1
|
Song W, Peng Z, Li J, Wang X, Fu C, Du X, Kuang K, Wang Z, Wang Z, Zhao Z. Improved permeability in ceramsite@powdered activated carbon (PAC)-MnO x coupled gravity-driven ceramic membrane (GDCM) for manganese and ammonia nitrogen removal with intermittent short-term vertical aeration. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134827. [PMID: 38850953 DOI: 10.1016/j.jhazmat.2024.134827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
In our work, a gravity-driven ceramic membrane bioreactor (GDCMBR) was developed to remove Mn2+ and NH3-N simultaneously through the birnessite water purification layer in-situ construction on the ceramic membrane due to chemical pre-oxidation (powdered activated carbon (PAC)-MnOx). Considering the trade-off of biofouling and water production, the daily intermittent short-term vertical aeration mode was involving to balance this contradiction with the excellent water purification and improved membrane permeability. And the GDCMBR permeability of operation flux was improved for 5-7 LHM with intermittent short-term vertical aeration. Furthermore, only ∼7 % irreversible membrane resistance (Rir) also confirmed the improved membrane permeability with intermittent short-term vertical aeration. And some manganese oxidizing bacteria (MnOB) and ammonia oxidizing bacteria (AOB) species at genus level were identified during long-term operation with the contact circulating flowing raw water, resulting in the better Mn2+ and NH3-N removal efficiency. Additionally, the nano-flower-like birnessite water purification layer was verified in ceramsite@PAC-MnOx coupled GDCMBR, which evolute into a porous flake-like structure with the increasing intermittent short-term aeration duration. Therefore, the sustainable and effective intermittent short-term aeration mode in ceramsite@PAC-MnOx coupled GDCMBR could improve the membrane permeability with the satisfactory groundwater purification efficiency, as well as providing an energy-efficient strategy for membrane technologies applications in water supply safety.
Collapse
Affiliation(s)
- Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhitian Peng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiawan Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaokai Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Caixia Fu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Ke Kuang
- Guangzhou Sewage Purification Co., Ltd., Guangzhou 510000, China
| | - Ziyuan Wang
- Guangzhou Sewage Purification Co., Ltd., Guangzhou 510000, China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiwei Zhao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China; Cross Research Institute of Ocean Engineering Safety and Sustainable Development, Guangzhou 510000, China
| |
Collapse
|
2
|
Mugwili ME, Waanders FB, Masindi V, Fosso-Kankeu E. An update on sustainabilities and challenges on the removal of ammonia from aqueous solutions: A state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119172. [PMID: 37793297 DOI: 10.1016/j.jenvman.2023.119172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
An insightful attempt has been made in this review and the primary objective was to meticulously provide an update on the sustainabilities, advances and challenges pertaining the removal of ammonia from water and wastewater. Specifically, ammonia is a versatile compound that prevails in various spheres of the environment, and if not properly managed, this chemical species could pose severe ecological pressure and toxicity to different receiving environments and its biota. The notorious footprints of ammonia could be traced to anoxic conditions, an infestation of aquatic ecosystems, hyperactivity, convulsion, and methaemoglobin, popularly known as the "blue baby syndrome". In this review, latest updates regarding the sustainabilities, advancements and challenges for the removal of ammonia from aqueous solutions, i.e., river and waste waters, are briefly elucidated in light of future perspectives. Viable routes and ideal hotspots, i.e., wastewater and drinking water, for ammonia removal under the cost-effective options have been unpacked. Key mechanisms for the removal of ammonia were grossly bioremediation, oxidation, adsorption, filtration, precipitation, and ion exchange. Finally, this review denoted biological nutrient removal, struvite precipitation, and breakpoint chlorination as the most effective and promising technologies for the removal of ammonia from aquatic environments, although at the expense of energy and operational cost. Lastly, the future perspective, avenues of exploitation, and technical facets that deserve in-depth exploration are duly underscored.
Collapse
Affiliation(s)
- Muyahavho Enemiah Mugwili
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa; Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa
| | - Frans Boudewijn Waanders
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa
| | - Vhahangwele Masindi
- Magalies Water, Scientific Services, Research & Development Division, Erf 3475, Stoffberg Street, Brits, 0250, South Africa; Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), P. O. Box 392, Florida, 1710, South Africa.
| | - Elvis Fosso-Kankeu
- Water Pollution Monitoring and Remediation Initiatives Research Group, School of Chemical and Minerals Engineering, North-West University, Potchefstroom, 2531, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology (CSET), University of South Africa, Florida Science Campus, South Africa; Department of Mining Engineering, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, South Africa
| |
Collapse
|
3
|
Keithley AE, Gomez-Alvarez V, Williams D, Ryu H, Lytle DA. Depth profiles of biological aerated contactors: Characterizing microbial activity treating reduced contaminants. JOURNAL OF WATER PROCESS ENGINEERING 2023; 56:1-11. [PMID: 38357328 PMCID: PMC10866302 DOI: 10.1016/j.jwpe.2023.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The biological treatment process consisting of an aerated contactor and filter is effective for groundwaters containing elevated ammonia and other reduced contaminants, including iron, manganese, arsenic, and methane. Depth profiles characterizing microbial activity across aerated contactors are lacking. A 1-year pilot study comparing gravel- and ceramic-packed contactors was conducted, and media depth profile samples were collected at the conclusion of the study. Media and water samples also were collected from pilot-scale aerated contactors at 4 other water systems. Water quality, media surface metals concentrations, and a suite of biofilm parameters were analyzed. Media surface metals concentrations were greatest at the influent end. ATP concentrations, extracellular polymeric substances, and extracellular enzyme activities tended to be similar across depth. Bacteria and functional genes involved in contaminant oxidation co-occurred and tended to decrease across depth, but were not correlated to the media metals concentration. Microbial community composition changed with depth, and the diversity either decreased or remained similar. The microbial activity profiles through aerated contactors differed from what is typically reported for groundwater biofilters, suggesting that the different reactor flow and dissolved oxygen profiles impacted the microbial community.
Collapse
Affiliation(s)
- Asher E. Keithley
- U.S. Environmental Protection Agency, ORD, CESER, WID, Cincinnati, OH 45268, United States
| | - Vicente Gomez-Alvarez
- U.S. Environmental Protection Agency, ORD, CESER, WID, Cincinnati, OH 45268, United States
| | - Daniel Williams
- U.S. Environmental Protection Agency, ORD, CESER, WID, Cincinnati, OH 45268, United States
| | - Hodon Ryu
- U.S. Environmental Protection Agency, ORD, CESER, WID, Cincinnati, OH 45268, United States
| | - Darren A. Lytle
- U.S. Environmental Protection Agency, ORD, CESER, WID, Cincinnati, OH 45268, United States
| |
Collapse
|
4
|
Gutkoski JP, Schneider EE, Michels C. How effective is biological activated carbon in removing micropollutants? A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119434. [PMID: 39492392 DOI: 10.1016/j.jenvman.2023.119434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Micropollutants (MPs), also called emerging contaminants, are detected in various environmental compartments. Wastewater is their main entry pathway due to the incomplete removal of MPs in wastewater treatment plants (WWTPs). These contaminants are a risk to human health and the integrity of the ecosystem because they are persistent and toxic to organisms. Complementary treatments such as adsorption are studied to increase the efficiency of existing WWTPs. However, a disadvantage of using activated carbon is its high cost of production and regeneration. Biological activated carbon (BAC) is an alternative to overpass this scenario. In BAC, biofilm development occurs on the surface of activated carbon, which enables bioregeneration of the adsorbent and extends its lifetime. This review focused on the studies that applied BAC to remove MPs in aqueous matrices. The review methodology was based on bibliometric and systematic analysis. Tables and thematic maps were presented to investigate trends and gaps in research and related themes. The study points out the leading MPs researched in adsorption in the last ten years. The systematic analysis showed that most studies bring sequential treatments with real wastewater/water, in which BAC is the final process. BAC has the potential to be a complementary treatment for removing MPs. However, there is a lack of articles investigating only BAC as the main tertiary treatment. Topics that should be further investigated in this area are the microbiological community formed in the biofilm, the column's lifetime, and the cost analysis of BAC implementation and operation.
Collapse
Affiliation(s)
- Júlia Pedó Gutkoski
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Elisângela Edila Schneider
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Camila Michels
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
5
|
Cheng Q, Tian H, Guo X, Feng S, Du E, Peng M, Zhang J. Advanced synergetic nitrogen removal of municipal wastewater using oxidation products of refractory organic matters in secondary effluent by biogenic manganese oxides as carbon source. WATER RESEARCH 2023; 241:120163. [PMID: 37276654 DOI: 10.1016/j.watres.2023.120163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Due to the high operational cost and secondary pollution of the conventional advanced nitrogen removal of municipal wastewater, a novel concept and technique of advanced synergetic nitrogen removal of partial-denitrification anammox and denitrification was proposed, which used the oxidation products of refractory organic matters in the secondary effluent of municipal wastewater treatment plant (MWWTP) by biogenic manganese oxides (BMOs) as carbon source. When the influent NH4+-N in the denitrifying filter was about 1.0, 2.0, 3.0, 4.0, 5.0 and 7.0 mg/L, total nitrogen (TN) in the effluent decreased from about 22 mg/L to 11.00, 7.85, 6.85, 5.20, 4.15 and 2.09 mg/L, and the corresponding removal rate was 49.15, 64.82, 69.40, 76.70, 81.36 and 90.58%, respectively. The proportional contribution of the partial-denitrification anammox pathway to the TN removal was 12.00, 26.45, 39.70, 46.04, 54.97 and 64.01%, and the actual CODcr consumption of removing 1 mg TN was 0.75, 1.43, 1.26, 1.17, 1.08 and 0.99 mg, respectively, which was much lower than the theoretical CODcr consumption of denitrification. Furthermore, CODcr in the effluent decreased to 8.12 mg/L with a removal rate of 72.40%, and the removed organic matters were mainly non-fluorescent organic matters. Kinds of denitrifying bacteria, anammox bacteria, hydrolytic bacteria and manganese oxidizing bacteria (MnOB) were identified in the denitrifying filter, which demonstrated that the advanced synergetic nitrogen removal was achieved. This novel technology presented the advantages of high efficiency of TN and CODcr removal, low operational cost and no secondary pollution.
Collapse
Affiliation(s)
- Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China.
| | - Hui Tian
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China.
| | - Shanshan Feng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
6
|
Kang J, Song CQ, Zhou N, Zhang YW, Liu SL, Song GF, Zhou WN. Modeling the Operating Performance of a Drinking Water Biological Aerated Filter and the Formation of Organic Nitrogen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59579-59595. [PMID: 37010682 DOI: 10.1007/s11356-023-26116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/21/2023] [Indexed: 05/10/2023]
Abstract
In this study, simultaneous storage and growth mechanism, as well as the formation processes of organic nitrogen (ON), were both introduced into activated sludge model 3 (ASM3), and ASM3-ON was formed to predict the operation of biofilm treatment processes and the formation of dissolved organic nitrogen (DON). ASM3-ON was applied to a lab-scale biological aerated filter (BAF) for water supply. During the simulation, the sensitivities of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), nitrate nitrogen (NOx--N), and DON to the stoichiometric and kinetic coefficients in the model were analyzed first by the Sobol method. Then, the model prediction results were compared with experimental values to calibrate ASM3-ON. In the validation process, ASM3-ON was applied to predict the variations of COD, NH4+-N, NO2--N, and NO3--N in BAF under different aeration ratios (0, 0.5:1, 2:1, and 10:1) and different filtration velocities (0.5, 2, and 4 m/h). The comparison with the experimental results showed that ASM3-ON could accurately predict the variation characteristics of COD, NH4+-N, NOx--N, and DON in BAF. This study provided a practical model approach to optimize the operating performance of BAF and reduce the formation of ON through nonexperimental methods.
