1
|
Ali S, Noor P, Ahmad MU, Khan QF, William K, Liaqat I, Shah TA, Alsahli AA, Younous YA, Bourhia M. Kinetics of cellulase-free endo xylanase hyper-synthesis by Aspergillus Niger using wheat bran as a potential solid substrate. BMC Biotechnol 2024; 24:69. [PMID: 39334195 PMCID: PMC11438087 DOI: 10.1186/s12896-024-00895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The present study deals with the production of cellulase-free endoxylanase by Aspergillus niger ISL-9 using wheat bran as a solid substrate. Endoxylanase was produced under a solid-state fermentation. Various growth parameters were optimized for the improved production of the enzyme. The Substrate level of 15 g was optimized as it provided the fungus with balanced aeration and nutrition. Among the six moisture contents investigated, Moisture Content 5 (MC5) was optimized (g/l: malt extract, 10; (NH4)2HPO4, 2.5; urea, 1.0) and 10 mL of MC5 was found to give the highest production of endoxylanase. The pH and time of incubation were optimized to 6.2 and 48 h respectively. The Inoculum size of 2 mL (1.4 × 106 spores/mL) gave the maximum enzyme production. After optimization of these growth parameters, a significantly high endoxylanase activity of 21.87 U/g was achieved. Very negligible Carboxymethylcellulase (CMCase) activity was observed indicating the production of cellulase-free endoxylanase. The notable finding is that the endoxylanase activity was increased by 1.4-fold under optimized conditions (p ≤ 0.05). The overall comparison of kinetic parameters for enhanced production of endoxylanase by A. niger ISL-9 under Solid State Fermentation (SSF) was also studied. Different kinetic variables which included specific growth rate, product yield coefficients, volumetric rates and specific rates were observed at 48, 72 and 96 h incubation time and were compared for MC1 and MC5. Among the kinetic parameters, the most significant result was obtained with volumetric rate constant for product formation (Qp) that was found to be optimum (1.89 U/h) at 72 h incubation period and a high value of Qp i.e.1.68 U/h was also observed at 48 h incubation period. Thus, the study demonstrates a cost-effective and environmentally sustainable process for xylanase production and exhibits scope towards successful industrial applications.
Collapse
Affiliation(s)
- Sikander Ali
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), GC University Lahore, Lahore, 54000, Pakistan.
| | - Pakeeza Noor
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), GC University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Usman Ahmad
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), GC University Lahore, Lahore, 54000, Pakistan
| | - Qaiser Farid Khan
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), GC University Lahore, Lahore, 54000, Pakistan
| | - Kaynat William
- Department of Microbiology, Dr. Ikram-ul-Haq Institute of Industrial Biotechnology (IIIB), GC University Lahore, Lahore, 54000, Pakistan
| | - Iram Liaqat
- Depatment of Zoology, Dr. Nazir Ahmed Institute of Biological Sciences, GC University, Lahore, 54000, Pakistan
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Abdulaziz Abdullah Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, 70000, Morocco
| |
Collapse
|
2
|
Pushparaj K, Meyyazhagan A, Bhotla HK, Arumugam VA, Pappuswamy M, Vadivalagan C, Hakeem KR, Balasubramanian B, Liu W, Mousavi Khaneghah A. The crux of bioactive metabolites in endophytic and thermophilic fungi and their proximal prospects in biotechnological and industrial domains. Toxicon 2023; 223:107007. [PMID: 36563862 DOI: 10.1016/j.toxicon.2022.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Fungi are ubiquitous in distribution and are found in grasses to hot springs. Their mode of nutrition provides sustenance for living and propagation. Ironically, varied fungal species have developed customized strategies for protection and survival by producing diverse secondary metabolites. The review aimed to project the contrasting potential features of the endophytic and thermophilic fungi groups. The metabolites and the enzymes of endophytic and thermophilic fungi served as the backbone to thrive and adapt within-host and in extreme conditions like higher pH, heat, and salinity, respectively. Identification, knowledge of their biochemistry and pathway, exploration, production, and utilization of these bioactive molecules in various commercial, industrial, and pharmaceutical domains were briefly discussed. The uniqueness of endophytes includes stress management and improved biomass production of the host, green fuel production, omnipresence, selected triple-symbiosis with the virus, synthesis of polyketides, and other active metabolites are widely used in biomedical applications and agriculture management. This review attempted to limelight the specific applications of thermophilic fungal metabolites and the roles of thermo-stable enzymes in bioprospecting. Moreover, probing the metabolites of thermophiles rendered novel antibiotic compounds, which were proven effective against multi-drug resistant bacteria and harboured the potential to curtail infectious diseases.
Collapse
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | - Haripriya Kuchi Bhotla
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Manikantan Pappuswamy
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | | | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | | | - Wenchao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. WacławDąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
3
|
Marđetko N, Trontel A, Novak M, Pavlečić M, Ljubas BD, Grubišić M, Tominac VP, Ludwig R, Šantek B. Screening of Lignocellulolytic Enzyme Activities in Fungal Species and Sequential Solid-State and Submerged Cultivation for the Production of Enzyme Cocktails. Polymers (Basel) 2021; 13:3736. [PMID: 34771293 PMCID: PMC8588072 DOI: 10.3390/polym13213736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Various fungal species can degrade lignocellulolytic materials with their enzyme cocktails composed of cellulolytic and lignolytic enzymes. In this work, seven fungal species (Mucor indicus DSM 2185, Paecilomyces variotii CBS 372.70, Myceliophthora thermophila CBS 663.74, Thielavia terrestris CBS 456.75, Botryosphaeria dothidea JCM 2738, Fusarium oxysporum f.sp. langenariae JCM 9293, and Fusarium verticillioides JCM 23107) and four nutrient media were used in the screening for effective lignocellulose degrading enzymes. From the seven tested fungi, F. oxysporum and F. verticilliodes, along with nutrient medium 4, were selected as the best medium and producers of lignocellulolytic enzymes based on the determined xylanase (>4 U mg-1) and glucanase activity (≈2 U mg-1). Nutrient medium 4 supplemented with pretreated corn cobs was used in the production of lignocellulolytic enzymes by sequential solid-state and submerged cultivation of F. oxysporum, F. verticilliodes, and a mixed culture of both strains. F. oxysporum showed 6 times higher exoglucanase activity (3.33 U mg-1) after 5 days of cultivation in comparison with F. verticillioides (0.55 U mg-1). F. oxysporum also showed 2 times more endoglucanase activity (0.33 U mg-1). The mixed culture cultivation showed similar endo- and exoglucanase activities compared to F. oxysporum (0.35 U mg-1; 7.84 U mg-1). Maximum xylanase activity was achieved after 7 days of cultivation of F. verticilliodes (≈16 U mg-1), while F. oxysporum showed maximum activity after 9 days that was around 2 times lower compared to that of F. verticilliodes. The mixed culture achieved maximum xylanase activity after only 4 days, but the specific activity was similar to activities observed for F. oxysporum. It can be concluded that both fungal strains can be used as producers of enzyme cocktails for the degradation of lignocellulose containing raw materials, and that corn cobs can be used as an inducer for enzyme production.
