquid chromatography analysis of monoamine levels in wild type and 39,X(Y)*O brain tissue regions (the frontal cortex, striatum, thalamus, hippocampus, and cerebellum) revealed significantly higher levels of 5-hydroxytryptamine (5-HT) in the striatum and hippocampus of 39,X(Y)*O mice. Significant correlations between hippocampal 5-HT levels and PR performance, and between striatal 5-HT levels and locomotor activity strongly implicate regionally-specific perturbations of the 5-HT system as a neurobiological candidate for behavioral differences between 40,XY and 39,X(Y)*O mice. These data suggest that inactivating mutations and functional variants within STS might exert their influence on ADHD vulnerability, and disorder endophenotypes through modulation of the serotonergic system.
Collapse
|
47
|
Trent S, Dennehy A, Richardson H, Ojarikre OA, Burgoyne PS, Humby T, Davies W. Steroid sulfatase-deficient mice exhibit endophenotypes relevant to attention deficit hyperactivity disorder. Psychoneuroendocrinology 2012; 37:221-9. [PMID: 21723668 PMCID: PMC3242075 DOI: 10.1016/j.psyneuen.2011.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/10/2011] [Accepted: 06/06/2011] [Indexed: 12/18/2022]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a common neurodevelopmental condition characterised by inattention, impulsivity and hyperactivity; it is frequently co-morbid with anxiety and conduct disorders, sleep perturbation and abnormal consummatory behaviours. Recent studies have implicated the neurosteroid-modulating enzyme steroid sulfatase (STS) as a modulator of ADHD-related endophenotypes. The effects of steroid sulfatase deficiency on homecage activity, feeding/drinking behaviours, anxiety-related behaviours (assayed in light-dark box and open field paradigms), social dominance and serum steroid hormone levels were determined by comparing 40,XY and 39,X(Y*)O mice. Subsequently, mice administered the steroid sulfatase inhibitor COUMATE acutely were compared to vehicle-treated mice on behavioural tasks sensitive to enzyme deficiency to dissociate between its developmental and ongoing effects. 39,X(Y*)O mice exhibited heightened reactivity to a novel environment, hyperactivity in the active phase, and increased water (but not food) consumption relative to 40,XY mice during a 24h period; the former group also demonstrated evidence for heightened emotional reactivity. There was no difference in social dominance between the 40,XY and 39,X(Y*)O mice. COUMATE administration had no effect on homecage activity, water consumption or anxiety measures in the open field. 39,X(Y*)O mice exhibited significantly lower dehydroepiandrosterone (DHEA) serum levels than 40,XY mice, but equivalent corticosterone levels. Together with previous data, the present results suggest that steroid sulfatase may influence core and associated ADHD behavioural endophenotypes via both developmental and ongoing mechanisms, and that the 39,X(Y*)O model may represent a useful tool for elucidating the neurobiological basis of these endophenotypes.
Collapse
Affiliation(s)
- Simon Trent
- Behavioural Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics and Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | | | | | | | | | - Trevor Humby
- Behavioural Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics and Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - William Davies
- Behavioural Genetics Group, Schools of Psychology and Medicine, Cardiff University, Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics and Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- Corresponding author at: Henry Wellcome Building, Heath Park Campus, Cardiff CF14 4XN, UK. Tel.: +44 0 29 2068 7047; fax: +44 0 29 2068 7068.
| |
Collapse
|
48
|
Sanchez-Roige S, Peña-Oliver Y, Stephens DN. Measuring impulsivity in mice: the five-choice serial reaction time task. Psychopharmacology (Berl) 2012; 219:253-70. [PMID: 22089700 DOI: 10.1007/s00213-011-2560-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/24/2011] [Indexed: 02/05/2023]
Abstract
RATIONALE Mice are useful tools for dissecting genetic and environmental factors in relation to the study of attention and impulsivity. The five-choice serial reaction time task (5CSRTT) paradigm has been well established in rats, but its transferability to mice is less well documented. OBJECTIVES This study aims to summarise the main results of the 5CSRTT in mice, with special focus on impulsivity. METHODS The 5CSRTT can be used to explore aspects of both attentional and inhibitory control mechanisms. RESULTS Different manipulations of the task parameters can lead to different results; adjusting the protocol as a function of the main variable of interest or the standardisation of the protocol to be applied to a large set of strains will be desirable. CONCLUSIONS The 5CSRTT has proven to be a useful tool to investigate impulsivity in mice.
Collapse
|
49
|
Davies W. Functional themes from psychiatric genome-wide screens. Front Genet 2011; 2:89. [PMID: 22303383 PMCID: PMC3268640 DOI: 10.3389/fgene.2011.00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/28/2011] [Indexed: 12/24/2022] Open
Abstract
Technological advances and a greater degree of inter-laboratory co-operation mean that genome-wide analyses can now be used to identify genetic variants that are robustly associated with the risk of developing psychiatric and neurological disorders. In contrast to the candidate gene approach, such screens may identify variants within genes which have a hitherto unappreciated role in disorder pathogenesis, and whose brain function is obscure. In this Perspective, I discuss how the behavioral functions of such genes may be investigated using model systems, drawing attention to the potential caveats and limitations with such approaches. The power of focused cross-species studies needs to be effectively exploited to enable useful insights into the molecular pathogenesis of common and disabling disorders, and ultimately to provide better clinical outcomes for patients.
Collapse
Affiliation(s)
- William Davies
- Behavioural Genetics Group, Schools of Medicine and Psychology, Cardiff UniversityCardiff, UK
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff UniversityCardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff UniversityCardiff, UK
| |
Collapse
|
50
|
Faletra F, D'Adamo AP, Santa Rocca M, Carrozzi M, Perrone MD, Pecile V, Gasparini P. Does the 1.5 Mb microduplication in chromosome band Xp22.31 have a pathogenetic role? New contribution and a review of the literature. Am J Med Genet A 2011; 158A:461-4. [PMID: 22140086 DOI: 10.1002/ajmg.a.34398] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 10/31/2011] [Indexed: 02/05/2023]
|