Collapse
Affiliation(s)
- Jia Kang
- School of Environmental and Municipal Engineering, Ural Institute, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
- Zhong Zhou Water Holding Co., Ltd, Zhengzhou, 450046, China
| | - Chu-Qiong Song
- School of Environmental and Municipal Engineering, Ural Institute, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Ning Zhou
- School of Environmental and Municipal Engineering, Ural Institute, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Yao-Wen Zhang
- School of Environmental and Municipal Engineering, Ural Institute, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Shu-Li Liu
- School of Environmental and Municipal Engineering, Ural Institute, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
- Zhong Zhou Water Holding Co., Ltd, Zhengzhou, 450046, China
| | - Gang-Fu Song
- School of Environmental and Municipal Engineering, Ural Institute, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
- Zhong Zhou Water Holding Co., Ltd, Zhengzhou, 450046, China.
| | - Wa-Ni Zhou
- Zhong Zhou Water Holding Co., Ltd, Zhengzhou, 450046, China
| |
Collapse
|
7
|
Zhang R, Huang T, Wen G, Tian X, Tang Z. Removal of ammonium and manganese from surface water using a MeO x filter system as a pretreatment process. ENVIRONMENTAL TECHNOLOGY 2023; 44:1302-1312. [PMID: 34709999 DOI: 10.1080/09593330.2021.2000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Residual aluminium from the coagulation-sedimentation process in the treatment of surface water can decrease the catalytic activity of a manganese co-oxide filter film (MeOx) used for ammonium and manganese removal. To solve this problem, a MeOx filter was used as a pretreatment process to filtrate source water directly before the coagulation and sedimentation treatment. The removal performance and the mechanism of change in the activity of MeOx were investigated. The experimental results indicated that the MeOx filter removed ammonium and manganese from surface water sources effectively, and its manganese removal activity was enhanced. The characteristics of MeOx were investigated via SEM, EDS, XPS, and the BET surface area. Analysis of the experimental results showed that the increase in the content of Al under this condition was much lower than that under treatment with the coagulation-sedimentation process. After long-term operation, the amount and surface area of MeOx coated on the filter sand increased significantly, leading to an increase in the catalytic activity. However, in cold water, the catalytic activity of MeOx decreased, and more Mn(II) was obtained on the surface of MeOx. Thus, the morphology of MeOx changed. Fortunately, when water temperature increases, the removal activity can recover immediately. By inactivating microorganisms and comparing the removal performance with that under other conditions, the MeOx activity of the pretreatment process is preserved effectively and no strengthening measures are required. This study will provide a new strategy for the use of the MeOx catalytic technology.
Collapse
Affiliation(s)
- Ruifeng Zhang
- School of Urban Planning and municipal engineering, Xi'an Polytechnic University, Xi'an, PR People's Republic of China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
| | - Xuan Tian
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
| | - Zhangcheng Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, PR People's Republic of China
| |
Collapse
|
8
|
Cheng Q, Liu Z, Huang Y, Feng S, Du E, Peng M, Zhang J. Advanced nitrogen removal performance and microbial community structure of a lab-scale denitrifying filter with in-situ formation of biogenic manganese oxides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117299. [PMID: 36642053 DOI: 10.1016/j.jenvman.2023.117299] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Advanced nitrogen removal faces the challenges of high operational cost resulted from the additional carbon source and secondary pollution caused by inaccurate carbon source dosage in municipal wastewater. To address these problems, a novel carbon source was developed, which was the oxidation products of refractory organic matters in the secondary effluent of municipal wastewater treatment plant (MWWTP) by in-situ generated biogenic manganese oxides (BMOs) in the denitrifying filter. In the steady phase, the effluent chemical oxygen demand (CODcr), NO3--N and total nitrogen (TN) in the denitrifying filter 2# with BMOs was 11.27, 9.03 and 10.36 mg/L, and the corresponding removal efficiency was 54.79%, 51.85% and 48.03%, respectively, which was significantly higher than those in the control denitrifying filter 1# that the removal efficiency of CODcr, NO3--N and TN was only 32.30%, 28.58% and 29.36%, respectively. Kinds of denitrifying bacteria (Candidatus Competibacter, Defluviicoccus, Dechloromonas, Candidatus Competibacter, Dechloromonas, Pseudomonas, Thauera, Acinetobacter, Denitratisoma, Anaerolineae and Denitratisoma) and anammox bacteria (Pirellula, Gemmata, Anammoximicrobium and Brocadia) were identified in the denitrifying filters 1# and 2#, which explained why the actual CODcr consumption (1.55 and 1.44 mg) of reducing 1 mg NO3--N was much lower than the theoretical CODcr consumption. While manganese oxidizing bacteria (MnOB, Bacillus, Crenothrix and Pedomicrobium) was only identified in the denitrifying filter 2#. This novel technology presented the advantages of no additional carbon source, low operational cost and no secondary pollution. Therefore, the novel technology has superlative application value and broad application prospect.
Collapse
Affiliation(s)
- Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China; College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China.
| | - Zongyang Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Yang Huang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Shanshan Feng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
9
|
Han W, Zhou J, Sheng D, Wu D, Zhou H, Yang Z, Yin J, Xia C, Kan Y, He J. Integration of a pure moving bed biofilm reactor process into a large micro-polluted water treatment plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:3051-3066. [PMID: 36579869 DOI: 10.2166/wst.2022.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The pure-MBBR process was applied to remove ammonia in a full-scale micro-polluted-water treatment plant with a daily treatment capacity of 260 × 104 m3/d, Guangdong, China. The relationship between treatment efficiency, physical and chemical properties and microbial diversity in the process of biofilm growth was explored, and the oxygen transfer model of biofilm was established. The results show that the effluent of two-stage pure MBBR process is stable and up to standard after 10 days' incubation. The nitrification loads of two-stage biofilm was stable on the 14th day. The biomass and biofilm thickness lagged behind the nitrification load, and reached a relatively stable level on the 28th day. The species richness of biofilm basically reached a stable level on the 21st day, and the microbial diversity of primary biofilm was higher. In the primary and secondary stage at different periods, the relative abundance of dominant nitrifying bacteria Nitrospira reaches 8.48-13.60%, 6.48-9.27%, and Nitrosomonas reaches 2.89-5.64%, 0.00-3.48%. The pure MBBR system mainly adopts perforated aeration. Through the cutting and blocking of bubbles by suspended carriers, the oxygen transfer rate of the system was greatly improved.
Collapse
Affiliation(s)
- Wenjie Han
- Biofilm Research Institute, Qingdao Spring Water Treatment Co. Ltd, Qingdao 266555, P. R. China E-mail:
| | - Jiazhong Zhou
- Biofilm Research Institute, Qingdao Spring Water Treatment Co. Ltd, Qingdao 266555, P. R. China E-mail:
| | - Deyang Sheng
- Dongguan Water Group Co., Ltd, Dongguan 523109, P. R. China
| | - Di Wu
- Biofilm Research Institute, Qingdao Spring Water Treatment Co. Ltd, Qingdao 266555, P. R. China E-mail:
| | - Haoran Zhou
- Biofilm Research Institute, Qingdao Spring Water Treatment Co. Ltd, Qingdao 266555, P. R. China E-mail:
| | - Zhongqi Yang
- Biofilm Research Institute, Qingdao Spring Water Treatment Co. Ltd, Qingdao 266555, P. R. China E-mail:
| | - Jianwen Yin
- Biofilm Research Institute, Qingdao Spring Water Treatment Co. Ltd, Qingdao 266555, P. R. China E-mail:
| | - Chao Xia
- Biofilm Research Institute, Qingdao Spring Water Treatment Co. Ltd, Qingdao 266555, P. R. China E-mail:
| | - Yujiao Kan
- School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Li K, Xu W, Han M, Cheng Y, Wen G, Huang T. Integration of iron-manganese co-oxide (FMO) with gravity-driven membrane (GDM) for efficient treatment of surface water containing manganese and ammonium. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Kang J, Song GF, Liu SL, Song CQ, Gao X. Spectral characterization of the effect of gas-water ratio on dissolved organic nitrogen variation along a drinking water biological aerated filter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65743-65751. [PMID: 34322795 DOI: 10.1007/s11356-021-15528-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
To improve the understanding of dissolved organic nitrogen (DON) variation characteristics in a biological aerated filter (BAF) used for drinking water treatment, this study investigated the effects of gas-water ratios (0, 0.5:1, 2:1, and 10:1), a controlling factor of BAF operation, on DON characteristics. The dissolved organic carbon (DOC) removal efficiency in the BAF was consistent with DON concentration and increased as the gas-water ratio increased to a certain point, above which the increase gradually decreased. The optimal gas-water ratio in this study was considered to be 2:1 from the perspective of DOC removal and DON reduction. Use of fluorescence regional integration (FRI) and parallel factor (PARAFAC) model to analyze the effects of the gas-water ratio on the spectral characteristics of DON revealed that humic acid-like substances were not sensitive to the gas-water ratio, while protein-like substances were more sensitive. Increasing the gas-water ratio was beneficial to the reduction of biodegradable DON. Correlation analysis showed that the results obtained using FRI were consistent with those obtained using the PARAFAC model under different gas-water ratios.
Collapse
Affiliation(s)
- Jia Kang
- School of Environmental and Municipal Engineering and Key Laboratory of Water Environment Simulation and Governance in Henan Province, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
- Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
- Kaiyuan Environmental Protection (Group) Co.,Ltd., Xinyang, 465335, China.
| | - Gang-Fu Song
- School of Environmental and Municipal Engineering and Key Laboratory of Water Environment Simulation and Governance in Henan Province, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
- Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China
| | - Shu-Li Liu
- School of Environmental and Municipal Engineering and Key Laboratory of Water Environment Simulation and Governance in Henan Province, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
- Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China
| | - Chu-Qiong Song
- School of Environmental and Municipal Engineering and Key Laboratory of Water Environment Simulation and Governance in Henan Province, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Xu Gao
- Chongqing Water Group Co., Ltd., Chongqing, 400045, China
- Chongqing Sino French Environmental Protection Research and Development Center Co., Ltd., Chongqing, 400045, China
| |
Collapse
|
12
|
Wang Y, Xu H, Shen Z, Liu C, Ding M, Lin T, Tao H, Chen W. Variation of carbonaceous disinfectants by-products precursors and their correlation with molecular characteristics of dissolved organic matter and microbial communities in a raw water distribution system. CHEMOSPHERE 2021; 283:131180. [PMID: 34467942 DOI: 10.1016/j.chemosphere.2021.131180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
The raw water distribution systems (RWDSs) play key roles in urban water supply systems. The changes of disinfection byproducts (DBPs) precursors of trihalomethanes (THMs), haloacetic acids (HAAs) and halogenated acetaldehydes (HALs) in the RWDS in Taihu Basin were investigated by formation potentials. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) method and 454-pyrosequencing were employed to study the variation of molecular characteristics of low molecular weight-dissolved organic matter (LMW-DOM) and microbial communities of pipeline biofilms respectively, which played crucial roles in the variation of DBPs precursors. The results showed that both DBPs precursors and the molecular characteristics of LMW-DOM in the RWDS had changed. Moreover, the LMW-DOM could be an indicator due to the good positive correlation with precursors of HAAs and HALs. Specifically, the LMW-DOM showed continuous accumulation in the RWDS. The LMW-DOM tended to possess higher m/z and more CH2 or long alkyl chains while pre-chlorination controlled this trend. The LMW-DOM in the pre-chlorinated pipe section also possessed higher saturation. Additionally, lignins served as an important part of DBPs precursors and dominated the LMW-DOM. The microbial diversity decreased in the RWDS, and the abundance and diversity of the microbial community in the pre-chlorinated section were significantly lower than those in the no-chlorinated section. Finally, most DBPs precursors had positive correlation with dominant phylum and genus in RWDS. This study reveals variation of DBPs precursors, LMW-DOM and microbial pipeline biofilms as well, and provide important data for further research on raw water safety and stability in RWDSs.
