1
|
Tang C, Wang J, Ge M, Fu L, Huang J, Yadav H, Shi J, Feng S, Wu F. DSS-induced colitis exacerbates Alzheimer's pathology via neutrophil elastase and cathepsin B activation. Int Immunopharmacol 2025; 155:114666. [PMID: 40228423 DOI: 10.1016/j.intimp.2025.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by amyloid plaques and neuroinflammation, which collectively result in cognitive decline. Peripheral inflammation, particularly intestinal inflammation, has been implicated in exacerbating AD pathology via the gut-brain axis. This study investigated the effects of dextran sulfate sodium (DSS)-induced colitis on amyloid-beta (Aβ) pathology, synaptic integrity, and cognitive function in 5xFAD mice, and explored the roles of neutrophil elastase (NE) and Cathepsin B in these processes. DSS-induced colitis significantly worsened Aβ pathology, evidenced by increased Aβ plaque deposition and elevated soluble Aβ1-42 levels in the brain of 5xFAD mice. The inflammatory state triggered extensive neutrophil infiltration and elevated NE levels in the hippocampus, which were closely associated with Cathepsin B activation. This enzymatic cascade is associated with synaptic damage and cognitive deficits. Treatment with the NE inhibitor Sivelestat effectively suppressed NE-mediated Cathepsin B activation, reduced Aβ pathology, restored dendritic spine density, and improved cognitive performance. Additionally, the Cathepsin B inhibitor CA-074 methyl ester (CA-074Me) mitigated the adverse effects of DSS-induced colitis, further emphasizing the role of Cathepsin B in mediating inflammation-driven AD pathology. These findings reveal that the NE-Cathepsin B axis links peripheral inflammation to exacerbated Aβ pathology, synaptic damage, and cognitive impairment, underscoring the potential of targeting NE and Cathepsin B as therapeutic strategies for inflammation-driven AD progression.
Collapse
Affiliation(s)
- Chong Tang
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, China; Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Minglei Ge
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Li Fu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Jiayue Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Hanshika Yadav
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Jianhua Shi
- Institute for translational neuroscience, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Shichun Feng
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, China.
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China.
| |
Collapse
|
2
|
Hida M, Yasuda K, Toyokawa M, Asada-Utsugi M, Toda S, Yanagida N, Takahashi R, Kinoshita A, Maki T. Amyloidogenic and non-amyloidogenic pathways of amyloid precursor protein processing in oligodendrocytes. Brain Res 2025; 1855:149601. [PMID: 40154861 DOI: 10.1016/j.brainres.2025.149601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Excessive accumulation of toxic amyloid-β (Aβ) species in the brain is a major pathological process triggering neurodegeneration in Alzheimer's disease (AD). Recent studies indicate that both neurons and glial cells, including oligodendrocyte lineages (OLs), contribute to brain homeostasis and affect AD pathology; however, the roles of oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLGs) in AD remain to be fully elucidated. This study examined Aβ production and related protein expression in primary cultured OLs. Primary cultured OLs produced Aβ40 and Aβ42 and expressed amyloid precursor protein (APP), β-secretase (BACE1) and γ-secretase (PS1) as well as α-secretase (ADAM10). OLGs express APP770 in addition to APP695. Treatment with a γ-secretase inhibitor reduced Aβ40 and Aβ42 production levels derived from OPCs/OLGs and suppressed OPC differentiation. Additionally, conditioned media from OLGs improved neuronal cell viability under oxidative stress and contained higher levels of sAPPα compared to OPCs. The neuroprotective effect of OLG was diminished by a sAPPα inhibitor, suggesting that OLG-derived sAPPα protects neurons under oxidative stress. These findings revealed that OLs produce pathogenic Aβ40/42 via the amyloidogenic pathway and secrete neuroprotective sAPPα via the non-amyloidogenic pathway. Elucidating the pathological shift from beneficial non-amyloidogenic to harmful amyloidogenic processes in OLs during AD onset and progression would provide crucial insights into novel therapeutic approaches.
Collapse
Affiliation(s)
- Misaki Hida
- Human Health Sciences, Kyoto University Graduate School of Medicine, Japan
| | - Ken Yasuda
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Masaru Toyokawa
- Human Health Sciences, Kyoto University Graduate School of Medicine, Japan
| | - Megumi Asada-Utsugi
- Human Health Sciences, Kyoto University Graduate School of Medicine, Japan; Neurology of Department of Neuroscience Research Center, Shiga University of Medical Science, Japan
| | - Shintaro Toda
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Narufumi Yanagida
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Ayae Kinoshita
- Human Health Sciences, Kyoto University Graduate School of Medicine, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
3
|
Kunze LH, Palumbo G, Gnörich J, Wind-Mark K, Schaefer R, Lindner S, Gildehaus FJ, Ziegler S, Brendel M. Fibrillar amyloidosis and synaptic vesicle protein expression progress jointly in the cortex of a mouse model with β-amyloid pathology. Neuroimage 2025; 310:121165. [PMID: 40120783 DOI: 10.1016/j.neuroimage.2025.121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025] Open
Abstract
Neurodegeneration, accumulation of β-amyloid (Aβ) plaques, and neuroinflammation are the major hallmarks of Alzheimer's disease. Here, we aimed to investigate the temporal and spatial association between synaptic activity, Aβ plaque load, and neuroinflammation in an Aβ mouse model with limited neurodegeneration. 26 APPSL70 and 15 C57Bl/6 mice underwent longitudinal PET-scans with [18F]UCB-H from plaque onset to levels of strong plaque load (5.3 - 11.0 months of age) to assess the synaptic vesicle protein 2A (SV2A) expression, [18F]FBB to determine the fibrillar Aβ plaque load, and [18F]GE-180 and [18F]F-DED to assess microglial and astroglial (re)activity. Statistical parametric mapping was performed to uncover similarities between the binding patterns of all four tracers. We found a continuous increase in Aβ-PET in APPSL70 mice from 5.3 to 11.0 months of age, resulting in a significantly higher [18F]FBB PET signal in the cortex, hippocampus, and thalamus of APPSL70 mice compared to C57Bl/6 mice at 11.0 months of age. Parallel increases in SV2A-PET signals were observed in the cortex and thalamus of APPSL70 mice compared to C57Bl/6 mice. Statistical parametric mapping revealed a similar pattern of Aβ- and SV2A-PET differences (dice coefficient 53 %). Patterns of microglia activation showed stronger congruency with SV2A expression (dice coefficient 58 %) than patterns of reactive astrogliosis (dice coefficient 26 %). APPSL70 mice with limited neurodegeneration comprise a close temporal and spatial association between SV2A expression, Aβ plaque load, and microglial activation. SV2A PET imaging in APPSL70 mice may facilitate longitudinal monitoring of increased synaptic activity in the earliest phase of AD.
Collapse
Affiliation(s)
- L H Kunze
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - G Palumbo
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - J Gnörich
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - K Wind-Mark
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - R Schaefer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - S Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - F-J Gildehaus
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - S Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; Department of Nuclear Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - M Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilian University of Munich, 81377 Munich, Germany.
| |
Collapse
|
4
|
Ramos R, Vale N. Dual Drug Repurposing: The Example of Saracatinib. Int J Mol Sci 2024; 25:4565. [PMID: 38674150 PMCID: PMC11050334 DOI: 10.3390/ijms25084565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Saracatinib (AZD0530) is a dual Src/Abl inhibitor initially developed by AstraZeneca for cancer treatment; however, data from 2006 to 2024 reveal that this drug has been tested not only for cancer treatment, but also for the treatment of other diseases. Despite the promising pre-clinical results and the tolerability shown in phase I trials, where a maximum tolerated dose of 175 mg was defined, phase II clinical data demonstrated a low therapeutic action against several cancers and an elevated rate of adverse effects. Recently, pre-clinical research aimed at reducing the toxic effects and enhancing the therapeutic performance of saracatinib using nanoparticles and different pharmacological combinations has shown promising results. Concomitantly, saracatinib was repurposed to treat Alzheimer's disease, targeting Fyn. It showed great clinical results and required a lower daily dose than that defined for cancer treatment, 125 mg and 175 mg, respectively. In addition to Alzheimer's disease, this Src inhibitor has also been studied in relation to other health conditions such as pulmonary and liver fibrosis and even for analgesic and anti-allergic functions. Although saracatinib is still not approved by the Food and Drug Administration (FDA), the large number of alternative uses for saracatinib and the elevated number of pre-clinical and clinical trials performed suggest the huge potential of this drug for the treatment of different kinds of diseases.
Collapse
Affiliation(s)
- Raquel Ramos
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
5
|
Aßfalg M, Güner G, Müller SA, Breimann S, Langosch D, Muhle-Goll C, Frishman D, Steiner H, Lichtenthaler SF. Cleavage efficiency of the intramembrane protease γ-secretase is reduced by the palmitoylation of a substrate's transmembrane domain. FASEB J 2024; 38:e23442. [PMID: 38275103 DOI: 10.1096/fj.202302152r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
The intramembrane protease γ-secretase has broad physiological functions, but also contributes to Notch-dependent tumors and Alzheimer's disease. While γ-secretase cleaves numerous membrane proteins, only few nonsubstrates are known. Thus, a fundamental open question is how γ-secretase distinguishes substrates from nonsubstrates and whether sequence-based features or post-translational modifications of membrane proteins contribute to substrate recognition. Using mass spectrometry-based proteomics, we identified several type I membrane proteins with short ectodomains that were inefficiently or not cleaved by γ-secretase, including 'pituitary tumor-transforming gene 1-interacting protein' (PTTG1IP). To analyze the mechanism preventing cleavage of these putative nonsubstrates, we used the validated substrate FN14 as a backbone and replaced its transmembrane domain (TMD), where γ-cleavage occurs, with the one of nonsubstrates. Surprisingly, some nonsubstrate TMDs were efficiently cleaved in the FN14 backbone, demonstrating that a cleavable TMD is necessary, but not sufficient for cleavage by γ-secretase. Cleavage efficiencies varied by up to 200-fold. Other TMDs, including that of PTTG1IP, were still barely cleaved within the FN14 backbone. Pharmacological and mutational experiments revealed that the PTTG1IP TMD is palmitoylated, which prevented cleavage by γ-secretase. We conclude that the TMD sequence of a membrane protein and its palmitoylation can be key factors determining substrate recognition and cleavage efficiency by γ-secretase.