Collapse
Affiliation(s)
- Nenad Marđetko
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (A.T.); (M.N.); (M.P.); (B.D.L.); (M.G.); (V.P.T.)
| | - Antonija Trontel
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (A.T.); (M.N.); (M.P.); (B.D.L.); (M.G.); (V.P.T.)
| | - Mario Novak
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (A.T.); (M.N.); (M.P.); (B.D.L.); (M.G.); (V.P.T.)
| | - Mladen Pavlečić
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (A.T.); (M.N.); (M.P.); (B.D.L.); (M.G.); (V.P.T.)
| | - Blanka Didak Ljubas
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (A.T.); (M.N.); (M.P.); (B.D.L.); (M.G.); (V.P.T.)
| | - Marina Grubišić
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (A.T.); (M.N.); (M.P.); (B.D.L.); (M.G.); (V.P.T.)
| | - Vlatka Petravić Tominac
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (A.T.); (M.N.); (M.P.); (B.D.L.); (M.G.); (V.P.T.)
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Božidar Šantek
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (N.M.); (A.T.); (M.N.); (M.P.); (B.D.L.); (M.G.); (V.P.T.)
| |
Collapse
|
4
|
Xylooligosaccharides: prebiotic potential from agro-industrial residue, production strategies and prospects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Cai J, Chen XL, Fan JX, Huang XM, Li R, Sun XD, Li QQ, Li DY. Cloning and Heterologous Expression of a Novel Xylanase Gene TAX1 from Trichoderma atroviride and Its Application in the Deconstruction of Corn Stover. Appl Biochem Biotechnol 2021; 193:3029-3044. [PMID: 33970424 DOI: 10.1007/s12010-021-03582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
Xylanase plays a vital role in the efficient utilization of xylan, which accounts for up to 30% of plant dry matter. However, the production cost of xylanase remains high, and the enzymatic characteristics of xylanases of most microorganisms are not suitable for industrial production. Therefore, it is of great significance to discover and develop new and efficient xylanases. In this study, the xylanase gene TAX1 (672 bp cDNA) was cloned from Trichoderma atroviride 3.3013 and expressed in Pichia pastoris. The TAX1 gene encoded a 223-amino acid protein (TAX1) with a molecular weight of 24.2 kDa which showed high similarity to glycoside hydrolase family 11. Enzyme activity assay verified that the recombinant xylanase TAX1 had optimal activity (215.3 IU/mL) at 50°C and pH 6.0. Stable working conditions were measured as pH 4.0-7.0 and 40-60°C. By adding Zn2+, the relative enzymatic activity of recombinant TAX1 was enhanced by 26%. The recombinant xylanase showed high activity toward birchwood xylan and corn stover. The Km and Kcat for xylan and corn stover were 0.36 mg/mL and 0.204 S-1 and 0.48 mg/mL and 0.149 S-1, respectively. The enzymatic activity of the TAX1 produced by P. pastoris was about 2.4-4 times higher that directly isolated from T. atroviride, so engineered P. pastoris for xylanase production could be an ideal candidate for industrial enzyme production.
Collapse
Affiliation(s)
- Jin Cai
- Heilongjiang Vocational College of Agricultural Technology, Jiamusi, 154007, People's Republic of China
| | - Xiu-Ling Chen
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jin-Xia Fan
- Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- The College of Engineering, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Xiao-Mei Huang
- Heilongjiang Vocational College of Agricultural Technology, Jiamusi, 154007, People's Republic of China.
| | - Rui Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu-Dong Sun
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qing-Qing Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dong-Yu Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
6
|
Gao B, Xiao Y, Zhang Q, Sun J, Zhang Z, Zhu D. Concurrent production of glycyrrhetic acid 3- O-mono-β-d-glucuronide and lignocellulolytic enzymes by solid-state fermentation of a plant endophytic Chaetomium globosum. BIORESOUR BIOPROCESS 2021; 8:88. [PMID: 34540556 PMCID: PMC8442819 DOI: 10.1186/s40643-021-00441-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
Glycyrrhetic acid 3-O-mono-β-d-glucuronide (GAMG) as an important derivative of glycyrrhizin (GL) shows stronger biological activities and higher sweetness than GL. The biotransformation process is considered as an efficient strategy for GAMG production, due to its mild reaction, high production efficiency and environmentally friendly status. In this study, licorice straw was used for the first time as a medium for GAMG and lignocellulosic enzyme production via solid-state fermentation (SSF) of endophytic fungus Chaetomium globosum DX-THS3. The fermentation conditions including particle size, temperature, seed age, inoculum size, and moisture of substrate were optimized. Furthermore, additional nitrogen sources and carbon sources were screened for GAMG production by C. globosum DX-THS3 of SSF. Under optimal fermentation conditions, the percent conversion of glycyrrhizin reached 90% in 15 days, whereas the control needed 35 days to achieve the same result. The productivity of optimization (P = 2.1 mg/g/day) was 2.33-fold that of non-optimization (P = 0.9 mg/g/day). Meanwhile, high activities of filter paper enzyme (FPase) (245.80 U/g), carboxymethyl cellulase (CMCase) (33.67 U/g), xylanase (83.44 U/g), and β-glucuronidase activity (271.42 U/g) were obtained faster than those in the control during SSF. Our study provides a novel and efficient strategy for GAMG production and indicates C. globosum DX-THS3 as a potential producer of lignocellulolytic enzymes. Supplementary Information The online version contains supplementary material available at 10.1186/s40643-021-00441-y.
