1
|
Knowles EEM, Peralta JM, Rodrigue AL, Mathias SR, Mollon J, Leandro AC, Curran JE, Blangero J, Glahn DC. Differential gene expression study in whole blood identifies candidate genes for psychosis in African American individuals. Schizophr Res 2025; 280:85-94. [PMID: 40267851 DOI: 10.1016/j.schres.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/10/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
Genome-wide association has identified regions of the genome that mediate risk for psychosis. It is possible that variants in these regions confer risk by altering gene expression. This work has predominantly been conducted in individuals of European descent and has focused narrowly on schizophrenia rather than psychosis as a syndrome. In the present study we investigated alterations in gene expression in African American individuals with a range of psychotic diagnoses to increase understanding of the etiology in an underserved population. We performed RNA-seq in whole bloody to survey the transcriptome in 126 patients with a psychosis-spectrum disorder and 217 healthy controls and applied differential gene expression analyses across the genome while controlling for age, sex, population stratification and batch. We found 18 differentially expressed genes (DEGs), some of the locations of the corresponding genes overlap with previously implicated regions for psychosis, but many of which were novel associations. Enrichment analysis of nominally significant genes (p < 0.05) revealed overrepresentation of biological processes relating to platelet, immune and cellular function, and sensory perception. Weighted gene co-expression network analysis, applied to identify modules of co-expressed genes associated with psychosis, revealed 10 modules, one of which was significantly associated with psychosis. This module was significantly enriched for DEGs, and for platelet function. These results support the potential role of immune function in the etiology of psychosis, identify novel candidate gene expression phenotypes that correspond to both established and new genomic regions, in individuals of African American ancestry.
Collapse
Affiliation(s)
- E E M Knowles
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - J M Peralta
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - A L Rodrigue
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - S R Mathias
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - J Mollon
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - A C Leandro
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - J E Curran
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - J Blangero
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - D C Glahn
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
2
|
Harigaya Y, Matoba N, Le BD, Valone JM, Stein JL, Love MI, Valdar W. Probabilistic classification of gene-by-treatment interactions on molecular count phenotypes. PLoS Genet 2025; 21:e1011561. [PMID: 40203278 PMCID: PMC12021428 DOI: 10.1371/journal.pgen.1011561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 04/24/2025] [Accepted: 12/31/2024] [Indexed: 04/11/2025] Open
Abstract
Genetic variation can modulate response to treatment (G×T) or environmental stimuli (G×E), both of which can be highly consequential in biomedicine. An effective approach to identifying G×T signals and gaining insight into molecular mechanisms is mapping quantitative trait loci (QTL) of molecular count phenotypes, such as gene expression and chromatin accessibility, under multiple treatment conditions, which is termed response molecular QTL mapping. Although standard approaches evaluate the interaction between genetics and treatment conditions, they do not distinguish between meaningful interpretations such as whether a genetic effect is observed only in the treated condition or whether a genetic effect is observed always but accentuated in the treated condition. To address this gap, we have developed a downstream method for classifying response molecular QTLs into subclasses with meaningful genetic interpretations. Our method uses Bayesian model selection and assigns posterior probabilities to different types of G×T interactions for a given feature-SNP pair. We compare linear and nonlinear regression of log -scale counts, noting that the latter accounts for an expected biological relationship between the genotype and the molecular count phenotype. Through simulation and application to existing datasets of molecular response QTLs, we show that our method provides an intuitive and well-powered framework to report and interpret G×T interactions. We provide a software package, ClassifyGxT [1].
Collapse
Affiliation(s)
- Yuriko Harigaya
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Institute for Developmental Disabilities, Carrboro, North Carolina, United States of America
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
3
|
Nazli D, Bora U, Ozhan G. Wnt/β-catenin Signaling in Central Nervous System Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:13-33. [PMID: 39511125 DOI: 10.1007/5584_2024_830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The Wnt/β-catenin signaling pathway plays a pivotal role in the development, maintenance, and repair of the central nervous system (CNS). This chapter explores the diverse functions of Wnt/β-catenin signaling, from its critical involvement in embryonic CNS development to its reparative and plasticity-inducing roles in response to CNS injury. We discuss how Wnt/β-catenin signaling influences various CNS cell types-astrocytes, microglia, neurons, and oligodendrocytes-each contributing to repair and plasticity after injury. The chapter also addresses the pathway's involvement in CNS disorders such as Alzheimer's and Parkinson's diseases, psychiatric disorders, and traumatic brain injury (TBI), highlighting potential Wnt-based therapeutic approaches. Lastly, zebrafish are presented as a promising model organism for studying CNS regeneration and neurodegenerative diseases, offering insights into future research and therapeutic development.
Collapse
Affiliation(s)
- Dilek Nazli
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Ugur Bora
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye.
| |
Collapse
|
4
|
Matoba N, Le BD, Valone JM, Wolter JM, Mory JT, Liang D, Aygün N, Broadaway KA, Bond ML, Mohlke KL, Zylka MJ, Love MI, Stein JL. Stimulating Wnt signaling reveals context-dependent genetic effects on gene regulation in primary human neural progenitors. Nat Neurosci 2024; 27:2430-2442. [PMID: 39349663 PMCID: PMC11633645 DOI: 10.1038/s41593-024-01773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/28/2024] [Indexed: 10/09/2024]
Abstract
Gene regulatory effects have been difficult to detect at many non-coding loci associated with brain-related traits, likely because some genetic variants have distinct functions in specific contexts. To explore context-dependent gene regulation, we measured chromatin accessibility and gene expression after activation of the canonical Wnt pathway in primary human neural progenitors (n = 82 donors). We found that TCF/LEF motifs and brain-structure-associated and neuropsychiatric-disorder-associated variants were enriched within Wnt-responsive regulatory elements. Genetically influenced regulatory elements were enriched in genomic regions under positive selection along the human lineage. Wnt pathway stimulation increased detection of genetically influenced regulatory elements/genes by 66%/53% and enabled identification of 397 regulatory elements primed to regulate gene expression. Stimulation also increased identification of shared genetic effects on molecular and complex brain traits by up to 70%, suggesting that genetic variant function during neurodevelopmental patterning can lead to differences in adult brain and behavioral traits.