Collapse
Affiliation(s)
- Marlene Aßfalg
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Breimann
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | | | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
6
|
Zhang X, Chen X, Zhang L, Sun Y, Liang Y, Li H, Zhang Y. Role of trigger receptor 2 expressed on myeloid cells in neuroinflammation-neglected multidimensional regulation of microglia. Neurochem Int 2023; 171:105639. [PMID: 37926352 DOI: 10.1016/j.neuint.2023.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Neuroinflammation is an inflammatory cascade involved in various neurological disorders, including Alzheimer's disease, multiple sclerosis, and other relevant diseases. The triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane immune receptor that is primarily expressed by microglia in the central nervous system (CNS). While TREM2 is initially believed to be an anti-inflammatory factor in the CNS, increasing evidence suggests that TREM2 plays a more complex role in balancing neuroinflammation. However, the exact mechanism remains unclear. Notably, TREM2 directly regulates microglia inflammation through various signaling pathways. Additionally, studies have suggested that TREM2 mediates microglial phagocytosis, autophagy, metabolism, and microglia phenotypes, which may be involved in the modulation of neuroinflammation. In this review, we aim to discuss the critical role of TREM2 in several microglia functions and the underlying molecular mechanism the modulatory which further mediate neuroinflammation, and elaborate. Finally, we discuss the potential of TREM2 as a therapeutic target in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xue Chen
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huan Li
- Department of Cardiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China; Beijing Institute of Hepatology, Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Nordvall G, Lundkvist J, Sandin J. Gamma-secretase modulators: a promising route for the treatment of Alzheimer's disease. Front Mol Neurosci 2023; 16:1279740. [PMID: 37908487 PMCID: PMC10613654 DOI: 10.3389/fnmol.2023.1279740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 11/02/2023] Open
Abstract
Recent clinical data with three therapeutic anti-Aβ antibodies have demonstrated that removal of Aβ-amyloid plaques in early Alzheimer's disease (AD) can attenuate disease progression. This ground-breaking progress in AD medicine has validated both the amyloid cascade hypothesis and Aβ-amyloid as therapeutic targets. These results also strongly support therapeutic approaches that aim to reduce the production of amyloidogenic Aβ to prevent the formation of Aβ-pathology. One such strategy, so-called gamma-secretase modulators (GSM), has been thoroughly explored in preclinical settings but has yet to be fully tested in clinical trials. Recent scientific progress has shed new light on the role of Aβ in Alzheimer's disease and suggests that GSMs exhibit specific pharmacological features that hold great promise for the prevention and treatment of Alzheimer's disease. In this short review, we discuss the data that support why it is important to continue to progress in this class of compounds.
Collapse
Affiliation(s)
- Gunnar Nordvall
- AlzeCure Pharma AB, Huddinge, Sweden
- Department of Neurobiology, Care Sciences, and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Johan Lundkvist
- AlzeCure Pharma AB, Huddinge, Sweden
- Department of Neurobiology, Care Sciences, and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Sinfonia Biotherapeutics AB, Huddinge, Sweden
| | - Johan Sandin
- AlzeCure Pharma AB, Huddinge, Sweden
- Department of Neurobiology, Care Sciences, and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 410] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
9
|
Yang L, Nao J. Focus on Alzheimer's Disease: The Role of Fibroblast Growth Factor 21 and Autophagy. Neuroscience 2023; 511:13-28. [PMID: 36372296 DOI: 10.1016/j.neuroscience.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is a disorder of the central nervous system that is typically marked by progressive cognitive impairment and memory loss. Amyloid β plaque deposition and neurofibrillary tangles with hyperphosphorylated tau are the two hallmark pathologies of AD. In mammalian cells, autophagy clears aberrant protein aggregates, thus maintaining proteostasis as well as neuronal health. Autophagy affects production and metabolism of amyloid β and accumulation of phosphorylated tau proteins, whose malfunction can lead to the progression of AD. On the other hand, defective autophagy has been found to induce the production of the neuroprotective factor fibroblast growth factor 21 (FGF21), although the underlying mechanism is unclear. In this review, we highlight the significance of aberrant autophagy in the pathogenesis of AD, discuss the possible mechanisms by which defective autophagy induces FGF21 production, and analyze the potential of FGF21 in the treatment of AD. The findings provide some insights into the potential role of FGF21 and autophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
10
|
Ando K, Nagaraj S, Küçükali F, de Fisenne MA, Kosa AC, Doeraene E, Lopez Gutierrez L, Brion JP, Leroy K. PICALM and Alzheimer's Disease: An Update and Perspectives. Cells 2022; 11:3994. [PMID: 36552756 PMCID: PMC9776874 DOI: 10.3390/cells11243994] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified the PICALM (Phosphatidylinositol binding clathrin-assembly protein) gene as the most significant genetic susceptibility locus after APOE and BIN1. PICALM is a clathrin-adaptor protein that plays a critical role in clathrin-mediated endocytosis and autophagy. Since the effects of genetic variants of PICALM as AD-susceptibility loci have been confirmed by independent genetic studies in several distinct cohorts, there has been a number of in vitro and in vivo studies attempting to elucidate the underlying mechanism by which PICALM modulates AD risk. While differential modulation of APP processing and Aβ transcytosis by PICALM has been reported, significant effects of PICALM modulation of tau pathology progression have also been evidenced in Alzheimer's disease models. In this review, we summarize the current knowledge about PICALM, its physiological functions, genetic variants, post-translational modifications and relevance to AD pathogenesis.
Collapse
Affiliation(s)
- Kunie Ando
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Siranjeevi Nagaraj
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Fahri Küçükali
- Complex Genetics of Alzheimer’s Disease Group, VIB Center for Molecular Neurology, VIB Antwerp, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Marie-Ange de Fisenne
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Andreea-Claudia Kosa
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Emilie Doeraene
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Lidia Lopez Gutierrez
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
11
|
Zhang C, Chen S. Role of TREM2 in the Development of Neurodegenerative Diseases After Traumatic Brain Injury. Mol Neurobiol 2022; 60:342-354. [PMID: 36264434 DOI: 10.1007/s12035-022-03094-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury (TBI) has been found as the primary cause of morbidity and disability worldwide, which has posed a significant social and economic burden. The first stage of TBI produces brain edema, axonal damage, and hypoxia, thus having an effect on the blood-brain barrier function, promoting inflammatory responses, and increasing oxidative stress. Patients with TBI are more likely to develop post-traumatic epilepsy, behavioral issues, as well as mental illnesses. The long-term effects arising from TBI have aroused rising attention over the past few years. Microglia in the brain can express the triggering receptor expressed on myeloid cells 2 (TREM2), which is a single transmembrane receptor pertaining to the immunoglobulin superfamily. The receptor has been correlated with a number of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and other relevant diseases. In this review, it is demonstrated that TREM2 is promising to serve as a neuroprotective factor for neurodegenerative disorders following TBI by modulating the function of microglial cells. Accordingly, it has potential avenues for TREM2-related therapies to improve long-term recovery after TBI.
Collapse
Affiliation(s)
- Chunhao Zhang
- Department of Neurosurgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Shiwen Chen
- Department of Neurosurgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
12
|
Guo Q, Wu G, Huang F, Wei Z, Wang JZ, Zhang B, Liu R, Yang Y, Wang X, Li HL. Novel small molecular compound 2JY-OBZ4 alleviates AD pathology in cell models via regulating multiple targets. Aging (Albany NY) 2022; 14:8077-8094. [PMID: 36227154 PMCID: PMC9596221 DOI: 10.18632/aging.204336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia, characterized by cognitive deficits and memory dysfunction, which is clinically incurable so far. Novel small molecular compound 2JY-OBZ4 is one of structural analogue of Huperzine A (Hup-A), an anti-AD drug in China. In our previous work, 2JY-OBZ4 exhibited potent effects on tau hyperphosphorylation, Aβ production and acetylcholinesterase (AChE) activity. However, 2JY-OBZ4's anti-AD effects and the underlying molecular mechanisms remain unclear. We here reported that 2JY-OBZ4 resisted tau hyperphosphorylation at Thr181 and Ser396 sites in HEK293-hTau cells transfected with GSK-3β, decreased tau phosphorylation via upregulating the activity of PP2A in HEK293-hTau cells and reduced Aβ production through regulating protein levels of APP cleavage enzymes in N2a-hAPP cells. Meanwhile, we found that 2JY-OBZ4 had no adverse effects on cell viability of mice primary neuron even at high concentration, and ameliorated synaptic loss induced by human oligomeric Aβ42. 2JY-OBZ4 had moderate AChE inhibitory activity with the half maximal inhibitory concentration (IC50) to be 39.48 μg/ml in vitro, which is more than two times higher than Hup-A. Together, 2JY-OBZ4 showed promising therapeutic effects in AD cell models through regulating multiple targets. The research provides a new candidate for the therapeutic development of AD.
Collapse
Affiliation(s)
- Qian Guo
- School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong JS 226001, China
| | - Gang Wu
- School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong JS 226001, China
| | - Fang Huang
- School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhen Wei
- School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Zhi Wang
- School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong JS 226001, China.,Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Bin Zhang
- School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Liu
- School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Yang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaochuan Wang
- School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong JS 226001, China.,Institutes of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Hong-Lian Li
- School of Basic Medicine, Key Laboratory of Education Ministry, Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
13
|
Pelucchi S, Gardoni F, Di Luca M, Marcello E. Synaptic dysfunction in early phases of Alzheimer's Disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:417-438. [PMID: 35034752 DOI: 10.1016/b978-0-12-819410-2.00022-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The synapse is the locus of plasticity where short-term alterations in synaptic strength are converted to long-lasting memories. In addition to the presynaptic terminal and the postsynaptic compartment, a more holistic view of the synapse includes the astrocytes and the extracellular matrix to form a tetrapartite synapse. All these four elements contribute to synapse health and are crucial for synaptic plasticity events and, thereby, for learning and memory processes. Synaptic dysfunction is a common pathogenic trait of several brain disorders. In Alzheimer's Disease, the degeneration of synapses can be detected at the early stages of pathology progression before neuronal degeneration, supporting the hypothesis that synaptic failure is a major determinant of the disease. The synapse is the place where amyloid-β peptides are generated and is the target of the toxic amyloid-β oligomers. All the elements constituting the tetrapartite synapse are altered in Alzheimer's Disease and can synergistically contribute to synaptic dysfunction. Moreover, the two main hallmarks of Alzheimer's Disease, i.e., amyloid-β and tau, act in concert to cause synaptic deficits. Deciphering the mechanisms underlying synaptic dysfunction is relevant for the development of the next-generation therapeutic strategies aimed at modifying the disease progression.