Collapse
Affiliation(s)
- Yueting Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Zhen Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Chenwei Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Mingmei Ding
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Tao Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Hui Tao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| |
Collapse
|
13
|
Adsorption of Mn2+ from Aqueous Solution Using Manganese Oxide-Coated Hollow Polymethylmethacrylate Microspheres (MHPM). ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/5597299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Results of investigation on adsorption of Mn2+ from aqueous solution by manganese oxide-coated hollow polymethylmethacrylate microspheres (MHPM) are reported here. This is the first report on Mn-coated hollow polymer as a substitute for widely used materials like green sand or MN-coated sand. Hollow polymethylmethacrylate (HPM) was prepared by using a literature procedure. Manganese oxide (MnO) was coated on the surface of HPM (MHPM) by using the electroless plating technique. The HPM and MHPM were characterized by using optical microscopy (OM), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Optical and scanning micrographs were used to monitor the surface properties of the coated layer which revealed the presence of MnO on the surface of HPM. TGA showed the presence of 4-5% of MnO in MHPM. Adsorption isotherm studies were carried out as a function of pH, initial ion concentration, and contact time, to determine the adsorption efficiency for removal of Mn2+ from contaminated water by the synthesized MHPM. The isotherm results showed that the maximum adsorption capacity of MnO-coated HPM to remove manganese contaminants from water is 8.373 mg/g. The obtained
values of Langmuir isotherm and Freundlich isotherm models were 1 and 0.87, respectively. Therefore,
magnitude confirmed that the Langmuir model is best suited for Mn2+ adsorption by a monolayer of MHPM adsorbent. The material developed shows higher adsorption capacity even at a higher concentration of solute ions, which is not usually observed with similar materials of this kind. Overall findings indicate that MHPM is a very potential lightweight adsorbent for removal of Mn2+ from the aqueous solution because of its low density and high surface area.
Collapse
|
14
|
Cheng Q, Liu Z, Huang Y, Li F, Nengzi L, Zhang J. Influence of temperature on COD Mn and Mn 2+ removal and microbial community structure in pilot-scale biofilter. BIORESOURCE TECHNOLOGY 2020; 316:123968. [PMID: 32781387 DOI: 10.1016/j.biortech.2020.123968] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Test water temperature (TWT) is a significant operational parameter in biofilter. In this study, a pilot-scale biofilter was established to investigate the removal efficiency of CODMn and Mn2+ and the microbial community structure at different TWT. When CODMn and Mn2+ in the influent were 6-8 and 0.9-1.2 mg/L, respectively, the removal rates were 22.61% and 94.28% at the low TWT, while 69.42% and 97.85% at the high TWT, respectively. Biological CODMn and Mn2+ removal followed the first-order reaction, and at the low and high TWT, the k value was 0.00704 and 0.0738 and 0.0313 and 0.113 min-1, respectively. Organic matter oxidizing bacteria (OMOB, Sphingopyxis, Sphingomonas, Amphiplicatus, Novosphingobium, Gemmatimonas, Chryseolinea and Sphingobium) and manganese oxidizing bacteria (MnOB, Hyphomicrobium, Pedomicrobium and Pseudomonas) were coexisted in 0-1.5 m of the biofilter bed at the low and high TWT, and the abundances were not the main factor affecting the removal efficiency, however the activity.
Collapse
Affiliation(s)
- Qingfeng Cheng
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China.
| | - Zongyang Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Yang Huang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Fengjiao Li
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Lichao Nengzi
- College of Resources and Environment, Xichang University, Xichang 615000, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
15
|
Lytle DA, Williams D, Muhlen C, Riddick E, Pham M. The removal of ammonia, arsenic, iron and manganese by biological treatment from a small Iowa drinking water system. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2020; 6:3142-3156. [PMID: 33628452 PMCID: PMC7898138 DOI: 10.1039/d0ew00361a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although not regulated in United States drinking water, ammonia has the potential to increase chlorine consumption and cause nitrification problems in the distribution system. Many groundwaters with elevated ammonia are also contaminated with other inorganic analytes such as arsenic, iron, and manganese, all of which have primary or secondary maximum contaminant levels (MCLs). The objective of this work was to demonstrate the effectiveness of an innovative biological treatment process to simultaneously remove ammonia (2.9 mg N per L), arsenic (23 μg L-1), iron (2.9 mg L-1) and manganese (80 μg L-1) from a groundwater source in Iowa. The biological treatment system consisted of an "aeration contactor" followed by a conventional granular media filter. Orthophosphate was also added, as a biological nutrient, at 0.3 mg PO4 per L. Ammonia, manganese, and iron were consistently reduced through the pilot system by 98 to 99%. Complete oxidation of ammonia to nitrate was observed (i.e., no nitrite was released) and arsenic was consistently removed to below the 10 μg L-1 MCL. Ammonia was oxidized by ammonia and nitrite oxidizing bacteria and arsenic by bacteria which converted As(III) in the source water to more readily removable As(V). Iron was presumably oxidized by oxygen during aeration although some biologically assisted oxidation could not be ruled out. As(V) bound iron particles were removed in the filter resulting in effective arsenic (and iron) reduction. A surprising treatment benefit was the effective manganese reduction, the mechanism of which was not so clear, but was attributed to biologically assisted oxidation of Mn(II). While some system acclimation time was necessary to achieve desired ammonia and manganese reductions, acceptable arsenic and iron reductions were observed shortly after start-up.
Collapse
Affiliation(s)
- Darren A Lytle
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Water Infrastructure Division, Cincinnati, Ohio 45268, USA
| | - Daniel Williams
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Water Infrastructure Division, Cincinnati, Ohio 45268, USA
| | - Christy Muhlen
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Water Infrastructure Division, Cincinnati, Ohio 45268, USA
| | - Eugenia Riddick
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Water Infrastructure Division, Cincinnati, Ohio 45268, USA
| | - Maily Pham
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response, Water Infrastructure Division, Cincinnati, Ohio 45268, USA
| |
Collapse
|
16
|
Meng L, Zuo R, Brusseau ML, Wang JS, Liu X, Du C, Zhai Y, Teng Y. Groundwater pollution containing ammonium, iron and manganese in a riverbank filtration system: Effects of dynamic geochemical conditions and microbial responses. HYDROLOGICAL PROCESSES 2020; 34:4175-4189. [PMID: 33414574 PMCID: PMC7785088 DOI: 10.1002/hyp.13856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bench-scale experiments were conducted to investigate the effect of hydraulic loadings and influent concentration on the migration and biotransformation behavior of three groundwater pollutants: ammonium (NH4 +), iron (Fe2+) and manganese (Mn2+). Columns packed with aquifer media collected from a river bank filtration (RBF) site in Harbin City, NE China were introduced synthetic groundwater (SGW) or real groundwater (RGW) were at two different constant flow rates and initial contaminant concentrations to determine the impact of system conditions on the fate of the target pollutants biotransformation. The results showed that the biotransformation rate of Fe2+ Mn2+, and NH4 + decreased by 8%, 39% and 15% under high flow rate (50 L d-1) compared to low flow rate (25 L d-1), which was consistent with the residence-time effect. While the biotransformation rate of Fe2+ Mn2+, and NH4 + decreased by 7%, 14% and 9% under high influent concentration compared to original groundwater. The 16S rRNA analysis of the aquifer media at different depths after experiments completion demonstrated that the relative abundance of major functional microbes iron oxidizing bacteria (IOB) and manganese oxidizing bacteria (MnOB) under higher flow rate and higher influent concentration decreased 13%, 14% and 25%, 24%, respectively, whereas the ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) exhibited minimal change, compared to the lower flow rate. Above all results indicated that both high flow rate and high concentration inhibit the biotransformation of NH4 +, Fe2+ and Mn2+. The biotransformation of Fe2+ and Mn2+ occurs primarily in the 0-40 cm and 20-60 cm depth intervals, respectively, whereas the NH4 + biotransformation appears to occur relatively uniformly throughout the whole 110cm column. The biotransformation kinetics of NH4 + in RGW and SGW, Mn2+ in RGW at different depths accords with the first order kinetics model, while Fe2+ in RGW and SGW, Mn2+ in SGW presented more complicated biotransformation process. The results should improve understanding of the transport and fate of common groundwater pollutants in riverbank filtration and other groundwater recharge environments.
Collapse
Affiliation(s)
- Li Meng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Rui Zuo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Mark L Brusseau
- Department of Soil Water and Environmental Science, The University of Arizona
| | - Jin-Sheng Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Xin Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Can Du
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| |
Collapse
|
17
|
Mixed Oxide Layered Double Hydroxide Materials: Synthesis, Characterization and Efficient Application for Mn 2+ Removal from Synthetic Wastewater. MATERIALS 2020; 13:ma13184089. [PMID: 32942612 PMCID: PMC7560423 DOI: 10.3390/ma13184089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/26/2023]
Abstract
Magnesium–aluminum (Mg-Al) and magnesium–aluminum–nickel (Mg-Al-Ni) layered double hydroxides (LDHs) were synthesized by the co-precipitation method. The adsorption process of Mn2+ from synthetic wastewater was investigated. Formation of the layered double hydroxides and adsorption of Mn2+ on both Mg-Al and Mg-Ni-Al LDHs were observed by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometry (EDX) analysis. XRD patterns for prepared LDHs presented sharp and symmetrical peaks. SEM studies revealed that Mg-Al LDH and Mg-Al-Ni LDH exhibit a non-porous structure. EDX analysis showed that the prepared LDHs present uniformly spread elements. The adsorption equilibrium on these LDHs was investigated at different experimental conditions such as: Shaking time, initial Mn2+ concentration, and temperatures (10 and 20 °C). The parameters were controlled and optimized to remove the Mn2+ from synthetic wastewater. Adsorption isotherms of Mn2+ were fitted by Langmuir and Freundlich models. The obtained results indicated that the isotherm data fitted better into the Freundlich model than the Langmuir model. Adsorption capacity of Mn2+ gradually increased with temperature. The Langmuir constant (KL) value of Mg-Al LDH (0.9529 ± 0.007 L/mg) was higher than Mg-Al-Ni LDH (0.1819 ± 0.004 L/mg), at 20 °C. The final adsorption capacity was higher for Mg-Al LDH (91.85 ± 0.087%) in comparison with Mg-Al-Ni LDH (35.97 ± 0.093%), at 20 °C. It was found that the adsorption kinetics is best described by the pseudo-second-order model. The results indicated that LDHs can be considered as a potential material for adsorption of other metallic ions from wastewater.