Collapse
Affiliation(s)
- Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Justin M Wolter
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC, USA
| | - Jessica T Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marielle L Bond
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark J Zylka
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Carolina Institute for Developmental Disabilities, Carrboro, NC, USA.
| |
Collapse
|
5
|
Sánchez-Florentino ZA, Romero-Martínez BS, Flores-Soto E, Montaño LM, Sommer B, Valdés-Tovar M, Argueta J, Calixto E, Aquino-Gálvez A, Castillejos-López M, Serrano H, Gomez-Verjan JC, López-Riquelme GO, Benítez-King GA, Jaimez R, Solís-Chagoyán H. Altered PLCβ/IP 3/Ca 2+ Signaling Pathway Activated by GPRCs in Olfactory Neuronal Precursor Cells Derived from Patients Diagnosed with Schizophrenia. Biomedicines 2024; 12:2343. [PMID: 39457654 PMCID: PMC11504003 DOI: 10.3390/biomedicines12102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Schizophrenia (SZ) is a multifactorial chronic psychiatric disorder with a worldwide prevalence of 1%. Altered expression of PLCβ occurs in SZ patients, suggesting alterations in the PLCβ/IP3/Ca2+ signaling pathway. This cascade regulates critical cellular processes in all cell types, including the neuronal lineage; however, there is scarce evidence regarding the functionality of this transduction signaling in neuronal cells derived from SZ patients. Objective: We evaluated the functionality of the PLCβ/IP3/Ca2+ pathway in olfactory neuronal precursor cells (hONPCs) obtained from SZ patients. Methods: Cryopreserved hONPCs isolated from SZ patients and healthy subjects (HS) were thawed. The cellular types in subcultures were corroborated by immunodetection of the multipotency and lineage markers SOX-2, Musashi-1, nestin, and β-III tubulin. The PLCβ/IP3/Ca2+ pathway was activated by GPCR (Gq) ligands (ATP, UTP, serotonin, and epinephrine). In addition, PLCβ and IP3R were directly stimulated by perfusing cells with the activators m-3M3FBS and ADA, respectively. Cytosolic Ca2+ was measured by microfluorometry and by Ca2+ imaging. The amount and subcellular distribution of the PLCβ1 and PLCβ3 isoforms were evaluated by confocal immunofluorescence. IP3 concentration was measured by ELISA. Results: The results show that the increase of cytosolic Ca2+ triggered by GPCR ligands or directly through either PLCβ or IP3R activation was significantly lower in SZ-derived hONPCs, regarding HS-derived cells. Moreover, the relative amount of the PLCβ1 and PLCβ3 isoforms and IP3 production stimulated with m-3M3FBS were reduced in SZ-derived cells. Conclusions: Our results suggest an overall functional impairment in the PLCβ/IP3/Ca2+ signaling pathway in SZ-derived hONPCs.
Collapse
Affiliation(s)
- Zuly A. Sánchez-Florentino
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, CP, Mexico;
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico; (J.A.); (G.A.B.-K.)
| | - Bianca S. Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, CP, Mexico; (B.S.R.-M.); (E.F.-S.); (L.M.M.)
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, CP, Mexico; (B.S.R.-M.); (E.F.-S.); (L.M.M.)
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, CP, Mexico; (B.S.R.-M.); (E.F.-S.); (L.M.M.)
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, CP, Mexico;
| | - Marcela Valdés-Tovar
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico;
| | - Jesús Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico; (J.A.); (G.A.B.-K.)
| | - Eduardo Calixto
- Departamento de Neurobiología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico;
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, CP, Mexico;
| | - Manuel Castillejos-López
- Unidad de Epidemiología Hospitalaria e Infectología, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, CP, Mexico;
| | - Héctor Serrano
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, CP, Mexico;
| | - Juan C. Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico City 10200, CP, Mexico;
| | - Germán O. López-Riquelme
- Laboratorio de Socioneurobiologia, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, CP, Mexico;
| | - Gloria A. Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, CP, Mexico; (J.A.); (G.A.B.-K.)
| | - Ruth Jaimez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, CP, Mexico; (B.S.R.-M.); (E.F.-S.); (L.M.M.)
| | - Héctor Solís-Chagoyán
- Laboratorio de Neurobiología Cognitiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, CP, Mexico
| |
Collapse
|
6
|
Idotta C, Pagano MA, Tibaldi E, Cadamuro M, Saetti R, Silvestrini M, Pigato G, Leanza L, Peruzzo R, Meneghetti L, Piazza S, Meneguzzo P, Favaro A, Grassi L, Toffanin T, Brunati AM. Neural stem/progenitor cells from olfactory neuroepithelium collected by nasal brushing as a cell model reflecting molecular and cellular dysfunctions in schizophrenia. World J Biol Psychiatry 2024; 25:317-329. [PMID: 38869228 DOI: 10.1080/15622975.2024.2357096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVES Neural stem/progenitor cells derived from olfactory neuroepithelium (hereafter olfactory neural stem/progenitor cells, ONSPCs) are emerging as a potential tool in the exploration of psychiatric disorders. The present study intended to assess whether ONSPCs could help discern individuals with schizophrenia (SZ) from non-schizophrenic (NS) subjects by exploring specific cellular and molecular features. METHODS ONSPCs were collected from 19 in-patients diagnosed with SZ and 31 NS individuals and propagated in basal medium. Mitochondrial ATP production, expression of β-catenin and cell proliferation, which are described to be altered in SZ, were examined in freshly isolated or newly thawed ONSPCs after a few culture passages. RESULTS SZ-ONSPCs exhibited a lower mitochondrial ATP production and insensitivity to agents capable of positively or negatively affecting β-catenin expression with respect to NS-ONSPCs. As to proliferation, it declined in SZ-ONSPCs as the number of culture passages increased compared to a steady level of growth shown by NS-ONSPCs. CONCLUSIONS The ease and safety of sample collection as well as the differences observed between NS- and SZ-ONSPCs, may lay the groundwork for a new approach to obtain biological material from a large number of living individuals and gain a better understanding of the mechanisms underlying SZ pathophysiology.
Collapse
Affiliation(s)
- Carlo Idotta
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Mario Angelo Pagano
- Department of Molecular Medicine, University of Padua, Padua, Italy
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Elena Tibaldi
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Roberto Saetti
- Department of Otolaryngology, San Bortolo Hospital, ULSS 8 Berica, Vicenza, Italy
| | - Marina Silvestrini
- Department of Otolaryngology, San Bortolo Hospital, ULSS 8 Berica, Vicenza, Italy
| | | | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy
| | - Roberta Peruzzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Stefano Piazza
- Department of Mental Health, ULSS 8 Berica, Vicenza, Italy
| | - Paolo Meneguzzo
- Department of Neuroscience, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Angela Favaro
- Department of Neuroscience, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Luigi Grassi
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - Tommaso Toffanin
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
7
|
Yang K, Hasegawa Y, Bhattarai JP, Hua J, Dower M, Etyemez S, Prasad N, Duvall L, Paez A, Smith A, Wang Y, Zhang YF, Lane AP, Ishizuka K, Kamath V, Ma M, Kamiya A, Sawa A. Inflammation-related pathology in the olfactory epithelium: its impact on the olfactory system in psychotic disorders. Mol Psychiatry 2024; 29:1453-1464. [PMID: 38321120 PMCID: PMC11189720 DOI: 10.1038/s41380-024-02425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
Smell deficits and neurobiological changes in the olfactory bulb (OB) and olfactory epithelium (OE) have been observed in schizophrenia and related disorders. The OE is the most peripheral olfactory system located outside the cranium, and is connected with the brain via direct neuronal projections to the OB. Nevertheless, it is unknown whether and how a disturbance of the OE affects the OB in schizophrenia and related disorders. Addressing this gap would be the first step in studying the impact of OE pathology in the disease pathophysiology in the brain. In this cross-species study, we observed that chronic, local OE inflammation with a set of upregulated genes in an inducible olfactory inflammation (IOI) mouse model led to a volume reduction, layer structure changes, and alterations of neuron functionality in the OB. Furthermore, IOI model also displayed behavioral deficits relevant to negative symptoms (avolition) in parallel to smell deficits. In first episode psychosis (FEP) patients, we observed a significant alteration in immune/inflammation-related molecular signatures in olfactory neuronal cells (ONCs) enriched from biopsied OE and a significant reduction in the OB volume, compared with those of healthy controls (HC). The increased expression of immune/inflammation-related molecules in ONCs was significantly correlated to the OB volume reduction in FEP patients, but no correlation was found in HCs. Moreover, the increased expression of human orthologues of the IOI genes in ONCs was significantly correlated with the OB volume reduction in FEP, but not in HCs. Together, our study implies a potential mechanism of the OE-OB pathology in patients with psychotic disorders (schizophrenia and related disorders). We hope that this mechanism may have a cross-disease implication, including COVID-19-elicited mental conditions that include smell deficits.