Collapse
Affiliation(s)
- Boliang Gao
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Yiwen Xiao
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China.,Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022 China
| | - Qian Zhang
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Junru Sun
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China
| | - Zhibing Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022 China
| | - Du Zhu
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013 China.,Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, 330022 China
| |
Collapse
|
7
|
Matrawy AA, Khalil AI, Marey HS, Embaby AM. Use of Wheat Straw for Value-Added Product Xylanase by Penicillium chrysogenum Strain A3 DSM105774. J Fungi (Basel) 2021; 7:jof7090696. [PMID: 34575734 PMCID: PMC8472069 DOI: 10.3390/jof7090696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The present work highlights the valorization of the bulky recalcitrant lignocellulose byproduct wheat straw (WS) for the enhanced production of value-added xylanase by the locally sourced novel Penicillium chrysogenum strain A3 DSM105774 for the first time. The optimized production of xylanase by submerged state of fermentation of WS was achieved using a three-step statistical and sequential approach: one factor at a time (OFAT), Plackett–Burman design (PBD), and Box Behnken design (BBD). Incubation temperature (30 °C), WS, and ammonium sulphate were the key determinants prompting xylanase production; inferred from OFAT. The WS concentration (%(w/v)), yeast extract concentration (%(w/v)), and initial pH of the production medium imposed significant effects (p ≤ 0.05) on the produced xylanase, realized from PBD. The predicted levels of WS concentration, initial pH of the production medium, and yeast extract concentration provoking the ultimate xylanase levels (53.7 U/mL) with an 8.95-fold enhancement, localized by the estimated ridge of the steepest ascent of the ridge analysis path, were 3.8% (w/v), 5.1, and 0.098% (w/v), respectively; 94.7% lab validation. The current data underpin the up-scaling of xylanase production using this eco-friendly, cheap, and robust methodology for the valorization of WS into the value-added product xylanase.
Collapse
Affiliation(s)
- Amira A. Matrawy
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (A.A.M.); (A.I.K.); (H.S.M.)
| | - Ahmed I. Khalil
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (A.A.M.); (A.I.K.); (H.S.M.)
| | - Heba S. Marey
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt; (A.A.M.); (A.I.K.); (H.S.M.)
| | - Amira M. Embaby
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
- Correspondence:
| |
Collapse
|
8
|
Paecilomyces variotii xylanase production, purification and characterization with antioxidant xylo-oligosaccharides production. Sci Rep 2021; 11:16468. [PMID: 34389757 PMCID: PMC8363652 DOI: 10.1038/s41598-021-95965-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Paecilomyces variotii xylanase was, produced in stirred tank bioreactor with yield of 760 U/mL and purified using 70% ammonium sulfate precipitation and ultra-filtration causing 3.29-fold purification with 34.47% activity recovery. The enzyme purity was analyzed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) confirming its monomeric nature as single band at 32 KDa. Zymography showed xylan hydrolysis activity at the same band. The purified enzyme had optimum activity at 60 °C and pH 5.0. The pH stability range was 5-9 and the temperature stability was up 70 °C. Fe2+and Fe3+ exhibited inhibition of xylanase enzyme while Cu2+, Ca2+, Mg2+ and Mn2+ stimulated its activity. Mercaptoethanol stimulated its activity; however, Na2-EDTA and SDS inhibited its activity. The purified xylanase could hydrolyze beechwood xylan but not carboxymethyl cellulose (CMC), avicel or soluble starch. Paecilomyces variotii xylanase Km and Vmax for beechwood were determined to be 3.33 mg/mL and 5555 U/mg, respectively. The produced xylanase enzyme applied on beech xylan resulted in different types of XOS. The antioxidant activity of xylo-oligosaccharides increased from 15.22 to 70.57% when the extract concentration was increased from 0.1 to 1.5 mg/mL. The enzyme characteristics and kinetic parameters indicated its high efficiency in the hydrolysis of xylan and its potential effectiveness in lignocellulosic hydrolysis and other industrial application. It also suggests the potential of xylanase enzyme for production of XOS from biomass which are useful in food and pharmaceutical industries.
Collapse
|
9
|
Production and Optimization of Xylanase and α-Amylase from Non-Saccharomyces Yeasts (Pichia membranifaciens). JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The xylanolytic and amylolytic yeasts were qualitatively determined by Cong red xylan agar and soluble starch agar plates, respectively. The most xylanase and α-amylase inducible strain (AUN-02) was selected and identified using PCR amplification of 26S rRNA gene and sequence analysis. The comparison of the alignment results and phylogenetic analysis of the sequences of the isolated yeast to published rRNA gene sequences in GenBank, confirmed the identification of the isolate as Pichia membranifaciens. Xylanase and α-amylase production by isolated P. membranifaciens were investigated at different pH values (4-8), temperature degrees (20-45°C), incubation time (1-7 days) and various substrates.A higher production of xylanase (38.8 U/mL) and a-amylase (28.7 U/mL) was obtained after 4 days of fermentation of P. membranifaciens. Higher activity of xylanase (36.83 U/mL) and a-amylase (27.7 U/mL) was obtained in the fermentation of P. membranifaciens in a culture medium adjusted to pH 7.0. The optimum temperature showed maximum xylanase and a-amylase activity (42.6 and 32.5 units/mL, respectively) was estimated at 35 °C. The xylanase and a-amylase activities of P. membranifaciens were estimated and compared for the different substrates tested. The strain revealed 100% relative activity of xylanase and a-amylase on beechwood and potato starch, respectively. The affinity of enzymes towards substrate was estimated using Km values. The Km values of xylanase and α-amylase increased in the order of pH’s 7.0, 6.0 and 4.5 (0.85, 1.6 and 3.4 mg xylan/mL and 0.22, 0.43 and 2.8 mg starch/mL, respectively). the yeast P. membranifaciensis is suitable for produce neutral xylanase and α-amylase enzymes. So, it could be used as a promising strain for production of these enzymes in industrial field.
Collapse
|
10
|
Bioprospecting of Thermophilic Fungal Enzymes and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Environmental and Industrial Perspective of Beneficial Fungal Communities: Current Research and Future Challenges. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Biochemical characterization of a novel protease-resistant α-galactosidase from Paecilomyces thermophila suitable for raffinose family oligosaccharides degradation. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Zhu J, Ren Z, Huang B, Cao A, Wang Q, Yan D, Ouyang C, Wu J, Li Y. Effects of Fumigation with Allyl Isothiocyanate on Soil Microbial Diversity and Community Structure of Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1226-1236. [PMID: 31922739 DOI: 10.1021/acs.jafc.9b07292] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a substitute for methyl bromide, effects of allyl isothiocyanate (AITC) on nontarget microorganisms in soil are poorly understood. This study measured the half-life of AITC in the soil as well as its effects on the soil substrate-induced respiration (SIR) and on communities of soil bacteria and fungi. The results showed that AITC had a short half-life and a short-term inhibition of SIR; high-throughput sequencing analysis showed that AITC had less effect on bacterial than fungal communities. Fumigation reduced the diversity of soil bacteria temporarily, but stimulated the diversity of soil fungi in the long-term and significantly changed the structure of the fungal community. Following AITC fumigation there were significant increases in the relative abundance of probiotics such as Sphingomonas, Streptomyces, Hypocreales, Acremonium, Aspergillus, and Pseudallescheria that help to control plant diseases. Our study provided useful information for assessing the ecological safety of AITC.