Collapse
|
18
|
Bao T, Yu ZM, Damtie MM, Wu K, Jin J, Zhang Y, Wei XL, Frost RL. Use of autoclaved aerated concrete particles for simultaneous removal of nitrogen and phosphorus as filter media from domestic wastewater. ENVIRONMENTAL TECHNOLOGY 2020; 41:3032-3042. [PMID: 30888252 DOI: 10.1080/09593330.2019.1595742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
ABSTRACT In this study, autoclaved aerated concrete particles (AACPs) from construction waste were used to simultaneously remove phosphorus and nitrogen in biological aerated filters (BAFs). The effects of air/water (A/W) ratio on the removal performance of phosphorus (PO4 3-), total organic carbon, total nitrogen (TN), and ammonia nitrogen were investigated. Results showed that AACP BAF was more efficient than commercially available ceramsite (CAC) BAF. For example, the removal rates of TN with AACP and CAC were 45.96% and 15.64%, respectively, and those of PO4 3- with AACP and CAC were 72.45% and 33.97%, respectively, at the A/W ratio of 3:1. Different characterization methods were utilized to evaluate the surface shape, elemental compostion, and internal and surface structure of AACP. The interconnectivity and uniformity of pores and the rough surface of AACP were found to be suitable for the growth of microbial biofilm. In addition, the growth of internal pores in AACP promoted the removal of phosphorus and nitrogen. The surface of used AACP contained a small amount of irregular crystals and was covered with a layer of aggregates, which were characterized as hydroxyapatite [HAP, Ca5(OH)(PO4)3]. The formation of HAP as a final byproduct confirmed the successful removal of phosphorus. Therefore, construction wastes, such as AACPs, could be recycled and utilized as a promising biofilter media for excellent wastewater treatment.
Collapse
Affiliation(s)
- Teng Bao
- Department of Biological and Environmental Engineering, Hefei University, Hefei, People's Republic of China
- Nanotechnology and Molecular Science Discipline, Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Australia
- Institute of Environmental Engineering, Hefei University, Hefei, People's Republic of China
| | - Zhi Ming Yu
- Department of Biological and Environmental Engineering, Hefei University, Hefei, People's Republic of China
- Institute of Environmental Engineering, Hefei University, Hefei, People's Republic of China
| | - Mekdimu Mezemir Damtie
- Department of Construction Environment Engineering, University of Science & Technology (UST), Daejeon, South Korea
| | - Ke Wu
- Department of Biological and Environmental Engineering, Hefei University, Hefei, People's Republic of China
- Institute of Environmental Engineering, Hefei University, Hefei, People's Republic of China
| | - Jie Jin
- Department of Biological and Environmental Engineering, Hefei University, Hefei, People's Republic of China
- Institute of Environmental Engineering, Hefei University, Hefei, People's Republic of China
| | - Yong Zhang
- Department of Biological and Environmental Engineering, Hefei University, Hefei, People's Republic of China
- Institute of Environmental Engineering, Hefei University, Hefei, People's Republic of China
| | - Xing Lai Wei
- Department of Biological and Environmental Engineering, Hefei University, Hefei, People's Republic of China
- Institute of Environmental Engineering, Hefei University, Hefei, People's Republic of China
| | - Ray L Frost
- Nanotechnology and Molecular Science Discipline, Faculty of Science and Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
19
|
Shen Z, Wang Y, Chen W, Xu H, Zhang L, Lin C, Lin T, Tao H, Mei C, Lu C. Investigation of nitrogen pollutants transformation and its pathways along the long-distance prechlorinated raw water distribution system. CHEMOSPHERE 2020; 255:126833. [PMID: 32387724 DOI: 10.1016/j.chemosphere.2020.126833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Understanding the transformation pattern of nitrogen (N) pollutants and its pathways in the prechlorinated raw water distribution system (PRWDS) is vital for controlling the stablitiy and safety of raw water qulity. This study investigated the N transformation, N functional genes and their correlations to find the N transformation pathways along the PRWDS. Results suggested that simultaneous nitrification, anaerobic ammonium oxidation and denitrification (SNAD) contribute to the N transformationin the PRWDS. Along the pipeline, anammox 16S rRNA (9.18 × 107-8.41 × 108 copies/g), limited by prechlorination, was the most abundant N functional genes and anammox process was the main pathway of ammonia nitrogen (NH4+-N). The decreasing NH4+-N was connected with Planctomycetes, Nitrospira and abundance of nxrA attributing to the joint effort of anammox and declined nitrification. The concentration of nitrate (NO3--N) increasing at first and then decreasing, was correlated positively with Sphingomonas. because of the declined nitritication and increased denitrification. Besides, the NO3--N→NO2--N process was considered to be primary NO3--N transformation pathways. Increases in the concentration of dissolved organic nitrogen (DON) and nitrite (NO2--N) observed in the PRWDS had positive correlation with relative abundance of Pseudomonas. We believe that prechlorination shaped the particular bacterialcharacteristics in biofilms and influenced the N transformation pathways indirectly, resulting in the varying N transformation rules in PRWDSs. Moreover, systematic and extended research is particularly vital for determining the effects of changes in source water quality and environmental conditions on bacterial community structure and N conversion along PRWDSs.
Collapse
Affiliation(s)
- Zhen Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China; Wanjiang University of Technology, Maanshan, 243031, China.
| | - Yueting Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Lei Zhang
- College of Civil and Architechure Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou, 239000, China.
| | - Chenshuo Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Tao Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Hui Tao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Caihua Mei
- College of Civil and Architechure Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou, 239000, China.
| | - Chunhui Lu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China.
| |
Collapse
|
20
|
Mei X, Ding Y, Wang Y, Yang Y, Xu L, Wang Y, Shen W, Zhang Z, Ma M, Guo Z, Xiao Y, Yang X, Zhou B, Xu K, Guo W, Wang C. A novel membrane-aerated biofilter for the enhanced treatment of nitroaniline wastewater: Nitroaniline biodegradation performance and its influencing factors. BIORESOURCE TECHNOLOGY 2020; 307:123241. [PMID: 32244078 DOI: 10.1016/j.biortech.2020.123241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Nitroaniline (NA) wastewater is known to be highly toxic and biodegradation-resistant. Based on the principles of molecular oxygen supply and biofilm formation, a novel membrane-aerated biofilter (MABF) combining membrane aeration with a biofilter was established for the first time to treat NA wastewater containing the same concentrations of p-nitroaniline (PNA) and o-nitroaniline (ONA). The NA wastewater treatment performance of the MABF was investigated, and the NA biodegradation characteristics were evaluated. When the influent NA concentration was 120 mg/L, the PNA and ONA removal rates reached 100% and 86.56%, respectively. The NA removal loading reached 111.62 g/m3·d, and the total nitrogen (TN) removal rate reached 82.97%. The synergistic effects of the diverse microorganisms in the membrane-aerated and nonaerated zones of the MABF enhanced the removal of NA and nitrogen. This MABF is an economically efficient and environmentally friendly technology for treating wastewater containing toxic and hazardous organic compounds.
Collapse
Affiliation(s)
- Xiang Mei
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yang Ding
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yihan Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wentian Shen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zimiao Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Mengyuan Ma
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhongwei Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yanyan Xiao
- Nanjing Haiyi Environmental Protection Engineering Co., Ltd., Nanjing 211200, China
| | - Xu Yang
- Nanjing Haiyi Environmental Protection Engineering Co., Ltd., Nanjing 211200, China
| | - Baochang Zhou
- Nanjing RGE Membrane Tech Co., Ltd., Nanjing 210012, China
| | - Kang Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chaofan Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
21
|
Michel MM, Reczek L, Papciak D, Włodarczyk-Makuła M, Siwiec T, Trach Y. Mineral Materials Coated with and Consisting of MnO x-Characteristics and Application of Filter Media for Groundwater Treatment: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2232. [PMID: 32413999 PMCID: PMC7287796 DOI: 10.3390/ma13102232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/25/2020] [Accepted: 05/06/2020] [Indexed: 12/04/2022]
Abstract
For groundwater treatment, the technologies involving oxidation on MnOx filter bed are beneficial, common, and effectively used. The presence of MnOx is the mutual feature of filter media, both MnOx-coated mineral materials like quartz sand and gravel, chalcedonite, diatomite, glauconite, zeolite, or anthracite along with consisting of MnOx manganese ores. This review is based on the analysis of research and review papers, commercial data sheets, and standards. The paper aimed to provide new suggestions and useful information for further investigation of MnOx filter media for groundwater treatment. The presented compilations are based on the characteristics of coatings, methods, and conditions of its obtaining and type of filter media. The relationship between the properties of MnOx amendments and the obtained purification effects as well as the commonly used commercial products, their features, and applications have been discussed. The paper concludes by mentioning about improving catalytic/adsorption properties of non-reactive siliceous media opposed to ion-exchange minerals and about possible significance of birnessite type manganese oxide for water treatment. Research needs related to the assessment of the use MnOx filter media to heavy metals removal from groundwater in field operations and to standardize methodology of testing MnOx filter media for water treatment were identified.
Collapse
Affiliation(s)
- Magdalena M. Michel
- Institute of Environmental Engineering, Warsaw University of Life Sciences—SGGW, 166 Nowoursynowska st., 02-787 Warsaw, Poland; (L.R.); (T.S.)
| | - Lidia Reczek
- Institute of Environmental Engineering, Warsaw University of Life Sciences—SGGW, 166 Nowoursynowska st., 02-787 Warsaw, Poland; (L.R.); (T.S.)
| | - Dorota Papciak
- Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland;
| | - Maria Włodarczyk-Makuła
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, 69 Dąbrowskiego st., 42-200 Częstochowa, Poland;
| | - Tadeusz Siwiec
- Institute of Environmental Engineering, Warsaw University of Life Sciences—SGGW, 166 Nowoursynowska st., 02-787 Warsaw, Poland; (L.R.); (T.S.)
| | - Yuliia Trach
- Department of Water Supply, Water Disposal and Drilling Engineering, National University of Water and Environmental Engineering, 11 Soborna st., 33028 Rivne, Ukraine;
| |
Collapse
|
22
|
Zhang W, Zhang R, Yang Y, Huang T, Wen G. Removal of High Concentrations of Ammonium from Groundwater in a Pilot-Scale System through Aeration at the Bottom Layer of a Chemical Catalytic Oxidation Filter. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16203989. [PMID: 31635386 PMCID: PMC6843939 DOI: 10.3390/ijerph16203989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 11/30/2022]
Abstract
To remove high concentrations of ammonium from groundwater, pure oxygen and compressed air were fed into a chemical catalytic filter and the ammonium removal efficiency was investigated. The experimental results showed that the oxygen content is the critical limiting factor for ammonium removal. Aeration with 40 mL/min pure oxygen or 100 mL/min compressed air from the bottom of the filter supplied adequate oxygen and approximately 4.2 mg/L of ammonium was removed in this process. Moreover, when the aeration device was moved to 1/3 of the height of the filter bed, the required flow rates of pure oxygen and compressed air decreased further and the turbidity removal was improved. Pouring ozone gas into the filter system, which can inactivate bacteria effectively, can also obtain the remarkable ammonium removal, indicating that ammonium removal was mainly due to the chemical catalytic oxidation in this process rather than the biodegradation. This study provides a novel method for removing high concentrations of ammonium from groundwater.
