1
|
Ma Q, Tian G, Yang S, Chen J, Fan W, Zhao P, Wang Y, Liu J, Liu Y, Zi S, He S. Nanosilicon-based vermicompost leachate and Trichoderma harzianum promote the growth of Panax quinquefolius L. cultivated under forests by improving soil enzyme activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109811. [PMID: 40132513 DOI: 10.1016/j.plaphy.2025.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Planting vegetation under forests in agroforestry systems fosters sustainable agricultural development. However, Limited availability of biostimulants for agroforestry and unclear mechanisms of plant growth promotion. This study synthesized and evaluated a novel biostimulant, nanosilicon-based vermicompost leachate (NSVCL), using Panax quinquefolius L. as the research plant species for forest cultivation. Trichoderma harzianum (TH) was chosen to represent a biostimulant with broad-spectrum properties, and its application effects were compared with NSVCL. The regulatory effects of both on the physiological characteristics and rhizosphere soil microenvironment of P. quinquefolius were investigated, with untreated plants serving as controls. Compared to the control, NSVCL and TH increased the dry weight of P. quinquefolius roots 129.33 % and 23.50 %, respectively. NSVCL was applied more effectively than TH. Additionally, NSVCL markedly improved leaf anatomical traits, including palisade and spongy tissue thickness, overall leaf thickness, chloroplast number, and cuticle thickness. Application of NSVCL and TH significantly elevated the net photosynthetic rate (Pn) by 86.55 % and 60.92 %, respectively, and increased total chlorophyll content (TChl) by 24.91 % and 11.76 %. Biostimulants facilitated nutrient uptake and boosted antioxidant enzyme activity in P. quinquefolius. Partial least squares path modeling (PLS-PM) further demonstrated that both NSVCL and TH promoted plant growth by enhancing soil enzyme activity in forest environments. These findings underscore NSVCL's efficacy in improving P. quinquefolius growth under forest conditions and provide a practical foundation for advancing organic forest cultivation and sustainable forest-medicine integration.
Collapse
Affiliation(s)
- Qiaoran Ma
- College of Resource and Environment, Yunnan Agricultural University, Kunming, Yunnan, 650201, China; National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Guobing Tian
- College of Resource and Environment, Yunnan Agricultural University, Kunming, Yunnan, 650201, China; National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Shengchao Yang
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China; College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, China
| | - Junwen Chen
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Wei Fan
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Ping Zhao
- College of Resource and Environment, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yan Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510642, China
| | - Jiamin Liu
- College of Resource and Environment, Yunnan Agricultural University, Kunming, Yunnan, 650201, China; National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yonglin Liu
- School of Municipal and Environment Engineering, Qingdao University of Technology, Qingdao, Shandong, 266000, China
| | - Shuhui Zi
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| | - Shuran He
- College of Resource and Environment, Yunnan Agricultural University, Kunming, Yunnan, 650201, China; National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan, 650201, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| |
Collapse
|
2
|
Wittlinger JP, Castejón N, Hausmann B, Berry D, Schnorr SL. Shewanella is a putative producer of polyunsaturated fatty acids in the gut soil of the composting earthworm Eisenia fetida. Appl Environ Microbiol 2025; 91:e0206924. [PMID: 39817738 PMCID: PMC11837533 DOI: 10.1128/aem.02069-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 01/18/2025] Open
Abstract
Polyunsaturated fatty acids (PUFAs) play a crucial role in aiding bacteria to adapt to extreme and stressful environments. While there is a well-established understanding of their production, accrual, and transfer within marine ecosystems, knowledge about terrestrial environments remains limited. Investigation of the intestinal microbiome of earthworms has illuminated the presence of PUFAs presumably of microbial origin, which contrasts with the surrounding soil. To comprehensively study this phenomenon, a multi-faceted approach was employed, combining fatty acid analysis with amplicon sequencing of the PfaA-KS domain of the anaerobic fatty acid synthase gene (pfa), as well as the 16S rRNA and 18S rRNA genes. This methodology was applied to scrutinize the gut microbiome of Eisenia fetida, its compost-based dietary source, and the resultant castings. This study unveiled a distinct gut soil ecosystem from input compost and output castings in fatty acid profile as well as type and abundance of organisms. 16S sequencing provided insights into the microbial composition, showing increased relative abundance of certain Pseudomonadota, including Shewanellaceae, and Planctomycetota, including Gemmataceae within the gut microbiome compared to input bulk soil compost, while Actinomycetota and Bacillota were relatively enriched compared to the casted feces. Sequencing of the PfaA-KS domain revealed amplicon sequence variants (ASVs) belonging primarily to Shewanella. Intriguingly, the 20C PUFAs were identified only in gut soil samples, though PfaA-KS sequence abundance was highest in output castings, indicating a unique metabolism occurring only in the gut. Overall, the results indicate that Shewanella can explain PUFA enrichment in the gut environment because of the pfa gene presence detected via PfaA-KS sequence data.IMPORTANCEPrior research has demonstrated that earthworm microbiomes can potentially harbor polyunsaturated fatty acids (PUFAs) that are not found within their residing soil environment. Moreover, distinct indicator species have been pinpointed for various microbial genera in earthworm microbiomes. Nevertheless, none of these studies have integrated metataxonomic and fatty acid analyses to explore the origin of PUFA synthesis in any earthworm species, with the objective of identifying the specific organisms and locations responsible for this production. This study suggests that earthworms accumulate PUFAs produced from bacteria, especially Shewanella, activated through the gut ecosystem.
Collapse
Affiliation(s)
- Jan-Philpp Wittlinger
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Natalia Castejón
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Department of Applied Physical Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Stephanie L. Schnorr
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Zhang K, Guo H, Liang Y, Liu F, Zheng G, Zhang J, Gao A, Liu N, Ma C. A Mechanism of Reducing Methane Production During Sewage Sludge Composting by Adding Urea. TOXICS 2024; 12:895. [PMID: 39771110 PMCID: PMC11728475 DOI: 10.3390/toxics12120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
The study of the effect of the mechanism of urea addition to sewage sludge and sawdust-composting substrates on methane production is still limited. In the present study, the systematic investigation of the effect of urea addition (0.18, 0.9 and 1.8 kg) on methane production is discussed through the dynamics of physical properties, enzymes, and the microbial community during composting. The results showed that high urea addition (1.8 kg) suppressed methane production, with a lower rate and a shorter duration of warming in the thermophilic phase, but significantly enhanced cellulase activity, urease, and peroxidase, and promoted the degradation of organic carbon, as well as the loss of nitrogen. A high addition of urea stimulated the growth and reproduction of Sinibacillus, Pseudogracilibacillus, Sporosarcina, and Oceanobacillus. The random forest model indicated that the top six independent determinants of CH4 emissions were Methanobacterium, temperature, organic matter (OM), Methanospirillum, and NH4+-N. Furthermore, structural equation modeling displayed that NH4+-N, O2, and pH were the main physicochemical properties affecting CH4 emissions. Methanobacterium, Methanosarcina, and Methanosphaera were the main archaea, and Bacillaceae were the main bacteria affecting CH4 emissions. This study provides new insights and a theoretical basis for optimizing urea addition strategies during composting.
Collapse
Affiliation(s)
- Ke Zhang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (H.G.); (Y.L.); (F.L.); (N.L.)
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou 450000, China
| | - Haopeng Guo
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (H.G.); (Y.L.); (F.L.); (N.L.)
| | - Yujing Liang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (H.G.); (Y.L.); (F.L.); (N.L.)
| | - Fuyong Liu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (H.G.); (Y.L.); (F.L.); (N.L.)
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou 450000, China
| | - Guodi Zheng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Aihua Gao
- Zhongyuan Ecological Environment Technology Innovation Center (Henan) Co., Ltd., Zhengzhou 450000, China
| | - Nan Liu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (H.G.); (Y.L.); (F.L.); (N.L.)
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou 450000, China
| | - Chuang Ma
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China; (K.Z.); (H.G.); (Y.L.); (F.L.); (N.L.)
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou 450000, China
| |
Collapse
|
4
|
Zhou X, Yu Z, Deng W, Deng Z, Wang Y, Zhuang L, Zhou S. Hyperthermophilic composting coupled with vermicomposting stimulates transformation of organic matter by altering bacterial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176676. [PMID: 39383961 DOI: 10.1016/j.scitotenv.2024.176676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Hyperthermophilic composting (HTC) has been proven to be an effective strategy to recycle organic wastes, while vermicomposting (VC) has been widely applied to produce humic fertilizer. The combination of HTC with VC (HVC) is expected to integrate the advantages of both. This study showed that HTC pre-fermentation provided plentiful substances such as dissolved organic matter (DOM) for the subsequent VC enriching humic acid (HA). Compared to thermophilic composting (TC), HVC significantly stimulated the degradation of organic matter (OM) and the production of N-rich HA, and incubated higher diversity of bacterial community. SHapley Additive exPlanations (SHAP), correlation network, Mantel test and PLS-LM model were constructed to identify the potential roles of the key bacterial groups contributing to OM transformation. Firmicutes (e.g., Bacillus and Tuberibacillus) dominant in HTC may mineralize and mobilize OM, providing affluent bioavailable nutrients as part of DOM for microbial metabolism and abundant precursors for HA formation in the further VC. Actinobacteriota (e.g., Microbacterium) and Bacteroidota (e.g., Flavobacterium and Parapedobacter) prominent in VC metabolized DOM, mineralized OM and produced HA probably by enhancing the metabolic activity involved in OM degradation and amino acid generation. However, when DOM was exhausted, some members especially Proteobacteria (e.g., Ochrobactrum, Devosia and Cellvibrio) would change their roles from promoter to inhibitor of mineralization and humification. Altering the nutrient bioavailability and the composition of bacterial community can regulate the mineralization, mobilization and humification of OM. Overall, this study provides new insights into the roles of bacteria participating in transforming organic wastes into HA-rich composts.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhen Yu
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Wenkang Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ziwei Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yueqiang Wang
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Duan Z, Huang K, Huang W, Wang B, Shi J, Xia H, Li F. Bacterial dispersal enhances the elimination of active fecal coliforms during vermicomposting of fruit and vegetable wastes: The overlooked role of earthworm mucus. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134280. [PMID: 38636233 DOI: 10.1016/j.jhazmat.2024.134280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Earthworms play a pivotal role in the elimination of fecal coliforms during vermicomposting of fruit and vegetable waste (FVWs). However, the specific mechanisms underlying the action of earthworm mucus remain unclear. This study investigated the mechanisms of fecal coliform reduction related to earthworm mucus during FVWs vermicomposting by comparing treatments with and without earthworms. The results show that the secretion of earthworm mucus decreased by 13.93 % during the startup phase, but significantly (P < 0.001) increased by 57.80 % during the degradation phase. Compared to the control without earthworms, vermicomposting led to a significant (P < 0.05) 1.22 -fold increase in the population of active bacteria, with a strong positive correlation between mucus characteristics and dominant bacterial phyla. As the dominant fecal coliforms, Escherichia coli and Klebsiella pneumoniae significantly (P < 0.05) declined by 86.20 % and 93.38 %, respectively, in the vermi-reactor relative to the control. Bacterial dispersal limitation served as a key factor constraining the elimination of E. coli (r = 0.73, P < 0.01) and K. pneumoniae (r = 0.77, P < 0.001) during vermicomposting. This study suggests that earthworm mucus increases the active bacterial abundance and cooperation by weakening the bacterial dispersal limitation, thus intensifying competition and antagonism between fecal coliforms and other bacteria.
