1
|
Miskowiak KW, Macoveanu J, Ozenne B, Beaman EE, Dam VH, Fisher PM, Knudsen GM, Kessing LV, Jørgensen MB, Frokjaer VG, Sankar A. Relation Between Brain Morphological Features and Psychiatric Hospitalization Risk in Major Depressive and Bipolar Disorders. Acta Psychiatr Scand 2025; 151:689-697. [PMID: 39980329 PMCID: PMC12045658 DOI: 10.1111/acps.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/22/2025]
Abstract
INTRODUCTION Patients with mood disorders, especially, major depressive disorder (MDD) and bipolar disorder (BD), are at heightened risk of relapse and psychiatric rehospitalizations. Therefore, there is an urgent need to identify modifiable biomarkers to inform personalized and intensified prevention strategies for those at the greatest risk of relapse and hospital readmissions. Brain structural measures subserving cognitive function hold particular promise among potential predictive biomarkers. METHODS In the present study, structural magnetic resonance imaging scans were obtained from 319 patients with MDD (n = 241) or BD (n = 78). Longitudinal data on psychiatric hospitalization for up to 10 years were available from the Danish National population-based registers. Interhemispheric hippocampal asymmetry, a putative marker of cognitive function and brain reserve, was calculated for each patient. The association between hippocampal asymmetry and future psychiatric hospitalization was assessed using a cause-specific Cox regression model. Exploratory analyses, also using a cause-specific Cox model, assessed the association of prefrontal and hippocampal gray matter volume and whole-brain white matter volume with hospitalizations. RESULTS The results indicated a negative association between rightward hippocampal asymmetry (i.e., left CONCLUSION The findings suggest a role for hippocampal and, additionally, prefrontal morphological features in the risk of future psychiatric hospitalizations in mood disorders.
Collapse
Affiliation(s)
- Kamilla W. Miskowiak
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Mental Health Services, Capital Region of Denmark, and Department of PsychologyUniversity of CopenhagenCopenhagenDenmark
- Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of DenmarkCopenhagenDenmark
| | - Julian Macoveanu
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Mental Health Services, Capital Region of Denmark, and Department of PsychologyUniversity of CopenhagenCopenhagenDenmark
| | - Brice Ozenne
- Neurobiology Research UnitCopenhagen University Hospital RigshospitaletCopenhagenDenmark
- Department of Public Health, Section of BiostatisticsUniversity of CopenhagenCopenhagenDenmark
| | - Emily E. Beaman
- Neurobiology Research UnitCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - Vibeke H. Dam
- Neurobiology Research UnitCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - Patrick M. Fisher
- Neurobiology Research UnitCopenhagen University Hospital RigshospitaletCopenhagenDenmark
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - Gitte M. Knudsen
- Neurobiology Research UnitCopenhagen University Hospital RigshospitaletCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Lars V. Kessing
- Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of DenmarkCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Martin B. Jørgensen
- Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of DenmarkCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Vibe G. Frokjaer
- Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of DenmarkCopenhagenDenmark
- Neurobiology Research UnitCopenhagen University Hospital RigshospitaletCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Anjali Sankar
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Mental Health Services, Capital Region of Denmark, and Department of PsychologyUniversity of CopenhagenCopenhagenDenmark
- Neurobiology Research UnitCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| |
Collapse
|
2
|
Macoveanu J, Zarp J, Vinberg M, Brendstrup-Brix K, Kessing LV, Jørgensen MB, Miskowiak KW. Exploring the effects of erythropoietin treatment on cortical thickness and hippocampal volume in patients with mood disorders undergoing electroconvulsive therapy: A randomized, placebo-controlled trial. J Psychopharmacol 2025; 39:164-170. [PMID: 39609686 DOI: 10.1177/02698811241301224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is a highly effective treatment for severe depression. However, its utilization is limited to the most severely ill patients due to stigma, healthcare provider unfamiliarity, and concerns regarding cognitive side effects. Erythropoietin (EPO) is a promising add-on treatment during ECT due to its potential to increase neuroplasticity and cognition. AIMS To explore the effects of EPO administration on cortical thickness and hippocampal volumes. METHODS In a randomized, double-blinded, placebo-controlled trial, we previously investigated the impact of EPO (40,000 IU) versus placebo (saline) infusions on cognitive side effects of unipolar or bipolar depression patients undergoing eight ECT sessions over 2.5 weeks. This cross-sectional magnetic resonance imaging study explores the effect of EPO on cortical thickness and hippocampal volumes 3 days post-ECT in 37 of the EPO trial patients (EPO n = 21; placebo n = 16). RESULTS Compared to the placebo group, EPO-treated patients displayed thicker cortex in distributed regions of the right hemisphere, predominantly in the parietal and occipital areas. There were no significant group differences in the hippocampal volumes or prefrontal cortex thickness. CONCLUSIONS EPO treatment may produce a selective increase in the right-side occipito-parietal cortical thickness. In contrast, the thickness of other cognition-relevant structures was not significantly affected. This aligns with our previously reported finding that EPO has a selective effect on autobiographical memory and associated right-side parietal activity in the absence of changes in global cognition. It remains to be investigated whether longer EPO treatment and follow-up assessment may be necessary for overt structural changes in cognition-relevant brain networks.
Collapse
Affiliation(s)
- Julian Macoveanu
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Jeff Zarp
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Maj Vinberg
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Psychiatric Research Unit, Psychiatric Centre North Zealand, Hillerød, Denmark
| | - Kristoffer Brendstrup-Brix
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Medicine, Hospital of Southern Jutland, Sønderborg, Denmark
| | - Lars V Kessing
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin B Jørgensen
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla W Miskowiak
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Center Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
- Neurocognition and Emotion in Affective Disorders Centre (NEAD), Department of Psychology, University of Copenhagen, and Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| |
Collapse
|
3
|
Guo C, Li W, Liu Y, Tao X, Mahaman YAR, Wang J, Liu R, Li S, Wang X. EPO Deficiency Upregulates GADD45b/p38 MAPK Axis, Mediating Schizophrenia-Related Synaptic and Cognitive Impairments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406979. [PMID: 39467064 DOI: 10.1002/advs.202406979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Schizophrenia (SZ) is a chronic and severe mental illness associated with psychiatric symptoms, cognitive deficits, and social dysfunction. Current clinical interventions only limit relief of psychiatric symptoms and have minimal impact on cognitive impairments. Erythropoietin (EPO), known for its role in neurogenesis and synaptic plasticity, is significantly low in SZ patients. However, the role of EPO deficiency in SZ-associated cognitive deficits remains unclear. In this study, we used the MK801-induced SZ rat model to show that EPO levels were significantly decreased, correlating with cognitive impairments. EPO supplementation mitigated apoptosis, synaptic damage, and cognitive impairments caused by MK801. RNA-sequencing and Western blot analysis revealed increased expression of growth arrest and DNA damage 45b (GADD45b) in MK801-treated rats, reversed by EPO supplementation. Moreover, overexpression of GADD45b exacerbated neuronal loss and cognitive impairments in male Sprague-Dawley rats, while downregulation of GADD45b rescued these SZ-related pathologies. Notably, the benefits of EPO supplementation on SZ pathology were blocked by GADD45b overexpression. Inhibition of p38 MAPK, a GADD45b target, reduced MK801-induced apoptosis and synaptic damage. These findings uncover a novel etiopathogenic mechanism of SZ-related cognitive impairments, driven by EPO deficiency and the activation of the GADD45b/p38 MAPK axis.
Collapse
Affiliation(s)
- Cuiping Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wensheng Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoqing Tao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianzhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shusheng Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| |
Collapse
|
4
|
Miskowiak KW, Damgaard V, Schandorff JM, Macoveanu J, Knudsen GM, Johansen A, Plaven-Sigray P, Svarer C, Fussing CB, Cramer K, Jørgensen MB, Kessing LV, Ehrenreich H. Effects of cognitive training under hypoxia on cognitive proficiency and neuroplasticity in remitted patients with mood disorders and healthy individuals: ALTIBRAIN study protocol for a randomized controlled trial. Trials 2024; 25:648. [PMID: 39363230 PMCID: PMC11447976 DOI: 10.1186/s13063-024-08463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Cognitive impairment is prevalent across neuropsychiatric disorders but there is a lack of treatment strategies with robust, enduring effects. Emerging evidence indicates that altitude-like hypoxia cognition training may induce long-lasting neuroplasticity and improve cognition. We will investigate whether repeated cognition training under normobaric hypoxia can improve cognitive functions in healthy individuals and patients with affective disorders and the neurobiological underpinnings of such effects. METHODS In sub-study 1, 120 healthy participants are randomized to one of four treatment arms in a double-blind manner, allowing for examination of separate and combined effects of three-week repeated moderate hypoxia and cognitive training, respectively. In sub-study 2, 60 remitted patients with major depressive disorder or bipolar disorder are randomized to hypoxia with cognition training or treatment as usual. Assessments of cognition, psychosocial functioning, and quality of life are performed at baseline, end-of-treatment, and at 1-month follow-up. Functional magnetic resonance imaging (fMRI) scans are conducted at baseline and 1-month follow-up, and [11C]UCB-J positron emission tomography (PET) scans are performed at end-of-treatment to quantify the synaptic vesicle glycoprotein 2A (SV2A). The primary outcome is a cognitive composite score of attention, verbal memory, and executive functions. Statistical power of ≥ 80% is reached to detect a clinically relevant between-group difference with minimum n = 26 per treatment arm. Behavioral data are analyzed with an intention-to-treat approach using mixed models. fMRI data is analyzed with the FMRIB Software Library, while PET data is quantified using the simplified reference tissue model (SRTM) with centrum semiovale as reference region. DISCUSSION The results will provide novel insights into whether repeated hypoxia cognition training increases cognition and brain plasticity, which can aid future treatment development strategies. TRIAL REGISTRATION ClinicalTrials.gov, NCT06121206 . Registered on 31 October 2023.
Collapse
Affiliation(s)
- Kamilla Woznica Miskowiak
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark.
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, Copenhagen, DK-1353, Denmark.
| | - Viktoria Damgaard
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, Copenhagen, DK-1353, Denmark
| | - Johanna Mariegaard Schandorff
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark
- Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, Copenhagen, DK-1353, Denmark
| | - Julian Macoveanu
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pontus Plaven-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Caroline Bruun Fussing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Psychiatric Centre Copenhagen, Mental Health Services, Frederiksberg, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Cramer
- NEAD Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Psychiatric Centre Copenhagen, Mental Health Services, Hovedvejen 17, Frederiksberg, Capital Region of Denmark, DK-2000, Denmark
| | - Martin Balslev Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Psychiatric Centre Copenhagen, Mental Health Services, Frederiksberg, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Psychiatric Centre Copenhagen, Mental Health Services, Frederiksberg, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max-Planck-Institute of Experimental Medicine, City Campus, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Curto Y, Carceller H, Klimczak P, Perez-Rando M, Wang Q, Grewe K, Kawaguchi R, Rizzoli S, Geschwind D, Nave KA, Teruel-Marti V, Singh M, Ehrenreich H, Nácher J. Erythropoietin restrains the inhibitory potential of interneurons in the mouse hippocampus. Mol Psychiatry 2024; 29:2979-2996. [PMID: 38622200 PMCID: PMC11449791 DOI: 10.1038/s41380-024-02528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Severe psychiatric illnesses, for instance schizophrenia, and affective diseases or autism spectrum disorders, have been associated with cognitive impairment and perturbed excitatory-inhibitory balance in the brain. Effects in juvenile mice can elucidate how erythropoietin (EPO) might aid in rectifying hippocampal transcriptional networks and synaptic structures of pyramidal lineages, conceivably explaining mitigation of neuropsychiatric diseases. An imminent conundrum is how EPO restores synapses by involving interneurons. By analyzing ~12,000 single-nuclei transcriptomic data, we generated a comprehensive molecular atlas of hippocampal interneurons, resolved into 15 interneuron subtypes. Next, we studied molecular alterations upon recombinant human (rh)EPO and saw that gene expression changes relate to synaptic structure, trans-synaptic signaling and intracellular catabolic pathways. Putative ligand-receptor interactions between pyramidal and inhibitory neurons, regulating synaptogenesis, are altered upon rhEPO. An array of in/ex vivo experiments confirms that specific interneuronal populations exhibit reduced dendritic complexity, synaptic connectivity, and changes in plasticity-related molecules. Metabolism and inhibitory potential of interneuron subgroups are compromised, leading to greater excitability of pyramidal neurons. To conclude, improvement by rhEPO of neuropsychiatric phenotypes may partly owe to restrictive control over interneurons, facilitating re-connectivity and synapse development.
Collapse
Affiliation(s)
- Yasmina Curto
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Héctor Carceller
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Patrycja Klimczak
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Marta Perez-Rando
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Qing Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Katharina Grewe
- Department of Neuro- & Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Riki Kawaguchi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Silvio Rizzoli
- Department of Neuro- & Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Geschwind
- Institute of Precision Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Vicent Teruel-Marti
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Manvendra Singh
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
- Georg-August-University, Göttingen, Germany.
- Experimental Medicine, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, Mannheim, Germany.
| | - Juan Nácher
- Neuroplasticity Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.
- Spanish National Network for Research in Mental Health (CIBERSAM), Madrid, Spain.