Collapse
Affiliation(s)
- Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
14
|
Park YH, Pyun JM, Hodges A, Jang JW, Bice PJ, Kim S, Saykin AJ, Nho K. Dysregulated expression levels of APH1B in peripheral blood are associated with brain atrophy and amyloid-β deposition in Alzheimer's disease. Alzheimers Res Ther 2021; 13:183. [PMID: 34732252 PMCID: PMC8567578 DOI: 10.1186/s13195-021-00919-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND The interaction between the brain and periphery might play a crucial role in the development of Alzheimer's disease (AD). METHODS Using blood transcriptomic profile data from two independent AD cohorts, we performed expression quantitative trait locus (cis-eQTL) analysis of 29 significant genetic loci from a recent large-scale genome-wide association study to investigate the effects of the AD genetic variants on gene expression levels and identify their potential target genes. We then performed differential gene expression analysis of identified AD target genes and linear regression analysis to evaluate the association of differentially expressed genes with neuroimaging biomarkers. RESULTS A cis-eQTL analysis identified and replicated significant associations in seven genes (APH1B, BIN1, FCER1G, GATS, MS4A6A, RABEP1, TRIM4). APH1B expression levels in the blood increased in AD and were associated with entorhinal cortical thickness and global cortical amyloid-β deposition. CONCLUSION An integrative analysis of genetics, blood-based transcriptomic profiles, and imaging biomarkers suggests that APH1B expression levels in the blood might play a role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Young Ho Park
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jung-Min Pyun
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Republic of Korea
| | - Angela Hodges
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
15
|
Kim TK, Hong JM, Kim KH, Han SJ, Kim IC, Oh H, Yim JH. Potential of Ramalin and Its Derivatives for the Treatment of Alzheimer's Disease. Molecules 2021; 26:6445. [PMID: 34770857 PMCID: PMC8588271 DOI: 10.3390/molecules26216445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of Alzheimer's disease (AD) is still unclear, and presently there is no cure for the disease that can be used for its treatment or to stop its progression. Here, we investigated the therapeutic potential of ramalin (isolated from the Antarctic lichen, Ramalina terebrata), which exhibits various physiological activities, in AD. Specifically, derivatives were synthesized based on the structure of ramalin, which has a strong antioxidant effect, BACE-1 inhibition activity, and anti-inflammatory effects. Therefore, ramalin and its derivatives exhibit activity against multiple targets associated with AD and can serve as potential therapeutic agents for the disease.
Collapse
Affiliation(s)
- Tai Kyoung Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (T.K.K.); (J.-M.H.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Ju-Mi Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (T.K.K.); (J.-M.H.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Kyung Hee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (T.K.K.); (J.-M.H.); (K.H.K.); (S.J.H.); (I.-C.K.)
- Department of Chemistry, Hanseo University, Seosan 31962, Korea
| | - Se Jong Han
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (T.K.K.); (J.-M.H.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (T.K.K.); (J.-M.H.); (K.H.K.); (S.J.H.); (I.-C.K.)
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Korea;
| | - Joung Han Yim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea; (T.K.K.); (J.-M.H.); (K.H.K.); (S.J.H.); (I.-C.K.)
| |
Collapse
|
16
|
Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A. The Amyloid-β Pathway in Alzheimer's Disease. Mol Psychiatry 2021; 26:5481-5503. [PMID: 34456336 PMCID: PMC8758495 DOI: 10.1038/s41380-021-01249-0] [Citation(s) in RCA: 824] [Impact Index Per Article: 206.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Breakthroughs in molecular medicine have positioned the amyloid-β (Aβ) pathway at the center of Alzheimer's disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the Aβ cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of Aβ science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of Aβ pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct Aβ species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for Aβ-targeting therapeutic strategies in development for the early treatment of AD.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christopher Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea; Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul Aisen
- USC Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Colin L Masters
- Laureate Professor of Dementia Research, Florey Institute and The University of Melbourne, Parkville, VIC, Australia
| | - Min Cho
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA
| | - Lars Lannfelt
- Uppsala University, Department of of Public Health/Geriatrics, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Andrea Vergallo
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| |
Collapse
|
17
|
Qiu H, Shao Z, Wen X, Jiang J, Ma Q, Wang Y, Huang L, Ding X, Zhang L. TREM2: Keeping Pace With Immune Checkpoint Inhibitors in Cancer Immunotherapy. Front Immunol 2021; 12:716710. [PMID: 34539652 PMCID: PMC8446424 DOI: 10.3389/fimmu.2021.716710] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
To date, immune checkpoint inhibitors have been successively approved and widely used in clinical cancer treatments, however, the overall response rates are very low and almost all cancer patients eventually progressed to drug resistance, this is mainly due to the intricate tumor microenvironment and immune escape mechanisms of cancer cells. One of the main key mechanisms leading to the evasion of immune attack is the presence of the immunosuppressive microenvironment within tumors. Recently, several studies illustrated that triggering receptor expressed on myeloid cells-2 (TREM2), a transmembrane receptor of the immunoglobulin superfamily, was a crucial pathology-induced immune signaling hub, and it played a vital negative role in antitumor immunity, such as inhibiting the proliferation of T cells. Here, we reviewed the recent advances in the study of TREM2, especially focused on its regulation of tumor-related immune signaling pathways and its role as a novel target in cancer immunotherapy.
Collapse
Affiliation(s)
- Hui Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jinghua Jiang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qinggong Ma
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yan Wang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Long Huang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xin Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
D’Andrea L, Stringhi R, Di Luca M, Marcello E. Looking at Alzheimer's Disease Pathogenesis from the Nuclear Side. Biomolecules 2021; 11:biom11091261. [PMID: 34572474 PMCID: PMC8467578 DOI: 10.3390/biom11091261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder representing the most common form of dementia. It is biologically characterized by the deposition of extracellular amyloid-β (Aβ) senile plaques and intracellular neurofibrillary tangles, constituted by hyperphosphorylated tau protein. The key protein in AD pathogenesis is the amyloid precursor protein (APP), which is cleaved by secretases to produce several metabolites, including Aβ and APP intracellular domain (AICD). The greatest genetic risk factor associated with AD is represented by the Apolipoprotein E ε4 (APOE ε4) allele. Importantly, all of the above-mentioned molecules that are strictly related to AD pathogenesis have also been described as playing roles in the cell nucleus. Accordingly, evidence suggests that nuclear functions are compromised in AD. Furthermore, modulation of transcription maintains cellular homeostasis, and alterations in transcriptomic profiles have been found in neurodegenerative diseases. This report reviews recent advancements in the AD players-mediated gene expression. Aβ, tau, AICD, and APOE ε4 localize in the nucleus and regulate the transcription of several genes, part of which is involved in AD pathogenesis, thus suggesting that targeting nuclear functions might provide new therapeutic tools for the disease.
Collapse
|
19
|
Resende R, Ferreira-Marques M, Moreira P, Coimbra JRM, Baptista SJ, Isidoro C, Salvador JAR, Dinis TCP, Pereira CF, Santos AE. New BACE1 Chimeric Peptide Inhibitors Selectively Prevent AβPP-β Cleavage Decreasing Amyloid-β Production and Accumulation in Alzheimer's Disease Models. J Alzheimers Dis 2021; 76:1317-1337. [PMID: 32597812 DOI: 10.3233/jad-200381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND A disease-modifying therapy for Alzheimer's disease (AD) is still an unmet clinical need. The formation of amyloid-β (Aβ) requires the initial cleavage of the amyloid-β protein precursor (AβPP) by BACE1 (beta-site AβPP cleaving enzyme 1), which is a prime therapeutic target for AD. OBJECTIVE We aimed to design and develop a selective BACE1 inhibitor suitable to AD treatment. METHODS The new BACE1 inhibitors consist on a chimeric peptide including a sequence related to the human Swedish mutant form of AβPP (AβPPswe) conjugated with the TAT carrier that facilitates cell membrane permeation and the crossing of the blood-brain barrier. Additionally to the chimeric peptide in the L-form, we developed a D-retroinverso chimeric peptide. The latter strategy, never used with BACE1 inhibitors, is considered to favor a significantly higher half-life and lower immunogenicity. RESULTS We found that both chimeric peptides inhibit recombinant BACE1 activity and decrease Aβ40/42 production in Neuro-2a (N2A) cells expressing AβPPswe without inducing cytotoxicity. The intraperitoneal administration of these peptides to 3xTg-AD mice decreased plasma and brain Aβ40/42 levels, as well as brain soluble AβPPβ production. Also, a reduction of insoluble Aβ was observed in the brain after chronic treatment. Noteworthy, the chimeric peptides selectively inhibited the AβPP-β cleavage relatively to the proteolysis of other BACE1 substrates such as close homologue of L1 (CHL1) and seizure-related gene 6 (SEZ6). CONCLUSIONS Overall these new BACE1 chimeric peptideshold promising potential as a selective disease-modifying therapy for AD.