Collapse
Affiliation(s)
- Zihao Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kui Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Wenqi Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Bangchi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiwei Shi
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hui Xia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
6
|
Lei X, Cui G, Sun H, Hou S, Deng H, Li B, Yang Z, Xu Q, Huo X, Cai J. How do earthworms affect the pathway of sludge bio-stabilization via vermicomposting? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170411. [PMID: 38280597 DOI: 10.1016/j.scitotenv.2024.170411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
The synergy effects between earthworms and microorganisms promote nitrogen mineralization and enhance stabilization of organic matters in a vermicomposting system. However, the stabilization pathways of vermicomposting in the system remain unknown. The aim of this study was to investigate the effect of earthworms on the stabilization pathway and associated microbial population of waste activated sludge recycled by vermicomposting. The treatment of sludge with and without earthworms was conducted at 20 °C for 60 days. The trends in organic matter (OM), dissolved organic carbon (DOC), NH4+-N, electrical conductivity (EC), microbial biomass carbon (MBC), and dehydrogenase activity (DHA) were similar in both systems over time. At the end of the treatment, OM and DOC were significantly lower (p < 0.05), and EC, NH4+-N, and NO3--N were significantly higher (p < 0.05) in the vermicomposting group than in the control. Based on the statistical results of principal component analysis (PCA), it was proposed that the stabilization pathway in both treatment systems required a sequence of reactions characterized by the degradation of organic matter, accumulation of dissolved organic carbon, ammonification, and nitrification. Vermicomposting led to greater abundance and diversity (Shannon index) of 16S rDNA microbial species, but more even distribution in microbial community composition (Simpson index) than the control. However, the opposite performance for 18S rDNA microbes was observed. Vermicomposting enhanced the abundance of microorganisms involved in organic matter degradation and nitrification, facilitating the conversion of organic matter and favoring the nitrification. In short, the pathway of sludge bio-stabilization is not altered regardless of the addition of earthworms or not, which enables us to better understand vermicomposting process of sludge.
Collapse
Affiliation(s)
- Xuyang Lei
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Guangyu Cui
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Hongxin Sun
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Suxia Hou
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Hongying Deng
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Bo Li
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Zhengzheng Yang
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Qiushi Xu
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Xueyu Huo
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| | - Jiaxuan Cai
- Department of Resource and Environmental Engineering, Hebei Vocational University of Technology and Engineering, Hebei, Xingtai 054000, China
| |
Collapse
|
7
|
Pottipati S, Jat N, Kalamdhad AS. Bioconversion of Eichhornia crassipes into vermicompost on a large scale through improving operational aspects of in-vessel biodegradation process: Microbial dynamics. BIORESOURCE TECHNOLOGY 2023; 374:128767. [PMID: 36822559 DOI: 10.1016/j.biortech.2023.128767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Eichhornia crassipes is a common, abundant aquatic weed biomass found globally. The present study examined optimum biodegradation procedures through batch studies (550 L rotating drum composter) and the resulting best combination on a large scale (5000 L rotary drum composter). The pilot scale rotary drum reactor was commenced with cow manure and then treated for 3 months with 250 kg/day of homogenously mixed E. crassipes and dry leaves. The rotary drum's inlet and outlet temperatures were 60 °C and 39 °C, respectively, suggesting thermophilic conditions with a 7-day waste retention duration. Eisenia fetida was used for vermicomposting the outlet material for 20 days, raising the nitrogen content to 3.2%. Bacterial diversity (16S-rRNA) sequencing revealed that Proteobacteria and Euryarchaeota are the most predominant. After 27 days, the volume dropped by 71%, and the product was stable and soil-safe. Large-scale optimised biodegradation may be a better way to handle aquatic weed biomass.
Collapse
Affiliation(s)
- Suryateja Pottipati
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Neeraj Jat
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
8
|
Thirunavukkarasu A, Sivashankar R, Nithya R, Sathya AB, Priyadharshini V, Kumar BP, Muthuveni M, Krishnamoorthy S. Sustainable organic waste management using vermicomposting: a critical review on the prevailing research gaps and opportunities. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:364-381. [PMID: 36744572 DOI: 10.1039/d2em00324d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Logistic growth of human population, exponential rate in agronomic industries and feeble waste management practices have resulted in the massive generation of organic wastes. Vermicomposting is one of the eco-biotechnological practices to efficiently transform them into stable and nutrient-rich organic manure with the synergetic actions of earthworms and soil microbiota. Vermicompost, a derivative product has the desirable physicochemical traits such as excellent porosity, buffering actions, aeration and water holding capacity. Also the presences of enzymic and microbial secretions contribute to growth and disease resistance of the crops. Owing to the benefits of soil nutrients restoration and effective organic waste management, vermicomposting has gained much attention among the scientific researchers and organic farmers. The present review is intended to provide comprehensive information on the site selection, screening of earthworms, different modes of operation and their desirable micro-environmental conditions. Also, the review has critically identified the prevailing research gaps viz. limited studies on the substrate formulation or optimization designs, poor control on the operational variables, lack of field-level investigations, technological feasibility of scale-up process, economic viability and cost-benefit analysis. Prospective researches can be made on these hotspots to identify the vermicomposting as a successful and profitable business model in the circular economy.
Collapse
Affiliation(s)
| | - Raja Sivashankar
- Department of Chemical Engineering, National Institute of Technology, Warangal, India
| | - Rajarathinam Nithya
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, India.
| | | | | | - Balakrishnan Prem Kumar
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, India.
| | - Murugan Muthuveni
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, India.
| | | |
Collapse
|
9
|
Yang Q, Zhang S, Li X, Rong K, Li J, Jiang L. Effects of microbial inoculant and additives on pile composting of cow manure. Front Microbiol 2023; 13:1084171. [PMID: 36687613 PMCID: PMC9850233 DOI: 10.3389/fmicb.2022.1084171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Composting is an effective method of recycling organic solid waste, and it is the key process linking planting with recycling. To explore the reuse of agricultural organic solid waste as a resource in the Yellow River Delta, the effects of microbial inoculant and different additives (calcium superphosphate, biochar, tomato straw, rice husk, and sugar residue) on pile composting of cow dung were studied to obtain the best composting conditions. The results showed that microbial inoculant and additives all played positive roles in the process of aerobic composting, and the experimental groups outperformed the control groups without any additives. For discussion, the microbial inoculant promoted rapid pile body heating more than the recovery materials alone, and the effects on aerobic composting were related to the organic matter of substrates and biochar. After being composted, all the materials were satisfactorily decomposed. Degradation of additives into humic acid might serve as electron shuttles to promote thorough organic matter decomposition. These results provide a scientific basis data for industrial composting of organic solid waste processed by on-site stacking, and provide a reference for researcher and practitioners for studying the applications of microbial inoculant on aerobic composting.
Collapse
Affiliation(s)
- Qian Yang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
- Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Shiqiu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Xueping Li
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
- Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, China
| | - Kun Rong
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Jialiang Li
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Lihua Jiang
- College of Resources and Environmental Engineering, Shandong Agricultural and Engineering University, Jinan, China
- Binzhou Jingyang Biological Fertilizer Co., Ltd., Binzhou, China
| |
Collapse
|
10
|
Tang M, Wu Z, Li W, Shoaib M, Aqib AI, Shang R, Yang Z, Pu W. Effects of different composting methods on antibiotic-resistant bacteria, antibiotic resistance genes, and microbial diversity in dairy cattle manures. J Dairy Sci 2022; 106:257-273. [DOI: 10.3168/jds.2022-22193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022]
|
11
|
Rupani PF, Embrandiri A, Rezania S, Wang S, Shao W, Domínguez J, Appels L. Changes in the microbiota during biological treatment of palm oil mill waste: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115772. [PMID: 35944317 DOI: 10.1016/j.jenvman.2022.115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Palm oil mill waste has a complex cellulosic structure, is rich in nutrients, and provides a habitat for diverse microbial communities. Current research focuses on how the microbiota and organic components interact during the degradation of this type of waste. Some recent studies have described the microbial communities present in different biodegradation processes of palm oil mill waste, identifying the dominant bacteria/fungi responsible for breaking down the cellulosic components. However, understanding the degradation process's mechanisms is vital to eliminating the need for further pretreatment of lignocellulosic compounds in the waste mixture and facilitating the commercialization of palm oil mill waste treatment technology. Thus, the present work aims to review microbial community dynamics via three biological treatment systems comprehensively: composting, vermicomposting, and dark fermentation, to understand how inspiration from nature can further enhance existing degradation processes. The information presented could be used as an umbrella to current research on biological treatment processes and specific research on the bioaugmentation of indigenous microbial consortia isolated during the biological degradation of palm oil mill waste.