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain.
| |
Collapse
|
6
|
Miskowiak KW, Petersen JZ, Macoveanu J, Ysbæk-Nielsen AT, Lindegaard IA, Cramer K, Mogensen MB, Hammershøj LG, Stougaard ME, Jørgensen JL, Schmidt LS, Vinberg M, Ehrenreich H, Hageman I, Videbech P, Gbyl K, Kellner CH, Kessing LV, Jørgensen MB. Effect of erythropoietin on cognitive side-effects of electroconvulsive therapy in depression: A randomized, double-blind, placebo-controlled trial. Eur Neuropsychopharmacol 2024; 79:38-48. [PMID: 38128460 DOI: 10.1016/j.euroneuro.2023.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective and rapid-acting treatment for severe depression but is associated with cognitive side-effects. Identification of add-on treatments that counteract these side-effects would be very helpful. This randomized, double-blinded, placebo-controlled, parallel-group study investigated the effects of four add-on erythropoietin (EPO; 40,000 IU/ml) or saline (placebo) infusions over 2.5 weeks of ECT (eight ECT sessions) in severely depressed patients with unipolar or bipolar depression. Neuropsychological assessments were conducted pre-ECT, three days after the eighth ECT (week 4), and at a 3-month follow-up. Further, functional magnetic resonance imaging (fMRI) was conducted after the eighth ECT. The primary outcome was change from pre- to post-ECT in a 'speed of complex cognitive processing' composite. Secondary outcomes were verbal and autobiographical memory. Of sixty randomized patients, one dropped out before baseline. Data were thus analysed for 59 patients (EPO, n = 33; saline, n = 26), of whom 28 had fMRI data. No ECT-related decline occurred in the primary global cognition measure (ps≥0.1), and no effect of EPO versus saline was observed on this outcome (ps≥0.3). However post-ECT, EPO-treated patients exhibited faster autobiographical memory recall than saline-treated patients (p = 0.02), which was accompanied by lower memory-related parietal cortex activity. The absence of global cognition changes with ECT and EPO, coupled with the specific impact of EPO on autobiographical memory recall speed and memory-related parietal cortex activity, suggests that assessing autobiographical memory may provide increased sensitivity in evaluating and potentially preventing cognitive side-effects of ECT. TRIAL REGISTRATIONS: ClinicalTrials.gov: NCT03339596, EudraCT no.: 2016-002326-36.
Collapse
Affiliation(s)
- Kamilla W Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Neurocognition and Emotion in Affective Disorders Centre (NEAD), Department of Psychology, University of Copenhagen, and Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark.
| | - Jeff Z Petersen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Julian Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Alexander T Ysbæk-Nielsen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Neurocognition and Emotion in Affective Disorders Centre (NEAD), Department of Psychology, University of Copenhagen, and Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Ida A Lindegaard
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Neurocognition and Emotion in Affective Disorders Centre (NEAD), Department of Psychology, University of Copenhagen, and Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Katrine Cramer
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Madel B Mogensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Lisa G Hammershøj
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Marie E Stougaard
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Josefine L Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Lejla Sjanic Schmidt
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Maj Vinberg
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; The Early Multimodular Prevention and Intervention Research Institution (EMPIRI), Mental Health Centre, Northern Zealand, Copenhagen University Hospital, Mental Health Services, Capital Region of Denmark, Denmark
| | - Hannelore Ehrenreich
- Clincial Neuroscience, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ida Hageman
- Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Poul Videbech
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Glostrup, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Krzysztof Gbyl
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Glostrup, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Charles H Kellner
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Lars V Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin B Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Breenfeldt Andersen A, Nordsborg NB, Bonne TC, Bejder J. Contemporary blood doping-Performance, mechanism, and detection. Scand J Med Sci Sports 2024; 34:e14243. [PMID: 36229224 DOI: 10.1111/sms.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 10/17/2022]
Abstract
Blood doping is prohibited for athletes but has been a well-described practice within endurance sports throughout the years. With improved direct and indirect detection methods, the practice has allegedly moved towards micro-dosing, that is, reducing the blood doping regime amplitude. This narrative review evaluates whether blood doping, specifically recombinant human erythropoietin (rhEpo) treatment and blood transfusions are performance-enhancing, the responsible mechanism as well as detection possibilities with a special emphasis on micro-dosing. In general, studies evaluating micro-doses of blood doping are limited. However, in randomized, double-blinded, placebo-controlled trials, three studies find that infusing as little as 130 ml red blood cells or injecting 9 IU × kg bw-1 rhEpo three times per week for 4 weeks improve endurance performance ~4%-6%. The responsible mechanism for a performance-enhancing effect following rhEpo or blood transfusions appear to be increased O2 -carrying capacity, which is accompanied by an increased muscular O2 extraction and likely increased blood flow to the working muscles, enabling the ability to sustain a higher exercise intensity for a given period. Blood doping in micro-doses challenges indirect detection by the Athlete Biological Passport, albeit it can identify ~20%-60% of the individuals depending on the sample timing. However, novel biomarkers are emerging, and some may provide additive value for detection of micro blood doping such as the immature reticulocytes or the iron regulatory hormones hepcidin and erythroferrone. Future studies should attempt to validate these biomarkers for implementation in real-world anti-doping efforts and continue the biomarker discovery.
Collapse
Affiliation(s)
- Andreas Breenfeldt Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section for Sport Science, Aarhus University, Aarhus, Denmark
| | | | - Thomas Christian Bonne
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Wang Y, Chen K, Qiao ZX, Bao XR. Chronic Kidney Disease Induces Cognitive Impairment in the Early Stage. Curr Med Sci 2023; 43:988-997. [PMID: 37755634 DOI: 10.1007/s11596-023-2783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/07/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Previous research indicates a link between cognitive impairment and chronic kidney disease (CKD), but the underlying factors are not fully understood. This study aimed to investigate the progression of CKD-induced cognitive impairment and the involvement of cognition-related proteins by developing early- and late-stage CKD models in Sprague-Dawley rats. METHODS The Morris water maze test and the step-down passive avoidance task were performed to evaluate the cognitive abilities of the rats at 24 weeks after surgery. Histopathologic examinations were conducted to examine renal and hippocampal damage. Real-time PCR, Western blotting analysis, and immunohistochemical staining were carried out to determine the hippocampal expression of brain-derived neurotrophic factor (BDNF), choline acetyltransferase (ChAT), and synaptophysin (SYP). RESULTS Compared with the control rats, the rats with early-stage CKD exhibited mild renal damage, while those with late-stage CKD showed significantly increased serum creatinine levels as well as apparent renal and brain damage. The rats with early-stage CKD also demonstrated significantly impaired learning abilities and memory compared with the control rats, with further deterioration observed in the rats with late-stage CKD. Additionally, we observed a significant downregulation of cognition-related proteins in the hippocampus of rats with early-stage CKD, which was further exacerbated with declining renal function as well as worsening brain and renal damage in rats with late-stage CKD. CONCLUSION These results suggest the importance of early screening to identify CKD-induced cognitive dysfunction promptly. In addition, the downregulation of cognition-related proteins may play a role in the progression of cognitive dysfunction.
Collapse
Affiliation(s)
- Yu Wang
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Kai Chen
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Zi-Xuan Qiao
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Xiao-Rong Bao
- Department of Nephrology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
9
|
Rothschadl MJ, Sathyanesan M, Newton SS. Synergism of Carbamoylated Erythropoietin and Insulin-like Growth Factor-1 in Immediate Early Gene Expression. Life (Basel) 2023; 13:1826. [PMID: 37763230 PMCID: PMC10532867 DOI: 10.3390/life13091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Trophic factors are secreted proteins that can modulate neuronal integrity, structure, and function. Previous preclinical studies have shown synergistic effects on decreasing apoptosis and improving behavioral performance after stroke when combining two such trophic factors, erythropoietin (EPO) and insulin-like growth factor-1 (IGF-1). However, EPO can elevate the hematocrit level, which can be life-threatening for non-anemic individuals. A chemically engineered derivative of EPO, carbamoylated EPO (CEPO), does not impact hematological parameters but retains neurotrophic effects similar to EPO. To obtain insight into CEPO and IGF-1 combination signaling, we examined immediate early gene (IEG) expression after treatment with CEPO, IGF-1, or CEPO + IGF-1 in rat pheochromocytoma (PC-12) cells and found that combining CEPO and IGF-1 produced a synergistic increase in IEG expression. An in vivo increase in the protein expression of Npas4 and Nptx2 was also observed in the rat hippocampus. We also examined which kinase signaling pathways might be mediating these effects and found that while AKT inhibition did not alter the pattern of IEG expression, both ERK and JAK2 inhibition significantly decreased IEG expression. These results begin to define the molecular effects of combining CEPO and IGF-1 and indicate the potential for these trophic factors to produce positive, synergistic effects.
Collapse
Affiliation(s)
| | | | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA; (M.J.R.); (M.S.)
| |
Collapse
|
10
|
Singh M, Zhao Y, Gastaldi VD, Wojcik SM, Curto Y, Kawaguchi R, Merino RM, Garcia-Agudo LF, Taschenberger H, Brose N, Geschwind D, Nave KA, Ehrenreich H. Erythropoietin re-wires cognition-associated transcriptional networks. Nat Commun 2023; 14:4777. [PMID: 37604818 PMCID: PMC10442354 DOI: 10.1038/s41467-023-40332-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023] Open
Abstract
Recombinant human erythropoietin (rhEPO) has potent procognitive effects, likely hematopoiesis-independent, but underlying mechanisms and physiological role of brain-expressed EPO remained obscure. Here, we provide transcriptional hippocampal profiling of male mice treated with rhEPO. Based on ~108,000 single nuclei, we unmask multiple pyramidal lineages with their comprehensive molecular signatures. By temporal profiling and gene regulatory analysis, we build developmental trajectory of CA1 pyramidal neurons derived from multiple predecessor lineages and elucidate gene regulatory networks underlying their fate determination. With EPO as 'tool', we discover populations of newly differentiating pyramidal neurons, overpopulating to ~200% upon rhEPO with upregulation of genes crucial for neurodifferentiation, dendrite growth, synaptogenesis, memory formation, and cognition. Using a Cre-based approach to visually distinguish pre-existing from newly formed pyramidal neurons for patch-clamp recordings, we learn that rhEPO treatment differentially affects excitatory and inhibitory inputs. Our findings provide mechanistic insight into how EPO modulates neuronal functions and networks.
Collapse
Affiliation(s)
- Manvendra Singh
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
| | - Ying Zhao
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Vinicius Daguano Gastaldi
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Yasmina Curto
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ricardo M Merino
- Max Planck Institute for Dynamics and Self-Organization and Campus Institute for Dynamics of Biological Networks, Georg-August-University, Göttingen, Germany
| | | | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, City Campus, Göttingen, Germany.
| |
Collapse
|
11
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Harmancı P, Yıldız E. The effects of psychoeducation and motivational interviewing on treatment adherence and functionality in individuals with bipolar disorder. Arch Psychiatr Nurs 2023; 45:89-100. [PMID: 37544708 DOI: 10.1016/j.apnu.2023.04.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/01/2023] [Accepted: 04/30/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Individuals diagnosed with bipolar disorder (BD) encounter difficulties in adherence to treatment and functionality. Although it is known that psychosocial interventions such as motivational interviewing (MI) and psychoeducation are important in regard to improving adherence to treatment and functionality, the content and nature of these interventions remain uncertain. OBJECTIVE This study was conducted to determine the effects of psychoeducation and MI on treatment adherence and functionality in individuals diagnosed with BD. METHOD In this study, a quasi-experimental pretest-posttest design with three groups was adopted. The study was completed with 119 participants in the MI (n = 32), psychoeducation (n = 31), and control (n = 56) groups. RESULTS There was a statistically significant improvement in the psychoeducation and MI groups in terms of treatment adherence compared to the control group (F = 32.672, p = 0.001, Partial η2 = 0.364). Similarly, the psychoeducation and MI groups had significantly higher functionality levels compared to the control group, and significant differences were observed between the groups regarding the degree of improvement in functionality dimensions including the feeling of stigmatization (F = 8.433, p = 0.001, Partial η2 = 0.129) and participation in social activities (F = 7.038, p = 0.001, Partial η2 = 0.110). CONCLUSION It can be stated that psychoeducation and MI have positive effects in terms of improvement in treatment adherence and functionality in individuals diagnosed with BD.
Collapse
Affiliation(s)
- Pınar Harmancı
- Kahramanmaraş İstiklal University, Health Science Faculty, Nursing Department, Türkiye.
| | - Erman Yıldız
- Inonu University, Nursing Faculty, Department of Psychiatric Nursing, Türkiye.
| |
Collapse
|
13
|
Miskowiak KW, Simonsen AH, Meyer M, Poulsen HE, Wilkan M, Forman J, Hasselbalch SG, Kessing LV, Knorr U. Cerebrospinal fluid erythropoietin, oxidative stress, and cognitive functions in patients with bipolar disorder and healthy control participants: A longitudinal case-control study. J Psychiatr Res 2023; 163:240-246. [PMID: 37244061 DOI: 10.1016/j.jpsychires.2023.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Persistent cognitive impairments occur in a large proportion of patients with bipolar disorder (BD) but their underlying pathological cellular processes are unclear. The aims of this longitudinal study of BD and healthy control (HC) participants were to investigate (i) the association of brain erythropoietin (EPO) and oxidative stress with cognitive functions and (ii) the changes in brain EPO during and after affective episodes. Participants underwent neurocognitive testing, lumbar punctures for cerebrospinal fluid (CSF) sampling and provided urine spot tests at baseline (all), after an affective episode (patients) and after one year (all). EPO was assayed in the CSF and oxidative stress metabolites related to RNA and DNA damage (8-dihydroguanosine [8-oxo-Guo], 8-hydroxy-2-deoxyguanosine [8-oxo-dG]) were assayed in the CSF and spot urine. Data was available for analyses for 60 BD and 37 HC participants. In unadjusted primary analyses, verbal memory decreased with increasing concentrations of CSF EPO and oxidative stress. In unadjusted explorative analyses, poorer verbal memory and psychomotor speed were associated with higher levels of oxidative stress. However, no associations between cognitive functions and CSF levels of EPO or oxidative stress were observed after adjustment for multiple testing. CSF EPO concentrations were unchanged during and after affective episodes. While CSF EPO correlated negatively with CSF DNA damage marker 8-oxo-dG, this association rendered non-significant after adjusting for multiple testing. In conclusion, EPO and oxidative stress do not seem to be robustly related to cognitive status in BD. Further insight into the cellular processes involved in cognitive impairments in BD is necessary to pave the way for novel therapeutic strategies to improve patients' cognitive outcomes.