Collapse
Affiliation(s)
- Wushou Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Ruifeng Zhang
- School of Urban Planning and municipal engineering, Xi'an Polytechnic University, Xi'an 710048, China.
| | - Yanfeng Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
23
|
Chen Y, Lin T, Chen W. Enhanced removal of organic matter and typical disinfection byproduct precursors in combined iron-carbon micro electrolysis-UBAF process for drinking water pre-treatment. J Environ Sci (China) 2019; 78:315-327. [PMID: 30665651 DOI: 10.1016/j.jes.2018.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
The organic matter and two types of disinfection byproduct (DBP) precursors in micro-polluted source water were removed using an iron-carbon micro-electrolysis (ICME) combined with up-flow biological aerated filter (UBAF) process. Two pilot-scale experiments (ICME-UBAF and UBAF alone) were used to investigate the effect of the ICME system on the removal of organic matter and DBP precursors. The results showed that ICME pretreatment removed 15.6% of dissolved organic matter (DOM) and significantly improved the removal rate in the subsequent UBAF process. The ICME system removed 31% of trichloromethane (TCM) precursors and 20% of dichloroacetonitrile (DCAN) precursors. The results of measurements of the molecular weight distribution and hydrophilic fractions of DOM and DBP precursors showed that ICME pretreatment played a key role in breaking large-molecular-weight organic matter into low-molecular-weight components, and the hydrophobic fraction into hydrophilic compounds, which was favorable for subsequent biodegradation by UBAF. Three-dimensional fluorescence spectroscopy (3D-EEM) further indicated that the ICME system improved the removal of TCM and DCAN precursors. The biomass analysis indicated the presence of a larger and more diverse microbial community in the ICME-UBAF system than for the UBAF alone. The high-throughput sequencing results revealed that domination of the genera Sphingomonas, Brevundimonas and Sphingorhabdus contributed to the better removal of organic matter and two types of DBP precursors. Also, Nitrosomonas and Pseudomonas were beneficial for ammonia removal.
Collapse
Affiliation(s)
- Yinghan Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
24
|
Zhang X, Ren P, Li W, Lei Y, Yang X, Blatchley ER. Synergistic removal of ammonium by monochloramine photolysis. WATER RESEARCH 2019; 152:226-233. [PMID: 30677633 DOI: 10.1016/j.watres.2018.12.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 12/07/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
The presence of ammonium (NH4+) in drinking water treatment results in inhibition of disinfection efficiency and formation of nitrogenous disinfection by-products. Our previous study found monochloramine (NH2Cl) photolysis under 254 nm UV irradiation can be effective for removal of NH4+; however, the mechanisms of NH4+ degradation in this process were unknown. The kinetics and fundamental radical chemistry responsible for NH4+ removal in the UV/NH2Cl process were investigated in this study. The results showed that the pseudo first-order rate constant for NH4+ degradation in the UV/NH2Cl process ranged between 3.6 × 10-4 to 1.8 × 10-3 s-1. Solution pH affected radical conversion and a higher NH4+ degradation efficiency was achieved under acidic conditions. The effects of chloride were limited; however, the presence of either bicarbonate or natural organic matter scavenged radicals and inhibited NH4+ removal. NH2Cl photolysis generated an aminyl radical (NH2•) and a chlorine radical (Cl•) that further transformed to a chlorine dimer (Cl2•-) and a hydroxyl radical (HO•). The second-order rate constants for Cl• and Cl2•- reacting with NH4+ were estimated as 2.59 × 108 M-1s-1 and 3.45 × 105 M-1s-1 at pH 3.9, respectively. Cl•, Cl2•-, and HO• contributed 95.2%, 3.5%, and 1.3% to NH4+ removal, respectively, at the condition of 3 mM NH2Cl and pH 7.5. Major products included nitrite and nitrate, possibly accompanied by nitrogen-containing gases. This investigation provides insight into the photochemistry of NH4+ degradation in the UV/NH2Cl process and offers an alternative method for drinking water production.
Collapse
Affiliation(s)
- Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Pengfei Ren
- Guangzhou Municipal Engineering Design & Research Institute, Guangzhou, 510060, China
| | - Weiguang Li
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907-2051, USA; Division of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, 47907-2051, USA
| |
Collapse
|
25
|
Tian X, Zhang R, Huang T, Wen G. The simultaneous removal of ammonium and manganese from surface water by MeO x: Side effect of ammonium presence on manganese removal. J Environ Sci (China) 2019; 77:346-353. [PMID: 30573099 DOI: 10.1016/j.jes.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 06/09/2023]
Abstract
Manganese and ammonium pollution in surface water sources has become a serious issue. In this study, a pilot-scale filtration system was used to investigate the effect of ammonium on manganese removal during the simultaneous removal of ammonium and manganese from surface water using a manganese co-oxide filter film (MeOx). The results showed that the manganese removal efficiency of MeOx in the absence of ammonium was high and stable, and the removal efficiency could reach 70% even at 5.5 °C. When the influent ammonium concentration was lower than 0.7 mg/L, ammonium and manganese could be removed simultaneously. However, at an ammonium concentration of 1.5 mg/L, the manganese removal efficiency of the filter gradually decreased with time (from 96% to 46.20%). Nevertheless, there was no impact of manganese on ammonium removal. The mechanism by which ammonium negatively affected manganese removal was investigated, demonstrating that ammonium affected manganese removal mainly through two possible mechanisms. On one hand, the decreased pH caused by ammonium oxidation was unfavorable for the oxidation of manganese by MeOx; on the other hand, the presence of ammonium slowed the growth of new MeOx and retarded the increase in the specific surface area of the MeOx-coated sand, and induced changes in the morphology and crystal structure of MeOx. Consequently, the manganese removal efficiency of the filter decreased when ammonium was present in the inlet water.
Collapse
Affiliation(s)
- Xuan Tian
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruifeng Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
26
|
Cheng Q, Huang Y, Nengzi L, Zhang J. Performance and microbial community profiles in pilot-scale biofilter for the simultaneous removal of ammonia, iron and manganese at different manganese concentrations. Bioprocess Biosyst Eng 2019; 42:741-752. [PMID: 30783765 DOI: 10.1007/s00449-019-02077-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/17/2019] [Indexed: 11/30/2022]
Abstract
To accelerate extensive application of biological manganese removal technology, a pilot-scale biofilter for ammonia, iron and manganese removal was constructed to investigate the removal performance and microbial community profiles at different manganese concentrations. When manganese in influent increased from 1 to 10 mg/L, the pollutants were completely removed. Ammonia and iron was slightly changed along the filter depth, while manganese obviously increased. In 0 m of the filter depth, the abundance of Gallionella (iron oxidizing bacteria, IOB) increased, while Crenothrix (IOB) decreased. The abundance of Gallionella (manganese oxidizing bacteria, MnOB) in 0.4 and 0.8 m increased to 16.82% and 12.37%, respectively; and Crenothrix (MnOB) in 0.8 m increased to 19.95%, but decreased to 25.08% in 0.4 m. The abundance of ammonia oxidizing bacteria (AOB, Nitrosococcus) decreased in 0.4 and 0.8 m. The biofilter presented a high ability to remove manganese, and had a broad application prospect.
Collapse
Affiliation(s)
- Qingfeng Cheng
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, People's Republic of China.
| | - Yang Huang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, People's Republic of China
| | - Lichao Nengzi
- College of Resources and Environment, Xichang University, Xichang, 615000, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| |
Collapse
|
27
|
Riley SM, Ahoor DC, Cath TY. Enhanced biofiltration of O&G produced water comparing granular activated carbon and nutrients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:419-428. [PMID: 29860011 DOI: 10.1016/j.scitotenv.2018.05.228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Large volumes of water are required for the development of unconventional oil and gas (O&G) wells. Water scarcity coupled with seismicity induced by deep-well disposal promote new O&G wastewater management strategies, specifically treatment and reuse. One technology that has been proven effective for removal of organic matter and solids is biologically active filtration (BAF) with granular active carbon (GAC); however, further optimization is needed to enhance BAF performance. This study evaluated three GAC media (one spent and two new) and two nutrient-mix supplements for enhanced removal of chemical oxygen demand (COD) and dissolved organic carbon (DOC). Biofilm development was also monitored and correlated to BAF performance. The spent GAC with extant biofilm quickly acclimated to PW and demonstrated up to 92% DOC removal (81% COD) in 24h, while little impact by nutrient addition was observed. In addition, virgin GAC was slow to establish a biofilm, indicating that appropriate GAC selection and pre-developed biofilm is critical for efficient BAF performance. Furthermore, the production of high quality BAF effluent (less than 20mg/L DOC) presents the opportunity to apply BAF as a pretreatment for subsequent desalination-expanding the potential for reuse applications of PW.
Collapse
Affiliation(s)
- Stephanie M Riley
- Civil and Environmental Engineering Department, Colorado School of Mines, Golden, CO 80401, United States
| | - Danika C Ahoor
- Chemical and Biochemical Engineering Department, Colorado School of Mines, Golden, CO 80401, United States
| | - Tzahi Y Cath
- Civil and Environmental Engineering Department, Colorado School of Mines, Golden, CO 80401, United States.
| |
Collapse
|
28
|
Xu H, Lin C, Chen W, Shen Z, Liu Z, Chen T, Wang Y, Li Y, Lu C, Luo J. Effects of pipe material on nitrogen transformation, microbial communities and functional genes in raw water transportation. WATER RESEARCH 2018; 143:188-197. [PMID: 29957407 DOI: 10.1016/j.watres.2018.06.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Raw water transportation pipelines are vital in an urban water supply system for transporting raw water to drinking water treatment plants. This study investigated the effects of pipe material on nitrogen transformation, microbial communities and characteristics of related function genes in paint-lined steel pipe (PLSP) and cement-lined steel pipe (CLSP) raw water model systems. We established quantitative relationships between specific functional genes and change rates of nitrogen pollutants, which were verified by field investigation on nitrogen pollutant transformations in real raw water transportation systems. The results showed that the CLSP produced higher ammonia nitrogen (NH4+-N) transformation rates and higher effluent concentrations of nitrate nitrogen (NO3--N) and dissolved organic nitrogen (DON) than the PLSP. Both pipes achieved high and stable nitrite nitrogen (NO2--N) and low total nitrogen (TN) removal efficiency. Nitrification was found to be the dominant process in both model systems, especially in the CLSP. Characteristics of microbial communities and nitrogen functional genes, which were analysed by high-throughput pyrosequencing and quantitative polymerase chain reaction (qPCR), respectively, varied between the two pipe systems. Nitrogen transformation pathways, identified by path analysis, were also different between the PLSP and CLSP due to different microbial community characteristics and synergistic effects of nitrogen functional genes. In the CLSP, (NH4+-N→NO2--N) with part denitrification, was the primary transformation pathway of ammonia nitrogen (NH4+-N), while only ammonia oxidization contributed to NH4+-N transformation in the PLSP. (NO2--N→NO3--N) was the main pathway involved in NO2--N transformation and NO3--N accumulation. The TN removal showed complex relationships with nitrification, denitrification and nitrogen fixation processes. These findings provided molecular-level insights into nitrogen pollutant transformations during the transportation of raw water through different types of pipes and technical support for the selection of raw water pipe materials. In our study area, the Taihu basin, China, PLSP was better than CLSP for distributing raw water in a short transportation distance, due to the lower effluent concentrations of DON and NO3--N and less abundance of microorganisms.