Collapse
Affiliation(s)
- Parveen Fatemeh Rupani
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium.
| | - Asha Embrandiri
- Department of Environmental Health, Wollo University, Dessie, 1145, Amhara, Ethiopia.
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China.
| | - Weilan Shao
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China.
| | - Jorge Domínguez
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, 36310, Vigo, Spain.
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter De Nayerlaan 5, B-2860 Sint-Katelijne-Waver, Belgium.
| |
Collapse
|
12
|
Gao B, Li Y, Zheng N, Liu C, Ren H, Yao H. Interactive effects of microplastics, biochar, and earthworms on CO 2 and N 2O emissions and microbial functional genes in vegetable-growing soil. ENVIRONMENTAL RESEARCH 2022; 213:113728. [PMID: 35732203 DOI: 10.1016/j.envres.2022.113728] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions are two main greenhouse gases that play important roles in global warming. Studies have shown that microplastics, biochar, and earthworms can significantly affect soil greenhouse gas emissions. However, few studies have explored how their interactions affect soil CO2 and N2O emissions. A mesocosm experiment was conducted to investigate their interactive effects on soil greenhouse gases and soil microbial functional genes in vegetable-growing soil under different incubation times. Biochar alone or combined with microplastics significantly decreased soil CO2 emissions but had no effect on soil N2O emissions. Microplastics and biochar inhibited CO2 emissions and promoted N2O emissions in the soil with earthworms. The addition of microplastics, biochar, and earthworms had significant effects on soil chemical properties, including dissolved organic carbon, ammonia nitrogen, nitrate nitrogen, total nitrogen, and pH. Microplastics and earthworms selectively influenced microbial abundances and led to a fungi-prevalent soil microbial community, while biochar led to a bacteria-prevalent microbial community. The interactions of microplastics, biochar, and earthworms could alleviate the reduction of the bacteria-to-fungi ratio and the abundance of microbial functional genes caused by microplastics and earthworms alone. Microplastics significantly inhibited microorganisms as well as C and N cycling functional genes in earthworm guts, while biochar obviously stimulated them. The influence of the addition of exogenous material on soil greenhouse gas emissions, soil chemical properties, and functional microbes differed markedly with soil incubation time. Our results indicated that biochar is a promising amendment for soil with microplastics or earthworms to simultaneously mitigate CO2 emissions and regulate soil microbial community composition and function. These findings contribute to a better understanding of the interaction effects of microplastics, biochar, and earthworms on soil carbon and nitrogen cycles, which could be used to help conduct sustainable environmental management of soil.
Collapse
Affiliation(s)
- Bo Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, People's Republic of China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, People's Republic of China
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan, 430205, China
| | - Cuncheng Liu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan, 430205, China
| | - Hongyun Ren
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China
| | - Huaiying Yao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, People's Republic of China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan, 430205, China.
| |
Collapse
|
13
|
Metagenomic Insights into the Gut Microbiota of Eudrilus eugeniae (Kinberg) and Its Potential Roles in Agroecosystem. Curr Microbiol 2022; 79:295. [PMID: 35989412 DOI: 10.1007/s00284-022-02988-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
Gut microbiomes, a consortium of microorganisms that live in the animal gut, are highly engineered microbial communities. It makes a major contribution to digestive health, metabolism management, and the development of a strong immune system in the host. The present study was taken up to answer the long-running question about the existence of truly indigenous microflora of the epigeic earthworm gut. This is due to the general difficulties of culturing many of the microorganisms found in soil or earthworms' gut. Keeping this fact in a view, the metagenomics approach using 16S rRNA marker gene incorporated with amplicon-based sequencing was used to explore microbiota of commercially overriding, diversely fed epigeic earthworm Eudrilus eugeniae (Kinberg) in three varied habitats viz., artificial soil (AS), organic agricultural farm soil (OAFS) and conventional agriculture farm soil (CAFS). There are predominant bacteria that belong to different phyla such as Proteobacteria (29.72-76.81%), Actinobacteria (11.06-34.42%), Firmicutes (6.02-19.81%), and Bacteroidetes (2.40-9.22%) present in the gut of E. eugeniae. The alpha diversity (Observed species, Chao1, ACE, Shannon, Simpson, and Fisher alpha) indices showed that OAFS had significantly higher alpha diversity than AS and CAFS groups. The core microbiota analysis showed that OAFS and AS groups had a relatively similar bacterial panel in comparison to the CAFS group. Various statistical tools i.e. MetagenomeSeq, LEfSe, and Random Forest analysis were performed and the findings demonstrated prevalence of the most significant bacterial genera; Aeromonas, Gaiella, and Burkholderia in CAFS group. Nonetheless, in AS and OAFS groups, the common existence of Anaerosporobacter and Aquihabitans were found respectively. Metagenomic functional prediction revealed that earthworms' gut microbial communities were actively involved in multiple organic and xenobiotics compound degradation-related pathways. This is the first research to use high-throughput 16S rRNA gene amplicon sequencing to show the gut microbiota of E. eugeniae in diverse agricultural systems. The findings suggest the configuration of the gut microbiota of earthworms and its potential role in the soil ecosystem depends on the microbial communities of the soil.
Collapse
|
14
|
Huang K, Guan M, Chen J, Xu J, Xia H, Li Y. Biochars modify the degradation pathways of dewatered sludge by regulating active microorganisms during gut digestion of earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154496. [PMID: 35288128 DOI: 10.1016/j.scitotenv.2022.154496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Biochar can accelerate the degradation and mineralization of organic matter during vermicomposting of sludge and the resulted vermicompost is termed as vermi-char containing active enzymes and microorganisms. However, the mechanisms by which biochars affect vermicomposting of the dewatered sludge during gut digestion of earthworms remain unclear. This study aimed to investigate the effects of biochar on the degradation pathways of organic matter and the involved active microorganisms in dewatered sludge during gut digestion of earthworms. The earthworms Eisenia fetida were fed on three sludge substrates; 1) sludge mixed with 5% corncob biochar, 2) sludge mixed 5% rice husk biochar, and 3) sludge without biochar. The results showed that dissolved organic carbon significantly decreased by 5.65%-21.81% after the 5-day gut digestion of earthworms (P < 0.05) and that biochar addition could accelerate the decomposition of aromatic protein-like substances. Contrarily, the nitrate in earthworms casting with biochars significantly increased by 47.32%-122.64% (P < 0.05) compared with the control. The numbers of active bacteria and eukaryotes in earthworm castings with biochars significantly enhanced by 1.34-1.45 times and 0.45-5.91 times, respectively, than the control (P < 0.05). Active Actinobacteria and Bacteroidetes dominated the castings with biochars significantly enriched by 76.18%-88.83% and 4.02%-18.59% (P < 0.05), respectively, compared to control. As for eukaryotes, the biochars amendment increased Cercozoa abundance by 114.23%-136.31% but decreased Annelida by 55.61%-75.88% in the castings. The partial least squares path model revealed that the biochars could change the content and structure of organic matter in earthworm castings during vermicomposting of sludge by affecting environmental factors, microbial abundance, and microbial community composition.
Collapse
Affiliation(s)
- Kui Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China.
| | - Mengxin Guan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jin Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junjie Xu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hui Xia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yiwen Li
- Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| |
Collapse
|
15
|
Kaur A, Kaur A, Ohri P. Combined effects of vermicompost and vermicompost leachate on the early growth of Meloidogyne incognita stressed Withania somnifera (L.) Dunal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51686-51702. [PMID: 35249195 DOI: 10.1007/s11356-022-19264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Roots of Withania somnifera, an important medicinal herb, are prone to the infection of Meloidogyne incognita (a root parasitic nematode). The infection lowers the quality and quantity of plant material and poses a challenge in crop cultivation and obtaining desirable yield. In the present study, in vitro inhibitory activity of vermicompost leachate (Vcom-L) was assessed against % hatch and survival of M. incognita in a 96 h assay. Then, Vcom-L was used as soil supplement in combination with vermicompost (Vcom) to evaluate their nematode inhibitory and stress alleviating effect in W. somnifera, in a pot experiment. Root galling intensity and growth performance of nematode-stressed W. somnifera raised from seeds pre-soaked in distilled water (DW), Vcom-L, vermicompost tea (Vcom-T) and different dilutions of Vcom-L were assessed. We observed 79% suppression of egg hatching and 89% juvenile (J2) mortality after 96 h compared to control, at 100% concentration of Vcom-L. Significant reduction in gall formation with increase in growth parameters of seedlings was observed after combined application of Vcom (60% or 100%) + Vcom-L and was evident as enhancement in seedling biomass and contents of chlorophyll and protein. However, proline, total phenolics and malondialdehyde (MDA) content declined significantly in these combinations compared to the control (0% Vcom). Activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidise (APX), guaiacol peroxidise (GPX) and glutathione reductase (GR) declined with Vcom as well as Vcom + Vcom-L and corresponded with decline in the accumulation of reactive oxygen species in leaves. Further, 1:5 and 1:10 dilutions of Vcom-L in combination with Vcom (60%) proved beneficial in mitigating the nematode-induced stress in W. somnifera. Present results showed the potential of Vcom and Vcom-L in standardised combination as an effective strategy in controlling the pathogenicity of M. incognita in medicinal plants such as W. somnifera.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Arvinder Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| |
Collapse
|
16
|
Ordoñez-Arévalo B, Huerta-Lwanga E, Calixto-Romo MDLÁ, Dunn MF, Guillén-Navarro K. Hemicellulolytic bacteria in the anterior intestine of the earthworm Eisenia fetida (Sav.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151221. [PMID: 34717991 DOI: 10.1016/j.scitotenv.2021.151221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Tropical agriculture produces large amounts of lignocellulosic residues that can potentially be used as a natural source of value-added products. The complexity of lignocellulose makes industrial-scale processing difficult. New processing techniques must be developed to improve the yield and avoid this valuable resource going to waste. Hemicelluloses comprise a variety of polysaccharides with different backbone compositions and decorations (such as methylations and acetylations), and form part of an intricate framework that confers structural stability to the plant cell wall. Organisms that are able to degrade these biopolymers include earthworms (Eisenia fetida), which can rapidly decompose a wide variety of lignocellulosic substrates. This ability probably derives from enzymes and symbiotic microorganisms in the earthworm gut. In this work, two substrates with similar C/N ratios but different hemicellulose content were selected. Palm fibre and coffee husk have relatively high (28%) and low (5%) hemicellulose contents, respectively. A vermicomposting mixture was prepared for the earthworms to feed on by mixing a hemicellulose substrate with organic market waste. Xylanase activity was determined in earthworm gut and used as a selection criterion for the isolation of hemicellulose-degrading bacteria. Xylanase activity was similar for both substrates, even though their physicochemical properties principally pH and electrical conductivity, as shown by the MANOVA analysis) were different for the total duration of the experiment (120 days). Xylanolytic strains isolated from earthworm gut were identified by sequence analysis of the 16S rRNA gene. Our results indicate that the four Actinobacteria, two Proteobacteria, and one Firmicutes isolated are active participants of the xylanolytic degradation by microbiota in the intestine of E. fetida. Most bacteria were more active at pH 7 and 28 °C, and those with higher activities are reported as being facultatively anaerobic, coinciding with the microenvironment reported for the earthworm gut. Each strain had a different degradative capacity.