Collapse
Affiliation(s)
- Jiahong Zhu
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Zongjie Ren
- National Agricultural Technology Extension Service Center , Ministry of Agriculture and Rural Affairs , Beijing 100125 , China
| | - Bin Huang
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Aocheng Cao
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Qiuxia Wang
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Dongdong Yan
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Canbin Ouyang
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Jiajia Wu
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| | - Yuan Li
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , China
| |
Collapse
|
14
|
Roth JCG, Hoeltz M, Benitez LB. Current approaches and trends in the production of microbial cellulases using residual lignocellulosic biomass: a bibliometric analysis of the last 10 years. Arch Microbiol 2020; 202:935-951. [DOI: 10.1007/s00203-019-01796-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/19/2019] [Accepted: 12/15/2019] [Indexed: 12/30/2022]
|
15
|
Alokika, Singh B. Production, characteristics, and biotechnological applications of microbial xylanases. Appl Microbiol Biotechnol 2019; 103:8763-8784. [PMID: 31641815 DOI: 10.1007/s00253-019-10108-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 01/29/2023]
Abstract
Microbial xylanases have gathered great attention due to their biotechnological potential at industrial scale for many processes. A variety of lignocellulosic materials, such as sugarcane bagasse, rice straw, rice bran, wheat straw, wheat bran, corn cob, and ragi bran, are used for xylanase production which also solved the great issue of solid waste management. Both solid-state and submerged fermentation have been used for xylanase production controlled by various physical and nutritional parameters. Majority of xylanases have optimum pH in the range of 4.0-9.0 with optimum temperature at 30-60 °C. For biochemical, molecular studies and also for successful application in industries, purification and characterization of xylanase have been carried out using various appropriate techniques. Cloning and genetic engineering are used for commercial-level production of xylanase, to meet specific economic viability and industrial needs. Microbial xylanases are used in various biotechnological applications like biofuel production, pulp and paper industry, baking and brewing industry, food and feed industry, and deinking of waste paper. This review describes production, characteristics, and biotechnological applications of microbial xylanases.
Collapse
Affiliation(s)
- Alokika
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India. .,Department of Biotechnology, School of Interdisciplinary and Applied Life Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana, 123031, India.
| |
Collapse
|
16
|
Zhang D, Yan D, Fang W, Huang B, Wang X, Wang X, Zhu J, Liu J, Ouyang C, Li Y, Wang Q, Cao A. Chloropicrin alternated with biofumigation increases crop yield and modifies soil bacterial and fungal communities in strawberry production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:615-622. [PMID: 31035200 DOI: 10.1016/j.scitotenv.2019.04.222] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Chloropicrin (Pic) and biofumigation are both considered effective chemical and non-chemical alternatives to methyl bromide, respectively, for controlling crop-limiting soil-borne pests and diseases. In this study, we evaluated the effects of Pic alone and 'chloropicrin alternated with biofumigation' (CAB) on the soil's physico-chemical properties and strawberry yield, as well as their effects on soil bacterial and fungal communities. The contents of NO3--N, available phosphorus and potassium, and electrical conductivity were all significantly increased when CAB was used. In addition, CAB also significantly increased the strawberry marketable yield. High-throughput gene sequencing showed the species abundance of some soil bacteria and fungi was significantly increased such as the phyla Proteobacteria, Bacteroidetes, Actinobacteria and Ascomycota when CAB was used. However, CAB decreased the relative abundance of the phyla Firmicutes, Chloroflexi, Gemmatimonadete and Zygomycota. These results indicated that CAB could improve the physico-chemical properties of soil for strawberry production, increase the genetic diversity of microbes in the soil and enhance marketable fruit yield.
Collapse
Affiliation(s)
- Daqi Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongdong Yan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory for Biology of Plant Disease and Insect Pests, Beijing 100193, China
| | - Wensheng Fang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianli Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoning Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiahong Zhu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Canbin Ouyang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory for Biology of Plant Disease and Insect Pests, Beijing 100193, China
| | - Yuan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory for Biology of Plant Disease and Insect Pests, Beijing 100193, China
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory for Biology of Plant Disease and Insect Pests, Beijing 100193, China
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory for Biology of Plant Disease and Insect Pests, Beijing 100193, China.
| |
Collapse
|
17
|
Tai WY, Tan JS, Lim V, Lee CK. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Biotechnol Prog 2019; 35:e2781. [PMID: 30701709 DOI: 10.1002/btpr.2781] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/30/2018] [Accepted: 01/22/2019] [Indexed: 11/07/2022]
Abstract
The high cost of cellulases remains the most significant barrier to the economical production of bio-ethanol from lignocellulosic biomass. The goal of this study was to optimize cellulases and xylanase production by a local indigenous fungus strain (Aspergillus niger DWA8) using agricultural waste (oil palm frond [OPF]) as substrate. The enzyme production profile before optimization indicated that the highest carboxymethyl cellulose (CMCase), filter paper (FPase), and xylanase activities of 1.06 U/g, 2.55 U/g, and 2.93 U/g were obtained on day 5, day 4, and day 5 of fermentation, respectively. Response surface methodology was used to study the effects of several key process parameters in order to optimize cellulase production. Of the five physical and two chemical factors tested, only moisture content of 75% (w/w) and substrate amount of 2.5 g had statistically significant effect on enzymes production. Under optimized conditions of 2.5 g of substrate, 75% (w/w) moisture content, initial medium of pH 4.5, 1 × 106 spores/mL of inoculum, and incubation at ambient temperature (±30°C) without additional carbon and nitrogen, the highest CMCase, FPase, and xylanase activities obtained were 2.38 U/g, 2.47 U/g, and 5.23 U/g, respectively. Thus, the optimization process increased CMCase and xylanase production by 124.5 and 78.5%, respectively. Moreover, A. niger DWA8 produced reasonably good cellulase and xylanase titers using OPF as the substrate when compared with previous researcher finding. The enzymes produced by this process could be further use to hydrolyze biomass to generate reducing sugars, which are the feedstock for bioethanol production.