Collapse
Affiliation(s)
- Kamilla W Miskowiak
- Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| | - Anja H Simonsen
- Department of Neurology, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten Meyer
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik Enghusen Poulsen
- Department of Endocrinology I, Bispebjerg Frederiksberg Hospital, Frederiksberg, Denmark; Department of Cardiology, Nordsjællands Hospital Hillerød, Hillerød, Denmark; Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mira Wilkan
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Julie Forman
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Steen G Hasselbalch
- Danish Dementia Research Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars V Kessing
- Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Knorr
- Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Jørgensen JL, Macoveanu J, Petersen JZ, Knudsen GM, Kessing LV, Jørgensen MB, Miskowiak KW. Association of childhood trauma with cognitive impairment and structural brain alterations in remitted patients with bipolar disorder. J Affect Disord 2023:S0165-0327(23)00719-X. [PMID: 37236273 DOI: 10.1016/j.jad.2023.05.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cognitive impairment affects many patients with bipolar disorder (BD). No pro-cognitive treatment with robust efficacy exists partly due to limited insight into underlying neurobiological abnormalities. METHODS This magnetic resonance imaging (MRI) study investigates structural neuronal correlates of cognitive impairment in BD by comparing brain measures in a large sample of cognitively impaired versus cognitively intact patients with BD or cognitively impaired patients with major depressive disorder (MDD) and healthy controls (HC). Participants underwent neuropsychological assessments and MRI scans. The cognitively impaired and - intact BD and MDD patient groups were compared with each other and HC regarding prefrontal cortex measures, hippocampus shape/volume, and total cerebral white (WM) and grey matter (GM). RESULTS Cognitively impaired BD patients showed lower total cerebral WM volume than HC, which scaled with poorer global cognitive performance and more childhood trauma. Cognitively impaired BD patients also showed lower adjusted GM volume and thickness in the frontopolar cortex than HC but greater adjusted GM volume in the temporal cortex than cognitively normal BD patients. Cognitively impaired BD patients showed decreased cingulate volume than cognitively impaired MDD patients. Hippocampal measures were similar across all groups. LIMITATIONS The cross-sectional study design prevented insights into causal relationships. CONCLUSIONS Lower total cerebral WM and regional frontopolar and temporal GM abnormalities may constitute structural neuronal correlates of cognitive impairment in BD, of which the WM deficits scale with the degree of childhood trauma. The results deepen the understanding of cognitive impairment in BD and provide a neuronal target for pro-cognitive treatment development.
Collapse
Affiliation(s)
- Josefine Lærke Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Julian Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jeff Zarp Petersen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Martin Balslev Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Miskowiak KW, Yalin N, Seeberg I, Burdick KE, Balanzá‐Martínez V, Bonnin CDM, Bowie CR, Carvalho AF, Dols A, Douglas K, Gallagher P, Hasler G, Kessing LV, Lafer B, Lewandowski KE, López‐Jaramillo C, Martinez‐Aran A, McIntyre RS, Porter RJ, Purdon SE, Schaffer A, Sumiyoshi T, Torres IJ, Van Rheenen TE, Yatham LN, Young AH, Vieta E, Stokes PRA. Can magnetic resonance imaging enhance the assessment of potential new treatments for cognitive impairment in mood disorders? A systematic review and position paper by the International Society for Bipolar Disorders Targeting Cognition Task Force. Bipolar Disord 2022; 24:615-636. [PMID: 35950925 PMCID: PMC9826389 DOI: 10.1111/bdi.13247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Developing treatments for cognitive impairment is key to improving the functioning of people with mood disorders. Neuroimaging may assist in identifying brain-based efficacy markers. This systematic review and position paper by the International Society for Bipolar Disorders Targeting Cognition Task Force examines the evidence from neuroimaging studies of pro-cognitive interventions. METHODS We included magnetic resonance imaging (MRI) studies of candidate interventions in people with mood disorders or healthy individuals, following the procedures of the Preferred Reporting Items for Systematic reviews and Meta-Analysis 2020 statement. Searches were conducted on PubMed/MEDLINE, PsycInfo, EMBASE, Cochrane Library, and Clinicaltrials.gov from inception to 30th April 2021. Two independent authors reviewed the studies using the National Heart, Lung, Blood Institutes of Health Quality Assessment Tool for Controlled Intervention Studies and the quality of neuroimaging methodology assessment checklist. RESULTS We identified 26 studies (N = 702). Six investigated cognitive remediation or pharmacological treatments in mood disorders (N = 190). In healthy individuals, 14 studies investigated pharmacological interventions (N = 319), 2 cognitive training (N = 73) and 4 neuromodulatory treatments (N = 120). Methodologies were mostly rated as 'fair'. 77% of studies investigated effects with task-based fMRI. Findings varied but most consistently involved treatment-associated cognitive control network (CCN) activity increases with cognitive improvements, or CCN activity decreases with no cognitive change, and increased functional connectivity. In mood disorders, treatment-related default mode network suppression occurred. CONCLUSIONS Modulation of CCN and DMN activity is a putative efficacy biomarker. Methodological recommendations are to pre-declare intended analyses and use task-based fMRI, paradigms probing the CCN, longitudinal assessments, mock scanning, and out-of-scanner tests.
Collapse
Affiliation(s)
- Kamilla W. Miskowiak
- Copenhagen Affective disorder Research Centre (CADIC), Psychiatric Centre CopenhagenCopenhagen University HospitalCopenhagenDenmark,Department of PsychologyUniversity of CopenhagenCopenhagenDenmark
| | - Nefize Yalin
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Ida Seeberg
- Copenhagen Affective disorder Research Centre (CADIC), Psychiatric Centre CopenhagenCopenhagen University HospitalCopenhagenDenmark
| | - Katherine E. Burdick
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA,Department of PsychiatryBrigham and Women's HospitalBostonMassachusettsUSA
| | - Vicent Balanzá‐Martínez
- Teaching Unit of Psychiatry and Psychological Medicine, Department of MedicineUniversity of Valencia, CIBERSAMValenciaSpain
| | - Caterina del Mar Bonnin
- Clinical Institute of Neuroscience, Hospital ClinicUniversity of Barcelona, IDIBAPS, CIBERSAMBarcelonaSpain
| | | | - Andre F. Carvalho
- IMPACT Strategic Research Centre (Innovation in Mental and Physical Health and Clinical Treatment)Deakin UniversityGeelongVictoriaAustralia
| | - Annemieke Dols
- Department of Old Age Psychiatry, GGZ in Geest, Amsterdam UMC, location VUmc, Amsterdam NeuroscienceAmsterdam Public Health research instituteAmsterdamThe Netherlands
| | - Katie Douglas
- Department of Psychological MedicineUniversity of OtagoChristchurchNew Zealand
| | - Peter Gallagher
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Gregor Hasler
- Psychiatry Research UnitUniversity of FribourgFribourgSwitzerland
| | - Lars V. Kessing
- Copenhagen Affective disorder Research Centre (CADIC), Psychiatric Centre CopenhagenCopenhagen University HospitalCopenhagenDenmark,Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Beny Lafer
- Bipolar Disorder Research Program, Institute of Psychiatry, Hospital das Clinicas, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Kathryn E. Lewandowski
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA,McLean HospitalSchizophrenia and Bipolar Disorder ProgramBelmontMassachusettsUSA
| | - Carlos López‐Jaramillo
- Research Group in Psychiatry, Department of PsychiatryUniversidad de AntioquiaMedellínColombia
| | - Anabel Martinez‐Aran
- Clinical Institute of Neuroscience, Hospital ClinicUniversity of Barcelona, IDIBAPS, CIBERSAMBarcelonaSpain
| | - Roger S. McIntyre
- Mood Disorders Psychopharmacology Unit, Brain and Cognition Discovery FoundationUniversity of TorontoTorontoCanada
| | - Richard J. Porter
- Department of Psychological MedicineUniversity of OtagoChristchurchNew Zealand
| | - Scot E. Purdon
- Department of PsychiatryUniversity of AlbertaEdmontonCanada
| | - Ayal Schaffer
- Department of PsychiatryUniversity of TorontoTorontoCanada
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental HealthNational Center of Neurology and PsychiatryTokyoJapan
| | - Ivan J. Torres
- Department of PsychiatryUniversity of British ColumbiaVancouverCanada
| | - Tamsyn E. Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of MelbourneCarltonAustralia,Centre for Mental Health, Faculty of Health, Arts and DesignSwinburne UniversityHawthornAustralia
| | - Lakshmi N. Yatham
- Department of PsychiatryUniversity of British ColumbiaVancouverCanada
| | - Allan H. Young
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital ClinicUniversity of Barcelona, IDIBAPS, CIBERSAMBarcelonaSpain
| | - Paul R. A. Stokes
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| |
Collapse
|
16
|
Sathyanesan M, Newton SS. Antidepressant-like effects of trophic factor receptor signaling. Front Mol Neurosci 2022; 15:958797. [PMID: 36081576 PMCID: PMC9445421 DOI: 10.3389/fnmol.2022.958797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
A significant body of research has demonstrated that antidepressants regulate neurotrophic factors and that neurotrophins themselves are capable of independently producing antidepressant-like effects. While brain derived neurotrophic factor (BDNF) remains the best studied molecule in this context, there are several structurally diverse trophic factors that have shown comparable behavioral effects, including basic fibroblast growth factor (FGF-2), insulin-like growth factor 1 (IGF-1) and vascular endothelial growth factor (VEGF). In this review we discuss the structural and biochemical signaling aspects of these neurotrophic factors with antidepressant activity. We also include a discussion on a cytokine molecule erythropoietin (EPO), widely known and prescribed as a hormone to treat anemia but has recently been shown to function as a neurotrophic factor in the central nervous system (CNS).
Collapse
|
17
|
Hørlyck LD, Jespersen AE, King JA, Ullum H, Miskowiak KW. Impaired allocentric spatial memory in patients with affective disorders. J Psychiatr Res 2022; 150:153-159. [PMID: 35378488 DOI: 10.1016/j.jpsychires.2022.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Memory disturbances are frequent in unipolar depression (UD) and bipolar disorder (BD) and may comprise important predisposing and maintaining factors. Previous studies have demonstrated hippocampal abnormalities in UD and BD but there is a lack of studies specifically assessing hippocampus-dependent memory. METHODS We used a virtual task to assess hippocampus-dependent (allocentric) vs non-hipppocampal (egocentric) spatial memory in remitted and partially remitted patients with UD or BD (N = 22) and a healthy control group (N = 32). Participants also completed a range of standard neuropsychological and functional assessments. RESULTS Participants in the UD/BD group showed selective impairments on high-load hippocampal (allocentric) memory compared to egocentric memory and this effect was independent of residual mood symptoms. Across both samples, both allocentric and egocentric spatial memory correlated with more general measures of memory and other aspects of cognition measured on standard neuropsychological tests but only high-load allocentric memory showed a significant relationship with functional capacity. CONCLUSION Results show a selective impairment in high-load allocentric spatial memory compared to egocentric memory in the patient group, suggesting impaired hippocampal functioning in patients with remitted UD/BD.
Collapse
Affiliation(s)
- Lone D Hørlyck
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353, Copenhagen, Denmark
| | - Andreas E Jespersen
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353, Copenhagen, Denmark
| | - John A King
- Department of Clinical and Health Psychology, University College London, 1-19 Torrington Place, London, WC1E 7HB, United Kingdom
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kamilla W Miskowiak
- Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Copenhagen Psychiatric Centre, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, DK-1353, Copenhagen, Denmark.
| |
Collapse
|
18
|
Macoveanu J, Damgaard V, Ott CV, Knudsen GM, Kessing LV, Miskowiak KW. Action-based cognitive remediation in bipolar disorder improved verbal memory but had no effect on the neural response during episodic memory encoding. Psychiatry Res Neuroimaging 2022; 319:111418. [PMID: 34844094 DOI: 10.1016/j.pscychresns.2021.111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/24/2021] [Accepted: 11/16/2021] [Indexed: 11/26/2022]
Abstract
Verbal memory and executive function impairments are common in remitted patients with bipolar disorder (BD). We recently found that Action-Based Cognitive Remediation (ABCR) may improve executive function and verbal memory in BD. Here, we investigated neuronal changes associated with ABCR treatment-related memory improvement in a longitudinal functional MRI (fMRI) study. Forty-five patients with remitted BD (ABCR: n = 26, control treatment: n = 19) completed a picture-encoding task during fMRI and tests of verbal memory and executive function outside the scanner before and after two weeks of ABCR/control treatment. The cognitive assessment was performed again following ten weeks of treatment. Thirty-four healthy controls underwent the same test protocol once for baseline comparisons. Patients showed a moderate improvement in a domain composite of verbal learning and memory both after two weeks and ten weeks of ABCR treatment, which correlated with improved executive function. At baseline, patients showed encoding-related hypoactivity in dorsal prefrontal cortex compared to healthy controls. However, treatment was not associated with significant task-related neuronal activity changes. Improved verbal learning and memory may have occurred through strengthened strategic processing targeted by ABCR. However, picture-encoding paradigms may be suboptimal to capture the neural correlates of this improvement, possibly by failing to engage strategic encoding processes.