Collapse
Affiliation(s)
- Berenice Ordoñez-Arévalo
- Grupo Académico de Biotecnología Ambiental, Unidad Tapachula, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, C.P. 30700 Tapachula, Chiapas, Mexico
| | - Esperanza Huerta-Lwanga
- Grupo Académico de Agroecología, El Colegio de la Frontera Sur, Unidad Campeche, Av. Polígono s/n, Ciudad Industrial, C.P. 24500 Lerma, Campeche, Mexico; Soil Physics and Land Management Group, Wageningen University & Research, P.O. Box 47, 6700AA Wageningen, the Netherlands
| | - María de Los Ángeles Calixto-Romo
- Grupo Académico de Biotecnología Ambiental, Unidad Tapachula, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, C.P. 30700 Tapachula, Chiapas, Mexico
| | - Michael Frederick Dunn
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, Mexico
| | - Karina Guillén-Navarro
- Grupo Académico de Biotecnología Ambiental, Unidad Tapachula, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km 2.5, C.P. 30700 Tapachula, Chiapas, Mexico.
| |
Collapse
|
17
|
Wonnapinij P, Sriboonlert A, Surat W. Exploration of microbial communities in the guts and casts of Eudrilus eugeniae, Perionyx excavatus, and Eisenia fetida. Folia Microbiol (Praha) 2022; 67:329-337. [PMID: 35015208 DOI: 10.1007/s12223-022-00948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/01/2022] [Indexed: 11/25/2022]
Abstract
Earthworms and their casts have been widely used for organic waste degradation and plant growth promotion. The microbial communities that reside in the guts and casts of earthworms markedly influence both applications. In the present study, next-generation sequencing was applied to identify the microbial communities in the guts and casts of three epigeic earthworm species, Eudrilus eugeniae, Perionyx excavatus, and Eisenia fetida, reared under two different feeding conditions. A total of 580 genera belonging to 43 phyla were identified. By comparing bacterial diversity among samples divided into groups based on the earthworm species, sample types, and conditions, the beta diversity analysis supported the impact of the sample type and suggested that there was significant dissimilarity of the bacterial diversity between the gut and cast. Besides, bacterial Phylum compositions within the group were compared. The result showed that the top three high relative frequency phyla found in the casts were the same regardless of earthworm species, while those found in the gut depended on both the condition and earthworm species. Focusing on the cellulolytic and plant growth-promoting bacteria, certain cellulolytic bacteria, Paenibacillus, Comamonas, and Cytophaga, were found only in the cast. Citrobacter and Streptomyces aculeolatus were detected only in the guts of earthworms reared in the bedding containing vegetables and bedding alone, respectively. Besides, Actinomadura and Burkholderia were detected only in the gut of E. eugeniae and E. fetida, respectively. The results proved that the microbial composition was affected by sample type, condition, and earthworm species. In addition, the proportion of these beneficial bacteria was also influenced by these factors. Hence, the information from this study can be used as a guide for selecting earthworm species or their casts for more efficient organic waste decomposition and plant growth promotion.
Collapse
Affiliation(s)
- Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd, Lat Yao, Chatuchak, Bangkok, 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand
| | - Ajaraporn Sriboonlert
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd, Lat Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Wunrada Surat
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd, Lat Yao, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
18
|
Ameen F, Al-Homaidan AA. Improving the efficiency of vermicomposting of polluted organic food wastes by adding biochar and mangrove fungi. CHEMOSPHERE 2022; 286:131945. [PMID: 34426272 DOI: 10.1016/j.chemosphere.2021.131945] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Vermicomposting of food waste amended with biochar and cow dung was studied during a 90-day composting period. The improvement of the vermicomposting process by adding three mangrove fungal species as additional amendments were studied. The use of mangrove fungi Acrophialophora jodhpurensis as a bio-catalytic actor during vermicomposting proved to be beneficial in terms of final compost quality (available N, P and K) and the shortening of the composting period. All three fungal species, however, reached the neutral pH at the end of the composting period and appeared to be beneficial. Heavy metal (Cd, Ni, Pb, Zn, Cu and Cr) concentrations decreased throughout the composting process. Food waste can be treated using vermicomposting with biochar, cow dung and the mangrove fungi A. jodhpurensis. The final vermicomposting product is suitable for agricultural use.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Ali A Al-Homaidan
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
19
|
Li J, Wang Y, Li W, Bhat SA, Wei Y, Deng Z, Hao X, Li F. Accumulation capability for cesium differs among bacterial species: A comprehensive study using bacteria isolated from freshwater and coastal sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118431. [PMID: 34743968 DOI: 10.1016/j.envpol.2021.118431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The fate and behavior of radioactive cesium (Cs) in the water environment are of great concern. The involvement of bacteria regarding their accumulation capability for this element is the most fundamental factor that needs to be clarified even for exploring the interactions between many environmental factors that involve together in governing the transport and distribution of Cs. As the first systematical study that aimed to evaluate the accumulation capability of environmental bacteria for Cs, bacteria in the sediment of a freshwater reservoir and coastal water environment were isolated and multiplied for contact experiment with Cs under different temperature conditions (5, 25, and 35 °C). The accumulation concentration of Cs in bacteria from freshwater sediment varied in 3.95 × 10-6 to 5.68 × 10-4ng-Cs/cell, and that from coastal sediment in 1.52 × 10-6 to 7.41 × 10-4ng-Cs/cell, indicating obvious differences among bacterial species. Bacteria of coastal sediment possessed higher accumulation capability for Cs than bacteria from freshwater sediment, and temperature dependency was confirmed for bacteria from coastal sediment. The findings of this study have great reference value for better understanding and controlling the fate and behavior of radioactive Cs associated with bacteria in the water environment.
Collapse
Affiliation(s)
- Jiefeng Li
- Department of Architecture, Lu Liang University, Luliang, 033001, PR China.
| | - Yajie Wang
- Department of Life Science, Lu Liang University, Luliang, 033001, PR China; Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Wenjiao Li
- Graduate School of Global Environmental Studies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Sartaj Ahmad Bhat
- Department of Environmental Sciences, Government Degree College Anantnag, Khanabal, Jammu and Kashmir, 192101, India; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Zhiyi Deng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering & Architecture, Beijing, 100044, PR China
| | - Fusheng Li
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
20
|
Li ZH, Yuan L, Shao W, Sheng GP. Evaluating the interaction of soil microorganisms and gut of soil fauna on the fate and spread of antibiotic resistance genes in digested sludge-amended soil ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126672. [PMID: 34329092 DOI: 10.1016/j.jhazmat.2021.126672] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Earthworms have shown their effectiveness in reducing the abundances of antibiotic resistance genes (ARGs) from solid waste. However, the mechanisms of the reduced ARGs by earthworm and whether the solid waste would affect the ARGs profile in earthworm gut were poorly understood. Herein, the patterns of ARGs and microbial communities in digested sludge-amended soil and earthworm gut after 80-day cultivation were investigated. Results show that the enrichment of ARGs (e.g., tetA, tetQ, and sulII) in soil caused by digested sludge-amendment was temporary and would recover to their original levels before amendment. In addition, earthworms could contribute to the further reduction of ARG abundances, which was mainly attributed to their gut digestion via shifting the microbial community (e.g., attenuating the anaerobes). However, the amended soil could significantly increase ARGs abundance in the earthworm gut, which may enhance the potential risk of ARGs spread via the food chain. These findings may provide a new sight on the control of ARGs occurrence and dissemination in sludge-amended soil ecosystem with consideration of earthworms.