Collapse
Affiliation(s)
- Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuto Hasegawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jun Hua
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Milan Dower
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Semra Etyemez
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neal Prasad
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren Duvall
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Paez
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Amy Smith
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yingqi Wang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yun-Feng Zhang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew P Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vidyulata Kamath
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Atsushi Kamiya
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
8
|
Yang K, Hasegawa Y, Bhattarai JP, Hua J, Dower M, Etyemez S, Prasad N, Duvall L, Paez A, Smith A, Wang Y, Zhang YF, Lane AP, Ishizuka K, Kamath V, Ma M, Kamiya A, Sawa A. Inflammation-related pathology in the olfactory epithelium: its impact on the olfactory system in psychotic disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.09.23.509224. [PMID: 36203543 PMCID: PMC9536041 DOI: 10.1101/2022.09.23.509224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Smell deficits and neurobiological changes in the olfactory bulb (OB) and olfactory epithelium (OE) have been observed in schizophrenia and related disorders. The OE is the most peripheral olfactory system located outside the cranium, and is connected with the brain via direct neuronal projections to the OB. Nevertheless, it is unknown whether and how a disturbance of the OE affects the OB in schizophrenia and related disorders. Addressing this gap would be the first step in studying the impact of OE pathology in the disease pathophysiology in the brain. In this cross-species study, we observed that chronic, local OE inflammation with a set of upregulated genes in an inducible olfactory inflammation (IOI) mouse model led to a volume reduction, layer structure changes, and alterations of neuron functionality in the OB. Furthermore, IOI model also displayed behavioral deficits relevant to negative symptoms (avolition) in parallel to smell deficits. In first episode psychosis (FEP) patients, we observed a significant alteration in immune/inflammation-related molecular signatures in olfactory neuronal cells (ONCs) enriched from biopsied OE and a significant reduction in the OB volume, compared with those of healthy controls (HC). The increased expression of immune/inflammation-related molecules in ONCs was significantly correlated to the OB volume reduction in FEP patients, but no correlation was found in HCs. Moreover, the increased expression of human orthologues of the IOI genes in ONCs was significantly correlated with the OB volume reduction in FEP, but not in HCs. Together, our study implies a potential mechanism of the OE-OB pathology in patients with psychotic disorders (schizophrenia and related disorders). We hope that this mechanism may have a cross-disease implication, including COVID-19-elicited mental conditions that include smell deficits.
Collapse
|
9
|
Yang K, Ayala-Grosso C, Bhattarai JP, Sheriff A, Takahashi T, Cristino AS, Zelano C, Ma M. Unraveling the Link between Olfactory Deficits and Neuropsychiatric Disorders. J Neurosci 2023; 43:7501-7510. [PMID: 37940584 PMCID: PMC10634556 DOI: 10.1523/jneurosci.1380-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 11/10/2023] Open
Abstract
Smell loss has caught public attention during the recent COVID-19 pandemic. Research on olfactory function in health and disease gains new momentum. Smell deficits have long been recognized as an early clinical sign associated with neuropsychiatric disorders. Here we review research on the associations between olfactory deficits and neuropathological conditions, focusing on recent progress in four areas: (1) human clinical studies of the correlations between smell deficits and neuropsychiatric disorders; (2) development of olfactory mucosa-derived tissue and cell models for studying the molecular pathologic mechanisms; (3) recent findings in brain imaging studies of structural and functional connectivity changes in olfactory pathways in neuropsychiatric disorders; and (4) application of preclinical animal models to validate and extend the findings from human subjects. Together, these studies have provided strong evidence of the link between the olfactory system and neuropsychiatric disorders, highlighting the relevance of deepening our understanding of the role of the olfactory system in pathophysiological processes. Following the lead of studies reviewed here, future research in this field may open the door to the early detection of neuropsychiatric disorders, personalized treatment approaches, and potential therapeutic interventions through nasal administration techniques, such as nasal brush or nasal spray.
Collapse
Affiliation(s)
- Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Carlos Ayala-Grosso
- Unit of Cellular Therapy, Centre of Experimental Medicine, Instituto Venezolano de Investigaciones Cientificas, Caracas, 1020-A, Venezuela
- Unit of Advanced Therapies, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud, Bogotá, Colombia 111-611
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Andrew Sheriff
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan
| | - Alexandre S Cristino
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
10
|
Tung VSK, Mathews F, Boruk M, Suppa G, Foronjy R, Pato MT, Pato CN, Knowles JA, Evgrafov OV. Cultured Mesenchymal Cells from Nasal Turbinate as a Cellular Model of the Neurodevelopmental Component of Schizophrenia Etiology. Int J Mol Sci 2023; 24:15339. [PMID: 37895019 PMCID: PMC10607243 DOI: 10.3390/ijms242015339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The study of neurodevelopmental molecular mechanisms in schizophrenia requires the development of adequate biological models such as patient-derived cells and their derivatives. We previously utilized cell lines with neural progenitor properties (CNON) derived from the superior or middle turbinates of patients with schizophrenia and control groups to study schizophrenia-specific gene expression. In this study, we analyzed single-cell RNA seq data from two CNON cell lines (one derived from an individual with schizophrenia (SCZ) and the other from a control group) and two biopsy samples from the middle turbinate (MT) (also from an individual with SCZ and a control). We compared our data with previously published data regarding the olfactory neuroepithelium and demonstrated that CNON originated from a single cell type present both in middle turbinate and the olfactory neuroepithelium and expressed in multiple markers of mesenchymal cells. To define the relatedness of CNON to the developing human brain, we also compared CNON datasets with scRNA-seq data derived from an embryonic brain and found that the expression profile of the CNON closely matched the expression profile one of the cell types in the embryonic brain. Finally, we evaluated the differences between SCZ and control samples to assess the utility and potential benefits of using CNON single-cell RNA seq to study the etiology of schizophrenia.