Collapse
Affiliation(s)
- Julian Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Viktoria Damgaard
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Caroline V Ott
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, Institute of Clinical Medicine, University of Copenhagen, Copenhagen,Denmark; Neurobiology Research Unit and The Center for Experimental Medicine Neuropharmacology, Rigshospitalet, Copenhagen, Denmark
| | - Lars V Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, Institute of Clinical Medicine, University of Copenhagen, Copenhagen,Denmark
| | - Kamilla W Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Introducing the brain erythropoietin circle to explain adaptive brain hardware upgrade and improved performance. Mol Psychiatry 2022; 27:2372-2379. [PMID: 35414656 PMCID: PMC9004453 DOI: 10.1038/s41380-022-01551-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
Executive functions, learning, attention, and processing speed are imperative facets of cognitive performance, affected in neuropsychiatric disorders. In clinical studies on different patient groups, recombinant human (rh) erythropoietin (EPO) lastingly improved higher cognition and reduced brain matter loss. Correspondingly, rhEPO treatment of young rodents or EPO receptor (EPOR) overexpression in pyramidal neurons caused remarkable and enduring cognitive improvement, together with enhanced hippocampal long-term potentiation. The 'brain hardware upgrade', underlying these observations, includes an EPO induced ~20% increase in pyramidal neurons and oligodendrocytes in cornu ammonis hippocampi in the absence of elevated DNA synthesis. In parallel, EPO reduces microglia numbers and dampens their activity and metabolism as prerequisites for undisturbed EPO-driven differentiation of pre-existing local neuronal precursors. These processes depend on neuronal and microglial EPOR. This novel mechanism of powerful postnatal neurogenesis, outside the classical neurogenic niches, and on-demand delivery of new cells, paralleled by dendritic spine increase, let us hypothesize a physiological procognitive role of hypoxia-induced endogenous EPO in brain, which we imitate by rhEPO treatment. Here we delineate the brain EPO circle as working model explaining adaptive 'brain hardware upgrade' and improved performance. In this fundamental regulatory circle, neuronal networks, challenged by motor-cognitive tasks, drift into transient 'functional hypoxia', thereby triggering neuronal EPO/EPOR expression.
Collapse
|
20
|
Al-Onaizi MA, Thériault P, Lecordier S, Prefontaine P, Rivest S, ElAli A. Early monocyte modulation by the non-erythropoietic peptide ARA 290 decelerates AD-like pathology progression. Brain Behav Immun 2022; 99:363-382. [PMID: 34343617 DOI: 10.1016/j.bbi.2021.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/06/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) pathology is characterized by amyloid-β (Aβ) deposition and tau hyper-phosphorylation, accompanied by a progressive cognitive decline. Monocytes have been recently shown to play a major role in modulating Aβ pathology, and thereby have been pointed as potential therapeutic targets. However, the main challenge remains in identifying clinically relevant interventions that could modulate monocyte immune functions in absence of undesired off-target effects. Erythropoietin (EPO), a key regulator of erythrocyte production, has been shown to possess immunomodulatory potential and to provide beneficial effects in preclinical models of AD. However, the transition to use recombinant human EPO in clinical trials was hindered by unwanted erythropoietic effects that could lead to thrombosis. Here, we used a recently identified non-erythropoietic analogue of EPO, ARA 290, to evaluate its therapeutic potential in AD therapy. We first evaluated the effects of early systemic ARA 290 administration on AD-like pathology in an early-onset model, represented by young APP/PS1 mice. Our findings indicate that ARA 290 early treatment decelerated Aβ pathology progression in APP/PS1 mice while improving cognitive functions. ARA 290 potently increased the levels of total monocytes by specifically stimulating the generation of Ly6CLow patrolling subset, which are implicated in clearing Aβ from the cerebral vasculature, and subsequently reducing overall Aβ burden in the brain. Moreover, ARA 290 increased the levels of monocyte progenitors in the bone marrow. Using chimeric APP/PS1 mice in which Ly6CLow patrolling subset are selectively depleted, ARA 290 was inefficient in attenuating Aβ pathology and ameliorating cognitive functions in young animals. Interestingly, ARA 290 effects were compromised when delivered in a late-onset model, represented by aged APP1/PS1. In aged APP/PS1 mice in which AD-like pathology is at advanced stages, ARA 290 failed to reverse Aβ pathology and to increase the levels of circulating monocytes. Our study suggests that ARA 290 early systemic treatment could prevent AD-like progression via modulation of monocyte functions by specifically increasing the ratio of patrolling monocytes.
Collapse
Affiliation(s)
- Mohammed A Al-Onaizi
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Peter Thériault
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Paul Prefontaine
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Serge Rivest
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
21
|
Macoveanu J, Freeman KO, Kjaerstad HL, Knudsen GM, Kessing LV, Miskowiak KW. Structural brain abnormalities associated with cognitive impairments in bipolar disorder. Acta Psychiatr Scand 2021; 144:379-391. [PMID: 34245569 DOI: 10.1111/acps.13349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Cognitive impairment has been highlighted as a core feature of bipolar disorder (BD) that often persists during remission. The specific brain correlates of cognitive impairment in BD remain unclear which impedes efficient therapeutic approaches. In a large sample of remitted BD patients, we investigated whether morphological brain abnormalities within dorsal prefrontal cortex (PFC) and hippocampus were related to cognitive deficits. METHODS Remitted BD patients (n = 153) and healthy controls (n = 52) underwent neuropsychological assessment and structural MRI. Based on hierarchical cluster analysis of neuropsychological test performance, patients were classified as either cognitively impaired (n = 91) or cognitively normal (n = 62). The neurocognitive subgroups were compared amongst each other and with healthy controls in terms of dorsal PFC cortical thickness and volume, hippocampus shape and volume, and total cerebral grey and white matter volumes. RESULTS Cognitively impaired patients displayed greater left dorsomedial prefrontal thickness compared to cognitively normal patients and healthy controls. Hippocampal grey matter volume and shape were similar across patient subgroups and healthy controls. At a whole-brain level, cognitively impaired patients had lower cerebral white matter volume compared to the other groups. Across all participants, lower white matter volume correlated with more impaired neuropsychological test performance. CONCLUSIONS Our findings associate cognitive impairment in bipolar disorder with cerebral white matter deficits, factors which may relate to the observed morphological changes in dorsomedial PFC possibly due to increased neurocognitive effort to maintain symptom stability in these remitted patients.
Collapse
Affiliation(s)
- Julian Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Katherine Olivia Freeman
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hanne Lie Kjaerstad
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular imaging, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Begemann M, Gross O, Wincewicz D, Hardeland R, Daguano Gastaldi V, Vieta E, Weissenborn K, Miskowiak KW, Moerer O, Ehrenreich H. Addressing the 'hypoxia paradox' in severe COVID-19: literature review and report of four cases treated with erythropoietin analogues. Mol Med 2021; 27:120. [PMID: 34565332 PMCID: PMC8474703 DOI: 10.1186/s10020-021-00381-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Since fall 2019, SARS-CoV-2 spread world-wide, causing a major pandemic with estimated ~ 220 million subjects affected as of September 2021. Severe COVID-19 is associated with multiple organ failure, particularly of lung and kidney, but also grave neuropsychiatric manifestations. Overall mortality reaches > 2%. Vaccine development has thrived in thus far unreached dimensions and will be one prerequisite to terminate the pandemic. Despite intensive research, however, few treatment options for modifying COVID-19 course/outcome have emerged since the pandemic outbreak. Additionally, the substantial threat of serious downstream sequelae, called 'long COVID' and 'neuroCOVID', becomes increasingly evident. Among candidates that were suggested but did not yet receive appropriate funding for clinical trials is recombinant human erythropoietin. Based on accumulating experimental and clinical evidence, erythropoietin is expected to (1) improve respiration/organ function, (2) counteract overshooting inflammation, (3) act sustainably neuroprotective/neuroregenerative. Recent counterintuitive findings of decreased serum erythropoietin levels in severe COVID-19 not only support a relative deficiency of erythropoietin in this condition, which can be therapeutically addressed, but also made us coin the term 'hypoxia paradox'. As we review here, this paradox is likely due to uncoupling of physiological hypoxia signaling circuits, mediated by detrimental gene products of SARS-CoV-2 or unfavorable host responses, including microRNAs or dysfunctional mitochondria. Substitution of erythropoietin might overcome this 'hypoxia paradox' caused by deranged signaling and improve survival/functional status of COVID-19 patients and their long-term outcome. As supporting hints, embedded in this review, we present 4 male patients with severe COVID-19 and unfavorable prognosis, including predicted high lethality, who all profoundly improved upon treatment which included erythropoietin analogues. SHORT CONCLUSION Substitution of EPO may-among other beneficial EPO effects in severe COVID-19-circumvent downstream consequences of the 'hypoxia paradox'. A double-blind, placebo-controlled, randomized clinical trial for proof-of-concept is warranted.
Collapse
Affiliation(s)
- Martin Begemann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | - Oliver Gross
- Department of Nephrology and Rheumatology, University Medical Center, Göttingen, Germany
| | - Dominik Wincewicz
- Hospital Clinic, Institute of Neuroscience, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology & Anthropology, University of Göttingen, Göttingen, Germany
| | - Vinicius Daguano Gastaldi
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany
| | - Eduard Vieta
- Hospital Clinic, Institute of Neuroscience, IDIBAPS, CIBERSAM, Barcelona, Spain
| | | | - Kamilla W Miskowiak
- Psychiatric Centre Copenhagen, University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Onnen Moerer
- Department of Anaesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str.3, 37075, Göttingen, Germany.
| |
Collapse
|
23
|
Newton SS, Sathyanesan M. Erythropoietin and Non-Erythropoietic Derivatives in Cognition. Front Pharmacol 2021; 12:728725. [PMID: 34552490 PMCID: PMC8450392 DOI: 10.3389/fphar.2021.728725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Cognitive deficits are widespread in psychiatric disorders, including major depression and schizophrenia. These deficits are known to contribute significantly to the accompanying functional impairment. Progress in the development of targeted treatments of cognitive deficits has been limited and there exists a major unmet need to develop more efficacious treatments. Erythropoietin (Epo) has shown promising procognitive effects in psychiatric disorders, providing support for a neurotrophic drug development approach. Several preclinical studies with non-erythropoietic derivatives have demonstrated that the modulation of behavior is independent of erythropoiesis. In this review, we examine the molecular, cellular and cognitive actions of Epo and non-erythropoietic molecular derivatives by focusing on their neurotrophic, synaptic, myelin plasticity, anti-inflammatory and neurogenic mechanisms in the brain. We also discuss the role of receptor signaling in Epo and non-erythropoietic EPO-mimetic molecules in their procognitive effects.
Collapse
Affiliation(s)
- Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.,Sioux Falls VA Healthcare System, Sioux Falls, SD, United States
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.,Sioux Falls VA Healthcare System, Sioux Falls, SD, United States
| |
Collapse
|
24
|
Lee BH, Park YM, Hwang JA, Kim YK. Variable alterations in plasma erythropoietin and brain-derived neurotrophic factor levels in patients with major depressive disorder with and without a history of suicide attempt. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110324. [PMID: 33857523 DOI: 10.1016/j.pnpbp.2021.110324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023]
Abstract
It is hypothesized that major depression disorder (MDD) is associated with impaired neuronal plasticity, and that antidepressant treatments restore neuroplasticity. Brain-derived neurotrophic factor (BDNF) and erythropoietin (Epo) show neurotrophic and neuroprotective effects. We evaluated plasma Epo and BDNF levels in 50 MDD inpatients before treatment and in 50 healthy controls. The MDD inpatients consisted of 20 MDD patients without and 30 MDD patients with a recent suicide attempt. The plasma Epo level was significantly higher in nonsuicidal and suicidal MDD patients than in healthy controls (p ≤ 0.001), while the plasma BDNF level was significantly lower in suicidal MDD than in nonsuicidal MDD patients and healthy controls (p ≤ 0.001). When classifying study participants into low-Epo and high-Epo and low-BDNF and high-BDNF subgroups based on the cutoff of Epo or BDNF calculated using receiver operating characteristics (ROC) curve analysis, logistic regression analysis revealed that high-Epo and low-BDNF status correlated with a respective significant odds ratio of 7.367 (p = 0.015) and 33.123 (p ≤ 0.001) for suicidal MDD. In conclusion, plasma BDNF level was decreased in untreated MDD patients, which was presumed to be a dysfunctional effect of the onset of MDD. However, an increase in plasma Epo was observed in MDD in connection with a recent suicide attempt, indicating that this triggers hypoxic stress to induce a compensatory increase in Epo.