Collapse
Affiliation(s)
- Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Wei Shao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
21
|
Huang K, Sang C, Guan M, Wu Y, Xia H, Chen Y, Nie C. Performance and stratified microbial community of vermi-filter affected by Acorus calamus and Epipremnum aureum during recycling of concentrated excess sludge. CHEMOSPHERE 2021; 280:130609. [PMID: 34162071 DOI: 10.1016/j.chemosphere.2021.130609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Vermi-filter combined with wetland plant (VFP) is an eco-friendly and sustainable approach for recycling of excess sludge by joint action of earthworms, wetland plants and microorganisms. However, the effects of wetland plants on sludge decomposition and involved microorganisms are remain unclear. This study investigated the effects of wetland plants on the treatment performance of VFP for concentrated excess sludge and microbial community distribution inside the VFP. The wetland plants' species of Acorus calamus and Epipremnum aureum were separately planted on the surface layer of vermi-reactors by earthworms Eisenia fetida. Results showed that the growth rate of E. fetida in VFPs significantly (P < 0.001) increased by 75%, compared to VF. In addition, the removal rates of total solids and chemical oxygen demand in VFPs could reach 61%-79% and 36%-68%, respectively, displaying a better performance of sludge reduction than in the VF. The surface layer of VFPs was a hotspot for degradation of organic matter, where bacteria played an important role in bio-decomposition rather than eukaryotes. Moreover, wetland plants could significantly (P < 0.001) enrich the eukaryotic population, rather than bacterial population. Compared to the VF, the wetland plants could promote the diversities of bacterial community in VFPs, showing specific functioned genus in different layers. In contrast, A. calamus could be a better candidate than E. aureum in the VFP. This study suggests that the inoculation of wetland plants can improve the performance for treating concentrated excess sludge by changing the biomass of earthworms and the structure of microbial community within the VFP.
Collapse
Affiliation(s)
- Kui Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, China.
| | - Chunlei Sang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Mengxin Guan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Ying Wu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Hui Xia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, China
| | - Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Cailong Nie
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
22
|
Wang N, Wang W, Jiang Y, Dai W, Li P, Yao D, Wang J, Shi Y, Cui Z, Cao H, Dong Y, Wang H. Variations in bacterial taxonomic profiles and potential functions in response to the gut transit of earthworms (Eisenia fetida) feeding on cow manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147392. [PMID: 34000543 DOI: 10.1016/j.scitotenv.2021.147392] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Earthworms play an important role in the organic matter decomposition in terrestrial ecosystems. Earthworms interact directly with the microorganisms to affect the organic matter decomposition via gut transit, i.e., the digestion and assimilation of organic matter in the foregut and midgut and its excretion by the hindgut. However, how the microbial community ingested by earthworms respond to the transit processes in different gut segments of earthworms is not clear. We used composted cow manure to feed earthworms and sampled vermicompost and the contents of foregut, midgut and hindgut for bacterial 16S rRNA gene sequencing analysis. We observed that earthworm gut transit decreased the abundances of the dominant phyla Proteobacteria and Bacteroidetes but increased Actinobacteria, Chloroflexi and Acidobacteria. The alpha diversity of bacterial community in midgut was the lowest of the different gut segments, and the bacterial community structure of the foregut was significantly different from the midgut and hindgut. The enrichment analysis results revealed different selective stimulatory and inhibitory effects on the ingested bacterial community in the different gut segments, which extended to vermicompost. The FAPROTAX data indicated that C and N metabolic microbes were enriched in the earthworm gut. Microbes involved in fermentation and methanogenesis were enriched in the hindgut, and denitrification microbes were enriched in the foregut. The N metabolism microbes in vermicompost were significantly enriched after the stimulation of earthworm gut transit (P < 0.05), and the pathogenic microbes of animals and plants were inhibited. Combined with the results of subsequent correlation and biochemical analyses, earthworm gut transit significantly altered the structure and function of the bacterial community to accelerate the degradation and mineralization of organic matter and the enrichment of phosphorus and potassium. Our study suggests that the gut transit process of earthworms plays an important role in regulating organic matter dynamics in terrestrial ecosystems.
Collapse
Affiliation(s)
- Ning Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Wenhui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wei Dai
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Pengfa Li
- University of Chinese Academy of Sciences, Beijing 100000, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dandan Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Jieling Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology of the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology of the Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanhua Dong
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hui Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China.
| |
Collapse
|
23
|
Fate of Functional Bacterial and Eukaryotic Community Regulated by Earthworms during Vermicomposting of Dewatered Sludge, Studies Based on the 16S rDNA and 18S rDNA Sequencing of Active Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189713. [PMID: 34574635 PMCID: PMC8469537 DOI: 10.3390/ijerph18189713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/02/2022]
Abstract
DNA sequencing of active cells involved in vermicomposting can clarify the roles of earthworms in regulating functional microorganisms. This study aimed to investigate the effect of earthworms on functional microbial communities in sludge by comparing biodegradation treatments with and without earthworms. PCR and high throughput sequencing based on pretreatment of propidium monoazide (PMA) were used to detect the changes in active bacterial 16S rDNA and eukaryotic 18S rDNA during vermicomposting. The results showed that the nitrate in sludge vermicomposting and control were significantly different from day 10, with a more stable product at day 30 of vermicomposting. Compared with the control, the Shannon indexes of active bacteria and eukaryotes decreased by 1.9% and 31.1%, respectively, in sludge vermicompost. Moreover, Proteobacteria (36.2%), Actinobacteria (25.6%), and eukaryotic Cryptomycota (80.3%) were activated in the sludge vermicompost. In contrast, the control had Proteobacteria (44.8%), Bacteroidetes (14.2%), Cryptomycota (50.00%), and Arthropoda (36.59%). Network analysis showed that environmental factors had different correlations between active bacterial and eukaryotic community structures. This study suggests that earthworms can decrease the diversity of bacterial and eukaryotic communities, forming a specific-functional microbial community and thus accelerating organic matter decomposition during vermicomposting of dewatered sludge.
Collapse
|
24
|
Formulation of Organic Wastes as Growth Media for Cultivation of Earthworm Nutrient-Rich Eisenia foetida. SUSTAINABILITY 2021. [DOI: 10.3390/su131810322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inadequate management of solid organic waste can lead to the spread of diseases and negatively affects the environment. Fermentation and vermicomposting of organic waste could have dual benefits by generating earthworm biomass for a source of animal feed protein, and, at the same time, turning the organic waste into readily used compost. This study investigated the effect of an organic waste source (as a sole source or blended with others) totaling 24 media for the cultivation of the earthworm Eisenia foetida. Eight media sources were applied, namely cow manure, horse manure, goat manure, broiler chicken manure, market organic waste, household organic waste, rice straw, and beef rumen content. E. foetida was cultivated for 40 days, then the number of cocoons, earthworms, and the total biomass weight were measured at the end of the cultivation. Results demonstrated that the media source affected E. foetida earthworm cultivation. The most effective media were those containing horse manure that led to the production of the highest earthworms and the highest biomass. The produced cocoons and earthworms were poorly correlated with an r-value of 0.26 and p-value of 0.21. Meanwhile, the number and weight of the earthworms correlated well with an r-value of 0.784 and p-value of <0.01. However, the average numbers and weights of the produced earthworms in the media containing horse manure, cow manure, goat manure, and non-blended organic waste were insignificant. Overall results suggest that blended organic wastes can undergo composting to produce nutrient-rich earthworm biomass while turning the solid organic waste into readily used compost.
Collapse
|
25
|
Hui X, Kui H. Effects of TiO 2 and ZnO nanoparticles on vermicomposting of dewatered sludge: studies based on the humification and microbial profiles of vermicompost. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38718-38729. [PMID: 33742383 DOI: 10.1007/s11356-021-13226-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Nanoparticles (NPs) are prevalent in dewatered sludge, and their presence increases the environmental risks associated with the subsequent sludge treatment process. However, until now, their potential effects on sludge vermicomposting have not been clarified. This study investigated the effects of NPs on sludge humification and microbial profiles during vermicomposting by comparing fresh dewatered sludge substrates with substrates mixed with 0 mg/kg NPs (control), 100 mg/kg TiO2, 500 mg/kg TiO2, 100 mg/kg ZnO, and 500 mg/kg ZnO. The results showed that addition of TiO2 and ZnO NPs to sludge did not significantly affect the growth rate of earthworms and the superoxide dismutase activity in their guts during vermicomposting. Moreover, higher concentrations of the selected NPs promoted the humification index of sludge by 20.7-49.6%, through the formation of polysaccharides, aromatic substances, and organic acids in final vermicomposts. Compared with the control without NP addition, bacterial community diversity was enhanced in treatments with TiO2 and ZnO NPs, and dominant genera differed according to the type and concentration of NPs. This study suggests that the presence of TiO2 and ZnO NP residuals modify the microbial community of sludge, thus promoting sludge humification during vermicomposting.
Collapse
Affiliation(s)
- Xia Hui
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Huang Kui
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, China.
| |
Collapse
|
26
|
Zhong H, Liu X, Tian Y, Zhang Y, Liu C. Biological power generation and earthworm assisted sludge treatment wetland to remove organic matter in sludge and synchronous power generation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145909. [PMID: 33639468 DOI: 10.1016/j.scitotenv.2021.145909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
In order to eliminate the weak degradation ability of organic matter in sludge treatment wetland (STW). In current work, a combined biological power generation and earthworm assisted sludge treatment wetland (BE-STW) system is proposed for the first time to accelerate degradation and dehydration process of organics in STW, thusly, recovering biomass energy in sludge. Experimental results show that S4 system (earthworm and bioelectricity combined) yields a voltage of 0.832 V and maximum power density of 94.98 W/m2 in the 5th day. The combination of earthworm, microorganism and plants in STW system can reduce the ratio of volatile solids to total solids (VS/TS) to 15% while the removal rate of total chemical oxygen demand (TCOD) reaches 92.1%. The BE-STW system increases sludge particle size while reduces absolute value of Zeta and extracellular polymeric substances (EPS) content, so that the moisture content of effluent sludge retains to 66.8%. Meanwhile, the richness of bacterial communities in S4 proves that bioelectrochemistry and earthworm can effectively improve the sludge treatment effect.