Collapse
Affiliation(s)
- Victoria Sook Keng Tung
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Fasil Mathews
- Department of Otolaryngology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Marina Boruk
- Department of Otolaryngology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Gabrielle Suppa
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Robert Foronjy
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
| | - Michele T. Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA (C.N.P.)
| | - Carlos N. Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA (C.N.P.)
| | - James A. Knowles
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA;
| | - Oleg V. Evgrafov
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY 11203, USA
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA;
| |
Collapse
|
11
|
Alex AM, Buss C, Davis EP, Campos GDL, Donald KA, Fair DA, Gaab N, Gao W, Gilmore JH, Girault JB, Grewen K, Groenewold NA, Hankin BL, Ipser J, Kapoor S, Kim P, Lin W, Luo S, Norton ES, O'Connor TG, Piven J, Qiu A, Rasmussen JM, Skeide MA, Stein DJ, Styner MA, Thompson PM, Wakschlag L, Knickmeyer R. Genetic Influences on the Developing Young Brain and Risk for Neuropsychiatric Disorders. Biol Psychiatry 2023; 93:905-920. [PMID: 36932005 PMCID: PMC10136952 DOI: 10.1016/j.biopsych.2023.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
Imaging genetics provides an opportunity to discern associations between genetic variants and brain imaging phenotypes. Historically, the field has focused on adults and adolescents; very few imaging genetics studies have focused on brain development in infancy and early childhood (from birth to age 6 years). This is an important knowledge gap because developmental changes in the brain during the prenatal and early postnatal period are regulated by dynamic gene expression patterns that likely play an important role in establishing an individual's risk for later psychiatric illness and neurodevelopmental disabilities. In this review, we summarize findings from imaging genetics studies spanning from early infancy to early childhood, with a focus on studies examining genetic risk for neuropsychiatric disorders. We also introduce the Organization for Imaging Genomics in Infancy (ORIGINs), a working group of the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium, which was established to facilitate large-scale imaging genetics studies in infancy and early childhood.
Collapse
Affiliation(s)
- Ann M Alex
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, Michigan
| | - Claudia Buss
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Berlin, Germany; Department of Pediatrics, University of California Irvine, Irvine, California; Development, Health and Disease Research Program, University of California Irvine, Irvine, California
| | - Elysia Poggi Davis
- Department of Pediatrics, University of California Irvine, Irvine, California; Department of Psychology, University of Denver, Denver, Colorado
| | - Gustavo de Los Campos
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, Michigan; Departments of Epidemiology & Biostatistics, Michigan State University, East Lansing, Michigan; Department of Statistics & Probability, Michigan State University, East Lansing, Michigan
| | - Kirsten A Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota; Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, Minnesota; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Nadine Gaab
- Harvard Graduate School of Education, Harvard University, Cambridge, Massachusetts
| | - Wei Gao
- Cedars-Sinai Biomedical Imaging Research Institute, Los Angeles, California; Departments of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, California
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carrboro, North Carolina
| | - Karen Grewen
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Nynke A Groenewold
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Department of Paediatrics and Child Health, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Benjamin L Hankin
- Psychology Department, University of Illinois Urbana,-Champaign, Illinois
| | - Jonathan Ipser
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Shreya Kapoor
- Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Pilyoung Kim
- Department of Psychology, University of Denver, Denver, Colorado
| | - Weili Lin
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shan Luo
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California; Department of Psychology, University of Southern California, Los Angeles, California; Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, California
| | - Elizabeth S Norton
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois; Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Thomas G O'Connor
- Departments of Psychiatry, Psychology, Neuroscience, Obstetrics and Gynecology, University of Rochester, Rochester, New York
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carrboro, North Carolina
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore; NUS (Suzhou) Research Institute, National University of Singapore, China; the Institute for Health, National University of Singapore, Singapore; School of Computer Engineering and Science, Shanghai University, Shanghai, China; Institute of Data Science, National University of Singapore, Singapore; Department of Biomedical Engineering, the Johns Hopkins University, Baltimore, Maryland
| | - Jerod M Rasmussen
- Department of Pediatrics, University of California Irvine, Irvine, California; Development, Health and Disease Research Program, University of California Irvine, Irvine, California
| | - Michael A Skeide
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina; Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Dan J Stein
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Martin A Styner
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of University of the Sunshine Coast, Marina del Rey, California
| | - Laurie Wakschlag
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Rebecca Knickmeyer
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, Michigan; Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
12
|
Yang K, Evgrafov OV. Editorial: Olfactory neuroepithelium-derived cellular models to study neurological and psychiatric disorders. Front Neurosci 2023; 17:1203466. [PMID: 37250419 PMCID: PMC10213714 DOI: 10.3389/fnins.2023.1203466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Affiliation(s)
- Kun Yang
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, United States
| | - Oleg V. Evgrafov
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
13
|
Matoba N, Le BD, Valone JM, Wolter JM, Mory J, Liang D, Aygün N, Broadaway KA, Bond ML, Mohlke KL, Zylka MJ, Love MI, Stein JL. Wnt activity reveals context-specific genetic effects on gene regulation in neural progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527357. [PMID: 36798360 PMCID: PMC9934631 DOI: 10.1101/2023.02.07.527357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Gene regulatory effects in bulk-post mortem brain tissues are undetected at many non-coding brain trait-associated loci. We hypothesized that context-specific genetic variant function during stimulation of a developmental signaling pathway would explain additional regulatory mechanisms. We measured chromatin accessibility and gene expression following activation of the canonical Wnt pathway in primary human neural progenitors from 82 donors. TCF/LEF motifs, brain structure-, and neuropsychiatric disorder-associated variants were enriched within Wnt-responsive regulatory elements (REs). Genetically influenced REs were enriched in genomic regions under positive selection along the human lineage. Stimulation of the Wnt pathway increased the detection of genetically influenced REs/genes by 66.2%/52.7%, and led to the identification of 397 REs primed for effects on gene expression. Context-specific molecular quantitative trait loci increased brain-trait colocalizations by up to 70%, suggesting that genetic variant effects during early neurodevelopmental patterning lead to differences in adult brain and behavioral traits.