Collapse
Affiliation(s)
- Wan Yi Tai
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Joo Shun Tan
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Chee Keong Lee
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
18
|
|
19
|
Comparative Study of Cellulase Production Using Submerged and Solid-State Fermentation. Fungal Biol 2019. [DOI: 10.1007/978-3-030-14726-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Gautam A, Kumar A, Bharti AK, Dutt D. Rice straw fermentation by Schizophyllum commune ARC-11 to produce high level of xylanase for its application in pre-bleaching. J Genet Eng Biotechnol 2018; 16:693-701. [PMID: 30733790 PMCID: PMC6353721 DOI: 10.1016/j.jgeb.2018.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/09/2018] [Accepted: 02/15/2018] [Indexed: 11/16/2022]
Abstract
Rice straw is valuable resource that has been used as substrate for cost effective production of xylanase under solid-state fermentation by a newly isolated white rot fungi, S. commune ARC-11. Out of eleven carbon sources tested, rice straw was found most effective for the induction of xylanase that produced 4288.3 IU/gds of xylanase by S. commune ARC-11. Maximum xylanase production (6721.9 IU/gds) was observed on 8th day of incubation at temperature (30 °C), initial pH (7.0) and initial moisture content (70.0%). The supplementation of ammonium sulphate (0.08% N, as available nitrogen) enhanced the xylanase production up to 8591.4 IU/gds. The xylanase production by S. commune ARC-11 was further improved by the addition of 0.10%, (w/v) of Tween-20 as surfactant. The maximum xylanase activities were found at pH 5.0 and temperature 55 °C with a longer stability (180 min) at temperature 45, 50 and 55 °C. This xylanase preparation was also evaluated for the pre-bleaching of ethanol-soda pulp from Eulaliopsis binata. An enzyme dosage of 10 IU/g of xylanase resulted maximum decrease in kappa number (14.51%) with a maximum improvement 2.9% in ISO brightness compared to control.
Collapse
Affiliation(s)
- Archana Gautam
- Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247 001, India
| | - Amit Kumar
- Department of Biotechnology, College of Natural and Computational Sciences, Debre Markos University, Ethiopia
| | - Amit Kumar Bharti
- Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247 001, India
| | - Dharm Dutt
- Department of Paper Technology, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247 001, India
| |
Collapse
|
21
|
Khambhaty Y, Akshaya R, Rama Suganya C, Sreeram KJ, Raghava Rao J. A logical and sustainable approach towards bamboo pulp bleaching using xylanase from Aspergillus nidulans. Int J Biol Macromol 2018; 118:452-459. [DOI: 10.1016/j.ijbiomac.2018.06.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022]
|
22
|
Optimization of production conditions for xylanase production by newly isolated strain Aspergillus niger through solid state fermentation of oil palm empty fruit bunches. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Ahirwar S, Soni H, Prajapati BP, Kango N. Isolation and screening of thermophilic and thermotolerant fungi for production of hemicellulases from heated environments. Mycology 2017. [DOI: 10.1080/21501203.2017.1337657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Saroj Ahirwar
- Department of Microbiology, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, MP, India
| | - Hemant Soni
- Department of Microbiology, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, MP, India
| | | | - Naveen Kango
- Department of Microbiology, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, MP, India
| |
Collapse
|
24
|
Walia A, Guleria S, Mehta P, Chauhan A, Parkash J. Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 2017; 7:11. [PMID: 28391477 PMCID: PMC5385172 DOI: 10.1007/s13205-016-0584-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/02/2016] [Indexed: 10/25/2022] Open
Abstract
Xylanases are hydrolytic enzymes which cleave the β-1, 4 backbone of the complex plant cell wall polysaccharide xylan. Xylan is the major hemicellulosic constituent found in soft and hard food. It is the next most abundant renewable polysaccharide after cellulose. Xylanases and associated debranching enzymes produced by a variety of microorganisms including bacteria, actinomycetes, yeast and fungi bring hydrolysis of hemicelluloses. Despite thorough knowledge of microbial xylanolytic systems, further studies are required to achieve a complete understanding of the mechanism of xylan degradation by xylanases produced by microorganisms and their promising use in pulp biobleaching. Cellulase-free xylanases are important in pulp biobleaching as alternatives to the use of toxic chlorinated compounds because of the environmental hazards and diseases caused by the release of the adsorbable organic halogens. In this review, we have focused on the studies of structural composition of xylan in plants, their classification, sources of xylanases, extremophilic xylanases, modes of fermentation for the production of xylanases, factors affecting xylanase production, statistical approaches such as Plackett Burman, Response Surface Methodology to enhance xylanase production, purification, characterization, molecular cloning and expression. Besides this, review has focused on the microbial enzyme complex involved in the complete breakdown of xylan and the studies on xylanase regulation and their potential industrial applications with special reference to pulp biobleaching, which is directly related to increasing pulp brightness and reduction in environmental pollution.
Collapse
Affiliation(s)
- Abhishek Walia
- Department of Microbiology, DAV University, Jalandhar, Punjab 144012 India
| | - Shiwani Guleria
- Department of Microbiology, DAV University, Jalandhar, Punjab 144012 India
| | - Preeti Mehta
- Centre for Advance Bioenergy Research, Research and Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Anjali Chauhan
- Department of Microbiology, Dr. YSPUHF, Nauni, Solan, 173230 India
| | - Jyoti Parkash
- School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151001 India
| |
Collapse
|
25
|
Isaac GS, Abu-Tahon MA. Enhanced alkaline cellulases production by the thermohalophilic Aspergillus terreus AUMC 10138 mutated by physical and chemical mutagens using corn stover as substrate. Braz J Microbiol 2016; 46:1269-77. [PMID: 26691490 PMCID: PMC4704614 DOI: 10.1590/s1517-838246420140958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/06/2015] [Indexed: 11/22/2022] Open
Abstract
A thermohalophilic fungus, Aspergillus terreus AUMC 10138, isolated
from the Wadi El-Natrun soda lakes in northern Egypt was exposed successively to
gamma and UV-radiation (physical mutagens) and ethyl methan-sulfonate (EMS; chemical
mutagen) to enhance alkaline cellulase production under solid state fermentation
(SSF) conditions. The effects of different carbon sources, initial moisture,
incubation temperature, initial pH, incubation period, inoculum levels and different
concentrations of NaCl on production of alkaline filter paper activity (FPase),
carboxymethyl cellulase (CMCase) and β-glucosidase by the wild-type and mutant
strains of A. terreus were evaluated under SSF. The optimum
conditions for maximum production of FPase, CMCase and β-glucosidase were found to be
the corn stover: moisture ratio of 1:3(w/v), temperature 45 °C, pH range, 9.0–11.0,
and fermentation for 4, 4 and 7 day, respectively. Inoculum levels of 30% for
β-glucosidase and 40% for FPase, CMCase gave the higher cellulase production by the
wild-type and mutant strains, respectively. Higher production of all three enzymes
was obtained at a 5% NaCl. Under the optimized conditions, the mutant strain
A. terreus M-17 produced FPase (729 U/g), CMCase (1,783 U/g), and
β-glucosidase (342 U/g), which is, 1.85, 1.97 and 2.31-fold higher than the wild-type
strain. Our results confirmed that mutant strain M-17 could be a promising alkaline
cellulase enzyme producer employing lignocellulosics especially corn stover.