Collapse
Affiliation(s)
- Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Chenshuo Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Zhen Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Zhigang Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China; Ningbo Water Supply Co., Ltd, No.348 Xinhe Road, Ningbo, 315041, China
| | - Taoyuan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Yueting Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Yang Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Chunhui Lu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA
| |
Collapse
|
29
|
Cheng Y, Huang T, Cheng L, Wu J. Study on the Factors Affecting the Start-Up of Iron-Manganese Co-Oxide Filters for Ammonium and Manganese Removal from Groundwater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091822. [PMID: 30142933 PMCID: PMC6164240 DOI: 10.3390/ijerph15091822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 01/15/2023]
Abstract
The high concentration of ammonium (NH₄⁺-N) and manganese (Mn2+) in underground water poses a major problem for drinking water treatment plants. Effective catalytic oxidative removal of NH₄⁺-N and Mn2+ by iron-manganese co-oxide film (MeOx) filters was first developed by our group in a previous study. In this study, several identical pilot-scale filters were employed to optimize the start-up process for simultaneous removal of NH₄⁺-N and Mn2+ from potable water supplies. Experiments were conducted to assess the influence of Mn2+ concentration, Fe2+ concentration, filtration rate and dosing time on the start-up period of the filter. Results demonstrated that the ability of the filter to remove completely 1.5 mg/L NH₄⁺-N could be achieved on the sixth day at the soonest and the removal of Mn2+ could reach 1 mg/L by the 18th day. Filter R3 feeding with 1 mg/L Fe2+, 2 mg/L Mn2+ and 3.5 mg/L MnO₄- during the start-up period exhibited the optimum NH₄⁺-N and Mn2+ removal effect. Short dosing time was not conducive to attaining full NH₄⁺-N removal in filters, especially the activity of NO₂--N conversion to NO₃--N. The compositional analysis and element distribution analysis results demonstrated that there was an abundance of C, O, Mn, Mg, Fe, Ca and Si across the entire area of the surface of the filter media and the elemental distribution was homogeneous, which was different from the biofilter media. Knowledge-guided performance optimization of the active iron-manganese co-oxide could pave the way for its future technological use.
Collapse
Affiliation(s)
- Ya Cheng
- Key Laboratory of Northwest Resource, Environment and Ecology, Ministry of Education (MOE), Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Key Laboratory of Northwest Resource, Environment and Ecology, Ministry of Education (MOE), Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Lijie Cheng
- Key Laboratory of Northwest Resource, Environment and Ecology, Ministry of Education (MOE), Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Junbin Wu
- Key Laboratory of Northwest Resource, Environment and Ecology, Ministry of Education (MOE), Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
30
|
Zhang Q, Wang C, Jiang L, Qi J, Wang J, He X. Impact of dissolved oxygen on the microbial community structure of an intermittent biological aerated filter (IBAF) and the removal efficiency of gasification wastewater. BIORESOURCE TECHNOLOGY 2018; 255:198-204. [PMID: 29414167 DOI: 10.1016/j.biortech.2018.01.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
A novel IBAF system (altered conventional biological aerated filter (BAF) for intermittent aeration) was used to treat BDD anodes electrochemical oxidation gasification wastewater effluent, after which 454 pyrosequencing was applied to investigate the bacterial community of IBAF and demonstrate the relationship between dissolved oxygen (DO) and the bacterial community. The results showed that the concentration of COD, NH4+-N and NO3--N reached 55.08, 7.64 and 7.76 mg/L, respectively, in IBAF effluent because of changes in the DO concentration at 30 days after system start-up. The bacterial community results revealed that the 40 cm sample had the highest bacterial diversity. The bacterial species were approximate in total samples at phylum and family level, but the relative abundance was significantly different because of change in DO concentration. In addition, sample distance analysis indicated that the similarity of different samples was related to the DO concentration at different heights.
Collapse
Affiliation(s)
- Qi Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China.
| | - Longxin Jiang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Ji Qi
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Xuwen He
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| |
Collapse
|
31
|
Cheng Y, Li Y, Huang T, Sun Y, Shi X, Shao Y. A comparison study of the start-up of a MnO x filter for catalytic oxidative removal of ammonium from groundwater and surface water. J Environ Sci (China) 2018; 65:327-334. [PMID: 29548404 DOI: 10.1016/j.jes.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 06/08/2023]
Abstract
As an efficient method for ammonium (NH4+) removal, contact catalytic oxidation technology has drawn much attention recently, due to its good low temperature resistance and short start-up period. Two identical filters were employed to compare the process for ammonium removal during the start-up period for ammonium removal in groundwater (Filter-N) and surface water (Filter-S) treatment. Two types of source water (groundwater and surface water) were used as the feed waters for the filtration trials. Although the same initiating method was used, Filter-N exhibited much better ammonium removal performance than Filter-S. The differences in catalytic activity among these two filters were probed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and compositional analysis. XRD results indicated that different manganese oxide species were formed in Filter-N and Filter-S. Furthermore, the Mn3p XPS spectra taken on the surface of the filter films revealed that the average manganese valence of the inactive manganese oxide film collected from Filter-S (FS-MnOx) was higher than in the film collected from Filter-N (FN-MnOx). Mn(IV) was identified as the predominant oxidation state in FS-MnOx and Mn(III) was identified as the predominant oxidation state in FN-MnOx. The results of compositional analyses suggested that polyaluminum ferric chloride (PAFC) used during the surface water treatment was an important factor in the mineralogy and reactivity of MnOx. This study provides the theoretical basis for promoting the wide application of the technology and has great practical significance.
Collapse
Affiliation(s)
- Ya Cheng
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ye Li
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yuankui Sun
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xinxin Shi
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuezong Shao
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
32
|
Lu Q, Chen P, Addy M, Zhang R, Deng X, Ma Y, Cheng Y, Hussain F, Chen C, Liu Y, Ruan R. Carbon-dependent alleviation of ammonia toxicity for algae cultivation and associated mechanisms exploration. BIORESOURCE TECHNOLOGY 2018; 249:99-107. [PMID: 29040866 DOI: 10.1016/j.biortech.2017.09.175] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Ammonia toxicity in wastewater is one of the factors that limit the application of algae technology in wastewater treatment. This work explored the correlation between carbon sources and ammonia assimilation and applied a glucose-assisted nitrogen starvation method to alleviate ammonia toxicity. In this study, ammonia toxicity to Chlorella sp. was observed when NH3-N concentration reached 28.03mM in artificial wastewater. Addition of alpha-ketoglutarate in wastewater promoted ammonia assimilation, but low utilization efficiency and high cost of alpha-ketoglutarate limits its application in wastewater treatment. Comparison of three common carbon sources, glucose, citric acid, and sodium bicarbonate, indicates that in terms of ammonia assimilation, glucose is the best carbon source. Experimental results suggest that organic carbon with good ability of generating energy and hydride donor may be critical to ammonia assimilation. Nitrogen starvation treatment assisted by glucose increased ammonia removal efficiencies and algal viabilities.
Collapse
Affiliation(s)
- Qian Lu
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Paul Chen
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Min Addy
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Renchuan Zhang
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Xiangyuan Deng
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yiwei Ma
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yanling Cheng
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Fida Hussain
- Faculty of Science and Technology, Qurtuba University of Science and Technology, Peshawar, KP, Pakistan
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yuhuan Liu
- MOE Biomass Energy Research Center and State Key Laboratory of Food Science, Nanchang University, Nanchang 330000, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA; Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA; MOE Biomass Energy Research Center and State Key Laboratory of Food Science, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
33
|
Nikoonahad A, Mahvi AH, Ghaneian MT, Ehrampoush MH, Ebrahimi AA, Lotfi MH. Synthesis of polystyrene coated by sand (PCS) as a novel media in modified biological aerated filters (BAF) for advanced municipal wastewater treatment: a comparative assessment. DESALINATION AND WATER TREATMENT 2018; 106:72-79. [DOI: 10.5004/dwt.2018.21676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
34
|
Lv ZH, Wang J, Yang GF, Feng LJ, Mu J, Zhu L, Xu XY. Underestimated effects of sediments on enhanced startup performance of biofilm systems for polluted source water pretreatment. Biodegradation 2017; 29:89-103. [DOI: 10.1007/s10532-017-9815-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
|
35
|
Nikoonahad A, Ghaneian MT, Mahvi AH, Ehrampoush MH, Ebrahimi AA, Lotfi MH, Salamehnejad S. Application of novel Modified Biological Aerated Filter (MBAF) as a promising post-treatment for water reuse: Modification in configuration and backwashing process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:191-199. [PMID: 28783015 DOI: 10.1016/j.jenvman.2017.07.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 12/07/2022]
Abstract
Biological Aerated Filter (BAF) reactors due to their plentiful biomass, high shockability, high efficiency, good filtration, availability and lack of need for large land areas, are enjoying from great importance in advanced wastewater treatment. Therefore, in this study, Polystyrene Coated by Sand (PCS) was produced as a novel media and its application in a modified down-flow BAF structure for advanced wastewater treatment was assessed in two steps. In step one, the backwash effluent did not return to the system, while in step two backwash effluent returned to increase the water reuse efficiency. The backwash process was also studied through three methods of Top Backwashing (TB), Bottom Backwashing (BB), as well as Top and Bottom Backwashing Simultaneously (TBBS). The results showed that return of backwash effluent had no significant effect on the BAF effluent quality. In the second step similar to the first one with slight differences, the residual average concentrations of TSS, BOD5, and COD at the effluent were about 2.5, 8.2, and 25.5 mg/L, respectively. Additionally, in step two, the mean volume of disposal sludge/volume of treated water (vds/vtw) decreased a large extent to about 0.088%. In other words, the water reuse has increased to more than 99.91%. The backwash time in methods of TB and BB were 65 and 35 min, respectively; however, it decreased in TBBS methods to 25 min. The concentrations of most effluent parameters in this system are in concordance with the 2012 EPA Agriculture Standards, even for irrigation of Non-processed agricultural crops and livestock water consumption.