Collapse
Affiliation(s)
- Huiyuan Zhong
- Laboratory of Water Supply and Drainage Science and Engineering, North China University of Science and Technology, Tangshan, PR China.
| | - Xiao Liu
- Laboratory of Water Supply and Drainage Science and Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Yang Tian
- Laboratory of Water Supply and Drainage Science and Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Ying Zhang
- Laboratory of Water Supply and Drainage Science and Engineering, North China University of Science and Technology, Tangshan, PR China
| | - Chang Liu
- South China Institute of Environmental Sciences, MEE, PR China
| |
Collapse
|
27
|
Hu X, Zhang T, Tian G, Zhang L, Bian B. Pilot-scale vermicomposting of sewage sludge mixed with mature vermicompost using earthworm reactor of frame composite structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144217. [PMID: 33434844 DOI: 10.1016/j.scitotenv.2020.144217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
To improve the efficiency of sludge vermicomposting, a new cost-effective method is provided. It uses a new earthworm reactor with a frame composite structure for vermicomposting and reuses mature vermicompost to condition the sludge. Under the optimum conditions (proportion of earthworm droppings: 15%; thickness of sludge laying: 6 cm; moisture content of initial sludge mixture: 75%), the method of continuous operation described herein works well and presents three advantages compared with the traditional vermicomposting method: the short time required for vermicomposting (20.25 h); covering a small area (5 m2/t·d); and a low cost. In addition, the vermicompost obtained from sludge vermicomposting shows better stability and maturity (C/N: 14.96; GI: 86.42%; TOC: 188.5 mg/g; ash content: 516.2 mg/g). The investigation of the associated mechanisms, including 3D-EEM, TGA, SEM and microbial community analyses, revealed that the addition of mature vermicompost can speed up the progress of decomposition and humification of organic matter in sludge. The process of vermicomposting and adding mature vermicompost significantly modified the microbial community of sewage sludge, and the changes in microorganisms in vermicompost were related to the microorganisms in the earthworm gut.
Collapse
Affiliation(s)
- Xiuren Hu
- School of Environment, Nanjing Normal University, Nanjing 210046, China
| | - Tong Zhang
- School of Environment, Nanjing Normal University, Nanjing 210046, China
| | - Ganpei Tian
- School of Environment, Nanjing Normal University, Nanjing 210046, China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing 210046, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Bo Bian
- School of Environment, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
28
|
Srivastava V, Squartini A, Masi A, Sarkar A, Singh RP. Metabarcoding analysis of the bacterial succession during vermicomposting of municipal solid waste employing the earthworm Eisenia fetida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144389. [PMID: 33429300 DOI: 10.1016/j.scitotenv.2020.144389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
A culture-independent DNA metabarcoding analysis of the bacterial communities was carried out throughout a complete vermicomposting cycle of municipal solid waste material using the earthworm Eisenia fetida. 16S rRNA amplicons from the initial material (0 days), an intermediate (42 days), and a final stage (84 days) were sequenced in an Illumina NGS platform and compared. A steady increase in community diversity was observed corresponding to a 2.5-fold higher taxa richness and correspondingly risen values of the Shannon and Simpson ecological indexes and the evenness parameter. A total of 49,665 operational taxonomic units (OTUs) were counted. From the qualitative standpoint, a clear successional shift was observed with an initial community dominated by putatively plant-associated groups belonging to the Rhizobiales order within the Alphaproteobacteria class, regressively leaving the scores of relative abundance (RA) to the Firmicutes phylum and in particular to the Bacilli. Vermistabilization of municipal solid waste (MSW) increased (p < 0.001) the TKN and total P content in the final vermicompost, while pH, TOC, and C/N ratio declined (p < 0.001) in the process. Likewise, a progressive decrease was noticed in β-glucosidase, acid phosphatase, and urease activity while protease and dehydrogenase showed a slight increase, followed by a steep fall. A strong positive correlation was observed among the canonical functions of physico-chemical attributes and enzyme activities. The canonical correspondence analysis (CCA) revealed that significant families did not change on the temporal scale; however, their abundance was influenced by the abiotic environmental factors. In comparison to prior studies on vermicomposting that used different earthworm species (Eisenia andrei) and different substrates, results reflect a considerable degree of substrate specificity for the earthworm species used. The results offer clues to optimize the vermistabilization of MSW along with its potential use in agriculture, to foster improved levels of the circular economy.
Collapse
Affiliation(s)
- Vaibhav Srivastava
- Department of Environment & Sustainable Development, Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Università, 16, 35020 Legnaro, PD, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Università, 16, 35020 Legnaro, PD, Italy
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India.
| | - Rajeev Pratap Singh
- Department of Environment & Sustainable Development, Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
29
|
Zhong H, Yang S, Zhu L, Liu C, Zhang Y, Zhang Y. Effect of microplastics in sludge impacts on the vermicomposting. BIORESOURCE TECHNOLOGY 2021; 326:124777. [PMID: 33540214 DOI: 10.1016/j.biortech.2021.124777] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
To investigate the effect of microplastics (MPs) particles in vermicomposting, polyethylene (PE) particles added into sludge. Results showed that the vermicomposting with high MPs addition obtained lower removal efficiencies for organics than the vermicomposting with low MPs addition. The content of DOC and NH4+-N in M4 reactor (with the highest MPs addition) at 80 days was 8.4 mg/kg and 74.2 mg/kg, respectively. The pH, C/N, electrical conductivity (EC), and germination index (GI) results showed that the addition amount of MPs was directly proportional to the negative effect of composting. The negative effect mainly occurred after 20 days of composting. High MPs addition resulted in apparent oxidative stress and neurotoxicity on earthworm, the values of catalase (CAT) and acetylcholine esterase (AChE) in M4 reactor increased by 2.03 times and 1.60 times. The bacteria in M4 were more barren and lower in terms of diversity.
Collapse
Affiliation(s)
- Huiyuan Zhong
- Laboratory of Water Supply and Drainage Science and Engineering, North China University of Science and Technology, Tangshan 063000, PR China.
| | - Sen Yang
- Laboratory of Water Supply and Drainage Science and Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| | - Li Zhu
- Laboratory of Water Supply and Drainage Science and Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| | - Chang Liu
- South China Institute of Environmental Sciences, MEE, PR China
| | - Ying Zhang
- Laboratory of Water Supply and Drainage Science and Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| | - Yaozong Zhang
- Laboratory of Water Supply and Drainage Science and Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| |
Collapse
|
30
|
Li W, Li J, Ahmad Bhat S, Wei Y, Deng Z, Li F. Elimination of antibiotic resistance genes from excess activated sludge added for effective treatment of fruit and vegetable waste in a novel vermireactor. BIORESOURCE TECHNOLOGY 2021; 325:124695. [PMID: 33465648 DOI: 10.1016/j.biortech.2021.124695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Elimination of antibiotic resistance genes (ARGs) from excess activated sludge (EAS) mixed for effective treatment of different fruit and vegetable waste (FVW) by using a novel vermireactor consisted of substrate and bed compartments was investigated. ARGs (tet G, tet M and sul 1) and mobile genetic element gene (intl 1) were targeted and, through quantitative analysis of their abundances in both the compartments and the fresh cast of earthworms, significant reductions in substrate compartments were confirmed for the treatments for FVW added with EAS and EAS alone even if the reduction extents differed among the types of FVW. Apparent reductions were not found in the bed compartment where the final products accumulated. For the fresh cast, the relative abundances of ARGs and intl 1 against to the total bacterial 16S rDNA decreased markedly. The present study provided an insight for proper controlling of ARGs during vermicomposting of FVW and EAS.
Collapse
Affiliation(s)
- Wenjiao Li
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Jiefeng Li
- Department of Architecture, Lu Liang University, Lishi, Shanxi 033000, China
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Zhiyi Deng
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fusheng Li
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
31
|
Yang J, Wan Y, Zhang M, Cao Z, Leng X, Zhao D, An S. Accelerated nitrogen consumption in sediment by Tubifex tubifex and its significance in eutrophic sediment remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115925. [PMID: 33139096 DOI: 10.1016/j.envpol.2020.115925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/03/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Sediment remediation in eutrophic aquatic ecosystems is imperative, but effective ecological measures are scarce. A pilot-scale trial investigated sediment remediation by the addition of Tubifex tubifex. The results showed that the addition of T. tubifex accelerated sediment organic matter (OM) and nitrogen (N) loss, with averages of 7.7% and 75.1% increased loss (IL) compared to treatments without T. tubifex in the 60-day experiment, respectively. The percentages of the increased in water to the IL in sediment were only 0.6%, 0.21%, 2.1% and 6.3% for NH4+-N, NOx--N, TN and COD, respectively, at the end of the experiment. The absolute abundances of the nitrifying genes AOA and AOB; the denitrifying genes napA, nirS, nirK, cnorB and nosZ; and the anaerobic ammonia oxidation gene anammox increased 2.3- to 11.0-fold with the addition of T. tubifex. Therefore, the addition of T. tubifex is an effective strategy for sediment remediation by accelerating OM and N loss in sediment without substantially increasing the water N concentration.
Collapse
Affiliation(s)
- Jiqiang Yang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, Jiangsu, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Yun Wan
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, Jiangsu, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Miao Zhang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, Jiangsu, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Zhifan Cao
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, Jiangsu, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Xin Leng
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, Jiangsu, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Dehua Zhao
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, Jiangsu, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China.
| | - Shuqing An
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, Jiangsu, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| |
Collapse
|
32
|
Yang J, Wan Y, Cao Z, Zhang M, Zheng F, Leng X, Zhao D, An S. Enhanced organic matter decomposition in sediment by Tubifex tubifex and its pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111281. [PMID: 32854048 DOI: 10.1016/j.jenvman.2020.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
The role of Tubifex tubifex in organic matter (OM) decomposition in aquatic ecosystems has been widely studied, but considerable uncertainties exist in terms of the effect mechanism. The effect of T. tubifex on sediment OM decomposition in laboratory-scale microcosms was quantified, and possible pathways were identified. In the first 7 days of the decomposition of OM mixed in sediment, no significant effect of T. tubifex on organic matter loss (OML) was observed for both low- and high-OM treatments; meanwhile, from day 7-60, T. tubifex addition significantly improved OML from 55.0%-57.5% to 71.8%-77.7% in the low-OM treatments and from 55.5%-56.6% to 64.1%-68.7% in the high-OM treatments. The enhanced OML observed with T. tubifex was mainly due to the promoted decomposition of refractory organic components, e.g., cellulose, hemicellulose and lignin. The proportion of refractory components in the gut of T. tubifex was significantly lower than that in the sediments (p < 0.01), indicating a pathway corresponding to the ingestion and digestion of refractory components by T. tubifex. Although T. tubifex reduced the water dissolved oxygen (DO) by increasing the water chemical oxygen demand (COD), the oxygen supply was improved by T. tubifex, and this could be affected by the increase in the relative abundance of aerobic to anaerobic bacteria in the sediments. T. tubifex significantly increased the diversity of the bacterial and fungal communities in the sediments. Moreover, the community structure of bacteria and fungi was substantially different between gut and sediment. Therefore, multiple pathways of the effect of T. tubifex on OM decomposition were established, and the results have great significance for the artificial manipulation of OM circulation using T. tubifex and the restoration of damaged aquatic ecosystems.