Collapse
Affiliation(s)
- Rosa Resende
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Institute for Interdisciplinary Research (IIIUC), Coimbra, Portugal
| | - Marisa Ferreira-Marques
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology, Coimbra, Portugal
| | - Patrícia Moreira
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmacology, Coimbra, Portugal
| | - Judite R M Coimbra
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Coimbra, Portugal
| | - Salete J Baptista
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,Chem4Pharma, Coimbra, Portugal
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Jorge A R Salvador
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Coimbra, Portugal
| | - Teresa C P Dinis
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Biochemistry and Biology, Coimbra, Portugal
| | - Cláudia F Pereira
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Medicine, Institute of Biochemistry, Coimbra, Portugal
| | - Armanda E Santos
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), Coimbra, Portugal.,University of Coimbra, Faculty of Pharmacy, Laboratory of Biochemistry and Biology, Coimbra, Portugal
| |
Collapse
|
20
|
Singh H, Rai V, Nooti SK, Agrawal DK. Novel ligands and modulators of triggering receptor expressed on myeloid cells receptor family: 2015-2020 updates. Expert Opin Ther Pat 2021; 31:549-561. [PMID: 33507843 DOI: 10.1080/13543776.2021.1883587] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Triggering receptors expressed on myeloid cells (TREMs) are inflammatory amplifiers with defined pathophysiological role in various infectious diseases, acute and chronic aseptic inflammations, and a variety of cancers, depicting TREMs as prominent therapeutic targets.Areas covered: Herein, updates from 2015 to 2020 are discussed to divulge the TREM ligands, as well as their peptide blockers, claimed to modulate their expression. The article also presents different strategies employed during the last five years to block interactions between TREMs and their ligands to treat various disease conditions by modulating their expression and activity.Expert opinion: There has been significant progress in the discovery of novel ligands and modulators of TREMs in the last five years that mainly revolved around the function of TREM molecules. A few peptides showed encouraging results to modulate the expression and activity of TREMs in preclinical studies, and these peptides are currently under clinical investigation. Based on the findings so far in several careful studies, we expect novel therapeutics in the near future which could have the ability to treat various disease conditions associated with TREM expression.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| | - Sunil K Nooti
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| |
Collapse
|
21
|
Jęśko H, Cieślik M, Gromadzka G, Adamczyk A. Dysfunctional proteins in neuropsychiatric disorders: From neurodegeneration to autism spectrum disorders. Neurochem Int 2020; 141:104853. [PMID: 32980494 DOI: 10.1016/j.neuint.2020.104853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Despite fundamental differences in disease course and outcomes, neurodevelopmental (autism spectrum disorders - ASD) and neurodegenerative disorders (Alzheimer's disease - AD and Parkinson's disease - PD) present surprising, common traits in their molecular pathomechanisms. Uncontrolled oligomerization and aggregation of amyloid β (Aβ), microtubule-associated protein (MAP) tau, or α-synuclein (α-syn) contribute to synaptic impairment and the ensuing neuronal death in both AD and PD. Likewise, the pathogenesis of ASD may be attributed, at least in part, to synaptic dysfunction; attention has also been recently paid to irregularities in the metabolism and function of the Aβ precursor protein (APP), tau, or α-syn. Commonly affected elements include signaling pathways that regulate cellular metabolism and survival such as insulin/insulin-like growth factor (IGF) - PI3 kinase - Akt - mammalian target of rapamycin (mTOR), and a number of key synaptic proteins critically involved in neuronal communication. Understanding how these shared pathomechanism elements operate in different conditions may help identify common targets and therapeutic approaches.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Magdalena Cieślik
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Grażyna Gromadzka
- Cardinal Stefan Wyszynski University, Faculty of Medicine. Collegium Medicum, Wóycickiego 1/3, 01-938, Warsaw, Poland.
| | - Agata Adamczyk
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| |
Collapse
|
22
|
A Unifying Hypothesis for Alzheimer's Disease: From Plaques to Neurodegeneration. Trends Neurosci 2020; 42:310-322. [PMID: 31006494 DOI: 10.1016/j.tins.2019.03.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
Evidence suggests that amyloid β is highly toxic to synapses in a phospho-Tau-dependent manner. Here, I present a hypothesis that links previous evidence from the first rise of amyloid β through to Tau tangles and neurodegeneration. In the immediate vicinity of plaques, concentrated soluble amyloid β occurs in equilibrium with deposited forms. Initially, plaques cover only a small percentage of brain volume. Microglia, by efficiently removing damaged synapses, may prevent spread of damage along the axon, restricting damage to the immediate vicinity of plaques. However, as plaque load increases, as seen in Alzheimer's disease, an individual axon may suffer multiple points of damage, leading to dissociation of Tau, formation of a tangle, and loss of the axon. As more axons suffer this fate, the network eventually degenerates. According to this hypothesis, the degree of plaque load that an individual can tolerate would depend on the efficiency of their microglia in removing amyloid-β-damaged synapses and the distribution of plaques, relative to axon trajectories, would determine the eventual cognitive symptoms.
Collapse
|
23
|
Johnson ECB, Ho K, Yu GQ, Das M, Sanchez PE, Djukic B, Lopez I, Yu X, Gill M, Zhang W, Paz JT, Palop JJ, Mucke L. Behavioral and neural network abnormalities in human APP transgenic mice resemble those of App knock-in mice and are modulated by familial Alzheimer's disease mutations but not by inhibition of BACE1. Mol Neurodegener 2020; 15:53. [PMID: 32921309 PMCID: PMC7489007 DOI: 10.1186/s13024-020-00393-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent and costly neurodegenerative disorder. Although diverse lines of evidence suggest that the amyloid precursor protein (APP) is involved in its causation, the precise mechanisms remain unknown and no treatments are available to prevent or halt the disease. A favorite hypothesis has been that APP contributes to AD pathogenesis through the cerebral accumulation of the amyloid-β peptide (Aβ), which is derived from APP through sequential proteolytic cleavage by BACE1 and γ-secretase. However, inhibitors of these enzymes have failed in clinical trials despite clear evidence for target engagement. METHODS To further elucidate the roles of APP and its metabolites in AD pathogenesis, we analyzed transgenic mice overexpressing wildtype human APP (hAPP) or hAPP carrying mutations that cause autosomal dominant familial AD (FAD), as well as App knock-in mice that do not overexpress hAPP but have two mouse App alleles with FAD mutations and a humanized Aβ sequence. RESULTS Although these lines of mice had marked differences in cortical and hippocampal levels of APP, APP C-terminal fragments, soluble Aβ, Aβ oligomers and age-dependent amyloid deposition, they all developed cognitive deficits as well as non-convulsive epileptiform activity, a type of network dysfunction that also occurs in a substantive proportion of humans with AD. Pharmacological inhibition of BACE1 effectively reduced levels of amyloidogenic APP C-terminal fragments (C99), soluble Aβ, Aβ oligomers, and amyloid deposits in transgenic mice expressing FAD-mutant hAPP, but did not improve their network dysfunction and behavioral abnormalities, even when initiated at early stages before amyloid deposits were detectable. CONCLUSIONS hAPP transgenic and App knock-in mice develop similar pathophysiological alterations. APP and its metabolites contribute to AD-related functional alterations through complex combinatorial mechanisms that may be difficult to block with BACE inhibitors and, possibly, also with other anti-Aβ treatments.
Collapse
Affiliation(s)
- Erik C. B. Johnson
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Melanie Das
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Pascal E. Sanchez
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Isabel Lopez
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Michael Gill
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Weiping Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China
| | - Jeanne T. Paz
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Jorge J. Palop
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| |
Collapse
|
24
|
Pinheiro L, Faustino C. Therapeutic Strategies Targeting Amyloid-β in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:418-452. [PMID: 30907320 DOI: 10.2174/1567205016666190321163438] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/16/2019] [Accepted: 03/17/2019] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder linked to protein misfolding and aggregation. AD is pathologically characterized by senile plaques formed by extracellular Amyloid-β (Aβ) peptide and Intracellular Neurofibrillary Tangles (NFT) formed by hyperphosphorylated tau protein. Extensive synaptic loss and neuronal degeneration are responsible for memory impairment, cognitive decline and behavioral dysfunctions typical of AD. Amyloidosis has been implicated in the depression of acetylcholine synthesis and release, overactivation of N-methyl-D-aspartate (NMDA) receptors and increased intracellular calcium levels that result in excitotoxic neuronal degeneration. Current drugs used in AD treatment are either cholinesterase inhibitors or NMDA receptor antagonists; however, they provide only symptomatic relief and do not alter the progression of the disease. Aβ is the product of Amyloid Precursor Protein (APP) processing after successive cleavage by β- and γ-secretases while APP proteolysis by α-secretase results in non-amyloidogenic products. According to the amyloid cascade hypothesis, Aβ dyshomeostasis results in the accumulation and aggregation of Aβ into soluble oligomers and insoluble fibrils. The former are synaptotoxic and can induce tau hyperphosphorylation while the latter deposit in senile plaques and elicit proinflammatory responses, contributing to oxidative stress, neuronal degeneration and neuroinflammation. Aβ-protein-targeted therapeutic strategies are thus a promising disease-modifying approach for the treatment and prevention of AD. This review summarizes recent findings on Aβ-protein targeted AD drugs, including β-secretase inhibitors, γ-secretase inhibitors and modulators, α-secretase activators, direct inhibitors of Aβ aggregation and immunotherapy targeting Aβ, focusing mainly on those currently under clinical trials.