Collapse
Affiliation(s)
- Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Justin M Wolter
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities; Carrboro, NC, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Marielle L Bond
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Mark J Zylka
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities; Carrboro, NC, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill; Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities; Carrboro, NC, USA
| |
Collapse
|
14
|
Tung VSK, Mathews F, Boruk M, Suppa G, Foronjy R, Pato M, Pato C, Knowles JA, Evgrafov OV. Cultured Mesenchymal Cells from Nasal Turbinate as a Cellular Model of the Neurodevelopmental Component of Schizophrenia Etiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534295. [PMID: 37034711 PMCID: PMC10081251 DOI: 10.1101/2023.03.28.534295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Study of the neurodevelopmental molecular mechanisms of schizophrenia requires the development of adequate biological models such as patient-derived cells and their derivatives. We previously used cell lines with neural progenitor properties (CNON) derived from superior or middle turbinates of patients with schizophrenia and control groups to study gene expression specific to schizophrenia. In this study, we compared single cell-RNA seq data from two CNON cell lines, one derived from an individual with schizophrenia (SCZ) and the other from a control group, with two biopsy samples from the middle turbinate (MT), also from an individual with SCZ and a control. In addition, we compared our data with previously published data from olfactory neuroepithelium (1). Our data demonstrated that CNON originated from a single cell type which is present both in middle turbinate and olfactory neuroepithelium. CNON express multiple markers of mesenchymal cells. In order to define relatedness of CNON to the developing human brain, we also compared CNON datasets with scRNA-seq data of embryonic brain (2) and found that the expression profile of CNON very closely matched one of the cell types in the embryonic brain. Finally, we evaluated differences between SCZ and control samples to assess usability and potential benefits of using single cell RNA-seq of CNON to study etiology of schizophrenia.
Collapse
Affiliation(s)
| | - Fasil Mathews
- Department of Otolaryngology, State University of New York at Downstate, Brooklyn, NY, USA
| | - Marina Boruk
- Department of Otolaryngology, State University of New York at Downstate, Brooklyn, NY, USA
| | - Gabrielle Suppa
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY, USA
| | - Robert Foronjy
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY, USA
| | | | - Carlos Pato
- Department of Psychiatry, Rutgers University
| | - James A. Knowles
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Oleg V. Evgrafov
- Department of Cell Biology, State University of New York at Downstate, Brooklyn, NY, USA
| |
Collapse
|
15
|
Mihaljevic M, Lam M, Ayala-Grosso C, Davis-Batt F, Schretlen DJ, Ishizuka K, Yang K, Sawa A. Olfactory neuronal cells as a promising tool to realize the "druggable genome" approach for drug discovery in neuropsychiatric disorders. Front Neurosci 2023; 16:1081124. [PMID: 36967982 PMCID: PMC10038100 DOI: 10.3389/fnins.2022.1081124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/26/2022] [Indexed: 03/12/2023] Open
Abstract
"Druggable genome" is a novel concept that emphasizes the importance of using the information of genome-wide genetic studies for drug discovery and development. Successful precedents of "druggable genome" have recently emerged for some disorders by combining genomic and gene expression profiles with medical and pharmacological knowledge. One of the key premises for the success is the good access to disease-relevant tissues from "living" patients in which we may observe molecular expression changes in association with symptomatic alteration. Thus, given brain biopsies are ethically and practically difficult, the application of the "druggable genome" approach is challenging for neuropsychiatric disorders. Here, to fill this gap, we propose the use of olfactory neuronal cells (ONCs) biopsied and established via nasal biopsy from living subjects. By using candidate genes that were proposed in a study in which genetic information, postmortem brain expression profiles, and pharmacological knowledge were considered for cognition in the general population, we addressed the utility of ONCs in the "druggable genome" approach by using the clinical and cell resources of an established psychosis cohort in our group. Through this pilot effort, we underscored the chloride voltage-gated channel 2 (CLCN2) gene as a possible druggable candidate for early-stage psychosis. The CLCN2 gene expression was associated with verbal memory, but not with other dimensions in cognition, nor psychiatric manifestations (positive and negative symptoms). The association between this candidate molecule and verbal memory was also confirmed at the protein level. By using ONCs from living subjects, we now provide more specific information regarding molecular expression and clinical phenotypes. The use of ONCs also provides the opportunity of validating the relationship not only at the RNA level but also protein level, leading to the potential of functional assays in the future. Taken together, we now provide evidence that supports the utility of ONCs as a tool for the "druggable genome" approach in translational psychiatry.
Collapse
Affiliation(s)
- Marina Mihaljevic
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Max Lam
- IMH Neuropsychiatric Genomics Laboratory, Institute of Mental Health, Singapore, Singapore
- Population and Global Health, LKC Medicine, Nanyang Technological University, Singapore, Singapore
- Neurogenomic Biomarkers Laboratory, Zucker Hillside Hospital, Glen Oaks, NY, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Carlos Ayala-Grosso
- Unit of Cellular Therapy, Centre of Experimental Medicine, Instituto Venezolano de Investigaciones Cientificas IVIC, Caracas, Venezuela
| | - Finn Davis-Batt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David J. Schretlen
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Akira Sawa
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
16
|
Namkung H, Yukitake H, Fukudome D, Lee BJ, Tian M, Ursini G, Saito A, Lam S, Kannan S, Srivastava R, Niwa M, Sharma K, Zandi P, Jaaro-Peled H, Ishizuka K, Chatterjee N, Huganir RL, Sawa A. The miR-124-AMPAR pathway connects polygenic risks with behavioral changes shared between schizophrenia and bipolar disorder. Neuron 2023; 111:220-235.e9. [PMID: 36379214 PMCID: PMC10183200 DOI: 10.1016/j.neuron.2022.10.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BP) are highly heritable major psychiatric disorders that share a substantial portion of genetic risk as well as their clinical manifestations. This raises a fundamental question of whether, and how, common neurobiological pathways translate their shared polygenic risks into shared clinical manifestations. This study shows the miR-124-3p-AMPAR pathway as a key common neurobiological mediator that connects polygenic risks with behavioral changes shared between these two psychotic disorders. We discovered the upregulation of miR-124-3p in neuronal cells and the postmortem prefrontal cortex from both SZ and BP patients. Intriguingly, the upregulation is associated with the polygenic risks shared between these two disorders. Seeking mechanistic dissection, we generated a mouse model that upregulates miR-124-3p in the medial prefrontal cortex. We demonstrated that the upregulation of miR-124-3p increases GRIA2-lacking calcium-permeable AMPARs and perturbs AMPAR-mediated excitatory synaptic transmission, leading to deficits in the behavioral dimensions shared between SZ and BP.