Collapse
Affiliation(s)
- Jiqiang Yang
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, 210093, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Yun Wan
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, 210093, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Zhifan Cao
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, 210093, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Miao Zhang
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, 210093, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Fuchao Zheng
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, 210093, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Xin Leng
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, 210093, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Dehua Zhao
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, 210093, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China.
| | - Shuqing An
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing, 210093, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China.
| |
Collapse
|
33
|
Yang J, Li Q, An Y, Zhang M, Du J, Chen C, Zhao R, Zhao D, An S. The improvement of pollutant removal efficiency in saturated vertical flow constructed wetlands by tubifex tubifex. BIORESOURCE TECHNOLOGY 2020; 318:124202. [PMID: 33035945 DOI: 10.1016/j.biortech.2020.124202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Pilot-scale saturated vertical flow constructed wetlands (VF-CWs) were established to identify whether T. tubifex has the similar performance in saturated VF-CWs to that in surface flow CWs in improving pollutant removal efficiency (RE). The saturated VF-CWs with T. tubifex achieved REs of 67.3% total nitrogen (TN) and 39.8% chemical oxygen demand (COD), which were significantly higher than treatments without T. tubifex (42.2% TN and 31.4% COD). There existed significant interactions between macrophytes and T. tubifex. T. tubifex greatly improved the dissolved oxygen by increasing the connectivity between layers, and enhanced dehydrogenase activity and fluorescein diacetate. Adding T. tubifex improved the bacterial diversity and relative abundance of both N-cycle bacteria and fermentation bacteria in the biofilms. The improvements of ammonia oxidation and anammox were the main pathways for the increased nitrogen removal by T. tubifex. Therefore, T. tubifex is a useful tool for improving pollutant REs in saturated VF-CWs.
Collapse
Affiliation(s)
- Jiqiang Yang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Qiming Li
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Yu An
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Miao Zhang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Juan Du
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Chen Chen
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Ran Zhao
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Dehua Zhao
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China.
| | - Shuqing An
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210093, China
| |
Collapse
|
34
|
Crutchik D, Rodríguez-Valdecantos G, Bustos G, Bravo J, González B, Pabón-Pereira C. Vermiproductivity, maturation and microbiological changes derived from the use of liquid anaerobic digestate during the vermicomposting of market waste. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1781-1794. [PMID: 33201843 DOI: 10.2166/wst.2020.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, it has been suggested that the liquid fraction of anaerobic digestate, derived from the treatment of wastewater and solid wastes, could be used in vermicomposting as a solution to its disposal, and even for its valorization. Nevertheless, the literature does not provide enough information about its impact on the process of vermicomposting itself and on the final quality of the end-product. In this study, the effect of different doses of digestate in the vermicomposting process treating market waste is assessed measuring earthworm population dynamics, the bacterial community succession present in the vermibeds, as well as maturation and the end-quality of the vermicompost. Our results show that the addition of liquid digestate to the vermibeds increased the earthworms biomass, i.e. 71%, 94% and 168% in control, and vermibeds with 30% and 60% digestate, respectively. Further, the increase in the amount of N in the vermicompost decreased as the digestate addition increased, i.e. 75%, 8%, 3%. The maturity achieved was high in all treatments as shown by the C/N ratio, 7.98, 7.40 and 10.20, and the high seed germination rate, above 90%. Finally, the succession of the microbial community was not disturbed and compositional stabilization was reached after 92 days.
Collapse
Affiliation(s)
- Dafne Crutchik
- Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Diagonal Las Torres 2700 Peñalolen, C.P. 7941169. Santiago de Chile, Chile; EcoParque Peñalolén - UAI, Avenida José Arrieta 7659, and UAI - Earth Center, Santiago, Chile
| | - Gustavo Rodríguez-Valdecantos
- Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Diagonal Las Torres 2700 Peñalolen, C.P. 7941169. Santiago de Chile, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Gabriela Bustos
- Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Diagonal Las Torres 2700 Peñalolen, C.P. 7941169. Santiago de Chile, Chile
| | - Javier Bravo
- Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Diagonal Las Torres 2700 Peñalolen, C.P. 7941169. Santiago de Chile, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Bernardo González
- Faculty of Engineering and Sciences, Universidad Adolfo Ibañez, Diagonal Las Torres 2700 Peñalolen, C.P. 7941169. Santiago de Chile, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Claudia Pabón-Pereira
- Sub-department of Environmental Technology, Agrotechnology & Food Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands E-mail: ; ; EcoParque Peñalolén - UAI, Avenida José Arrieta 7659, and UAI - Earth Center, Santiago, Chile
| |
Collapse
|
35
|
Sun M, Chao H, Zheng X, Deng S, Ye M, Hu F. Ecological role of earthworm intestinal bacteria in terrestrial environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140008. [PMID: 32562986 DOI: 10.1016/j.scitotenv.2020.140008] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 05/21/2023]
Abstract
Increasing evidence demonstrated the critical role the earthworm gut played in sustaining earthworm's metabolism and transformation of nutrients and pollutants in the environment. Being rich in nutrients, the earthworm gut is favorable for the colonization of (facultative) anaerobic bacteria, which bridge the host earthworm gut with adjacent terrestrial environment. Therefore, the status quo of earthworm gut research was primarily reviewed in this work. It was found that most studies focused on the bacterial composition and diversity of the earthworm gut, and their potential application in nutrient element and pollutant transformation, such as nitrification, methanogens, heavy metal detoxification, etc. Yet limited information was available about the specific mechanism of intestinal bacteria in nutrient and pollutant transformation. Therefore, in this work we highlighted the current problems and concluded the future prospect of worm's intestinal bacteria research. On one hand, high throughput sequencing and bioinformatics tools are critical to break the bottleneck in the intestinal bacteria research via clarifying the molecular mechanism involved in the transformation processes described above. In addition, a global dataset concerning worm gut bacteria will be needed to provide comprehensive information about intestinal bacteria pool, and act as a communication platform to further encourage the progress of worm gut research.
Collapse
Affiliation(s)
- Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxuan Zheng
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaopo Deng
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Bello A, Han Y, Zhu H, Deng L, Yang W, Meng Q, Sun Y, Egbeagu UU, Sheng S, Wu X, Jiang X, Xu X. Microbial community composition, co-occurrence network pattern and nitrogen transformation genera response to biochar addition in cattle manure-maize straw composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137759. [PMID: 32172117 DOI: 10.1016/j.scitotenv.2020.137759] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
A better understanding of the microbial group influencing nitrogen (N) dynamics and cycling in composting matrix is critical in achieving good management to alleviate N loss and improve final compost quality. This study investigated the bacterial composition, structure, co-occurrence network patterns and topological roles of N transformation in cattle manure-maize straw composting using high-throughput sequencing. The two treatments used in this experiment were cattle manure and maize straw mixture (CM) and CM with 10% biochar addition (CMB). In both treatments, the bacterial community composition varied during composting and the major phyla included Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes and Chloroflexi. The phyla Actinobacteria and Proteobacteria were more abundant in CMB treatment while Firmicutes was abundant in CM piles. The metabolic functional profiles of bacteria was predicted using the "phylogenetic investigation of communities by reconstruction of unobserved states" (PICRUSt) which revealed that except for cellular processes pathway, CMB had slight higher abundance in metabolism, genetic information processing and environmental information processing than the CM. Pearson correlation revealed more significant relationship between the important bacteria communities and N transformation in CMB piles compared with CM. Furthermore, network pattern analysis revealed that the bacterial networks in biochar amended piles are more complex and harbored more positive links than that of no biochar piles. Corresponding agreement of multivariate analyses (correlation heatmap, stepwise regression, Path and network analyses) revealed that Psychrobacter, Thermopolyspora and Thermobifida in CM while Corynebacterium_1, Thermomonospora and Streptomyces in CMB were key bacterial genera affecting NH4+-N, NO3--N and total nitrogen (TN) transformation respectively during composting process. These results provide insight into nitrogen transformation and co-occurrence patterns mediating microbes and bacterial metabolism which could be useful in enhancing compost quality and mitigating N loss during composting.
Collapse
Affiliation(s)
- Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Haifeng Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingxin Meng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siyuan Sheng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaotong Wu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xin Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
37
|
Gómez-Brandón M, Aira M, Santana N, Pérez-Losada M, Domínguez J. Temporal Dynamics of Bacterial Communities in a Pilot-Scale Vermireactor Fed with Distilled Grape Marc. Microorganisms 2020; 8:microorganisms8050642. [PMID: 32354197 PMCID: PMC7284424 DOI: 10.3390/microorganisms8050642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 01/23/2023] Open
Abstract
Vermicomposting has been found as a profitable approach to dispose of and treat large quantities of raw grape marc. However, less information is available with regard to its efficiency for treating distillery winery byproducts, even though distillation has been widely used as a way to economically valorize grape marc. As such, we sought to characterize the compositional and functional changes in bacterial communities during vermicomposting of distilled grape marc by using 16S rRNA high-throughput sequencing. Samples were collected at the initiation of vermicomposting and at days 14, 21, 28, 35 and 42. There were significant changes (p < 0.0001) in the bacterial community composition of distilled grape marc after 14 days of vermicomposting that were accompanied by twofold increases in bacterial richness and diversity from a taxonomic and phylogenetic perspective. This was followed by significant increases in functional diversity of the bacterial community, including metabolic capacity, lignin and cellulose metabolism, and salicylic acid synthesis. These findings indicate that the most striking compositional and functional bacterial community changes took place during the active phase of the process. They also pinpoint functional attributes that may be related to the potential beneficial effects of distilled grape marc vermicompost when applied on soil and plants.