Collapse
Affiliation(s)
- Lídia Pinheiro
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Célia Faustino
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| |
Collapse
|
25
|
Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Ogunniyi A, Orgeta V, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020; 396:413-446. [PMID: 32738937 PMCID: PMC7392084 DOI: 10.1016/s0140-6736(20)30367-6] [Citation(s) in RCA: 5651] [Impact Index Per Article: 1130.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Gill Livingston
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK.
| | - Jonathan Huntley
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Andrew Sommerlad
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - David Ames
- National Ageing Research Institute and Academic Unit for Psychiatry of Old Age, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia
| | | | - Sube Banerjee
- Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - Carol Brayne
- Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Alistair Burns
- Department of Old Age Psychiatry, University of Manchester, Manchester, UK
| | - Jiska Cohen-Mansfield
- Department of Health Promotion, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Heczeg Institute on Aging, Tel Aviv University, Tel Aviv, Israel; Minerva Center for Interdisciplinary Study of End of Life, Tel Aviv University, Tel Aviv, Israel
| | - Claudia Cooper
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Sergi G Costafreda
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Amit Dias
- Department of Preventive and Social Medicine, Goa Medical College, Goa, India
| | - Nick Fox
- Dementia Research Centre, UK Dementia Research Institute, University College London, London, UK; Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Laura N Gitlin
- Center for Innovative Care in Aging, Johns Hopkins University, Baltimore, MA, USA
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Helen C Kales
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California, Sacramento, CA, USA
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | | | - Vasiliki Orgeta
- Division of Psychiatry, University College London, London, UK
| | - Karen Ritchie
- Inserm, Unit 1061, Neuropsychiatry: Epidemiological and Clinical Research, La Colombière Hospital, University of Montpellier, Montpellier, France; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Kenneth Rockwood
- Centre for the Health Care of Elderly People, Geriatric Medicine Dalhousie University, Halifax, NS, Canada
| | - Elizabeth L Sampson
- Division of Psychiatry, University College London, London, UK; Barnet, Enfield, and Haringey Mental Health Trust, London, UK
| | - Quincy Samus
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MA, USA
| | - Lon S Schneider
- Department of Psychiatry and the Behavioural Sciences and Department of Neurology, Keck School of Medicine, Leonard Davis School of Gerontology of the University of Southern California, Los Angeles, CA, USA
| | - Geir Selbæk
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Geriatric Department, Oslo University Hospital, Oslo, Norway
| | - Linda Teri
- Department Psychosocial and Community Health, School of Nursing, University of Washington, Seattle, WA, USA
| | - Naaheed Mukadam
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| |
Collapse
|
26
|
Escamilla-Ayala AA, Sannerud R, Mondin M, Poersch K, Vermeire W, Paparelli L, Berlage C, Koenig M, Chavez-Gutierrez L, Ulbrich MH, Munck S, Mizuno H, Annaert W. Super-resolution microscopy reveals majorly mono- and dimeric presenilin1/γ-secretase at the cell surface. eLife 2020; 9:56679. [PMID: 32631487 PMCID: PMC7340497 DOI: 10.7554/elife.56679] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
γ-Secretase is a multi-subunit enzyme whose aberrant activity is associated with Alzheimer’s disease and cancer. While its structure is atomically resolved, γ-secretase localization in the membrane in situ relies mostly on biochemical data. Here, we combined fluorescent tagging of γ-secretase subunits with super-resolution microscopy in fibroblasts. Structured illumination microscopy revealed single γ-secretase complexes with a monodisperse distribution and in a 1:1 stoichiometry of PSEN1 and nicastrin subunits. In living cells, sptPALM revealed PSEN1/γ-secretase mainly with directed motility and frequenting ‘hotspots’ or high track-density areas that are sensitive to γ-secretase inhibitors. We visualized γ-secretase association with substrates like amyloid precursor protein and N-cadherin, but not with its sheddases ADAM10 or BACE1 at the cell surface, arguing against pre-formed megadalton complexes. Nonetheless, in living cells PSEN1/γ-secretase transiently visits ADAM10 hotspots. Our results highlight the power of super-resolution microscopy for the study of γ-secretase distribution and dynamics in the membrane.
Collapse
Affiliation(s)
- Abril Angélica Escamilla-Ayala
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Magali Mondin
- Bordeaux Imaging Center, UMS 3420, CNRS-University of Bordeaux, US4 INSERM, Bordeaux, France
| | - Karin Poersch
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wendy Vermeire
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Laura Paparelli
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB Bio Imaging Core, Leuven, Belgium
| | - Caroline Berlage
- Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Lucia Chavez-Gutierrez
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Laboratory of Proteolytic Mechanisms in Neurodegeneration, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Maximilian H Ulbrich
- Institute of Internal Medicine IV, Medical Center of the University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Sebastian Munck
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB Bio Imaging Core, Leuven, Belgium
| | - Hideaki Mizuno
- Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Heverlee, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Deczkowska A, Weiner A, Amit I. The Physiology, Pathology, and Potential Therapeutic Applications of the TREM2 Signaling Pathway. Cell 2020; 181:1207-1217. [DOI: 10.1016/j.cell.2020.05.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
|
28
|
Gülcan HO, Orhan IE. The Main Targets Involved in Neuroprotection for the Treatment of Alzheimer’s Disease and Parkinson Disease. Curr Pharm Des 2020; 26:509-516. [DOI: 10.2174/1381612826666200131103524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/21/2019] [Indexed: 01/28/2023]
Abstract
With respect to the total cure failure of current drugs used in the treatment of neurodegenerative diseases,
alternative strategies are followed. Particularly, neuroprotection approaches are questioned. Metal chelation,
antioxidant towards oxidative stress, modulation of the amyloidogenic pathway, MAO-B inhibition, and
NMDA receptor antagonism is more or less typical examples. Some of the representative drug candidates with
promising neuroprotective features are assessed in clinical trials. Although initial attempts were found hopeful,
none of the candidates have been found successful in each required clinical trials, particularly depending on the
failures in terms of cognitive enhancement and slowing the progressive characteristics of neurodegenerative diseases.
Today, neuroprotection is evaluated using multi-target ligand-based drug design studies. Within this study,
the clinical outcomes of these studies, the rationale behind the design of the molecules are reviewed concomitant
to the representative drug candidates of each group.
Collapse
Affiliation(s)
- Hayrettin O. Gülcan
- Eastern Mediterranean University, Faculty of Pharmacy, Famagusta, TR. North Cyprus, via Mersin 10, Turkey
| | - Ilkay E. Orhan
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Etiler, Ankara, Turkey
| |
Collapse
|
29
|
Accelerated neuronal and synaptic maturation by BrainPhys medium increases Aβ secretion and alters Aβ peptide ratios from iPSC-derived cortical neurons. Sci Rep 2020; 10:601. [PMID: 31953468 PMCID: PMC6969066 DOI: 10.1038/s41598-020-57516-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022] Open
Abstract
One of the neuropathological hallmarks of Alzheimer’s disease (AD) is cerebral deposition of amyloid plaques composed of amyloid β (Aβ) peptides and the cerebrospinal fluid concentrations of those peptides are used as a biomarker for AD. Mature induced pluripotent stem cell (iPSC)-derived cortical neurons secrete Aβ peptides in ratios comparable to those secreted to cerebrospinal fluid in human, however the protocol to achieve mature neurons is time consuming. In this study, we investigated if differentiation of neuroprogenitor cells (NPCs) in BrainPhys medium, previously reported to enhance synaptic function of neurons in culture, would accelerate neuronal maturation and, thus increase Aβ secretion as compared to the conventional neural maintenance medium. We found that NPCs cultured in BrainPhys displayed increased expression of markers for cortical deep-layer neurons, increased synaptic maturation and number of astroglial cells. This accelerated neuronal maturation was accompanied by increased APP processing, resulting in increased secretion of Aβ peptides and an increased Aβ38 to Aβ40 and Aβ42 ratio. However, during long-term culturing in BrainPhys, non-neuronal cells appeared and eventually took over the cultures. Taken together, BrainPhys culturing accelerated neuronal maturation and increased Aβ secretion from iPSC-derived cortical neurons, but changed the cellular composition of the cultures.
Collapse
|
30
|
Feng F, Li Y, Huang N, Luo Y. Icaritin, an inhibitor of beta-site amyloid cleaving enzyme-1, inhibits secretion of amyloid precursor protein in APP-PS1-HEK293 cells by impeding the amyloidogenic pathway. PeerJ 2019; 7:e8219. [PMID: 31844591 PMCID: PMC6910110 DOI: 10.7717/peerj.8219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/15/2019] [Indexed: 01/21/2023] Open
Abstract
Background Icaritin (ICT) is a prenylflavonoid derivative from Epimedium brevicornum Maxim. ICT has been shown to have neuroprotective effects. We investigate how ICT affects secretion of amyloid precursor protein (APP). Methods We exposed APP-PS1-HEK293 cells to ICT to investigate its effect on beta-site amyloid cleaving enzyme (BACE)1. Cell viability was evaluated by MTT and lactate dehydrogenase (LDH) assays. The half-maximal inhibitory concentration (IC50) of ICT for BACE1 was measured using fluorescence resonance energy transfer. Effects of ICT on the mRNA expression of APP were assessed by quantitative polymerase chain reaction, and protein expression was measured by western blotting and immunofluorescence. Results Icaritin inhibited BACE1 activity and IC50 was 5.70 ± 1.09 μM. Compared with the control group, at ICT concentrations of 5 μM and 10 μM, the viability increased and LDH leakage decreased in APP-PS1-293 cells. Also, mRNA expression of A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) increased, while that of BACE1 and presenilin-1 (PS1) decreased, upon ICT treatment. Western blotting and immunofluorescence confirmed that protein expression of ADAM10, BACE1 and PS1 showed the same trend. Expression of the APP fragments sAPPβ and C-terminal fragment β decreased, while that of sAPPα increased, upon ICT treatment. Expression of amyloid β peptides in APP-PS1-HEK293 cells was lower in ICT-treated groups compared with that in the control group. Conclusions Icaritin, as a BACE1 inhibitor, inhibits APP secretion in APP-PS1-HEK293 cells by impeding the amyloidogenic pathway.