Collapse
Affiliation(s)
- George Saad Isaac
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Medhat Ahmed Abu-Tahon
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Zhang D, Luo Y, Chu S, Zhi Y, Wang B, Zhou P. Biological pretreatment of rice straw with Streptomyces griseorubens JSD-1 and its optimized production of cellulase and xylanase for improved enzymatic saccharification efficiency. Prep Biochem Biotechnol 2016; 46:575-85. [DOI: 10.1080/10826068.2015.1084932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Dan Zhang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Yanqing Luo
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Shaohua Chu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Yuee Zhi
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Bin Wang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Pei Zhou
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
27
|
Sharma M, Mahajan C, Bhatti MS, Chadha BS. Profiling and production of hemicellulases by thermophilic fungus Malbranchea flava and the role of xylanases in improved bioconversion of pretreated lignocellulosics to ethanol. 3 Biotech 2016; 6:30. [PMID: 28330103 PMCID: PMC4713398 DOI: 10.1007/s13205-015-0325-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/19/2015] [Indexed: 11/28/2022] Open
Abstract
This study reports thermophilic fungus Malbranchea flava as a potent source of xylanase and xylan-debranching accessory enzymes. M. flava produced high levels of xylanase on sorghum straw containing solidified culture medium. The optimization of culture conditions for production of hemicellulases was carried out using one factor at a time approach and Box–Behnken design of experiments with casein (%), inoculum age (h) and inoculum level (ml) as process variables and xylanase, β-xylosidase, acetyl esterases and arabinofuranosidase as response variables. The results showed that casein concentration between 3.0 and 3.5 %, inoculum age (56–60 h) and inoculum level (2–2.5 ml) resulted in production of 16,978, 10.0, 67.7 and 3.8 (U/gds) of xylanase, β-xylosidase, acetyl esterase and α-l-arabinofuranosidase, respectively. Under optimized conditions M. flava produced eight functionally diverse xylanases with distinct substrate specificity against different xylan types. The peptide mass fingerprinting of 2-D gel electrophoresis resolved proteins indicated to the presence of cellobiose dehydrogenase and glycosyl hydrolases suggesting the potential of this strain in oxidative and classical cellulase-mediated hydrolysis of lignocellulosics. Addition of xylanase (300 U/g substrate) during saccharification (at 15 % substrate loading) of different pretreated (acid/alkali) substrates (cotton stalks, wheat straw, rice straw, carrot grass) by commercial cellulase (NS28066) resulted in 9–36 % increase in saccharification and subsequent fermentation to ethanol when compared to experiment with commercial enzyme only. High ethanol level 46 (g/l) was achieved with acid pretreated cotton stalk when M. flava xylanase was supplemented as compared to 39 (g/l) with xylanase without xylanase addition.
Collapse
|
28
|
Hansen GH, Lübeck M, Frisvad JC, Lübeck PS, Andersen B. Production of cellulolytic enzymes from ascomycetes: Comparison of solid state and submerged fermentation. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.05.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Zhang H, Sang Q. Production and extraction optimization of xylanase and β-mannanase by Penicillium chrysogenum QML-2 and primary application in saccharification of corn cob. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Zhang Y, Liu F, Wu W, Cai L. A phylogenetic assessment and taxonomic revision of the thermotolerant hyphomycete genera Acrophialophora and Taifanglania. Mycologia 2015; 107:768-79. [PMID: 25911695 DOI: 10.3852/14-173] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/27/2015] [Indexed: 11/10/2022]
Abstract
We assessed the phylogenetic relationships of 19 isolates belonging to Acrophialophora and Taifanglania based on internal transcribed spacer (ITS), nuclear 18S subunit (nuc 18S) rDNA and β-tubulin sequences. Phylogenetic data showed that Acrophialophora and Taifanglania comprise a monophyletic clade, but did not support the distinction of two genera. Being the older and more frequently used name, Acrophialophora is adopted as the generic name and Taifanglania is treated as a synonym. The generic concept of Acrophialophora is emended to include the morphological characters formerly used to distinguish Taifanglania. Three new thermotolerant species isolated from soil samples in China are described and illustrated, (i) A. ellipsoidea, with solitary phialides tapering into thin necks and long chains of ellipsoidal to fusiform conidia, (ii) A. angustiphialis with single phialides terminal or lateral on hyphae, and long chains of ellipsoidal or fusiform conidia and, (iii) A. acuticonidiata with single phialides and fusiform conidia with acute ends. Phylogenetic analyses show that A. acuticonidiata, A. angustiphialis and A. ellipsoidea are most closely related to A. curticatenata, A. hechuanensis and A. major, respectively. Growth tests showed that the three new species are thermotolerant, with optimal growth temperatures of 37-40 C, and maximum growth temperatures near 50 C. A key to the accepted species of Acrophialophora is provided.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China, and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenping Wu
- Novozymes China, No 14, Xinxi Road, Shangdi, Beijing, China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
31
|
|
32
|
Tarayre C, Brognaux A, Brasseur C, Bauwens J, Millet C, Mattéotti C, Destain J, Vandenbol M, Portetelle D, De Pauw E, Haubruge E, Francis F, Thonart P. Isolation and Cultivation of a Xylanolytic Bacillus subtilis Extracted from the Gut of the Termite Reticulitermes santonensis. Appl Biochem Biotechnol 2013; 171:225-45. [DOI: 10.1007/s12010-013-0337-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
|
33
|
Membrillo Venegas I, Fuentes-Hernández J, García-Rivero M, Martínez-Trujillo A. Characteristics ofAspergillus nigerxylanases produced on rice husk and wheat bran in submerged culture and solid-state fermentation for an applicability proposal. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Isabel Membrillo Venegas
- División de Ingeniería Química y Bioquímica; Tecnológico de Estudios Superiores de Ecatepec; Av. Tecnológico esq. Av. Carlos Hank González; Ecatepec; CP 55210; México
| | | | - Mayola García-Rivero
- División de Ingeniería Química y Bioquímica; Tecnológico de Estudios Superiores de Ecatepec; Av. Tecnológico esq. Av. Carlos Hank González; Ecatepec; CP 55210; México
| | - Aurora Martínez-Trujillo
- División de Ingeniería Química y Bioquímica; Tecnológico de Estudios Superiores de Ecatepec; Av. Tecnológico esq. Av. Carlos Hank González; Ecatepec; CP 55210; México
| |
Collapse
|
34
|
Mahmood RT, Asad MJ, Mehboob N, Mushtaq M, Gulfraz M, Asgher M, Minhas NM, Hadri SH. Production, Purification, and Characterization of Exoglucanase by Aspergillus fumigatus. Appl Biochem Biotechnol 2013; 170:895-908. [DOI: 10.1007/s12010-013-0227-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