Collapse
Affiliation(s)
- Bun-Hee Lee
- Department of Psychiatry, Maum & Maum Psychiatric Clinic, Seoul 02566, Republic of Korea
| | - Young-Min Park
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 10380, Republic of Korea
| | - Jung-A Hwang
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea.
| |
Collapse
|
25
|
Fernandez Garcia-Agudo L, Steixner-Kumar AA, Curto Y, Barnkothe N, Hassouna I, Jähne S, Butt UJ, Grewe K, Weber MS, Green K, Rizzoli S, Nacher J, Nave KA, Ehrenreich H. Brain erythropoietin fine-tunes a counterbalance between neurodifferentiation and microglia in the adult hippocampus. Cell Rep 2021; 36:109548. [PMID: 34433021 DOI: 10.1016/j.celrep.2021.109548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
In adult cornu ammonis hippocampi, erythropoietin (EPO) expression drives the differentiation of new neurons, independent of DNA synthesis, and increases dendritic spine density. This substantial brain hardware upgrade is part of a regulatory circle: during motor-cognitive challenge, neurons experience "functional" hypoxia, triggering neuronal EPO production, which in turn promotes improved performance. Here, we show an unexpected involvement of resident microglia. During EPO upregulation and stimulated neurodifferentiation, either by functional or inspiratory hypoxia, microglia numbers decrease. Treating mice with recombinant human (rh)EPO or exposure to hypoxia recapitulates these changes and reveals the involvement of neuronally expressed IL-34 and microglial CSF1R. Surprisingly, EPO affects microglia in phases, initially by inducing apoptosis, later by reducing proliferation, and overall dampens microglia activity and metabolism, as verified by selective genetic targeting of either the microglial or pyramidal neuronal EPO receptor. We suggest that during accelerating neuronal differentiation, EPO acts as regulator of the CSF1R-dependent microglia.
Collapse
Affiliation(s)
| | - Agnes A Steixner-Kumar
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Yasmina Curto
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nadine Barnkothe
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Imam Hassouna
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sebastian Jähne
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Umer Javed Butt
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Katharina Grewe
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin S Weber
- Institute of Neuropathology and Department of Neurology, UMG, Göttingen, Germany
| | - Kim Green
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Silvio Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
26
|
Vittori DC, Chamorro ME, Hernández YV, Maltaneri RE, Nesse AB. Erythropoietin and derivatives: Potential beneficial effects on the brain. J Neurochem 2021; 158:1032-1057. [PMID: 34278579 DOI: 10.1111/jnc.15475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
Erythropoietin (Epo), the main erythropoiesis-stimulating factor widely prescribed to overcome anemia, is also known nowadays for its cytoprotective action on non-hematopoietic tissues. In this context, Epo showed not only its ability to cross the blood-brain barrier, but also its expression in the brain of mammals. In clinical trials, recombinant Epo treatment has been shown to stimulate neurogenesis; improve cognition; and activate antiapoptotic, antioxidant, and anti-inflammatory signaling pathways. These mechanisms, proposed to characterize a neuroprotective property, opened new perspectives on the Epo pharmacological potencies. However, many questions arise about a possible physiological role of Epo in the central nervous system (CNS) and the factors or environmental conditions that induce its expression. Although Epo may be considered a strong candidate to be used against neuronal damage, long-term treatments, particularly when high Epo doses are needed, may induce thromboembolic complications associated with increases in hematocrit and blood viscosity. To avoid these adverse effects, different Epo analogs without erythropoietic activity but maintaining neuroprotection ability are currently being investigated. Carbamylated erythropoietin, as well as alternative molecules like Epo fusion proteins and partial peptides of Epo, seems to match this profile. This review will focus on the discussion of experimental evidence reported in recent years linking erythropoietin and CNS function through investigations aimed at finding benefits in the treatment of neurodegenerative diseases. In addition, it will review the proposed mechanisms for novel derivatives which may clarify and, eventually, improve the neuroprotective action of Epo.
Collapse
Affiliation(s)
- Daniela C Vittori
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - María E Chamorro
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Yender V Hernández
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Romina E Maltaneri
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Alcira B Nesse
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
27
|
Miskowiak KW, Møller AB, Ott CV. Neuronal and cognitive predictors of improved executive function following action-based cognitive remediation in patients with bipolar disorder. Eur Neuropsychopharmacol 2021; 47:1-10. [PMID: 33725651 DOI: 10.1016/j.euroneuro.2021.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/01/2022]
Abstract
Cognitive impairments in bipolar disorder (BD) are prevalent but effective treatments with replicated and lasting pro-cognitive effects are lacking. Treatment development is hampered by a lack of neurocircuitry biomarkers to predict treatment efficacy. Action-Based Cognitive Remediation (ABCR) improves executive function in BD and this was accompanied by increased dorsal prefrontal cortex (dPFC) response during working memory (WM) after two weeks of treatment. This study investigated whether pre-treatment WM-related dPFC response, executive dysfunction and/or subjective cognitive difficulties predicted ABCR treatment response on executive functions. Forty-five patients with fully or partially remitted BD (ABCR: n = 25, control treatment: n = 20) in our ABCR trial completed a spatial N-back WM task during functional magnetic resonance imaging (fMRI) at baseline. Patients also completed neuropsychological tests and rated their cognitive functions before and after 10 weeks of ABCR or control treatment. Multiple linear regression analyses were conducted to assess whether pre-treatment dPFC response, objective executive impairment and/or subjective cognitive difficulties predicted greater ABCR-related improvements of executive function. We found that treatment-related improvement in executive function was predicted by more WM-related dPFC hypo-activity at baseline (p = 0.03) in linear regression analyses adjusted for age, gender and education. In contrast, there was only a non-significant trend towards more executive dysfunction at baseline predicting greater ABCR-related executive improvement (p = 0.08). Subjective cognitive difficulties at baseline showed no association with treatment effects (p = 0.16). In conclusion, pre-treatment dPFC hypo-activity during WM performance predicts greater effects of ABCR treatment on executive function and may represent a neurocircuitry biomarker for treatment efficacy in this cognitive domain.
Collapse
Affiliation(s)
- Kamilla W Miskowiak
- Neurocognition and Emotion in Affective Disorders (NEAD) Group, Copenhagen Affective Disorders Research Center (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet Dep. 6233, Blegdamsvej 9, 2100 Copenhagen, Denmark.; Department of Psychology, University of Copenhagen, Østre Farimagsgade 2A, 1353 Copenhagen, Denmark.
| | - Amalie B Møller
- Neurocognition and Emotion in Affective Disorders (NEAD) Group, Copenhagen Affective Disorders Research Center (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet Dep. 6233, Blegdamsvej 9, 2100 Copenhagen, Denmark.; Department of Psychology and Behavioural Sciences, Bartholins Allé 11, Aarhus University, Aarhus, Denmark
| | - Caroline V Ott
- Neurocognition and Emotion in Affective Disorders (NEAD) Group, Copenhagen Affective Disorders Research Center (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet Dep. 6233, Blegdamsvej 9, 2100 Copenhagen, Denmark.; Department of Psychology, University of Copenhagen, Østre Farimagsgade 2A, 1353 Copenhagen, Denmark
| |
Collapse
|
28
|
Tiwari NK, Sathyanesan M, Kumar V, Newton SS. A Comparative Analysis of Erythropoietin and Carbamoylated Erythropoietin Proteome Profiles. Life (Basel) 2021; 11:life11040359. [PMID: 33921564 PMCID: PMC8073529 DOI: 10.3390/life11040359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 01/24/2023] Open
Abstract
In recent years, erythropoietin (EPO) has emerged as a useful neuroprotective and neurotrophic molecule that produces antidepressant and cognitive-enhancing effects in psychiatric disorders. However, EPO robustly induces erythropoiesis and elevates red blood cell counts. Chronic administration is therefore likely to increase blood viscosity and produce adverse effects in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered modification of EPO, is non-erythropoietic but retains the neurotrophic and neurotrophic activity of EPO. Blood profile analysis after EPO and CEPO administration showed that CEPO has no effect on red blood cell or platelet counts. We conducted an unbiased, quantitative, mass spectrometry-based proteomics study to comparatively investigate EPO and CEPO-induced protein profiles in neuronal phenotype PC12 cells. Bioinformatics enrichment analysis of the protein expression profiles revealed the upregulation of protein functions related to memory formation such as synaptic plasticity, long term potentiation (LTP), neurotransmitter transport, synaptic vesicle priming, and dendritic spine development. The regulated proteins, with roles in LTP and synaptic plasticity, include calcium/calmodulin-dependent protein kinase type 1 (Camk1), Synaptosomal-Associated Protein, 25 kDa (SNAP-25), Sectretogranin-1 (Chgb), Cortactin (Cttn), Elongation initiation factor 3a (Eif3a) and 60S acidic ribosomal protein P2 (Rplp2). We examined the expression of a subset of regulated proteins, Cortactin, Grb2 and Pleiotrophin, by immunofluorescence analysis in the rat brain. Grb2 was increased in the dentate gyrus by EPO and CEPO. Cortactin was induced by CEPO in the molecular layer, and pleiotrophin was increased in the vasculature by EPO. The results of our study shed light on potential mechanisms whereby EPO and CEPO produce cognitive-enhancing effects in clinical and preclinical studies.
Collapse
Affiliation(s)
- Neeraj K. Tiwari
- Pediatrics and Rare Disease Group, Sanford Research, Sioux Falls, SD 57104, USA;
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
- Correspondence: ; Tel.: +1-605-658-6313
| |
Collapse
|
29
|
Sleem A, El-Mallakh RS. Advances in the psychopharmacotherapy of bipolar disorder type I. Expert Opin Pharmacother 2021; 22:1267-1290. [PMID: 33612040 DOI: 10.1080/14656566.2021.1893306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Research into the pharmacologic management of bipolar type I illness continues to progress. AREAS COVERED Randomized clinical trials performed with type I bipolar disorder in the years 2015 to August 2020 are reviewed. There are new indications for the use of cariprazine, for bipolar mania and depression, and a long-acting injectable formulation of aripiprazole has also been approved for relapse prevention in bipolar illness. Most of the randomized clinical trials are effectiveness studies. EXPERT OPINION Over the 20 years from 1997 through 2016, the use of lithium and other mood stabilizers has declined by 50%, while the use of both second-generation antipsychotics (SGAs) and antidepressants has increased considerably. Over the same time period (1990-2017), disability-adjusted life years (DALYs) increased by 54.4%, from 6.02 million in 1990 to 9.29 million in 2017 which is greater than the 47.74% increase in incidence of the disease, suggesting that the changes in prescribing patterns have not been helpful for our patients. Furthermore, recent effectiveness studies continue to confirm the superiority of lithium and other mood stabilizers in the management of bipolar illness for both psychiatric and medical outcomes, reaffirming their role as foundational treatments in the management of type I bipolar disorder. Clinicians need to reassess their prescribing habits.
Collapse
Affiliation(s)
- Ahmad Sleem
- Mood Disorders Research Program, Depression Center Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rif S El-Mallakh
- Mood Disorders Research Program, Depression Center Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
30
|
Lin PY, Li LC, Wang LJ, Yang YH, Hsu CW. Lack of association between erythropoietin treatment and risk of depression in patients with end-stage kidney disease on maintenance dialysis: a nationwide database study in Taiwan. Ther Adv Chronic Dis 2021; 12:2040622321995690. [PMID: 33747426 PMCID: PMC7940772 DOI: 10.1177/2040622321995690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background Patients with end-stage kidney disease (ESKD), have been associated with higher risk of developing depression. Erythropoietin (EPO), frequently used for the treatment of anemia in ESKD patients, has been shown to have neuroprotective and antidepressant effects. In this study, we examined whether EPO treatment changed the risk of depression in ESKD patients. Methods In a nationwide population-based cohort in Taiwan from 1998 to 2013, patients with a diagnosis of ESKD on maintenance dialysis and aged greater than 18 years were classified into EPO treatment group or non-EPO treatment group. All patients were followed up until the diagnosis of depressive disorder or the end of the study period. Results In this cohort (13,067 patients in the EPO and 67,258 patients in the non-EPO group), 5569 patients were diagnosed as depressive disorder in the follow-up period. We found the risk of depression in EPO group was not significantly different from that in non-EPO group (adjusted hazard ratio = 0.98, 95% confidence interval 0.92-1.04, p = 0.499) after adjusting for sex, age, certification year of catastrophic illness for ESKD, physical co-morbidities, and use of benzodiazepines. Conclusion In summary, using the nationwide reimbursement data in Taiwan, we found that EPO treatment in ESKD patients was not associated with their general risk of developing depression.