Collapse
Affiliation(s)
- Fei Feng
- Department of Neurology, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuanyuan Li
- National Drug Clinical Trial Institution, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yong Luo
- Department of Neurology, The First People's Hospital of Zunyi and Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
31
|
Poppe L, Rué L, Timmers M, Lenaerts A, Storm A, Callaerts-Vegh Z, Courtand G, de Boer A, Smolders S, Van Damme P, Van Den Bosch L, D'Hooge R, De Strooper B, Robberecht W, Lemmens R. EphA4 loss improves social memory performance and alters dendritic spine morphology without changes in amyloid pathology in a mouse model of Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:102. [PMID: 31831046 PMCID: PMC6909519 DOI: 10.1186/s13195-019-0554-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
Abstract
Background EphA4 is a receptor of the ephrin system regulating spine morphology and plasticity in the brain. These processes are pivotal in the pathophysiology of Alzheimer’s disease (AD), characterized by synapse dysfunction and loss, and the progressive loss of memory and other cognitive functions. Reduced EphA4 signaling has been shown to rescue beta-amyloid-induced dendritic spine loss and long-term potentiation (LTP) deficits in cultured hippocampal slices and primary hippocampal cultures. In this study, we investigated whether EphA4 ablation might preserve synapse function and ameliorate cognitive performance in the APPPS1 transgenic mouse model of AD. Methods A postnatal genetic ablation of EphA4 in the forebrain was established in the APPPS1 mouse model of AD, followed by a battery of cognitive tests at 9 months of age to investigate cognitive function upon EphA4 loss. A Golgi-Cox staining was used to explore alterations in dendritic spine density and morphology in the CA1 region of the hippocampus. Results Upon EphA4 loss in APPPS1 mice, we observed improved social memory in the preference for social novelty test without affecting other cognitive functions. Dendritic spine analysis revealed altered synapse morphology as characterized by increased dendritic spine length and head width. These modifications were independent of hippocampal plaque load and beta-amyloid peptide levels since these were similar in mice with normal versus reduced levels of EphA4. Conclusion Loss of EphA4 improved social memory in a mouse model of Alzheimer’s disease in association with alterations in spine morphology.
Collapse
Affiliation(s)
- Lindsay Poppe
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Laura Rué
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Mieke Timmers
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Annette Lenaerts
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Annet Storm
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Zsuzsanna Callaerts-Vegh
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven - University of Leuven, Leuven, Belgium.,mINT Animal Behavior Core Facility, Faculty of Psychology, KU Leuven, Leuven, Belgium
| | - Gilles Courtand
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, Université de Bordeaux, 33076, Bordeaux, France
| | - Antina de Boer
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Silke Smolders
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium.,UK Dementia Research Institute at University College London, London, UK
| | - Wim Robberecht
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium. .,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium. .,Department of Neurology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
32
|
Long JM, Holtzman DM. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019; 179:312-339. [PMID: 31564456 PMCID: PMC6778042 DOI: 10.1016/j.cell.2019.09.001] [Citation(s) in RCA: 1824] [Impact Index Per Article: 304.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer disease (AD) is a heterogeneous disease with a complex pathobiology. The presence of extracellular β-amyloid deposition as neuritic plaques and intracellular accumulation of hyperphosphorylated tau as neurofibrillary tangles remains the primary neuropathologic criteria for AD diagnosis. However, a number of recent fundamental discoveries highlight important pathological roles for other critical cellular and molecular processes. Despite this, no disease-modifying treatment currently exists, and numerous phase 3 clinical trials have failed to demonstrate benefits. Here, we review recent advances in our understanding of AD pathobiology and discuss current treatment strategies, highlighting recent clinical trials and opportunities for developing future disease-modifying therapies.
Collapse
Affiliation(s)
- Justin M Long
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Charles F. and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
33
|
van Dyck CH, Nygaard HB, Chen K, Donohue MC, Raman R, Rissman RA, Brewer JB, Koeppe RA, Chow TW, Rafii MS, Gessert D, Choi J, Turner RS, Kaye JA, Gale SA, Reiman EM, Aisen PS, Strittmatter SM. Effect of AZD0530 on Cerebral Metabolic Decline in Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol 2019; 76:1219-1229. [PMID: 31329216 PMCID: PMC6646979 DOI: 10.1001/jamaneurol.2019.2050] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE Oligomeric amyloid-β peptide binds to cellular prion protein on the neuronal cell surface, activating intracellular fyn kinase to mediate synaptotoxicity and tauopathy. AZD0530 is an investigational kinase inhibitor specific for the Src family, including fyn, that has been repurposed for the treatment of Alzheimer disease. OBJECTIVE To determine whether AZD0530 treatment slows the decline in cerebral metabolic rate for glucose (CMRgl) and is safe and well tolerated. DESIGN, SETTING, AND PARTICIPANTS This multicenter phase 2a randomized clinical trial enrolled participants between December 23, 2014, and November 30, 2016. Participants (n = 159) had mild Alzheimer dementia and positron emission tomography (PET) evidence of elevated levels of amyloid-β peptide. Efficacy analyses of all primary and secondary outcomes were conducted in a modified intention-to-treat population. Final analyses were conducted from February 9, 2018, to July 25, 2018. INTERVENTIONS AZD0530 (100 mg or 125 mg daily) vs placebo for 52 weeks. MAIN OUTCOMES AND MEASURES Primary outcome was the reduction in relative CMRgl, as measured by 18F-fluorodeoxyglucose (18F-FDG) PET, at 52 weeks in an Alzheimer disease-associated prespecified statistical region of interest. Secondary end points included change in cognition, function, and other biomarkers. RESULTS Among the 159 participants, 79 were randomized to receive AZD0530 and 80 to receive placebo. Of the 159 participants, 87 (54.7%) were male, with a mean (SD) age of 71.0 (7.7) years. Based on a week-2 plasma drug level (target = 180 ng/mL; 30nM free), 15 participants (19.2%) had their AZD0530 dose escalated from 100 mg to 125 mg. Mean plasma levels from weeks 13 to 52 were 220 ng/mL and 36nM free. More participants discontinued treatment with AZD0530 than with placebo (21 vs 11), most commonly because of adverse events. The most frequent adverse events were gastrointestinal disorders (primarily diarrhea), which occurred in 38 participants (48.1%) who received AZD0530 and in 23 (28.8%) who received placebo. In the primary outcome, the treatment groups did not differ in 52-week decline in relative CMRgl (mean difference: -0.006 units/y; 95% CI, -0.017 to 0.006; P = .34). The treatment groups also did not differ in the rate of change in Alzheimer's Disease Assessment Scale-Cognitive Subscale, Alzheimer's Disease Cooperative Study-Activities of Daily Living, Clinical Dementia Rating, Neuropsychiatric Inventory, or Mini-Mental State Examination scores. Secondary volumetric magnetic resonance imaging analyses revealed no treatment effect on total brain or ventricular volume but did show trends for slowing the reduction in hippocampal volume and entorhinal thickness. CONCLUSIONS AND RELEVANCE Statistically significant effects of AZD0530 treatment were not found on relative CMRgl reduction in an Alzheimer disease-associated region of interest or on secondary clinical or biomarker measures. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02167256.
Collapse
Affiliation(s)
| | - Haakon B. Nygaard
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, Arizona
| | - Michael C. Donohue
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego
| | - Rema Raman
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego
| | - Robert A. Rissman
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego,Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - James B. Brewer
- Department of Neurosciences, University of California, San Diego, La Jolla, California
| | | | - Tiffany W. Chow
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego
| | - Michael S. Rafii
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego
| | - Devon Gessert
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego
| | - Jiyoon Choi
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego
| | - R. Scott Turner
- Department of Neurology, Georgetown University, Washington, DC
| | - Jeffrey A. Kaye
- Department of Neurology, Oregon Health & Science University, Portland
| | - Seth A. Gale
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Paul S. Aisen
- Alzheimer’s Therapeutic Research Institute, University of Southern California, San Diego
| | | |
Collapse
|
34
|
Pavliukeviciene B, Zentelyte A, Jankunec M, Valiuliene G, Talaikis M, Navakauskiene R, Niaura G, Valincius G. Amyloid β oligomers inhibit growth of human cancer cells. PLoS One 2019; 14:e0221563. [PMID: 31509551 PMCID: PMC6738617 DOI: 10.1371/journal.pone.0221563] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/11/2019] [Indexed: 11/18/2022] Open
Abstract
Effects of amyloid beta (Aβ) oligomers on viability and function of cell lines such as NB4 (human acute promyelocytic leukemia), A549 (human lung cancer (adenocarcinomic alveolar basal epithelial tumor)) and MCF-7 (human breast cancer (invasive breast ductal carcinoma)) were investigated. Two types of Aβ oligomers were used in the study. The first type was produced in the presence of oligomerization inhibitor, hexafluoroisopropanol (HFIP). The second type of amyloids was assembled in the absence of the inhibitor. The first type preparation was predominantly populated with dimers and trimers, while the second type contained mostly pentadecamers. These amyloid species exhibited different secondary protein structure with considerable amount of antiparallel β sheet structural elements in HFIP oligomerized Aβ mixtures. The effect of the cell growth inhibition, which was stronger in the case of HFIP Aβ oligomers, was observed for all cell lines. Tests aiming at elucidating the effects of the amyloid species on cell cycles showed little differences between amyloid preparations. This prompts us to conclude that the effect on the cancer cell proliferation rate is less specific to the biological processes developing inside the cells during the proliferation. Therefore, cell growth inhibition may involve interactions with the peripheral parts of the cancer cells, such as a phospholipid membrane, and only in case of the NB4 cells, where accumulation of amyloid species inside the cells was detected, one may imply the opposite. In general, cancer cells were much less susceptible to the damaging effects of amyloid oligomers compared to earlier observations in mixed neuronal cell cultures.
Collapse
Affiliation(s)
- Bozena Pavliukeviciene
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aiste Zentelyte
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Marija Jankunec
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Giedre Valiuliene
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Martynas Talaikis
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ruta Navakauskiene
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gediminas Niaura
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Gintaras Valincius
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- * E-mail:
| |
Collapse
|
35
|
QSAR Classification Models for Predicting the Activity of Inhibitors of Beta-Secretase (BACE1) Associated with Alzheimer's Disease. Sci Rep 2019; 9:9102. [PMID: 31235739 PMCID: PMC6591229 DOI: 10.1038/s41598-019-45522-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease is one of the most common neurodegenerative disorders in elder population. The β-site amyloid cleavage enzyme 1 (BACE1) is the major constituent of amyloid plaques and plays a central role in this brain pathogenesis, thus it constitutes an auspicious pharmacological target for its treatment. In this paper, a QSAR model for identification of potential inhibitors of BACE1 protein is designed by using classification methods. For building this model, a database with 215 molecules collected from different sources has been assembled. This dataset contains diverse compounds with different scaffolds and physical-chemical properties, covering a wide chemical space in the drug-like range. The most distinctive aspect of the applied QSAR strategy is the combination of hybridization with backward elimination of models, which contributes to improve the quality of the final QSAR model. Another relevant step is the visual analysis of the molecular descriptors that allows guaranteeing the absence of information redundancy in the model. The QSAR model performances have been assessed by traditional metrics, and the final proposed model has low cardinality, and reaches a high percentage of chemical compounds correctly classified.