Collapse
Affiliation(s)
- Ho Namkung
- Department of Biomedical Engineering, Baltimore, MD, USA; Department of Psychiatry, Baltimore, MD, USA
| | | | | | - Brian J Lee
- Department of Psychiatry, Baltimore, MD, USA
| | | | - Gianluca Ursini
- Department of Psychiatry, Baltimore, MD, USA; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | | | - Shravika Lam
- Department of Psychiatry, Baltimore, MD, USA; Department of Neuroscience, Baltimore, MD, USA
| | - Suvarnambiga Kannan
- Department of Psychiatry, Baltimore, MD, USA; Department of Mental Health, Baltimore, MD, USA
| | | | - Minae Niwa
- Department of Psychiatry, Baltimore, MD, USA
| | - Kamal Sharma
- Department of Psychiatry, Baltimore, MD, USA; Department of Neuroscience, Baltimore, MD, USA
| | - Peter Zandi
- Department of Psychiatry, Baltimore, MD, USA; Department of Mental Health, Baltimore, MD, USA; Department of Epidemiology, Baltimore, MD, USA
| | | | | | - Nilanjan Chatterjee
- Department of Epidemiology, Baltimore, MD, USA; Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Psychiatry, Baltimore, MD, USA; Department of Neuroscience, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Akira Sawa
- Department of Biomedical Engineering, Baltimore, MD, USA; Department of Psychiatry, Baltimore, MD, USA; Department of Neuroscience, Baltimore, MD, USA; Department of Pharmacology, Baltimore, MD, USA; Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Mental Health, Baltimore, MD, USA.
| |
Collapse
|
17
|
Yao W, Zhou P, Yan Q, Wu X, Xia Y, Li W, Li X, Zhu F. ERVWE1 Reduces Hippocampal Neuron Density and Impairs Dendritic Spine Morphology through Inhibiting Wnt/JNK Non-Canonical Pathway via miR-141-3p in Schizophrenia. Viruses 2023; 15:168. [PMID: 36680208 PMCID: PMC9863209 DOI: 10.3390/v15010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancestral germline infections by exogenous retroviruses. Human endogenous retroviruses W family envelope gene (HERV-W env, also called ERVWE1), located on chromosome 7q21-22, encodes an envelope glycoprotein from the HERV-W family. Mounting evidence suggests that aberrant expression of ERVWE1 involves the etiology of schizophrenia. Moreover, the genetic and morphological studies indicate that dendritic spine deficits may contribute to the onset of schizophrenia. Here, we reported that ERVWE1 changed the density and morphology of the dendritic spine through inhibiting Wingless-type (Wnt)/c-Jun N-terminal kinases (JNK) non-canonical pathway via miR-141-3p in schizophrenia. In this paper, we found elevated levels of miR-141-3p and a significant positive correlation with ERVWE1 in schizophrenia. Moreover, serum Wnt5a and actin-related protein 2 (Arp2) levels decreased and demonstrated a significant negative correlation with ERVWE1 in schizophrenia. In vitro experiments disclosed that ERVWE1 up-regulated miR-141-3p expression by interacting with transcription factor (TF) Yin Yang 1 (YY1). YY1 modulated miR-141-3p expression by binding to its promoter. The luciferase assay revealed that YY1 enhanced the promoter activity of miR-141-3p. Using the miRNA target prediction databases and luciferase reporter assays, we demonstrated that miR-141-3p targeted Wnt5a at its 3' untranslated region (3' UTR). Furthermore, ERVWE1 suppressed the expression of Arp2 through non-canonical pathway, Wnt5a/JNK signaling pathway. In addition, ERVWE1 inhibited Wnt5a/JNK/Arp2 signal pathway through miR-141-3p. Finally, functional assays showed that ERVWE1 induced the abnormalities in hippocampal neuron morphology and spine density through inhibiting Wnt/JNK non-canonical pathway via miR-141-3p in schizophrenia. Our findings indicated that miR-141-3p, Wnt5a, and Arp2 might be potential clinical blood-based biomarkers or therapeutic targets for schizophrenia. Our work also provided new insight into the role of ERVWE1 in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
18
|
Yeh H, Woodbury ME, Ingraham Dixie KL, Ikezu T, Ikezu S. Microglial WNT5A supports dendritic spines maturation and neuronal firing. Brain Behav Immun 2023; 107:403-413. [PMID: 36395958 PMCID: PMC10588768 DOI: 10.1016/j.bbi.2022.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/13/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
There is increasing evidence showing that microglia play a critical role in mediating synapse formation and spine growth, although the molecular mechanism remains elusive. Here, we demonstrate that the secreted morphogen WNT family member 5A (WNT5A) is the most abundant WNT expressed in microglia and that it promotes neuronal maturation. Co-culture of microglia with Thy1-YFP+ differentiated neurons significantly increased neuronal spine density and reduced dendritic spine turnover rate, which was diminished by silencing microglial Wnt5a in vitro. Co-cultured microglia increased post-synaptic marker PSD95 and synaptic density as determined by the co-localization of PSD95 with pre-synaptic marker VGLUT2 in vitro. The silencing of Wnt5a expression in microglia partially reduced both PSD95 and synaptic densities. Co-culture of differentiated neurons with microglia significantly enhanced neuronal firing rate as measured by multiple electrode array, which was significantly reduced by silencing microglial Wnt5a at 23 days differentiation in vitro. These findings demonstrate that microglia can mediate spine maturation and regulate neuronal excitability via WNT5A secretion indicating possible pathological roles of dysfunctional microglia in developmental disorders.
Collapse
Affiliation(s)
- Hana Yeh
- Graduate Program in Neuroscience, Boston University, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Maya E Woodbury
- Graduate Program in Neuroscience, Boston University, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Kaitlin L Ingraham Dixie
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States; Center for Education Innovation and Learning in the Sciences, University of California, Los Angeles, CA, United States
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States; Department of Neuroscience, Molecular Neurotherapeutics Laboratory, Mayo Clinic, Jacksonville, FL, United States.
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States; Department of Neuroscience, Molecular Neurotherapeutics Laboratory, Mayo Clinic, Jacksonville, FL, United States.
| |
Collapse
|
19
|
Cristiano L. The pseudogenes of eukaryotic translation elongation factors (EEFs): Role in cancer and other human diseases. Genes Dis 2022; 9:941-958. [PMID: 35685457 PMCID: PMC9170609 DOI: 10.1016/j.gendis.2021.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
The eukaryotic translation elongation factors (EEFs), i.e. EEF1A1, EEF1A2, EEF1B2, EEF1D, EEF1G, EEF1E1 and EEF2, are coding-genes that play a central role in the elongation step of translation but are often altered in cancer. Less investigated are their pseudogenes. Recently, it was demonstrated that pseudogenes have a key regulatory role in the cell, especially via non-coding RNAs, and that the aberrant expression of ncRNAs has an important role in cancer development and progression. The present review paper, for the first time, collects all that published about the EEFs pseudogenes to create a base for future investigations. For most of them, the studies are in their infancy, while for others the studies suggest their involvement in normal cell physiology but also in various human diseases. However, more investigations are needed to understand their functions in both normal and cancer cells and to define which can be useful biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Luigi Cristiano
- R&D Division, Prestige, 18 via Vecchia, Terranuova Bracciolini, AR 52028, Italy
| |
Collapse
|
20
|
Jaaro-Peled H, Landek-Salgado MA, Cascella NG, Nucifora FC, Coughlin JM, Nestadt G, Sedlak TW, Lavoie J, De Silva S, Lee S, Tajinda K, Hiyama H, Ishizuka K, Yang K, Sawa A. Sex-specific involvement of the Notch-JAG pathway in social recognition. Transl Psychiatry 2022; 12:99. [PMID: 35273151 PMCID: PMC8913639 DOI: 10.1038/s41398-022-01867-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Under the hypothesis that olfactory neural epithelium gene expression profiles may be useful to look for disease-relevant neuronal signatures, we examined microarray gene expression in olfactory neuronal cells and underscored Notch-JAG pathway molecules in association with schizophrenia (SZ). The microarray profiling study underscored JAG1 as the most promising candidate. Combined with further validation with real-time PCR, downregulation of NOTCH1 was statistically significant. Accordingly, we reverse-translated the significant finding from a surrogate tissue for neurons, and studied the behavioral profile of Notch1+/- mice. We found a specific impairment in social novelty recognition, whereas other behaviors, such as sociability, novel object recognition and olfaction of social odors, were normal. This social novelty recognition deficit was male-specific and was rescued by rapamycin treatment. Based on the results from the animal model, we next tested whether patients with psychosis might have male-specific alterations in social cognition in association with the expression of NOTCH1 or JAG1. In our first episode psychosis cohort, we observed a specific correlation between the expression of JAG1 and a face processing measure only in male patients. The expression of JAG1 was not correlated with any other cognitive and symptomatic scales in all subjects. Together, although we acknowledge the pioneering and exploratory nature, the present work that combines both human and animal studies in a reciprocal manner suggests a novel role for the Notch-JAG pathway in a behavioral dimension(s) related to social cognition in psychotic disorders in a male-specific manner.