|
35
|
Hollister EB, Hu P, Wang AS, Hons FM, Gentry TJ. Differential impacts of brassicaceous and nonbrassicaceous oilseed meals on soil bacterial and fungal communities. FEMS Microbiol Ecol 2012; 83:632-41. [PMID: 23025785 DOI: 10.1111/1574-6941.12020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 12/01/2022] Open
Abstract
Demand for alternative fuels has sparked renewed interest in the production of biodiesel from oil-rich seeds. Oilseed meals are a byproduct of this process, and given their relatively high nutrient content, land application represents a potential value-added use. In this microcosm-based study, soil microbial community responses to amendments of a glucosinolate-containing brassicaceous oilseed meal (Brassica juncea, mustard), a non-glucosinolate-containing, nonbrassicaceous oilseed meal (Linum usitatissimum, flax), and a nonoilseed biomass (Sorghum bicolor) were characterized using a 28-day time series of replicated 16S rRNA gene and fungal ITS gene sequence libraries. We hypothesized that biomass type and glucosinolate content would alter community composition but that effects would diminish over time. Distinct separation occurred by amendment type, with mustard inducing large increases in the abundance of bacterial taxa associated with fungal disease suppression (e.g. Bacillus, Pseudomonas, and Streptomyces spp.). Dramatic shifts were seen among the fungi, too, with phylotype richness decreasing by > 60% following mustard addition. Changes in bacterial and fungal community composition were rapid, and distinct community types persisted throughout the study. Oilseed amendment, and mustard in particular, has the potential to alter soil microbial community structure substantially, and such changes are likely to be important in the context of ecosystem health.
Collapse
Affiliation(s)
- Emily B Hollister
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA.
| | | | | | | | | |
Collapse
|
36
|
Liao H, Xu C, Tan S, Wei Z, Ling N, Yu G, Raza W, Zhang R, Shen Q, Xu Y. Production and characterization of acidophilic xylanolytic enzymes from Penicillium oxalicum GZ-2. BIORESOURCE TECHNOLOGY 2012; 123:117-124. [PMID: 22940308 DOI: 10.1016/j.biortech.2012.07.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/04/2012] [Accepted: 07/16/2012] [Indexed: 05/28/2023]
Abstract
Multiple acidophilic xylanolytic enzymes were produced by Penicillium oxalicum GZ-2 during growth on wheat straw, rice straw, corn stover, and wheat bran. The expression of xylanase isoforms was dependent on substrate type and nitrogen source. The zymograms produced by the SDS-PAGE resolution of the crude enzymes indicated that wheat straw was the best inducer, resulting in the highest xylanase (115.2U/mL) and β-xylosidase (89mU/mL) activities during submerged fermentation. The optimum temperature and pH for xylanase activity were 50°C and 4.0, respectively; however, the crude xylanase enzymes exhibited remarkable stability over a broad pH range and showed more than 90% activity at 50°C for 30min at pH 4.0-8.0. The results revealed that P. oxalicum GZ-2 is a promising acidophilic xylanase-producing microorganism that has great potential to be used in biofuels, animal feed, and food industry applications.
Collapse
Affiliation(s)
- Hanpeng Liao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Biochemical properties of a novel glycoside hydrolase family 1 β-glucosidase (PtBglu1) from Paecilomyces thermophila expressed in Pichia pastoris. Carbohydr Polym 2012; 92:784-91. [PMID: 23218368 DOI: 10.1016/j.carbpol.2012.09.086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 09/14/2012] [Accepted: 09/28/2012] [Indexed: 11/21/2022]
Abstract
A novel β-glucosidase gene (PtBglu1) from the thermophilic fungus, Paecilomyces thermophila, was cloned and expressed in Pichia pastoris. PtBglu1 contained an open reading frame of 1440-bp nucleotides and encoded a protein of 479 amino acids which showed significant similarity to other fungal β-glucosidases from glycoside hydrolase (GH) family 1. The recombinant β-glucosidase (PtBglu1) was secreted at high level of 190.2 U mL(-1) in high cell density fermentor (5L). PtBglu1 was purified to homogeneity, and was found to be a glycoprotein with molecular mass of 56.7 kDa. The purified PtBglu1 showed optimum catalytic activity at pH 6.0 and 55 °C. The enzyme exhibited broad substrate specificity with highest activity toward pNP-β-D-glucopyranoside, followed by pNP-β-D-galactopyranoside and cellobiose. The K(m) values for pNP-β-D-glucopyranoside, cellobiose, gentiobiose and salicin were 0.55 mM, 1.0 mM, 1.74 mM and 6.85 mM, respectively. These properties make PtBglu1 a potential candidate for various industrial applications.
Collapse
|
38
|
dos Santos TC, Gomes DPP, Bonomo RCF, Franco M. Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.11.115] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
High-level expression of a xylanase gene from the thermophilic fungus Paecilomyces thermophila in Pichia pastoris. Biotechnol Lett 2012; 34:2043-8. [DOI: 10.1007/s10529-012-0995-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/22/2012] [Indexed: 10/28/2022]
|
40
|
Yan Q, Hua C, Yang S, Li Y, Jiang Z. High level expression of extracellular secretion of a β-glucosidase gene (PtBglu3) from Paecilomyces thermophila in Pichia pastoris. Protein Expr Purif 2012; 84:64-72. [DOI: 10.1016/j.pep.2012.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 04/05/2012] [Accepted: 04/20/2012] [Indexed: 11/26/2022]
|
41
|
High-level expression of a hyperthermostable Thermotoga maritima xylanase in Pichia pastoris by codon optimization. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Production of thermophilic endo-β-1,4-xylanases by Aspergillus fumigatus FBSPE-05 using agro-industrial by-products. Appl Biochem Biotechnol 2012; 166:1575-85. [PMID: 22328248 DOI: 10.1007/s12010-012-9563-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
In the present paper, endo-β-1,4-xylanase production by Aspergillus fumigatus was evaluated in solid-state fermentation using low-cost substrates such as sugarcane bagasse (SCB), brewer's spent grain (BSG), and wheat bran (WB). The partial characterization of the crude enzyme was also performed. In the experimental conditions, the highest levels of endo-β-1,4-xylanase production by A. fumigatus FBSPE-05 occurred within 8 days incubation when using SCB/liquid medium at 1:2 ratio (219.5 U g(-1)) and 4 days incubation when using WB/liquid medium at 1:1 ratio (215.6 U g(-1)). Crude enzyme from this last condition was used to enzyme characterization, showing best enzyme activity at 60 °C and pH 6.0, which suggests a thermophilic endoxylanase. The crude enzyme retained 73% of its activity after 1 h at 60 °C, and zymogram has shown three bands of endo-β-1,4-xylanase activity, with different molecular masses. A. fumigatus FBSPE-05 was able to grow and produce good levels of endo-β-1,4-xylanase using agro-industrial by-products, making this strain worthy for further investigation. To our knowledge, this is the first study reporting the use of SCB and/or BSG as sole substrates for endoxylanase production by solid-state fermentation using A. fumigatus.