Collapse
|
36
|
González JF, Alcántara AR, Doadrio AL, Sánchez-Montero JM. Developments with multi-target drugs for Alzheimer's disease: an overview of the current discovery approaches. Expert Opin Drug Discov 2019; 14:879-891. [PMID: 31165654 DOI: 10.1080/17460441.2019.1623201] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Alzheimer's disease (AD), the most common type of dementia among older adults, is a chronic neurodegenerative pathology that causes a progressive loss of cognitive functioning with a decline of rational skills. It is well known that AD is multifactorial, so there are many different pharmacological targets that can be pursued. Areas covered: The authors highlight the strategic value of privileged scaffolds in a multi-target lead compound generation against AD, exploring the concept of multi-target design, with a special emphasis on hybrid compounds. Hence, the most promising building blocks for designing and synthesizing hybrid anti-AD drugs are shown, while also presenting the more advanced hybrid compounds. Expert opinion: The available therapeutic arsenal for AD, designed under the traditional paradigm of 'one-drug/one target/one-disease', is based on the inhibition of brain acetylcholinesterase (AChE) to increase acetylcholine (ACh) levels. However, this classical approach has not been sufficiently effective when used to treat any multifactor-depending pathology (cancer, diabetes or AD). The multi-target drug concept has been quickly adopted by medicinal chemists. The basic research developments reported in recent years are a solid foundation that will pave the way for the construction of future AD therapeutics.
Collapse
Affiliation(s)
- Juan F González
- a Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid , Madrid , Spain
| | - Andrés R Alcántara
- a Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid , Madrid , Spain
| | - Antonio L Doadrio
- a Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid , Madrid , Spain
| | - Jose María Sánchez-Montero
- a Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid , Madrid , Spain
| |
Collapse
|
37
|
Chaubey MG, Patel SN, Rastogi RP, Srivastava PL, Singh AK, Madamwar D, Singh NK. Therapeutic potential of cyanobacterial pigment protein phycoerythrin: in silico and in vitro study of BACE1 interaction and in vivo Aβ reduction. Int J Biol Macromol 2019; 134:368-378. [PMID: 31059742 DOI: 10.1016/j.ijbiomac.2019.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/29/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022]
Abstract
Cyanobacteria are an immense source of innovative classes of pharmacologically active compounds exhibiting various biological activities ranging from antioxidants, antibiotics, anticancer, anti-inflammatory to anti-Alzheimer's disease. In the present study, we primarily targeted the inhibition of Beta-site amyloid precursor protein cleaving enzyme-1 (BACE1) by a naturally occurring cyanobacterial protein phycoerythrin (C-PE). BACE1 cleaves amyloid-β precursor protein (APP) and leads to accumulation of neurotoxic amyloid beta (Aβ) plaques in the brain, as an attribute of Alzheimer's disease (AD). Inhibition of BACE1 was measured in terms of their association and dissociation rate constants, thermodynamics of binding using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). The kinetic parameters for enzyme activity were also measured using synthetic decapeptide as a substrate. We further validated the potential of PE by in-vivo histopathological staining of Aβ aggregate mutant Caenorhabditis elegans CL4176 by Thioflavin-T. The present studies pave the way for the application of naturally occurring C-PE as a putative therapeutic drug for the AD.
Collapse
Affiliation(s)
- Mukesh Ghanshyam Chaubey
- Department of Biotechnology, Shree A. N. Patel PG Institute of Science and Research, Sardar Patel University, Anand 388001, Gujarat, India
| | - Stuti Nareshkumar Patel
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, 388315 Anand, Gujarat, India
| | - Rajesh Prasad Rastogi
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, 388315 Anand, Gujarat, India
| | - Prabhakar Lal Srivastava
- Symbiosis School of Biological Science, Symbiosis International (Deemed University), Lavale, 412115 Pune, Maharashtra, India
| | - Arun Kumar Singh
- Zydus Research Centre, Sarkhej-Bavla N.H. No. 8A, Moraiya, Sanand, Ahmedabad 382210, India
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Satellite Campus, Vadtal Road, Sardar Patel University, Bakrol, 388315 Anand, Gujarat, India
| | - Niraj Kumar Singh
- Department of Biotechnology, Shree A. N. Patel PG Institute of Science and Research, Sardar Patel University, Anand 388001, Gujarat, India.
| |
Collapse
|
38
|
Maia MA, Sousa E. BACE-1 and γ-Secretase as Therapeutic Targets for Alzheimer's Disease. Pharmaceuticals (Basel) 2019; 12:ph12010041. [PMID: 30893882 PMCID: PMC6469197 DOI: 10.3390/ph12010041] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a growing global health concern with a massive impact on affected individuals and society. Despite the considerable advances achieved in the understanding of AD pathogenesis, researchers have not been successful in fully identifying the mechanisms involved in disease progression. The amyloid hypothesis, currently the prevalent theory for AD, defends the deposition of β-amyloid protein (Aβ) aggregates as the trigger of a series of events leading to neuronal dysfunction and dementia. Hence, several research and development (R&D) programs have been led by the pharmaceutical industry in an effort to discover effective and safety anti-amyloid agents as disease modifying agents for AD. Among 19 drug candidates identified in the AD pipeline, nine have their mechanism of action centered in the activity of β or γ-secretase proteases, covering almost 50% of the identified agents. These drug candidates must fulfill the general rigid prerequisites for a drug aimed for central nervous system (CNS) penetration and selectivity toward different aspartyl proteases. This review presents the classes of γ-secretase and beta-site APP cleaving enzyme 1 (BACE-1) inhibitors under development, highlighting their structure-activity relationship, among other physical-chemistry aspects important for the successful development of new anti-AD pharmacological agents.
Collapse
Affiliation(s)
- Miguel A Maia
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
39
|
Wells C, Brennan SE, Keon M, Saksena NK. Prionoid Proteins in the Pathogenesis of Neurodegenerative Diseases. Front Mol Neurosci 2019; 12:271. [PMID: 31780895 PMCID: PMC6861308 DOI: 10.3389/fnmol.2019.00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
There is a growing body of evidence that prionoid protein behaviors are a core element of neurodegenerative diseases (NDs) that afflict humans. Common elements in pathogenesis, pathological effects and protein-level behaviors exist between Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). These extend beyond the affected neurons to glial cells and processes. This results in a complicated system of disease progression, which often takes advantage of protective processes to promote the propagation of pathological protein aggregates. This review article provides a current snapshot of knowledge on these proteins and their intrinsic role in the pathogenesis and disease progression seen across NDs.
Collapse
|
40
|
Wang X, Pei G. Visualization of Alzheimer's Disease Related α-/β-/γ-Secretase Ternary Complex by Bimolecular Fluorescence Complementation Based Fluorescence Resonance Energy Transfer. Front Mol Neurosci 2018; 11:431. [PMID: 30538620 PMCID: PMC6277482 DOI: 10.3389/fnmol.2018.00431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
The competitive ectodomain shedding of amyloid-β precursor protein (APP) by α-secretase and β-secretase, and the subsequent regulated intramembrane proteolysis by γ-secretase are the key processes in amyloid-β peptides (Aβ) generation. Previous studies indicate that secretases form binary complex and the interactions between secretases take part in substrates processing. However, whether α-, β- and γ-secretase could form ternary complex remains to be explored. Here, we adopted bimolecular fluorescence complementation in combination with fluorescence resonance energy transfer (BiFC-FRET) to visualize the formation of triple secretase complex. We show that the interaction between α-secretase ADAM10 and β-secretase BACE1 could be monitored by BiFC assay and the binding of APP to α-/β-secretase binary complex was revealed by BiFC-FRET. Further, we observed that γ-secretase interacts with α-/β-secretase binary complex, providing evidence that α-, β- and γ-secretase might form a ternary complex. Thus our study extends the interplay among Alzheimer's disease (AD) related α-/β-/γ-secretase.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, and The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
41
|
Tang N, Kepp KP. Aβ42/Aβ40 Ratios of Presenilin 1 Mutations Correlate with Clinical Onset of Alzheimer’s Disease. J Alzheimers Dis 2018; 66:939-945. [DOI: 10.3233/jad-180829] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ning Tang
- Technical University of Denmark, DTU Chemistry, Kgs. Lyngby, Denmark
| | - Kasper P. Kepp
- Technical University of Denmark, DTU Chemistry, Kgs. Lyngby, Denmark
| |
Collapse
|
42
|
Liu J, Zhang W, Tao Y, Li LY. Induction of Beta-amyloid Protein by Sevoflurane Is Associated with Cognitive Impairment During Anesthesia in Aged Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.1080.1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Consequences of Pharmacological BACE Inhibition on Synaptic Structure and Function. Biol Psychiatry 2018; 84:478-487. [PMID: 29945719 DOI: 10.1016/j.biopsych.2018.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder among elderly persons. Overt accumulation and aggregation of the amyloid-β peptide (Aβ) is thought to be the initial causative factor for Alzheimer's disease. Aβ is produced by sequential proteolytic cleavage of the amyloid precursor protein. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the initial and rate-limiting protease for the generation of Aβ. Therefore, inhibiting BACE1 is considered one of the most promising therapeutic approaches for potential treatment of Alzheimer's disease. Currently, several drugs blocking this enzyme (BACE inhibitors) are being evaluated in clinical trials. However, high-dosage BACE-inhibitor treatment interferes with structural and functional synaptic plasticity in mice. These adverse side effects may mask the therapeutic benefit of lowering the Aβ concentration. In this review, we focus on the consequences of BACE inhibition-mediated synaptic deficits and the potential clinical implications.