Collapse
Affiliation(s)
- Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Lung-Chih Li
- Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Yao-Hsu Yang
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosong District, Kaohsiung City 833
| |
Collapse
|
31
|
Ott CV, Knorr U, Jespersen A, Obenhausen K, Røen I, Purdon SE, Kessing LV, Miskowiak KW. Norms for the Screen for Cognitive Impairment in Psychiatry and cognitive trajectories in bipolar disorder. J Affect Disord 2021; 281:33-40. [PMID: 33285390 DOI: 10.1016/j.jad.2020.11.119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The International Society for Bipolar Disorders Targeting Cognition Task Force recommends screening for and monitoring of cognitive impairments in patients with bipolar disorder (BD) with the Screen for Cognitive Impairment in Psychiatry (SCIP). The study aimed to provide the first demographically adjusted norms and change norms for the SCIP and to compare the cognitive trajectory over one year in remitted BD patients with normative cognitive change. METHODS Patients with fully or partially remitted BD and healthy controls (HC) were assessed with the SCIP at baseline and at a one-year follow-up. Regression-based models were used to determine demographically adjusted norms and change norms. Using the change models, predicted follow-up scores were calculated for BD and HC, and independent t-tests were used to compare deviations of the observed from the predicted follow-up scores for BD vs. HC to assess differences in cognitive trajectories. RESULTS Baseline data were collected for n=273 HC and n=218 BD, and follow-up data for n=139 HC and n=74 BD. Baseline norm models included age, sex and years of education, while change models included baseline SCIP scores and age. Patients with follow-up data showed selective impairments within verbal learning and recall at baseline. They followed the normative cognitive trajectories for all cognitive domains but verbal learning. LIMITATIONS Cognition was assessed with a screening tool. CONCLUSIONS We recommend implementing demographically adjusted norms and change norms for the SCIP in clinical and research settings. Change norms seem sensitive to subtle and selective cognitive decline over one year in remitted BD.
Collapse
Affiliation(s)
- Caroline V Ott
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ulla Knorr
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Jespersen
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kia Obenhausen
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Isabella Røen
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Scot E Purdon
- Alberta Hospital Edmonton and the Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Lars V Kessing
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla W Miskowiak
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Erythropoietin Stimulates GABAergic Maturation in the Mouse Hippocampus. eNeuro 2021; 8:ENEURO.0006-21.2021. [PMID: 33495244 PMCID: PMC7890522 DOI: 10.1523/eneuro.0006-21.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
Several neurodevelopmental disabilities are strongly associated with alterations in GABAergic transmission, and therapies to stimulate its normal development are lacking. Erythropoietin (EPO) is clinically used in neonatology to mitigate acute brain injury, and to stimulate neuronal maturation. Yet it remains unclear whether EPO can stimulate maturation of the GABAergic system. Here, with the use of a transgenic mouse line that constitutively overexpresses neuronal EPO (Tg21), we show that EPO stimulates postnatal GABAergic maturation in the hippocampus. We show an increase in hippocampal GABA-immunoreactive neurons, and postnatal elevation of interneurons expressing parvalbumin (PV), somatostatin (SST), and neuropeptide Y (NPY). Analysis of perineuronal net (PNN) formation and innervation of glutamatergic terminals onto PV+ cells, shows to be enhanced early in postnatal development. Additionally, an increase in GABAAergic synapse density and IPSCs in CA1 pyramidal cells from Tg21 mice is observed. Detection of EPO receptor (EPOR) mRNA was observed to be restricted to glutamatergic pyramidal cells and increased in Tg21 mice at postnatal day (P)7, along with reduced apoptosis. Our findings show that EPO can stimulate postnatal GABAergic maturation in the hippocampus, by increasing neuronal survival, modulating critical plasticity periods, and increasing synaptic transmission. Our data supports EPO’s clinical use to balance GABAergic dysfunction.
Collapse
|
33
|
Butt UJ, Steixner-Kumar AA, Depp C, Sun T, Hassouna I, Wüstefeld L, Arinrad S, Zillmann MR, Schopf N, Fernandez Garcia-Agudo L, Mohrmann L, Bode U, Ronnenberg A, Hindermann M, Goebbels S, Bonn S, Katschinski DM, Miskowiak KW, Nave KA, Ehrenreich H. Hippocampal neurons respond to brain activity with functional hypoxia. Mol Psychiatry 2021; 26:1790-1807. [PMID: 33564132 PMCID: PMC8440186 DOI: 10.1038/s41380-020-00988-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Physical activity and cognitive challenge are established non-invasive methods to induce comprehensive brain activation and thereby improve global brain function including mood and emotional well-being in healthy subjects and in patients. However, the mechanisms underlying this experimental and clinical observation and broadly exploited therapeutic tool are still widely obscure. Here we show in the behaving brain that physiological (endogenous) hypoxia is likely a respective lead mechanism, regulating hippocampal plasticity via adaptive gene expression. A refined transgenic approach in mice, utilizing the oxygen-dependent degradation (ODD) domain of HIF-1α fused to CreERT2 recombinase, allows us to demonstrate hypoxic cells in the performing brain under normoxia and motor-cognitive challenge, and spatially map them by light-sheet microscopy, all in comparison to inspiratory hypoxia as strong positive control. We report that a complex motor-cognitive challenge causes hypoxia across essentially all brain areas, with hypoxic neurons particularly abundant in the hippocampus. These data suggest an intriguing model of neuroplasticity, in which a specific task-associated neuronal activity triggers mild hypoxia as a local neuron-specific as well as a brain-wide response, comprising indirectly activated neurons and non-neuronal cells.
Collapse
Affiliation(s)
- Umer Javed Butt
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Agnes A. Steixner-Kumar
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Constanze Depp
- grid.419522.90000 0001 0668 6902Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ting Sun
- grid.419522.90000 0001 0668 6902Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany ,grid.13648.380000 0001 2180 3484Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Imam Hassouna
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Liane Wüstefeld
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sahab Arinrad
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Matthias R. Zillmann
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nadine Schopf
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Laura Fernandez Garcia-Agudo
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Leonie Mohrmann
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ulli Bode
- grid.419522.90000 0001 0668 6902Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anja Ronnenberg
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Martin Hindermann
- grid.419522.90000 0001 0668 6902Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sandra Goebbels
- grid.419522.90000 0001 0668 6902Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Stefan Bonn
- grid.13648.380000 0001 2180 3484Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Dörthe M. Katschinski
- grid.7450.60000 0001 2364 4210Institute for Cardiovascular Physiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Kamilla W. Miskowiak
- grid.475435.4Psychiatric Centre Copenhagen, University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
34
|
Shi J, Guo H, Liu S, Xue W, Fan F, Li H, Fan H, An H, Wang Z, Tan S, Yang F, Tan Y. Subcortical Brain Volumes Relate to Neurocognition in First-Episode Schizophrenia, Bipolar Disorder, Major Depression Disorder, and Healthy Controls. Front Psychiatry 2021; 12:747386. [PMID: 35145436 PMCID: PMC8821164 DOI: 10.3389/fpsyt.2021.747386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/30/2021] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE To explore differences and similarities in relationships between subcortical structure volumes and neurocognition among the four subject groups, including first-episode schizophrenia (FES), bipolar disorder (BD), major depression disorder (MDD), and healthy controls (HCs). METHODS We presented findings from subcortical volumes and neurocognitive analyses of 244 subjects (109 patients with FES; 63 patients with BD, 30 patients with MDD, and 42 HCs). Using the FreeSurfer software, volumes of 16 selected subcortical structures were automatically segmented and analyzed for relationships with results from seven neurocognitive tests from the MATRICS (Measurement and Treatment Research to Improve Cognition in Schizophrenia) Cognitive Consensus Battery (MCCB). RESULTS Larger left lateral ventricle volumes in FES and BD, reduced bilateral hippocampus and amygdala volumes in FES, and lower bilateral amygdala volumes in BD and MDD were presented compared with HCs, and both FES and BD had a lower bilateral amygdala volume than MDD; there were seven cognitive dimension, five cognitive dimension, and two cognitive dimension impairments in FES, BD, and MDD, respectively; significant relationships were found between subcortical volumes and neurocognition in FES and BD but not in MDD and HCs; besides age and years of education, some subcortical volumes can predict neurocognitive performances variance. CONCLUSION The different degrees of subcortical volume lessening may contribute to the differences in cognitive impairment among the three psychiatric disorders.
Collapse
Affiliation(s)
- Jing Shi
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Hua Guo
- The Psychiatric Hospital of Zhumadian, Zhumadian, China
| | - Sijia Liu
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Wei Xue
- Department of Clinical Pharmacology, Beijing Hospital of the Ministry of Health, Beijing, China
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Hui Li
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Hongzhen Fan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Huimei An
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Fude Yang
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| |
Collapse
|
35
|
Pekas NJ, Petersen JL, Sathyanesan M, Newton SS. Design and Development of a Behaviorally Active Recombinant Neurotrophic Factor. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5393-5403. [PMID: 33304094 PMCID: PMC7723032 DOI: 10.2147/dddt.s274308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Introduction Carbamoylated erythropoietin (CEPO) is a chemically engineered, nonhematopoietic derivative of erythropoietin (EPO) that retains its antidepressant and pro-cognitive effects, which are attributed to the increased expression of neurotrophic factors like brain derived neurotrophic factor (BDNF), in the central nervous system. However, the chemical modification process which produces CEPO from erythropoietin (EPO) requires pure EPO as raw material, is challenging to scale-up and can also cause batch-to-batch variability. To address these key limitations while retaining its behavioral effects, we designed, expressed and analyzed a triple, glutamine, substitution recombinant mimetic of CEPO, named QPO. Methods and Materials We employ a combination of computational structural biology, molecular, cellular and behavioral assays to design, produce, purify and test QPO. Results QPO was shown to be a nonhematopoietic polypeptide with significant antidepressant-like and pro-cognitive behavioral effects in rodent assays while significantly upregulating BDNF expression in-vitro and in-vivo. The in-silico binding affinity analysis of QPO bound to the EPOR/EPOR homodimer receptor shows significantly decreased binding to Active Site 2, but not Active Site 1, of EPOR. Discussion The results of the behavioral and gene expression analysis imply that QPO is a successful CEPO mimetic protein and potentially acts via a similar neurotrophic mechanism, making it a drug development target for psychiatric disorders. The decreased binding to Active Site 2 could imply that this active site is not involved in neuroactive signaling and could allow the development of a functional innate repair receptor (IRR) model. Substituting the three glutamine substitution residues with arginine (RPO) resulted in the loss of behavioral activity, indicating the importance of glutamine residues at those positions.
Collapse
Affiliation(s)
- Nicholas J Pekas
- Department of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermilion, SD, USA
| | - Jason L Petersen
- Sioux Falls VA Health Care System, Sioux Falls, SD, USA.,Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
| | - Monica Sathyanesan
- Department of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermilion, SD, USA.,Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| | - Samuel S Newton
- Department of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermilion, SD, USA.,Sioux Falls VA Health Care System, Sioux Falls, SD, USA
| |
Collapse
|
36
|
Barczyk ZA, Douglas KM, Porter RJ. Baseline predictors of cognitive change in the treatment of major depressive episode: systematic review. BJPsych Open 2020; 6:e131. [PMID: 33121560 PMCID: PMC7745238 DOI: 10.1192/bjo.2020.114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cognitive impairment is a core feature of depression and has a negative effect on a person's functioning, in psychosocial and interpersonal areas, and on workforce performance. Cognitive impairment often persists, even with the remittance of mood symptoms. One potential way of improving treatment of cognitive impairment would be to identify variables that predict cognitive change in patients with depression. AIMS To systematically examine findings from studies that investigate baseline variables and how they predict, or correlate with, cognitive change in mood disorders, and to examine methodological issues from these studies. METHOD Studies that directly measured associations between at least one baseline variable and change in cognitive outcome in patients with current major depressive episode were identified using PubMed and Web of Science databases. Narrative review technique was used because of the heterogeneity of patient samples, outcome measures and study procedures. The review was registered on PROSPERO with registration number CRD42020150975. RESULTS Twenty-four studies met the inclusion criteria. Evidence from the present review for prediction of cognitive change from baseline variables was limited for demographic factors, with some preliminary evidence for depression, cognitive and biological factors. Identification of patterns across studies was difficult because of methodological variability across studies. CONCLUSIONS Findings from the present review suggest there may be some baseline variables that are useful in predicting cognitive change in mood disorders. This is an area warranting further research focus.
Collapse
Affiliation(s)
- Zoe A Barczyk
- Department of Psychological Medicine, University of Otago, New Zealand
| | - Katie M Douglas
- Department of Psychological Medicine, University of Otago, New Zealand
| | - Richard J Porter
- Department of Psychological Medicine, University of Otago; and Clinical Research Unit, Canterbury District Health Board, New Zealand
| |
Collapse
|
37
|
Zhou Y, Sun B, Guo J, Zhou G. Intranasal injection of recombinant human erythropoietin improves cognitive and visual impairments in chronic cerebral ischemia rats. Biomed Rep 2020; 13:40. [PMID: 32934813 DOI: 10.3892/br.2020.1347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/13/2020] [Indexed: 01/02/2023] Open
Abstract
The present study aimed to study the protective effect of intranasally delivered recombinant human erythropoietin (rhEPO) on cognitive and visual impairments in a permanent bilateral common carotid artery occlusion (2VO)-induced chronic cerebral ischemia (CCI) rat model. Male Sprague-Dawley rats (age, 6 months) with 2VO-induced CCI were treated with intranasal rhEPO (50 U/100 g) once per week for 8 weeks. A Morris water maze was used to evaluate the spatial learning and memory of the rats. Flash visual evoked potentials were measured to assess retinal function. Hematoxylin and eosin staining was performed to visualize and evaluate histopathological changes in the cerebral cortex, the hippocampus CA1 region and the retina. CCI-induced learning, memory and visual impairments were significantly alleviated in rats treated with rhEPO compared with those treated with a saline vehicle control. This was evidenced by remarkably decreased escape latency, increased frequency of crossing the hidden platform and elevated amplitude of primary wave in the rats treated with rhEPO. In addition, the rats experienced CCI-induced histopathological alterations, demonstrated by thinning of the cerebral cortex and retina, and losses of neurons and retinal ganglion cells. These alterations were significantly reversed in response to rhEPO administration compared with the saline vehicle control group. rhEPO may exert a protective role against cognitive and visual impairments in rats with CCI at least partially through preventing the thinning of the cerebral cortex and retina, as well as by inhibiting the loss of neurons and retinal ganglion cells.