Collapse
|
43
|
Production of xylanase under solid-state fermentation by Aspergillus tubingensis JP-1 and its application. Bioprocess Biosyst Eng 2012; 35:769-79. [PMID: 22271252 DOI: 10.1007/s00449-011-0657-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 11/12/2011] [Indexed: 10/14/2022]
Abstract
The production of extracellular xylanase by a locally isolated strain of Aspergillus tubingensis JP-1 was studied under solid-state fermentation. Among the various agro residues used wheat straw was found to be the best for high yield of xylanase with poor cellulase production. The influence of various parameters such as initial pH, moisture, moistening agents, nitrogen sources, additives, surfactants and pretreatment of substrates were investigated. The production of the xylanase reached a peak in 8 days using untreated wheat straw with modified MS medium, pH 6.0 at 1:5 moisture level at 30 °C. Under optimized conditions yield as high as 6,887 ± 16 U/g of untreated wheat straw was achieved. Crude xylanase was used for enzymatic saccharification of agro-residues like wheat straw, rice bran, wheat bran, sugarcane bagasse and industrial paper pulp. Dilute alkali (1 N NaOH) and acid (1 N H(2)SO(4)) pretreatment were found to be beneficial for the efficient enzymatic hydrolysis of wheat straw. Dilute alkali and acid-pretreated wheat straw yielded 688 and 543 mg/g reducing sugar, respectively. Yield of 726 mg/g reducing sugar was obtained from paper pulp after 48 h of incubation.
Collapse
|
44
|
Kopparapu NK, Zhou P, Zhang S, Yan Q, Liu Z, Jiang Z. Purification and characterization of a novel chitinase gene from Paecilomyces thermophila expressed in Escherichia coli. Carbohydr Res 2012; 347:155-60. [DOI: 10.1016/j.carres.2011.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
|
45
|
Khan AW, Zohora US, Rahman MS, Okanami M, Ano T. Production of iturin A through glass column reactor (GCR) from soybean curd residue (okara) by <i>Bacillus subtilis</i> RB14-CS under solid state fermentation (SSF). ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abb.2012.32021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Soliman HM, A. Sherief AD, Tanash ABEL. Production of Xylanase by Aspergillus niger and Trichoderma viride using Some Agriculture Residues. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ijar.2012.46.57] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Umsza-Guez MA, Díaz AB, de Ory I, Blandino A, Gomes E, Caro I. Xylanase production by Aspergillus awamori under solid state fermentation conditions on tomato pomace. Braz J Microbiol 2011; 42:1585-97. [PMID: 24031793 PMCID: PMC3768745 DOI: 10.1590/s1517-838220110004000046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 06/06/2011] [Indexed: 12/04/2022] Open
Abstract
In this work, tomato pomace, a waste abundantly available in the Mediterranean and other temperate climates agro-food industries, has been used as raw material for the production of some hydrolytic enzymes, including xylanase, exo-polygalacturonase (exo-PG), cellulase (CMCase) and α-amylase. The principal step of the process is the solid state fermentation (SSF) of this residue by Aspergillus awamori. In several laboratory experiments, maximum xylanase and exo-PG activities were measured during the first days of culture, reaching values around 100 and 80 IU/gds (international units of enzyme activity per gram of dried solid), respectively. For CMCase and α-amylase production remained almost constant along fermentation, with average values of 19 and 21.5 IU/gds, respectively. Experiments carried out in a plate-type bioreactor at lab scale showed a clear positive effect of aeration on xylanase and CMCase, while the opposite was observed for exo-PG and α-amylase. In general, xylanase was the enzyme produced in higher levels, thus the optimum conditions for the determination of the enzyme activity was characterized. The xylanase activity shows an optimum pH of 5 and an optimum temperature of 50 ºC. The enzyme is activated by Mg(2+), but strongly inhibited by Hg(2+) and Cu(2+). The enzymatic activity remains quite high if the extract is preserved in a range of pH from 3 to 10 and a temperature between 30 ºC to 40 ºC.
Collapse
Affiliation(s)
- Marcelo A. Umsza-Guez
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, SP, Brasil
| | - Ana B. Díaz
- Departamento de Ingeniería Química y Tecnología de Alimentos, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Apdo. 40, Puerto Real, Cádiz 11510, Spain
| | - Ignacio de Ory
- Departamento de Ingeniería Química y Tecnología de Alimentos, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Apdo. 40, Puerto Real, Cádiz 11510, Spain
| | - Ana Blandino
- Departamento de Ingeniería Química y Tecnología de Alimentos, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Apdo. 40, Puerto Real, Cádiz 11510, Spain
| | - Eleni Gomes
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, SP, Brasil
| | - Ildefonso Caro
- Departamento de Ingeniería Química y Tecnología de Alimentos, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, Apdo. 40, Puerto Real, Cádiz 11510, Spain
| |
Collapse
|
48
|
Co-cultivation of mutant Penicillium oxalicum SAUE-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation. N Biotechnol 2011; 28:616-26. [DOI: 10.1016/j.nbt.2011.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/18/2011] [Accepted: 05/19/2011] [Indexed: 11/23/2022]
|
49
|
Nagar S, Mittal A, Kumar D, Kumar L, Kuhad RC, Gupta VK. Hyper production of alkali stable xylanase in lesser duration by Bacillus pumilus SV-85S using wheat bran under solid state fermentation. N Biotechnol 2011; 28:581-7. [DOI: 10.1016/j.nbt.2010.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/27/2010] [Accepted: 12/23/2010] [Indexed: 11/28/2022]
|
50
|
Qu W, Shao W. Cloning, expression and characterization of glycoside hydrolase family 11 endoxylanase from Bacillus pumilus ARA. Biotechnol Lett 2011; 33:1407-16. [DOI: 10.1007/s10529-011-0568-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
|