Collapse
Affiliation(s)
- Ali Nikoonahad
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Taghi Ghaneian
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amir Hossein Mahvi
- Center for Solid Waste Research (CSWR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hassan Ehrampoush
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Asghar Ebrahimi
- Environmental Sciences and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Lotfi
- Department of Biostatistics & Epidemiology, Health Faculty, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sima Salamehnejad
- Environment Science and Responsible for Process of Wastewater Treatment Plant, Iazd, Iran
| |
Collapse
|
36
|
Liu H, Zhu L, Tian X, Yin Y. Seasonal variation of bacterial community in biological aerated filter for ammonia removal in drinking water treatment. WATER RESEARCH 2017; 123:668-677. [PMID: 28710983 DOI: 10.1016/j.watres.2017.07.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/08/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Biological aerated filter (BAF) is widely used in wastewater treatment plants (WWTPs) and shows potential application of micropolluted drinking water sources with a higher NH4+-N removal efficiency during short warm seasons. Here we adopted a pilot lava-based BAF setup as a pretreatment unit of drinking water treatment plant (DWTP) and achieved a great performance of ammonia removal over a two-year operation using natural river water. We respectively observed 92.62% of NH4+-N removal efficiency, 97.88% of NO2--N removal efficiency in summer, and 77.52% NH4+-N removal efficiency in winter down to 5 °C. Based on DGGE analysis, AOB, NOB, as well as heterotrophic bacteria including genus Flavobacterium and Sphingomonas are responsible for the performance. Nitrosomonas and Nitrospira are found to be the dominant AOB and NOB in the BAF microbiota. The compositions of AOB including Nitrosomonas communis and Nitrosomonas oligotropha are different from the strains previously reported in BAF of WWTPs but similar to the observations in DWPTs. We observed seasonal bacterial shifts between summer and winter groups involved in AOB, NOB and heterotrophic genus Flavobacterium, which may be responsible for the seasonal performance fluctuation. The psychrophilic AOB belonging to Nitrosomonas likely contribute to the recovered NH4+-N removal efficiency when temperature is below 7 °C. Lack of nitrification functional psychrophilic or psychrotolerant NOB may be in charge of the severe nitrite accumulation below 7 °C. Our analysis suggests that the colonization of psychrophilic nitrifying bacteria in BAF needs at least two-year of natural acclimatization and is necessary for all-weather BAF in DWTPs.
Collapse
Affiliation(s)
- Hongyuan Liu
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| | - Liying Zhu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Xiaohe Tian
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yeshi Yin
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Zhejiang Provincial Key Laboratory of Food Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| |
Collapse
|
37
|
Cheng Q, Nengzi L, Bao L, Huang Y, Liu S, Cheng X, Li B, Zhang J. Distribution and genetic diversity of microbial populations in the pilot-scale biofilter for simultaneous removal of ammonia, iron and manganese from real groundwater. CHEMOSPHERE 2017; 182:450-457. [PMID: 28521159 DOI: 10.1016/j.chemosphere.2017.05.075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/27/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
A pilot-scale biofilter treating real groundwater was developed in this study, which showed that ammonia, iron and manganese were mainly removed at 0.4, 0.4 and 0.8 m of the filter bed, respectively, and the corresponding removal efficiencies were 90.82%, 95.48% and 95.90% in steady phase, respectively. The variation of microbial populations in the biofilter during start-up process was also investigated using high-throughput pyrosequencing (HTP). Results indicated that the main functional microbes for ammonia, iron and manganese removal were Nitrosomonas, Crenothrix and Crenothrix, respectively, which was mainly distributed at 0.8, 0, and 0.8 m of the filter bed with a corresponding abundance of 8.7%, 28.12% and 11.33% in steady phase, respectively. Kinds of other bacteria which may be related to methane, hydrogen sulfide and organic matter removal, were also found. In addition, small part of archaea was also detected, such as Candidatus Nitrososphaera, which plays a role in nitritation.
Collapse
Affiliation(s)
- Qingfeng Cheng
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China; Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Lichao Nengzi
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Linlin Bao
- Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, PR China
| | - Yang Huang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Shengyu Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, PR China
| | - Xiuwen Cheng
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lake, Chinese Academy of Sciences, Xinning Road 18, Chengxi District, Xining 810008, PR China; Key Laboratory of Western China's Environmental Systems (Ministry of Education) and Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Bo Li
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lake, Chinese Academy of Sciences, Xinning Road 18, Chengxi District, Xining 810008, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
38
|
Chen J, Liu YS, Zhang JN, Yang YQ, Hu LX, Yang YY, Zhao JL, Chen FR, Ying GG. Removal of antibiotics from piggery wastewater by biological aerated filter system: Treatment efficiency and biodegradation kinetics. BIORESOURCE TECHNOLOGY 2017; 238:70-77. [PMID: 28432952 DOI: 10.1016/j.biortech.2017.04.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 05/12/2023]
Abstract
This study aimed to investigate the removal efficiency and mechanism for antibiotics in swine wastewater by a biological aerated filter system (BAF system) in combination with laboratory aerobic and anaerobic incubation experiments. Nine antibiotics including sulfamonomethoxine, sulfachloropyridazine, sulfamethazine, trimethoprim, norfloxacin, ofloxacin, lincomycin, leucomycin and oxytetracycline were detected in the wastewater with concentrations up to 192,000ng/L. The results from this pilot study showed efficient removals (>82%) of the conventional wastewater pollutants (BOD5, COD, TN and NH3-N) and the detected nine antibiotics by the BAF system. Laboratory simulation experiment showed first-order dissipation kinetics for the nine antibiotics in the wastewater under aerobic and anaerobic conditions. The biodegradation kinetic parameters successfully predicted the fate of the nine antibiotics in the BAF system. This suggests that biodegradation was the dominant process for antibiotic removal in the BAF system.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; The University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Sheng Liu
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jin-Na Zhang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yong-Qiang Yang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Li-Xin Hu
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuan-Yuan Yang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jian-Liang Zhao
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Fan-Rong Chen
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environment Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
39
|
Chen W, Gu Y, Xu H, Liu Z, Lu C, Lin C. Variation of microbial communities and functional genes during the biofilm formation in raw water distribution systems and associated effects on the transformation of nitrogen pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15347-15359. [PMID: 28502052 DOI: 10.1007/s11356-017-9125-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to investigate the variation of microbial communities and functional genes during the biofilm formation in raw water distribution systems without prechlorination and associated effects on the transformation of nitrogen pollutants by using a designed model pipe system. The results showed the transformation of nitrogen pollutants was obvious during the biofilm formation. The richness and diversity of the microbial communities changed significantly. The higher abundance of Nitrospirae in biofilm samples significantly contributed to biological nitrification. In particular, the stable content of Bacteroidetes in the biofilm and soluble microbial products released by the biomass might have enhanced the increase in dissolved organic nitrogen. In addition, the variation tendency of nitrogen functional gene abundances and their strong effects on NH4+-N, NO2--N, and NO3--N transformation were clearly observed. These findings provide new insights into the evolution of microbial communities and functional genes during the initial operation period of real-world raw water distribution pipes and highlight management and possible safety issues in the subsequent water treatment process.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Yanmei Gu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Hang Xu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China.
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Zhigang Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Chunhui Lu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
| | - Chenshuo Lin
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
40
|
Feng LJ, Jia R, Sun JY, Wang J, Lv ZH, Mu J, Yang GF. Response of performance and bacterial community to oligotrophic stress in biofilm systems for raw water pretreatment. Biodegradation 2017; 28:231-244. [DOI: 10.1007/s10532-017-9792-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
|
41
|
Mohanty S, Ghosh S, Nayak S, Das AP. Bioleaching of manganese by Aspergillus sp. isolated from mining deposits. CHEMOSPHERE 2017; 172:302-309. [PMID: 28086158 DOI: 10.1016/j.chemosphere.2016.12.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
A comprehensive study on fungus assisted bioleaching of manganese (Mn) was carried out to demonstrate Mn solubilization of collected low grade ore from mining deposits of Sanindipur, Odisha, India. A native fungal strain MSF 5 was isolated and identified as Aspergillus sp. by Inter Transcribed Spacer (ITS) sequencing. The identified strain revealed an elevated tolerance ability to Mn under varying optimizing conditions like initial pH (2, 3, 4, 5, 6, 7), carbon sources (dextrose, sucrose, fructose and glucose) and pulp density (2%, 3%, 4%, 5% and 6%). Bioleaching studies carried out under optimized conditions of 2% pulp density of Mn ore at pH 6, temperature 37 °C and carbon dosage (dextrose) resulted with 79% Mn recovery from the ore sample within 20 days. SEM-EDX characterization of the ore sample and leach residue was carried out and the micrographs demonstrated porous and coagulated precipitates scattered across the matrix. The corresponding approach of FTIR analysis regulating the Mn oxide formation shows a distinctive peak of mycelium cells with and without treated Mn, resulting with generalized vibrations like MnOx stretching and CH2 stretch. Thus, our investigation endeavors' the considerate possible mechanism involved in fungal surface cells onto Mn ore illustrating an alteration in cellular Mn interaction.
Collapse
Affiliation(s)
- Sansuta Mohanty
- Bioengineering & Biomineral Processing Laboratory, Centre of Biotechnology, Siksha O Anusandhan University, Khandagiri Square, Bhubaneswar, India
| | - Shreya Ghosh
- Bioengineering & Biomineral Processing Laboratory, Centre of Biotechnology, Siksha O Anusandhan University, Khandagiri Square, Bhubaneswar, India
| | - Sanghamitra Nayak
- Bioengineering & Biomineral Processing Laboratory, Centre of Biotechnology, Siksha O Anusandhan University, Khandagiri Square, Bhubaneswar, India
| | - Alok Prasad Das
- Department of Chemical and Polymer Engineering, Tripura University (A Central University), Suryamaninagar, Tripura, India.
| |
Collapse
|
42
|
Performance improvement of raw water pretreatment process with pre-inoculation biofilm: feasibility and limiting factors. Biodegradation 2016; 28:111-123. [DOI: 10.1007/s10532-016-9781-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
|
43
|
Ma TF, Chen YP, Kang J, Gao X, Guo JS, Fang F, Zhang XT. Influence of filtration velocity on DON variation in BAF for micropolluted surface water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23415-23421. [PMID: 27613624 DOI: 10.1007/s11356-016-7578-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Biological aerated filters (BAFs) are widely used for the treatment of micropolluted surface water. However, the biological process produces dissolved organic nitrogen (DON), which, as precursors of nitrogenous disinfection by-products, pose potential threats to drinking water safety. Therefore, to control DON in BAF effluent, it is necessary to study the influence of BAF operation parameters on DON production. In this study, the influence of filtration velocity in a BAF on DON production was investigated. Under different filtration velocity (0.5, 2, and 4 m/h) conditions, profiles of DON concentrations along the media layer were measured. The profile at a filtration velocity of 0.5 m/h showed a decreasing trend, and the ones under filtration velocities of 2 and 4 m/h fluctuated in a small range (from 0.1 to 0.4 mg/L). Moreover, the relatively high filtration velocities of 2 and 4 m/h resulted in a lower level of DON concentration. Additionally, 3D excitation-emission matrix fluorescence spectroscopy was used to characterize DON. It is found that the patterns of DON at a relatively high filtration velocity condition (4 m/h) were obviously different from the ones under low filtration velocity conditions (0.5 and 2 m/h).
Collapse
Affiliation(s)
- Teng-Fei Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Jia Kang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Xu Gao
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jin-Song Guo
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| | - Xiao-Tian Zhang
- Chongqing Environmental Supervision Corps, Chongqing, 401147, China
| |
Collapse
|
44
|
Xiao S, Wan D, Zhang K, Qu H, Peng J. Enhanced photoelectrocatalytic degradation of ammonia by in situ photoelectrogenerated active chlorine on TiO 2 nanotube electrodes. J Environ Sci (China) 2016; 50:103-108. [PMID: 28034419 DOI: 10.1016/j.jes.2016.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/31/2016] [Accepted: 04/25/2016] [Indexed: 06/06/2023]
Abstract
TiO2 nanotube (TiNT) electrodes anodized in fluorinated organic solutions were successfully prepared on Ti sheets. Field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were performed to characterize the TiNT electrodes. The linear voltammetry results under irradiation showed that the TiNT electrode annealed at 450°C presented the highest photoelectrochemical activity. By combining photocatalytic with electrochemical process, a significantly synergetic effect on ammonia degradation was observed with Na2SO4 as supporting electrolyte at pH10.7. Furthermore, the photoelectrocatalytic efficiency on the ammonia degradation was greatly enhanced in presence of chloride ions without the limitation of pH. The degradation rate was improved by 14.8 times reaching 4.98×10-2min-1 at pH10.7 and a faster degradation rate of 6.34×10-2min-1 was obtained at pH3.01. The in situ photoelectrocatalytic generated active chlorine was proposed to be responsible for the improved efficiency. On the other hand, an enhanced degradation of ammonia using TiNT electrode fabricated in fluorinated organic solution was also confirmed compared to TiNT electrode anodized in fluorinated water solution and TiO2 film electrode fabricated by sol-gel method. Finally, the effect of chloride concentration was also discussed.