Collapse
Affiliation(s)
- Yanhui Zhou
- Department of Internal Medicine, Shanxi Eye Hospital, Taiyuan, Shanxi 030002, P.R. China
| | - Bin Sun
- Department of Orbitopathy, Shanxi Eye Hospital, Taiyuan, Shanxi 030002, P.R. China
| | - Junhong Guo
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Guohong Zhou
- Department of Lacrimal Duct, Shanxi Eye Hospital, Taiyuan, Shanxi 030002, P.R. China
| |
Collapse
|
38
|
Rolfes S, Munro DAD, Lyras EM, Matute E, Ouk K, Harms C, Böttcher C, Priller J. Lentiviral delivery of human erythropoietin attenuates hippocampal atrophy and improves cognition in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2020; 144:105024. [PMID: 32702387 DOI: 10.1016/j.nbd.2020.105024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is an incurable neurodegenerative disorder caused by a trinucleotide (CAG) repeat expansion in the huntingtin gene (HTT). The R6/2 transgenic mouse model of HD expresses exon 1 of the human HTT gene with approximately 150 CAG repeats. R6/2 mice develop progressive behavioural abnormalities, impaired neurogenesis, and atrophy of several brain regions. In recent years, erythropoietin (EPO) has been shown to confer neuroprotection and enhance neurogenesis, rendering it a promising molecule to attenuate HD symptoms. In this study, the therapeutic potential of EPO was evaluated in female R6/2 transgenic mice. A single bilateral injection of a lentivirus encoding human EPO (LV-hEPO) was performed into the lateral ventricles of R6/2 mice at disease onset (8 weeks of age). Control groups were either untreated or injected with a lentivirus encoding green fluorescent protein (LV-GFP). Thirty days after virus administration, hEPO mRNA and protein were present in injected R6/2 brains. Compared to control R6/2 mice, LV-hEPO-treated R6/2 mice exhibited reduced hippocampal atrophy, increased neuroblast branching towards the dentate granular cell layer, and improved spatial cognition. Our results suggest that LV-hEPO administration may be a promising strategy to reduce cognitive impairment in HD.
Collapse
Affiliation(s)
- Simone Rolfes
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - David A D Munro
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SA, UK
| | - Ekaterini-Maria Lyras
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Eduardo Matute
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Koliane Ouk
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany; DZNE Berlin, 10117 Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology and Center for Stroke Research, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany; UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH16 4SA, UK; DZNE Berlin, 10117 Berlin, Germany.
| |
Collapse
|
39
|
López-Solà C, Subirà M, Serra-Blasco M, Vicent-Gil M, Navarra-Ventura G, Aguilar E, Acebillo S, Palao DJ, Cardoner N. Is cognitive dysfunction involved in difficult-to-treat depression? Characterizing resistance from a cognitive perspective. Eur Psychiatry 2020; 63:e74. [PMID: 32571441 PMCID: PMC7443785 DOI: 10.1192/j.eurpsy.2020.65] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/11/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This study aimed to identify clinical and cognitive factors associated with increased risk for difficult-to-treat depression (DTD) or treatment-resistant depression (TRD). METHODS A total of 229 adult outpatients with major depression were recruited from the mental health unit at a public hospital. Participants were subdivided into resistant and nonresistant groups according to their Maudsley Staging Model score. Sociodemographic, clinical, and cognitive (objective and subjective measures) variables were compared between groups, and a logistic regression model was used to identify the factors most associated with TRD risk. RESULTS TRD group patients present higher verbal memory impairment than the nonresistant group irrespective of pharmacological treatment or depressive symptom severity. Logistic regression analysis showed that low verbal memory scores (odds ratio [OR]: 2.02; 95% confidence interval [CI]: 1.38-2.95) together with high depressive symptom severity (OR: 1.29; CI95%: 1.01-1.65) were associated with TRD risk. CONCLUSIONS Our findings align with neuroprogression models of depression, in which more severe patients, defined by greater verbal memory impairment and depressive symptoms, develop a more resistant profile as a result of increasingly detrimental neuronal changes. Moreover, our results support a more comprehensive approach in the evaluation and treatment of DTD in order to improve illness course. Longitudinal studies are warranted to confirm the predictive value of verbal memory and depression severity in the development of TRD.
Collapse
Affiliation(s)
- Clara López-Solà
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Department of Clinical and Health Psychology, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Carlos III Health Institute, Madrid, Spain
| | - Marta Subirà
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Carlos III Health Institute, Madrid, Spain
| | - Maria Serra-Blasco
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - Muriel Vicent-Gil
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Department of Psychiatry, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Guillem Navarra-Ventura
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eva Aguilar
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - Siddarta Acebillo
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - Diego J. Palao
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Carlos III Health Institute, Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Narcís Cardoner
- Mental Health Department, Parc Taulí Hospital Universitari, Neuroscience and Mental Health Research Area, Institut d’Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- CIBERSAM (Centro de Investigación Biomédica en Red de Salud Mental), Carlos III Health Institute, Madrid, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Ehrenreich H, Weissenborn K, Begemann M, Busch M, Vieta E, Miskowiak KW. Erythropoietin as candidate for supportive treatment of severe COVID-19. Mol Med 2020; 26:58. [PMID: 32546125 PMCID: PMC7297268 DOI: 10.1186/s10020-020-00186-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
In light of the present therapeutic situation in COVID-19, any measure to improve course and outcome of seriously affected individuals is of utmost importance. We recap here evidence that supports the use of human recombinant erythropoietin (EPO) for ameliorating course and outcome of seriously ill COVID-19 patients. This brief expert review grounds on available subject-relevant literature searched until May 14, 2020, including Medline, Google Scholar, and preprint servers. We delineate in brief sections, each introduced by a summary of respective COVID-19 references, how EPO may target a number of the gravest sequelae of these patients. EPO is expected to: (1) improve respiration at several levels including lung, brainstem, spinal cord and respiratory muscles; (2) counteract overshooting inflammation caused by cytokine storm/ inflammasome; (3) act neuroprotective and neuroregenerative in brain and peripheral nervous system. Based on this accumulating experimental and clinical evidence, we finally provide the research design for a double-blind placebo-controlled randomized clinical trial including severely affected patients, which is planned to start shortly.
Collapse
Affiliation(s)
- Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | | | - Martin Begemann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Department of Psychiatry & Psychotherapy, University Medical Center, Göttingen, Germany
| | - Markus Busch
- Center of Internal Medicine, Hannover Medical School, Hannover, Germany
| | - Eduard Vieta
- Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Kamilla W Miskowiak
- Psychiatric Centre Copenhagen, University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
41
|
Miskowiak KW, Forman JL, Vinberg M, Siebner HR, Kessing LV, Macoveanu J. Impact of pretreatment interhemispheric hippocampal asymmetry on improvement in verbal learning following erythropoietin treatment in mood disorders: a randomized controlled trial. J Psychiatry Neurosci 2020; 45:198-205. [PMID: 31804779 PMCID: PMC7828975 DOI: 10.1503/jpn.180205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Treatment development that targets cognitive impairment is hampered by a lack of biomarkers that can predict treatment efficacy. Erythropoietin (EPO) improves verbal learning and memory in mood disorders, and this scales with an increase in left hippocampal volume. This study investigated whether pretreatment left hippocampal volume, interhemisphere hippocampal asymmetry or both influenced EPO treatment response with respect to verbal learning. METHODS Data were available for 76 of 83 patients with mood disorders from our previous EPO trials (EPO = 37 patients; placebo = 39 patients). We performed cortical reconstruction and volumetric segmentation using FreeSurfer. We conducted multiple linear regression and logistic regression to assess the influence of left hippocampal volume and hippocampal asymmetry on EPO-related memory improvement, as reflected by change in Rey Auditory Verbal Learning Test total recall from baseline to post-treatment. We set up a corresponding exploratory general linear model in FreeSurfer to assess the influence of prefrontal cortex volume on verbal learning improvement, controlling for age, sex and total intracranial volume. RESULTS At baseline, more rightward (left < right) hippocampal asymmetry — but not left hippocampal volume per se — was associated with greater effects of EPO versus placebo on verbal learning (p ≤ 0.05). Exploratory analysis indicated that a larger left precentral gyrus surface area was also associated with improvement of verbal learning in the EPO group compared to the placebo group (p = 0.002). LIMITATIONS This was a secondary analysis of our original EPO trials. CONCLUSION Rightward hippocampal asymmetry may convey a positive effect of EPO treatment efficacy on verbal learning. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov NCT00916552
Collapse
Affiliation(s)
- Kamilla W. Miskowiak
- From the Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital (Miskowiak, Macoveanu); the Department of Psychology, University of Copenhagen (Miskowiak); the Section of Biostatistics, Department of Public Health, University of Copenhagen (Forman); the Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen (Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg (Siebner); the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen (Vinberg, Siebner); and the Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital (Kessing), Copenhagen, Denmark
| | - Julie L. Forman
- From the Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital (Miskowiak, Macoveanu); the Department of Psychology, University of Copenhagen (Miskowiak); the Section of Biostatistics, Department of Public Health, University of Copenhagen (Forman); the Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen (Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg (Siebner); the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen (Vinberg, Siebner); and the Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital (Kessing), Copenhagen, Denmark
| | - Maj Vinberg
- From the Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital (Miskowiak, Macoveanu); the Department of Psychology, University of Copenhagen (Miskowiak); the Section of Biostatistics, Department of Public Health, University of Copenhagen (Forman); the Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen (Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg (Siebner); the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen (Vinberg, Siebner); and the Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital (Kessing), Copenhagen, Denmark
| | - Hartwig R. Siebner
- From the Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital (Miskowiak, Macoveanu); the Department of Psychology, University of Copenhagen (Miskowiak); the Section of Biostatistics, Department of Public Health, University of Copenhagen (Forman); the Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen (Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg (Siebner); the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen (Vinberg, Siebner); and the Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital (Kessing), Copenhagen, Denmark
| | - Lars V. Kessing
- From the Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital (Miskowiak, Macoveanu); the Department of Psychology, University of Copenhagen (Miskowiak); the Section of Biostatistics, Department of Public Health, University of Copenhagen (Forman); the Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen (Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg (Siebner); the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen (Vinberg, Siebner); and the Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital (Kessing), Copenhagen, Denmark
| | - Julian Macoveanu
- From the Neurocognition and Emotion in Affective Disorder (NEAD) Group, Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital (Miskowiak, Macoveanu); the Department of Psychology, University of Copenhagen (Miskowiak); the Section of Biostatistics, Department of Public Health, University of Copenhagen (Forman); the Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen (Siebner); the Department of Neurology, Copenhagen University Hospital Bispebjerg (Siebner); the Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen (Vinberg, Siebner); and the Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital (Kessing), Copenhagen, Denmark
| |
Collapse
|
42
|
Kjær K, Jørgensen MB, Hageman I, Miskowiak KW, Wörtwein G. The effect of erythropoietin on electroconvulsive stimulation induced cognitive impairment in rats. Behav Brain Res 2020; 382:112484. [PMID: 31954736 DOI: 10.1016/j.bbr.2020.112484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
Electroconvulsive therapy (ECT) is the most effective and fast-acting treatment for severe depression but associated with troublesome cognitive side-effects. Systemically administered erythropoietin (EPO) crosses the blood-brain-barrier and is a promising treatment for cognitive dysfunction in a wide array of neuropsychiatric and neurological disorders. In this study we trained rats to locate a submerged platform in a water maze and then subjected them to electroconvulsive stimulations (ECS, the rodent equivalent to ECT) and EPO treatment. We then analysed their ability to remember and relearn the location of the platform. In addition, we examined "wall-clinging" (thigmotaxis), a behavioural indicator of stress. ECS caused significant deficit in a probe trial administered after three weeks (nine stimulations) as well as one week (six stimulations) of treatment, indicative of induction of retrograde amnesia. ECS had no effect on relearning of the water maze task or performance in a subsequent probe trial. EPO treatment did not ameliorate the ECS-induced retrograde amnesia, but after nine ECS stimulations the animals that had received EPO relearned the position of the hidden platform faster than the animals that had not. We also found EPO to decrease "wall-clinging" behaviour, suggesting an effect of EPO on the stress response in rats. Thus, we establish the Morris Water Maze as a suitable model for ECS-induced memory loss in rats and provide some evidence for potential beneficial effects of EPO.
Collapse
Affiliation(s)
- Kristian Kjær
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark
| | | | - Ida Hageman
- Department O, Psychiatric Centre Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark; Department of Psychology, University of Copenhagen, 1353, Copenhagen, Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, 1014, Copenhagen, Denmark.
| |
Collapse
|
43
|
Wakhloo D, Scharkowski F, Curto Y, Javed Butt U, Bansal V, Steixner-Kumar AA, Wüstefeld L, Rajput A, Arinrad S, Zillmann MR, Seelbach A, Hassouna I, Schneider K, Qadir Ibrahim A, Werner HB, Martens H, Miskowiak K, Wojcik SM, Bonn S, Nacher J, Nave KA, Ehrenreich H. Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat Commun 2020; 11:1313. [PMID: 32152318 PMCID: PMC7062779 DOI: 10.1038/s41467-020-15041-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, improved performance on complex running wheels after EPO is imitated by exposure to mild exogenous/inspiratory hypoxia. All these effects depend on neuronal expression of the Epor gene. This suggests a model of neuroplasticity in form of a fundamental regulatory circle, in which neuronal networks—challenged by cognitive tasks—drift into transient hypoxia, thereby triggering neuronal EPO/EPOR expression. EPO treatment improves cognition, but underlying mechanisms were unknown. Here the authors describe a regulatory loop in which brain networks challenged by cognitive tasks drift into functional hypoxia that drives—via neuronal EPO synthesis—neurodifferentiation and dendritic spine formation.