Collapse
Affiliation(s)
- Hanna Jaaro-Peled
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Melissa A Landek-Salgado
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nicola G Cascella
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Frederick C Nucifora
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jennifer M Coughlin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gerald Nestadt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Thomas W Sedlak
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joelle Lavoie
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sarah De Silva
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Somin Lee
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Katsunori Tajinda
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hideki Hiyama
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
21
|
Page SC, Sripathy SR, Farinelli F, Ye Z, Wang Y, Hiler DJ, Pattie EA, Nguyen CV, Tippani M, Moses RL, Chen HY, Tran MN, Eagles NJ, Stolz JM, Catallini JL, Soudry OR, Dickinson D, Berman KF, Apud JA, Weinberger DR, Martinowich K, Jaffe AE, Straub RE, Maher BJ. Electrophysiological measures from human iPSC-derived neurons are associated with schizophrenia clinical status and predict individual cognitive performance. Proc Natl Acad Sci U S A 2022; 119:e2109395119. [PMID: 35017298 PMCID: PMC8784142 DOI: 10.1073/pnas.2109395119] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Neurons derived from human induced pluripotent stem cells (hiPSCs) have been used to model basic cellular aspects of neuropsychiatric disorders, but the relationship between the emergent phenotypes and the clinical characteristics of donor individuals has been unclear. We analyzed RNA expression and indices of cellular function in hiPSC-derived neural progenitors and cortical neurons generated from 13 individuals with high polygenic risk scores (PRSs) for schizophrenia (SCZ) and a clinical diagnosis of SCZ, along with 15 neurotypical individuals with low PRS. We identified electrophysiological measures in the patient-derived neurons that implicated altered Na+ channel function, action potential interspike interval, and gamma-aminobutyric acid-ergic neurotransmission. Importantly, electrophysiological measures predicted cardinal clinical and cognitive features found in these SCZ patients. The identification of basic neuronal physiological properties related to core clinical characteristics of illness is a potentially critical step in generating leads for novel therapeutics.
Collapse
Affiliation(s)
| | | | | | - Zengyou Ye
- Lieber Institute for Brain Development, Baltimore, MD 21205
| | - Yanhong Wang
- Lieber Institute for Brain Development, Baltimore, MD 21205
| | - Daniel J Hiler
- Lieber Institute for Brain Development, Baltimore, MD 21205
| | | | | | | | | | - Huei-Ying Chen
- Lieber Institute for Brain Development, Baltimore, MD 21205
| | - Matthew Nguyen Tran
- Lieber Institute for Brain Development, Baltimore, MD 21205
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | | | - Joshua M Stolz
- Lieber Institute for Brain Development, Baltimore, MD 21205
| | - Joseph L Catallini
- Lieber Institute for Brain Development, Baltimore, MD 21205
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | | | - Dwight Dickinson
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, NIH, Bethesda, MD 20892
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, NIH, Bethesda, MD 20892
| | - Jose A Apud
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, NIH, Bethesda, MD 20892
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD 21205
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Keri Martinowich
- Lieber Institute for Brain Development, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Baltimore, MD 21205
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | | | - Brady J Maher
- Lieber Institute for Brain Development, Baltimore, MD 21205;
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|
22
|
Golimbet V, Kostyuk G. Genotype — phenotype relationships in view of recent advances in the understanding of genetic causes of schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:20-25. [DOI: 10.17116/jnevro202212201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Kuwahara N, Nicholson K, Isaacs L, MacLusky NJ. Androgen Effects on Neural Plasticity. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:216-230. [PMID: 35024693 PMCID: PMC8744448 DOI: 10.1089/andro.2021.0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 12/20/2022]
Abstract
Androgens are synthesized in the brain, gonads, and adrenal glands, in both sexes, exerting physiologically important effects on the structure and function of the central nervous system. These effects may contribute to the incidence and progression of neurological disorders such as autism spectrum disorder, schizophrenia, and Alzheimer's disease, which occur at different rates in males and females. This review briefly summarizes the current state of knowledge with respect to the neuroplastic effects of androgens, with particular emphasis on the hippocampus, which has been the focus of much of the research in this field.
Collapse
Affiliation(s)
- Nariko Kuwahara
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kate Nicholson
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Lauren Isaacs
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Neil J. MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
24
|
Karabicici M, Azbazdar Y, Iscan E, Ozhan G. Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metabolic Diseases. MEMBRANES 2021; 11:844. [PMID: 34832073 PMCID: PMC8621778 DOI: 10.3390/membranes11110844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Wnt signaling pathways constitute a group of signal transduction pathways that direct many physiological processes, such as development, growth, and differentiation. Dysregulation of these pathways is thus associated with many pathological processes, including neurodegenerative diseases, metabolic disorders, and cancer. At the same time, alterations are observed in plasma membrane compositions, lipid organizations, and ordered membrane domains in brain and metabolic diseases that are associated with Wnt signaling pathway activation. Here, we discuss the relationships between plasma membrane components-specifically ligands, (co) receptors, and extracellular or membrane-associated modulators-to activate Wnt pathways in several brain and metabolic diseases. Thus, the Wnt-receptor complex can be targeted based on the composition and organization of the plasma membrane, in order to develop effective targeted therapy drugs.