Collapse
Affiliation(s)
- Shuhu Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Dongjin Wan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Kun Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongbin Qu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianfeng Peng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
45
|
Tang W, Gong J, Wu L, Li Y, Zhang M, Zeng X. DGGE diversity of manganese mine samples and isolation of a Lysinibacillus sp. efficient in removal of high Mn (II) concentrations. CHEMOSPHERE 2016; 165:277-283. [PMID: 27657820 DOI: 10.1016/j.chemosphere.2016.08.134] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Manganese contamination has become a serious environmental problem in the world and bacterial removal plays an important role in global cycling of manganese. In this study, microorganism distribution within samples from a manganese mine was analyzed with PCR-DGGE technology. The results suggested that Manganese oxidizing bacteria (such as Bacillus, Hyphomicrobiaceae and Erythrobacter) were dominant in the soil. In addition, a Lysinibacillus sp. Isolate, strain MK-1, revealed robust growth at high Mn(II) concentrations up to 1 mM. At that concentration, 55.94% of added Mn(II) was oxidized and 36.23% of the Mn(II) was adsorbed by MK-1(total manganese removal reached 94.67%) after 7 days of culturing. By measuring its metabolic process, the great role of biological adsorption was found. Additionally, the spectroscopic result demonstrated that Mn(III) was an intermediate during the biological oxidation process. These findings increase the knowledge of biological manganese removal mechanisms and show some potentials to the operation of manganese treatment.
Collapse
Affiliation(s)
- Wenwei Tang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China; Department of Chemistry, Tongji University, Shanghai, 200092, China.
| | - Jiemin Gong
- Department of Chemistry, Tongji University, Shanghai, 200092, China
| | - Lujun Wu
- Department of Chemistry, Tongji University, Shanghai, 200092, China
| | - Yanfei Li
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Mengtian Zhang
- Department of Chemistry, Tongji University, Shanghai, 200092, China
| | - Xinping Zeng
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
46
|
Son DJ, Yun CY, Kim WY, Zhang XY, Kim DG, Chang D, Sunwoo Y, Hong KH. Integrated nitrogen removal biofilter system with ceramic membrane for advanced post-treatment of municipal wastewater. ENVIRONMENTAL TECHNOLOGY 2016; 37:2975-2983. [PMID: 27108849 DOI: 10.1080/09593330.2016.1173113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The pre-denitrification biofilm process for nitrogen removal was combined with ceramic membrane with pore sizes of 0.05-0.1 µm as a system for advanced post-treatment of municipal wastewater. The system was operated under an empty bed hydraulic retention time of 7.8 h, recirculation ratio of 3, and transmembrane pressure of 0.47 bar. The system showed average removals of organics, total nitrogen, and solids as high as 93%, 80%, and 100%, respectively. Rapid nitrification could be achieved and denitrification was performed in the anoxic filter without external carbon supplements. The residual particulate organics and nitrogen in effluent from biofilm process could be also removed successfully through membrane filtration and the removal of total coliform was noticeably improved after membrane filtration. Thus, a system composed of the pre-denitrification biofilm process with ceramic membrane would be a compact and flexible option for advanced post-treatment of municipal wastewater.
Collapse
Affiliation(s)
- Dong-Jin Son
- a Department of Advanced Technology Fusion , Konkuk University , Seoul , Korea
| | - Chan-Young Yun
- b Department of Environmental Engineering , Konkuk University , Seoul , Korea
| | - Woo-Yeol Kim
- b Department of Environmental Engineering , Konkuk University , Seoul , Korea
| | - Xing-Ya Zhang
- b Department of Environmental Engineering , Konkuk University , Seoul , Korea
| | - Dae-Gun Kim
- c Materials & Membranes Co., Ltd ., Seoul , Korea
| | - Duk Chang
- b Department of Environmental Engineering , Konkuk University , Seoul , Korea
| | - Young Sunwoo
- b Department of Environmental Engineering , Konkuk University , Seoul , Korea
| | - Ki-Ho Hong
- d Division of Interdisciplinary Studies , Konkuk University , Seoul , Korea
| |
Collapse
|
47
|
Tao C, Peng T, Feng C, Chen N, Hu Q, Hao C. The feasibility of an up-flow partially aerated biological filter (U-PABF) for nitrogen and COD removal from domestic wastewater. BIORESOURCE TECHNOLOGY 2016; 218:307-317. [PMID: 27372011 DOI: 10.1016/j.biortech.2016.06.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 06/06/2023]
Abstract
An up-flow partially aerated biological filter (U-PABF) was developed to study the removal of nitrogen and chemical oxygen demand (COD) from synthetic domestic wastewater. The removal of NH4(+)-N was primarily attributed to adsorption in the zeolite U-PABF and to bioprocesses in the ceramic U-PABF. When the hydraulic retention time (HRT) was 5.2h, the ceramic U-PABF achieved a good performance and the NH4(+)-N, total nitrogen (TN), and COD removal efficiency reached 99.08±8.79%, 72.83±0.68%, and 89.38±1.04%, respectively. The analysis of NH4(+)-N, NO3(-)-N, NO2(-)-N, and TN at different depths revealed the simultaneous existence of nitrification-denitrification, and anaerobic ammonium oxidation (anammox) in ceramic U-PABF. Illumina pyrosequencing confirmed the existence of Planctomycetes, which are responsible for anammox. The results indicated that the nitrification-denitrification and anammox all contributed to the high removal of NH4(+)-N, TN, and COD in the U-PABF.
Collapse
Affiliation(s)
- Chen Tao
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China; Department of Geography and Environmental Management, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Tong Peng
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qili Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chunbo Hao
- School of Water Resources and Environment, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
48
|
Ghosh S, Mohanty S, Akcil A, Sukla LB, Das AP. A greener approach for resource recycling: Manganese bioleaching. CHEMOSPHERE 2016; 154:628-639. [PMID: 27104228 DOI: 10.1016/j.chemosphere.2016.04.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
In view of unremitting diminution of mineral resources, rising energy economics along with increasing global consumption of Manganese (Mn), development of environment friendly technologies for tapping alternate sources of Mn has gained importance lately. Mn recovery from mining residues using conventional approaches is extremely expensive due to high capital and energy costs involved. However lean grade ores present in millions of tons awaits the development of competent and cost effective extractive process. Mn recovery by biomining with diverse microbes is thereby recommended as a superior and green alternative to the current pyro metallurgical techniques. The synergistic effects of different factors are known to influence microbial leaching of mineral ores which includes microbiological, mineralogical, physicochemical and process parameters. Bacterial bioleaching is mostly due to enzymatic influence, however fungal bioleaching is non enzymatic. Genomic studies on microbial diversity and an insight of its metabolic pathways provides unique dimension to the mechanism of biomining microorganisms. The extraction of Mn has a massive future prospective and will play a remarkable role in altering the situation of ever-decreasing grades of ore. This review aims to encompass the different aspects of Mn bioleaching, the plethora of organisms involved, the mechanisms driving the process and the recent trends and future prospects of this green technology.
Collapse
Affiliation(s)
- S Ghosh
- Bioengineering & Bio-Mineral Processing Laboratory, Centre for Biotechnology, Siksha O Anusandhan University, Khandagiri Square, Bhubaneswar 751003, India
| | - S Mohanty
- Bioengineering & Bio-Mineral Processing Laboratory, Centre for Biotechnology, Siksha O Anusandhan University, Khandagiri Square, Bhubaneswar 751003, India
| | - A Akcil
- Mineral-Metal Recovery and Recycling (MMR&R) Research Group, Mineral Processing Division, Department of Mining Engineering, Suleyman Demirel University, TR32260 Isparta, Turkey
| | - L B Sukla
- Institute for Applied Environmental Biotechnology, Bhubaneswar 751021, Odisha, India
| | - A P Das
- Bioengineering & Bio-Mineral Processing Laboratory, Centre for Biotechnology, Siksha O Anusandhan University, Khandagiri Square, Bhubaneswar 751003, India.
| |
Collapse
|
49
|
Zhou H, Pan H, Xu J, Xu W, Liu L. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production. JOURNAL OF HAZARDOUS MATERIALS 2016; 304:434-440. [PMID: 26606462 DOI: 10.1016/j.jhazmat.2015.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N2 adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g(-1) adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na3MnPO4CO3. Results suggested the complexity of natural microbe-mediated Mn transformation.
Collapse
Affiliation(s)
- Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China.
| | - Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Jianqiang Xu
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Weiping Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
50
|
Yang GF, Feng LJ, Wang SF, Zhou JH, Guo CR, Xia T, Sun WX, Jiang YJ, Sun XY, Cao L, Xu XY, Zhu L. Potential risk and control strategy of biofilm pretreatment process treating raw water. BIORESOURCE TECHNOLOGY 2015; 198:456-463. [PMID: 26413896 DOI: 10.1016/j.biortech.2015.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
An enhanced lab-scale biofilm pretreatment process treating raw water obtained from eutrophicated water bodies was established and started up with a novel strategy of low-level nutrients addition and effluent recirculation. Results showed that the startup strategy was useful for biofilm formation and pollutants removal, but it had the risks of increasing substrate affinity constant (Ks) and biofilm decay in treating raw water. Fortunately, the increased Ks value did not affected the NH4(+)-N removal performance via keeping the NH4(+)-N loading rate larger than 6.29 mg L(-1)d(-1). In addition, lower hydraulic retention time (HRT) favored the removal of organic matters, and the maximum TOC removal rate of 76.5 mg L(-1)d(-1) were achieved at HRT of 2h. After long-term acclimatization at oligotrophic niche, the decrease of Ks value and increase of biomass, extracellular polymeric substances, bioactivity were achieved. Finally, the stable operation of biofilm pretreatment process was realized in treating polluted raw water.
Collapse
Affiliation(s)
- Guang-Feng Yang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Li-Juan Feng
- Department of Environmental Engineering, Zhejiang Ocean University, No. 1 Haida South Road, Zhoushan 316022, China
| | - Sha-Fei Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jia-Heng Zhou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Cai-Rong Guo
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tian Xia
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wen-Xiong Sun
- Haining Second Waterworks Co. Ltd., Haining 314408, China
| | - Yue-Jie Jiang
- Haining Second Waterworks Co. Ltd., Haining 314408, China
| | - Xiao-Yan Sun
- Haining Second Waterworks Co. Ltd., Haining 314408, China
| | - Lian Cao
- Haining Second Waterworks Co. Ltd., Haining 314408, China
| | - Xiang-Yang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| | - Liang Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| |
Collapse
|