Collapse
Affiliation(s)
- Debia Wakhloo
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Franziska Scharkowski
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Yasmina Curto
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Neurobiology Unit, Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Umer Javed Butt
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Vikas Bansal
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Agnes A Steixner-Kumar
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Liane Wüstefeld
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ashish Rajput
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Sahab Arinrad
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Matthias R Zillmann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Anna Seelbach
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Imam Hassouna
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Katharina Schneider
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Abdul Qadir Ibrahim
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | | - Kamilla Miskowiak
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany.,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,CIBERSAM: Spanish National Network for Research in Mental Health, Valencia, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
44
|
Van Rheenen TE, Lewandowski KE, Bauer IE, Kapczinski F, Miskowiak K, Burdick KE, Balanzá-Martínez V. Current understandings of the trajectory and emerging correlates of cognitive impairment in bipolar disorder: An overview of evidence. Bipolar Disord 2020; 22:13-27. [PMID: 31408230 DOI: 10.1111/bdi.12821] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Cognitive dysfunction affects a significant proportion of people with bipolar disorder (BD), but the cause, trajectory and correlates of such dysfunction remains unclear. Increased understanding of these factors is required to progress treatment development for this symptom dimension. METHODS This paper provides a critical overview of the literature concerning the trajectories and emerging correlates of cognitive functioning in BD. It is a narrative review in which we provide a qualitative synthesis of current evidence concerning clinical, molecular, neural and lifestyle correlates of cognitive impairment in BD across the lifespan (in premorbid, prodromal, early onset, post-onset, elderly cohorts). RESULTS There is emerging evidence of empirical links between cognitive impairment and an increased inflammatory state, brain structural abnormalities and reduced neuroprotection in BD. However, evidence regarding the progressive nature of cognitive impairment is mixed, since consensus between different cross-sectional data is lacking and does not align to the outcomes of the limited longitudinal studies available. Increased recognition of cognitive heterogeneity in BD may help to explain some inconsistencies in the extant literature. CONCLUSIONS Large, longitudinally focussed studies of cognition and its covariation alongside biological and lifestyle factors are required to better define cognitive trajectories in BD, and eventually pave the way for the application of a precision medicine approach for individual patients in clinical practice.
Collapse
Affiliation(s)
- Tamsyn E Van Rheenen
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia.,Faculty of Health, Arts and Design, School of Health Sciences, Centre for Mental Health, Swinburne University, Melbourne, Australia
| | - Kathryn E Lewandowski
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Isabelle E Bauer
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Flavio Kapczinski
- Department of Psychiatry and Behavioral Neurosciences, McMaster University Faculty of Health Sciences, Hamilton, ON, Canada.,Department of Psychiatry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Kamilla Miskowiak
- Neurocognition and Emotion in Affective Disorders Group, Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Katherine E Burdick
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Brigham and Women's Hospital, Boston, MA, USA.,James J Peters VA Medical Center, Bronx, NY, USA
| | - Vicent Balanzá-Martínez
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, CIBERSAM, Valencia, Spain
| |
Collapse
|
45
|
Schneider F, Horowitz A, Lesch KP, Dandekar T. Delaying memory decline: different options and emerging solutions. Transl Psychiatry 2020; 10:13. [PMID: 32066684 PMCID: PMC7026464 DOI: 10.1038/s41398-020-0697-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022] Open
Abstract
Memory decline can be a devastating disease and increases in aging Western populations. Memory enhancement technologies hold promise for this and other conditions. Approaches include stem cell transplantation, which improved memory in several animal studies as well as vaccination against Alzheimer´s disease (AD) by β-amyloid antibodies. For a positive clinical effect, the vaccine should probably be administered over a long period of time and before amyloid pathologies manifest in the brain. Different drugs, such as erythropoietin or antiplatelet therapy, improve memory in neuropsychiatric diseases or AD or at least in animal studies. Omega-3 polyunsaturated fatty acid-rich diets improve memory through the gut-brain axis by altering the gut flora through probiotics. Sports, dancing, and memory techniques (e.g., Method of Loci) utilize behavioral approaches for memory enhancement, and were effective in several studies. Augmented reality (AR) is an auspicious way for enhancing memory in real time. Future approaches may include memory prosthesis for head-injured patients and light therapy for restoring memory in AD. Memory enhancement in humans in health and disease holds big promises for the future. Memory training helps only in mild or no impairment. Clinical application requires further investigation.
Collapse
Affiliation(s)
- Felicitas Schneider
- grid.8379.50000 0001 1958 8658Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Alan Horowitz
- grid.8379.50000 0001 1958 8658Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Klaus-Peter Lesch
- grid.8379.50000 0001 1958 8658Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany ,grid.448878.f0000 0001 2288 8774Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia ,grid.5012.60000 0001 0481 6099Department of Psychiatry and Psychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074, Würzburg, Germany. .,EMBL, Computational Biology and Structures Program, 69117, Heidelberg, Germany.
| |
Collapse
|
46
|
Sampath D, McWhirt J, Sathyanesan M, Newton SS. Carbamoylated erythropoietin produces antidepressant-like effects in male and female mice. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109754. [PMID: 31454554 PMCID: PMC6816335 DOI: 10.1016/j.pnpbp.2019.109754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
UNLABELLED Major depressive disorder and related illnesses are globally prevalent, with a significant risk for suicidality if untreated. Antidepressant drugs that are currently prescribed do not benefit 30% of treated individuals. Furthermore, there is a delay of 3 or more weeks before a reduction in symptoms. Results from preclinical studies have indicated an important role for trophic factors in regulating behavior. Erythropoietin (Epo), which is widely prescribed for anemia, has been shown to produce robust neurotrophic actions in the CNS. Although Epo's antidepressant activity has been successfully demonstrated in multiple clinical trials, the inherent ability to elevate RBC counts and other hematological parameters preclude its development as a mainstream CNS drug. A chemically engineered derivative, carbamoylated Epo (Cepo) has no hematological activity, but retains the neurotrophic actions of Epo. Cepo is therefore an attractive candidate to be tested as an antidepressant. OBJECTIVE To evaluate the antidepressant properties of Cepo in established antidepressant-responsive rodent behavioral assays. METHODS Adult male and female BALB/c mice were used for this study. Cepo (30 μgrams/ kg BWT) or vehicle (PBS) was administered intraperitoneally for 4 days before the test of novelty induced hypophagia and subsequently at five hours before testing in forced swim test (FST), tail suspension test (TST) and open field test (OFT). To obtain mechanistic insight we examined the phosphorylation of the transcription factor cAMP response element binding protein (CREB). RESULTS Administration of Cepo at 30 μgrams/ kg BWT, for 4 days produced significant reduction in latency to consume a palatable drink in a novel environment in male and female mice. Male BALB/c mice had a significant reduction in immobility in both tail suspension and forced swim tests, and female mice exhibited lower immobility in the forced swim test.
Collapse
Affiliation(s)
- Dayalan Sampath
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States of America; Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, United States of America.
| | - Joshua McWhirt
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States of America.
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States of America; Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, United States of America.
| | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States of America; Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, United States of America.
| |
Collapse
|
47
|
Nielsen SFV, Madsen KH, Vinberg M, Kessing LV, Siebner HR, Miskowiak KW. Whole-Brain Exploratory Analysis of Functional Task Response Following Erythropoietin Treatment in Mood Disorders: A Supervised Machine Learning Approach. Front Neurosci 2019; 13:1246. [PMID: 31824247 PMCID: PMC6880626 DOI: 10.3389/fnins.2019.01246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022] Open
Abstract
A core symptom of mood disorders is cognitive impairment in attention, memory and executive functions. Erythropoietin (EPO) is a candidate treatment for cognitive impairment in unipolar and bipolar disorders (UD and BD) and modulates cognition-related neural activity across a fronto-temporo-parietal network. This report investigates predicting the pharmacological treatment from functional magnetic resonance imaging (fMRI) data using a supervised machine learning approach. A total of 84 patients with UD or BD were included in a randomized double-blind parallel-group study in which they received eight weekly infusions of either EPO (40 000 IU) or saline. Task fMRI data were collected before EPO/saline infusions started (baseline) and 6 weeks after last infusion (follow-up). During the scanning sessions, participants were given an n-back working memory and a picture encoding task. Linear classification models with different regularization techniques were used to predict treatment status from both cross-sectional data (at follow-up) and longitudinal data (difference between baseline and follow-up). For the n-back and picture encoding tasks, data were available and analyzed for 52 (EPO; n = 28, Saline; n = 24) and 59 patients (EPO; n = 31, Saline; n = 28), respectively. We found limited evidence that the classifiers used could predict treatment status at a reliable level of performance (≤60% accuracy) when tested using repeated cross-validation. There was no difference in using cross-sectional versus longitudinal data. Whole-brain multivariate decoding applied to pharmaco-fMRI in small to moderate samples seems to be suboptimal for exploring data driven neuronal treatment mechanisms.
Collapse
Affiliation(s)
- Søren F. V. Nielsen
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer H. Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Maj Vinberg
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars V. Kessing
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hartwig R. Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Neurology, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| | - Kamilla W. Miskowiak
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Subcortical shape and neuropsychological function among U.S. service members with mild traumatic brain injury. Brain Imaging Behav 2019; 13:377-388. [PMID: 29564659 DOI: 10.1007/s11682-018-9854-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In a recent manuscript, our group demonstrated shape differences in the thalamus, nucleus accumbens, and amygdala in a cohort of U.S. Service Members with mild traumatic brain injury (mTBI). Given the significant role these structures play in cognitive function, this study directly examined the relationship between shape metrics and neuropsychological performance. The imaging and neuropsychological data from 135 post-deployed United States Service Members from two groups (mTBI and orthopedic injured) were examined. Two shape features modeling local deformations in thickness (RD) and surface area (JD) were defined vertex-wise on parametric mesh-representations of 7 bilateral subcortical gray matter structures. Linear regression was used to model associations between subcortical morphometry and neuropsychological performance as a function of either TBI status or, among TBI patients, subjective reporting of initial concussion severity (CS). Results demonstrated several significant group-by-cognition relationships with shape metrics across multiple cognitive domains including processing speed, memory, and executive function. Higher processing speed was robustly associated with more dilation of caudate surface area among patients with mTBI who reported more than one CS variables (loss of consciousness (LOC), alteration of consciousness (AOC), and/or post-traumatic amnesia (PTA)). These significant patterns indicate the importance of subcortical structures in cognitive performance and support a growing functional neuroanatomical literature in TBI and other neurologic disorders. However, prospective research will be required before exact directional evolution and progression of shape can be understood and utilized in predicting or tracking cognitive outcomes in this patient population.
Collapse
|
49
|
Moradi M, Saidijam M, Ghaleiha A, Jahangard L, Yadegarazari R, Keshavarzi A. Genes Encoding Erythropoietin and Its Receptor in Bipolar I (Manic Phase) Patients as a Novel Diagnostic Agent: A Case-Control Study. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
50
|
Bonnín CDM, Reinares M, Martínez-Arán A, Jiménez E, Sánchez-Moreno J, Solé B, Montejo L, Vieta E. Improving Functioning, Quality of Life, and Well-being in Patients With Bipolar Disorder. Int J Neuropsychopharmacol 2019; 22:467-477. [PMID: 31093646 PMCID: PMC6672628 DOI: 10.1093/ijnp/pyz018] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/09/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
People with bipolar disorder frequently experience persistent residual symptoms, problems in psychosocial functioning, cognitive impairment, and poor quality of life. In the last decade, the treatment target in clinical and research settings has focused not only on clinical remission, but also on functional recovery and, more lately, in personal recovery, taking into account patients' well-being and quality of life. Hence, the trend in psychiatry and psychology is to treat bipolar disorder in an integrative and holistic manner. This literature review offers an overview regarding psychosocial functioning in bipolar disorder. First, a brief summary is provided regarding the definition of psychosocial functioning and the tools to measure it. Then, the most reported variables influencing the functional outcome in patients with bipolar disorder are listed. Thereafter, we include a section discussing therapies with proven efficacy at enhancing functional outcomes. Other possible therapies that could be useful to prevent functional decline and improve functioning are presented in another section. Finally, in the last part of this review, different interventions directed to improve patients' well-being, quality of life, and personal recovery are briefly described.
Collapse
Affiliation(s)
- Caterina del Mar Bonnín
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - María Reinares
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Anabel Martínez-Arán
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain,Correspondence: Anabel Martínez-Arán, PhD, Clinical Institute of Neuroscience. Hospital Clinic of Barcelona, Villarroel, 170. 08036 Barcelona, Catalonia ()
| | - Esther Jiménez
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Jose Sánchez-Moreno
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Brisa Solé
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Laura Montejo
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Institute of Neurosciences, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| |
Collapse
|