Collapse
|
44
|
|
45
|
Verheijen BM, Stevens JAA, Gentier RJG, van 't Hekke CD, van den Hove DLA, Hermes DJHP, Steinbusch HWM, Ruijter JM, Grimm MOW, Haupenthal VJ, Annaert W, Hartmann T, van Leeuwen FW. Paradoxical effects of mutant ubiquitin on Aβ plaque formation in an Alzheimer mouse model. Neurobiol Aging 2018; 72:62-71. [PMID: 30216939 DOI: 10.1016/j.neurobiolaging.2018.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/03/2018] [Accepted: 08/10/2018] [Indexed: 01/08/2023]
Abstract
Amyloid-β (Aβ) plaques are a prominent pathological hallmark of Alzheimer's disease (AD). They consist of aggregated Aβ peptides, which are generated through sequential proteolytic processing of the transmembrane protein amyloid precursor protein (APP) and several Aβ-associated factors. Efficient clearance of Aβ from the brain is thought to be important to prevent the development and progression of AD. The ubiquitin-proteasome system (UPS) is one of the major pathways for protein breakdown in cells and it has been suggested that impaired UPS-mediated removal of protein aggregates could play an important role in the pathogenesis of AD. To study the effects of an impaired UPS on Aβ pathology in vivo, transgenic APPSwe/PS1ΔE9 mice (APPPS1) were crossed with transgenic mice expressing mutant ubiquitin (UBB+1), a protein-based inhibitor of the UPS. Surprisingly, the APPPS1/UBB+1 crossbreed showed a remarkable decrease in Aβ plaque load during aging. Further analysis showed that UBB+1 expression transiently restored PS1-NTF expression and γ-secretase activity in APPPS1 mice. Concurrently, UBB+1 decreased levels of β-APP-CTF, which is a γ-secretase substrate. Although UBB+1 reduced Aβ pathology in APPPS1 mice, it did not improve the behavioral deficits in these animals.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Psychiatry and Neuropsychology, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Jo A A Stevens
- Department of Psychiatry and Neuropsychology, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Romina J G Gentier
- Department of Psychiatry and Neuropsychology, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Christian D van 't Hekke
- Department of Psychiatry and Neuropsychology, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Denise J H P Hermes
- Department of Psychiatry and Neuropsychology, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Harry W M Steinbusch
- Department of Psychiatry and Neuropsychology, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Jan M Ruijter
- Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marcus O W Grimm
- Deutsches Institut für Demenzprävention, University of Saarland, Experimental Neurology, Homburg, Germany
| | - Viola J Haupenthal
- Deutsches Institut für Demenzprävention, University of Saarland, Experimental Neurology, Homburg, Germany
| | - Wim Annaert
- VIB Center for Brain and Disease Research and KU Leuven, Gasthuisberg, Belgium
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention, University of Saarland, Experimental Neurology, Homburg, Germany
| | - Fred W van Leeuwen
- Department of Psychiatry and Neuropsychology, Faculty of Health Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
46
|
Feng G, Zheng C, Hui J. Early Aβ-HBc virus-like particles immunization had better effects on preventing the deficit of learning and memory abilities and reducing cerebral Aβ load in PDAPP mice. Vaccine 2018; 36:5258-5264. [PMID: 30055971 DOI: 10.1016/j.vaccine.2018.07.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 07/10/2018] [Accepted: 07/19/2018] [Indexed: 01/04/2023]
Abstract
For nearly two decades, immunization against the β-amyloid peptide (Aβ) has been investigated as a potential treatment for Alzheimer's disease (AD). Despite some disappointing results in clinic trials, greater significance has been attached by some researchers to exploring the immune effects on pathological and cognitive changes in AD or producing new vaccines of AD. In the previous study, we have made a virus-like particles (Aβ-HBc VLPs) as Aβ vaccine candidate. Aβ-HBc VLPs could ameliorate the learning and memory abilities and reduce cerebral Aβ deposit in the old PDAPP mice. In the present study, to observe the preventive effect and the proper time of immunization, 3, 6 and 9-month old PDAPP mice were immunized with Aβ-HBc VLPs for 3 months. All mice generated high titer of anti-Aβ antibody after Aβ-HBc VLPs immunizations. When the mice were 15-month old, Morris Water Maze was used to test their learning and memory abilities. The escape latencies of Aβ-HBc VLPs immunized mice were shorter than that of control mice. These immunized mice entered platform region frequently and spent more time on the platform region and quadrant. 3 m and 6 m Aβ-HBc VLPs immunized groups performed better than the 9 m group. In immunohistochemistry tests, all the Aβ-HBc VLPs immunized mice had less amyloid deposit in cortex and hippocampus. ELISA results showed that soluble Aβ was reduced in the brain homogenates of the Aβ-HBc VLPs immunized mice, and 3- and 6-month groups had less soluble Aβ than the 9-month group. In conclusion, our study showed that Aβ-HBc VLPs immunization could elicit a strong immune response in adult APP mice, and early immunization had better effects on preventing learning and memory deficits, lowering Aβ burden in PDAPP mice.
Collapse
Affiliation(s)
- Gaifeng Feng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, 76# West Yanta Road, Xi'an, Shaanxi 710061, China.
| | - Caifeng Zheng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, China; Department of Emergency Surgery, Ankang City Central Hospital, 85# Jinzhou Street, Ankang, Shaanxi 725000, China
| | - Jianjun Hui
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76# West Yanta Road, Xi'an, Shaanxi 710061, China; Department of Emergency Surgery, Ankang City Central Hospital, 85# Jinzhou Street, Ankang, Shaanxi 725000, China
| |
Collapse
|
47
|
Coimbra JRM, Marques DFF, Baptista SJ, Pereira CMF, Moreira PI, Dinis TCP, Santos AE, Salvador JAR. Highlights in BACE1 Inhibitors for Alzheimer's Disease Treatment. Front Chem 2018; 6:178. [PMID: 29881722 PMCID: PMC5977085 DOI: 10.3389/fchem.2018.00178] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder and the most common type of dementia in the elderly. The clinical symptoms of AD include a progressive loss of memory and impairment of cognitive functions interfering with daily life activities. The main neuropathological features consist in extracellular amyloid-β (Aβ) plaque deposition and intracellular Neurofibrillary tangles (NFTs) of hyperphosphorylated Tau. Understanding the pathophysiological mechanisms that underlie neurodegeneration in AD is essential for rational design of neuroprotective agents able to prevent disease progression. According to the "Amyloid Cascade Hypothesis" the critical molecular event in the pathogenesis of AD is the accumulation of Aβ neurotoxic oligomers. Since the proteolytic processing of Amyloid Precursor Protein (APP) by β-secretase (beta-site APP cleaving enzyme 1, BACE1) is the rate-limiting step in the production of Aβ, this enzyme is considered a major therapeutic target and BACE1 inhibitors have the potential to be disease-modifying drugs for AD treatment. Therefore, intensive efforts to discover and develop inhibitors that can reach the brain and effectively inhibit BACE1 have been pursued by several groups worldwide. The aim of this review is to highlight the progress in the discovery of potent and selective small molecule BACE1 inhibitors over the past decade.
Collapse
Affiliation(s)
- Judite R. M. Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| | - Daniela F. F. Marques
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| | - Salete J. Baptista
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Chem4Pharma, Edifício IPN IncubadoraCoimbra, Portugal
| | - Cláudia M. F. Pereira
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Faculty of Medicine, University of CoimbraCoimbra, Portugal
| | - Paula I. Moreira
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Laboratory of Physiology, Faculty of Medicine, University of CoimbraCoimbra, Portugal
| | - Teresa C. P. Dinis
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Laboratory of Biochemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
| | - Armanda E. Santos
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
- Laboratory of Biochemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| |
Collapse
|
48
|
Strittmatter SM. Emerging Mechanisms in Alzheimer's Disease and Their Therapeutic Implications. Biol Psychiatry 2018; 83:298-299. [PMID: 29331211 PMCID: PMC5840867 DOI: 10.1016/j.biopsych.2017.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Stephen M. Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
49
|
Voytyuk I, Mueller SA, Herber J, Snellinx A, Moechars D, van Loo G, Lichtenthaler SF, De Strooper B. BACE2 distribution in major brain cell types and identification of novel substrates. Life Sci Alliance 2018; 1:e201800026. [PMID: 30456346 PMCID: PMC6238391 DOI: 10.26508/lsa.201800026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 01/22/2023] Open
Abstract
β-Site APP-cleaving enzyme 1 (BACE1) inhibition is considered one of the most promising therapeutic strategies for Alzheimer's disease, but current BACE1 inhibitors also block BACE2. As the localization and function of BACE2 in the brain remain unknown, it is difficult to predict whether relevant side effects can be caused by off-target inhibition of BACE2 and whether it is important to generate BACE1-specific inhibitors. Here, we show that BACE2 is expressed in discrete subsets of neurons and glia throughout the adult mouse brain. We uncover four new substrates processed by BACE2 in cultured glia: vascular cell adhesion molecule 1, delta and notch-like epidermal growth factor-related receptor, fibroblast growth factor receptor 1, and plexin domain containing 2. Although these substrates were not prominently cleaved by BACE2 in healthy adult mice, proinflammatory TNF induced a drastic increase in BACE2-mediated shedding of vascular cell adhesion molecule 1 in CSF. Thus, although under steady-state conditions the effect of BACE2 cross-inhibition by BACE1-directed inhibitors is rather subtle, it is important to consider that side effects might become apparent under physiopathological conditions that induce TNF expression.
Collapse
Affiliation(s)
- Iryna Voytyuk
- Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
| | - Stephan A Mueller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Julia Herber
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - An Snellinx
- Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
| | - Dieder Moechars
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Geert van Loo
- Center for Inflammation Research, VIB, Gent, Belgium
- Department of Biomedical Molecular Biology, Gent University, Gent, Belgium
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Advanced Study, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Bart De Strooper
- Department of Neurosciences, Katholieke Universiteit Leuven, Leuven, Belgium
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
- Munich Cluster for Systems Neurology, Munich, Germany
- Dementia Research Institute, Institute of Neurology, University College London, London, UK
| |
Collapse
|