Collapse
Affiliation(s)
- Mustafa Karabicici
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Evin Iscan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| |
Collapse
|
25
|
Yang K, Hua J, Etyemez S, Paez A, Prasad N, Ishizuka K, Sawa A, Kamath V. Volumetric alteration of olfactory bulb and immune-related molecular changes in olfactory epithelium in first episode psychosis patients. Schizophr Res 2021; 235:9-11. [PMID: 34280869 DOI: 10.1016/j.schres.2021.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jun Hua
- Department of Psychiatry, Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Semra Etyemez
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Adrian Paez
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Neal Prasad
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Psychiatry, Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Psychiatry, Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Psychiatry, Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Psychiatry, Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.
| | - Vidyulata Kamath
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
26
|
Takayanagi Y, Ishizuka K, Laursen TM, Yukitake H, Yang K, Cascella NG, Ueda S, Sumitomo A, Narita Z, Horiuchi Y, Niwa M, Taguchi A, White MF, Eaton WW, Mortensen PB, Sakurai T, Sawa A. From population to neuron: exploring common mediators for metabolic problems and mental illnesses. Mol Psychiatry 2021; 26:3931-3942. [PMID: 33173197 PMCID: PMC8514126 DOI: 10.1038/s41380-020-00939-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 11/24/2022]
Abstract
Major mental illnesses such as schizophrenia (SZ) and bipolar disorder (BP) frequently accompany metabolic conditions, but their relationship is still unclear, in particular at the mechanistic level. We implemented an approach of "from population to neuron", combining population-based epidemiological analysis with neurobiological experiments using cell and animal models based on a hypothesis built from the epidemiological study. We characterized high-quality population data, olfactory neuronal cells biopsied from patients with SZ or BP, and healthy subjects, as well as mice genetically modified for insulin signaling. We accessed the Danish Registry and observed (1) a higher incidence of diabetes in people with SZ or BP and (2) higher incidence of major mental illnesses in people with diabetes in the same large cohort. These epidemiological data suggest the existence of common pathophysiological mediators in both diabetes and major mental illnesses. We hypothesized that molecules associated with insulin resistance might be such common mediators, and then validated the hypothesis by using two independent sets of olfactory neuronal cells biopsied from patients and healthy controls. In the first set, we confirmed an enrichment of insulin signaling-associated molecules among the genes that were significantly different between SZ patients and controls in unbiased expression profiling data. In the second set, olfactory neuronal cells from SZ and BP patients who were not pre-diabetic or diabetic showed reduced IRS2 tyrosine phosphorylation upon insulin stimulation, indicative of insulin resistance. These cells also displayed an upregulation of IRS1 protein phosphorylation at serine-312 at baseline (without insulin stimulation), further supporting the concept of insulin resistance in olfactory neuronal cells from SZ patients. Finally, Irs2 knockout mice showed an aberrant response to amphetamine, which is also observed in some patients with major mental illnesses. The bi-directional relationships between major mental illnesses and diabetes suggest that there may be common pathophysiological mediators associated with insulin resistance underlying these mental and physical conditions.
Collapse
Affiliation(s)
- Yoichiro Takayanagi
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M. Laursen
- National Centre for Register-Based Research, Department of Economics and Business Economics, Aarhus University, Denmark
| | - Hiroshi Yukitake
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicola G. Cascella
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuhei Ueda
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan
| | - Akiko Sumitomo
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan
| | - Zui Narita
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasue Horiuchi
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minae Niwa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akiko Taguchi
- Department of Integrative Aging Neuroscience, National Center for Geriatrics and Gerontology, Japan
| | - Morris F. White
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - William W. Eaton
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Preben B. Mortensen
- National Centre for Register-Based Research, Department of Economics and Business Economics, Aarhus University, Denmark,The Lundbeck Foundation’s Initiative for Integrative Research, iPSYCH,Center for Integrated Register-based Research at Aarhus University, CIRRAU, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akira Sawa
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Characterisation of Neurospheres-Derived Cells from Human Olfactory Epithelium. Cells 2021; 10:cells10071690. [PMID: 34359860 PMCID: PMC8307784 DOI: 10.3390/cells10071690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
A major problem in psychiatric research is a deficit of relevant cell material of neuronal origin, especially in large quantities from living individuals. One of the promising options is cells from the olfactory neuroepithelium, which contains neuronal progenitors that ensure the regeneration of olfactory receptors. These cells are easy to obtain with nasal biopsies and it is possible to grow and cultivate them in vitro. In this work, we used RNAseq expression profiling and immunofluorescence microscopy to characterise neurospheres-derived cells (NDC), that simply and reliably grow from neurospheres (NS) obtained from nasal biopsies. We utilized differential expression analysis to explore the molecular changes that occur during transition from NS to NDC. We found that processes associated with neuronal and vascular cells are downregulated in NDC. A comparison with public transcriptomes revealed a depletion of neuronal and glial components in NDC. We also discovered that NDC have several metabolic features specific to neuronal progenitors treated with the fungicide maneb. Thus, while NDC retain some neuronal/glial identity, additional protocol alterations are needed to use NDC for mass sample collection in psychiatric research.
Collapse
|
28
|
Stertz L, Di Re J, Pei G, Fries GR, Mendez E, Li S, Smith-Callahan L, Raventos H, Tipo J, Cherukuru R, Zhao Z, Liu Y, Jia P, Laezza F, Walss-Bass C. Convergent genomic and pharmacological evidence of PI3K/GSK3 signaling alterations in neurons from schizophrenia patients. Neuropsychopharmacology 2021; 46:673-682. [PMID: 33288841 PMCID: PMC8027596 DOI: 10.1038/s41386-020-00924-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) allow for the establishment of brain cellular models of psychiatric disorders that account for a patient's genetic background. Here, we conducted an RNA-sequencing profiling study of hiPSC-derived cell lines from schizophrenia (SCZ) subjects, most of which are from a multiplex family, from the population isolate of the Central Valley of Costa Rica. hiPSCs, neural precursor cells, and cortical neurons derived from six healthy controls and seven SCZ subjects were generated using standard methodology. Transcriptome from these cells was obtained using Illumina HiSeq 2500, and differential expression analyses were performed using DESeq2 (|fold change|>1.5 and false discovery rate < 0.3), in patients compared to controls. We identified 454 differentially expressed genes in hiPSC-derived neurons, enriched in pathways including phosphoinositide 3-kinase/glycogen synthase kinase 3 (PI3K/GSK3) signaling, with serum-glucocorticoid kinase 1 (SGK1), an inhibitor of glycogen synthase kinase 3β, as part of this pathway. We further found that pharmacological inhibition of downstream effectors of the PI3K/GSK3 pathway, SGK1 and GSK3, induced alterations in levels of neurite markers βIII tubulin and fibroblast growth factor 12, with differential effects in patients compared to controls. While demonstrating the utility of hiPSCs derived from multiplex families to identify significant cell-specific gene network alterations in SCZ, these studies support a role for disruption of PI3K/GSK3 signaling as a risk factor for SCZ.
Collapse
Affiliation(s)
- Laura Stertz
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jessica Di Re
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriel R Fries
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Emily Mendez
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shenglan Li
- Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura Smith-Callahan
- Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Henriette Raventos
- Centro de Investigacion en Biologia Celular y Molecular, Universidad de Costa Rica, San Jose, Costa Rica
| | - Jerricho Tipo
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Rohan Cherukuru
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhongming Zhao
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ying Liu
- Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Consuelo Walss-Bass
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|