Collapse
Affiliation(s)
- María Gómez-Brandón
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310 Vigo, Spain
- Correspondence:
| | - Manuel Aira
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310 Vigo, Spain
| | - Natielo Santana
- Department of Soil Science, Federal University of Santa Maria, 97119-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Jorge Domínguez
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310 Vigo, Spain
| |
Collapse
|
38
|
Li W, Bhat SA, Li J, Cui G, Wei Y, Yamada T, Li F. Effect of excess activated sludge on vermicomposting of fruit and vegetable waste by using novel vermireactor. BIORESOURCE TECHNOLOGY 2020; 302:122816. [PMID: 32004813 DOI: 10.1016/j.biortech.2020.122816] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
This study aimed to clarify the effect of excess activated sludge (EAS) on vermicomposting of fruit and vegetable wastes (FVW). For this, a novel vermireactor consists of substrate and bed compartments was used for treating five types of FVW (banana peels, cabbage, lettuce, carrot, and potato) with and without the addition of EAS by earthworms. The EAS promoted the growth and cocoon production of earthworms, and the decomposition efficiency of FVW. The changes of dehydrogenase activity revealed that the EAS enhanced the microbial activity in all treatments except for the carrot. The organic matter content, total carbon and the C/N ratio showed a significant decrease after addition of EAS into FVW. The content of nitrogen and phosphorus was also improved in the final products after vermicomposting. This study suggested that the addition of EAS could be a feasible option to enhance the vermicomposting of FVW.
Collapse
Affiliation(s)
- Wenjiao Li
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Jiefeng Li
- Department of Architecture, Lu Liang University, Lishi, Shanxi 033000, China
| | - Guangyu Cui
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yongfen Wei
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toshiro Yamada
- Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Fusheng Li
- Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
39
|
Li Y, Yang X, Gao W, Qiu J, Li Y. Comparative study of vermicomposting of garden waste and cow dung using Eisenia fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9646-9657. [PMID: 31925695 DOI: 10.1007/s11356-020-07667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Vermicomposting is the process of composting using worms and is applied in waste management to produce high-quality organic fertilizer. Garden waste (GW) is often mixed with other raw materials for vermicomposting. In the present study, the feasibility of vermicomposting using only GW was investigated in comparison with cow dung (CD). The total nitrogen (TN), total phosphorus (TP), and total potassium (TK) contents and the electrical conductivity increased, while total organic carbon (TOC) and the C/N ratio decreased in both substrates after vermicomposting. The nutrient content (TN, TP, and TK) of the GW vermicompost was promoted less than that in CD. Scanning electron microscopy images and specific surface area analysis showed that the vermicompost was strongly disaggregated and became more compacted and fragmented compared with the raw substrates. No mortality of earthworms was observed in GW; however, the earthworms had a higher mean body weight and reproduction rate in CD than that in GW. There were higher bacterial community richness and diversity in the vermicompost than that in the raw materials, and the dominant phylum species were Proteobacteria, Actinobacteria, and Bacteroidetes. Redundancy analysis demonstrated that TN, C/N ratio, and TOC play an important role in bacterial community dynamics. These data indicate that vermicomposting is a robust process that is suitable for the management of GW.
Collapse
Affiliation(s)
- Yingkai Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Yang
- Shanghai Agricultural Technology Extension Service Center, Shanghai, 201103, China
| | - Wen Gao
- Shanghai Shengran Agricultural Technology Co., Ltd, Shanghai, 201401, China
| | - Jiangping Qiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
40
|
Hu J, Zhao H, Wang Y, Yin Z, Kang Y. The bacterial community structures in response to the gut passage of earthworm (Eisenia fetida) feeding on cow dung and domestic sludge: Illumina high-throughput sequencing-based data analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110149. [PMID: 31901807 DOI: 10.1016/j.ecoenv.2019.110149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/17/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Diets are shown to be capable of shaping the gut microbiota of earthworm, while the effects of distinct foods on bacterial communities of different digestive tracts of earthworm are unknown. For this purpose, cow dung (CD) and domestic sludge (DS) were chosen as diets for earthworms (Eisenia fetida), and different gut contents, namely gizzard + foregut area, hindgut, and mature vermi-compost were sampled for Illumina sequencing analysis. We found that there existed significant reductions in bacterial diversity and abundance in the gizzard + foregut area, where there were stable bacteria with the ability of biodegradation of xenobiotics, such as Amycolatopsis, Methylobacterium, Ralstonia, Ochrobactrum, and Sphingomonas. The decreases could be recovered in the hindgut and mature vermi-compost to different extents, suggesting that a bottleneck effect on the bacterial community occurred in the gizzard + foregut area. Beta-Proteobacteria was the most abundant subclass regardless of the different diets, and bacteria affiliated with gamma-, delta- and epsilon-subclasses were taken as food by the earthworms. Vermi-composts based on the various diets should be used differently according to different aims.
Collapse
Affiliation(s)
- Jian Hu
- Environmental Science & Engineering, Yangzhou University, Yangzhou, Jiangsu, PR China.
| | - Haitao Zhao
- Environmental Science & Engineering, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Yue Wang
- Environmental Science & Engineering, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Zhifeng Yin
- Institute of Resource Utilization of Agricultural Waste, Yancheng Teachers University, Yancheng, Jiangsu, PR China
| | - Yijun Kang
- Environmental Science & Engineering, Yangzhou University, Yangzhou, Jiangsu, PR China; Institute of Resource Utilization of Agricultural Waste, Yancheng Teachers University, Yancheng, Jiangsu, PR China.
| |
Collapse
|
41
|
Composition and functional profiling of the microbiota in the casts of Eisenia fetida during vermicomposting of brewers' spent grains. ACTA ACUST UNITED AC 2020; 25:e00439. [PMID: 32140444 PMCID: PMC7047135 DOI: 10.1016/j.btre.2020.e00439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
Abstract
E. fetida microbiota is affected by pH and carbon content of rearing substrates. This is the first report of the microbiota of E. fetida fed with brewers’ spent grains. Brewers’ spent grains induced proliferation of bacterial taxa involved in cellulose degradation and nitrogen cycle. Ammonia and nitrates were assimilated at high rates by the microbiota of E. fetida fed with brewers’ spent grains.
Vermicomposting is a cost-effective biotechnology for the management of organic wastes that relies on the activity of earthworms and their associated microbiota. Here, the microbiotas of the earthworm Eisenia fetida fed with brewers’ spent grains (FBSG), cow manure (FCM) and a mix of brewers’ spent grains/cow manure (FMIX), were identified by high-throughput DNA sequencing (16S rRNA). Bacterial community variance was correlated with the pH and the organic carbon content of the rearing substrates. FBSG microbiota was enriched in Paenibacillaceae, Enterobacteriaceae, Chitinophagaceae and Comamonadaceae. In addition, FBSG microbiota had a predicted higher abundance of genes involved in cellulose degradation as well as in the nitrogen cycle and showed higher utilization of ammonia and nitrate. Results obtained will allow to optimize the vermicomposting of brewers’ spent grains and to evaluate the effect of vermicompost addition on nutrient dynamics in soil.
Collapse
|
42
|
Ma C, Hu B, Wei MB, Zhao JH, Zhang HZ. Influence of matured compost inoculation on sewage sludge composting: Enzyme activity, bacterial and fungal community succession. BIORESOURCE TECHNOLOGY 2019; 294:122165. [PMID: 31561154 DOI: 10.1016/j.biortech.2019.122165] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
The influence of matured compost inoculation during sewage sludge with sawdust composting was assessed. Mature compost reduced the heating rate, thermophilic phase, peak temperature, and volatile solid degradation rate, with no significant effect on pH and germination index. Matured compost addition also increased the cellulase, peroxidase, arylsulfatase, and urease contents during the mesophilic phase, and increased the urease content but decreased the cellulase, peroxidase, protease, and arylsulfatase contents during the cooling phase, with no significant effect on enzyme activities at the thermophilic phase. Matured compost increased the diversity of bacteria during the mesophilic and thermophilic phases, but reduced the fungal diversity throughout composting. Matured compost significantly improved uniformity of the bacterial community and affected the structure of the bacterial and fungal communities, while changing the correlation between some functional microorganisms and enzyme activities. These results provide guidance for optimizing the composting process when matured compost as bulking agent.
Collapse
Affiliation(s)
- Chuang Ma
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Bin Hu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ming-Bao Wei
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ji-Hong Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hong-Zhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China.
| |
Collapse
|
43
|
Rapid Bacterial Community Changes during Vermicomposting of Grape Marc Derived from Red Winemaking. Microorganisms 2019; 7:microorganisms7100473. [PMID: 31635111 PMCID: PMC6843324 DOI: 10.3390/microorganisms7100473] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022] Open
Abstract
Previous studies dealing with changes in microbial communities during vermicomposting were mostly performed at lab-scale conditions and by using low-throughput techniques. Therefore, we sought to characterize the bacterial succession during the vermicomposting of grape marc over a period of 91 days in a pilot-scale vermireactor. Samples were taken at the initiation of vermicomposting, and days 14, 28, 42, and 91, representing both active and mature stages of vermicomposting. By using 16S rRNA high-throughput sequencing, significant changes in the bacterial community composition of grape marc were found after 14 days and throughout the process (p < 0.0001). There was also an increase in bacterial diversity, both taxonomic and phylogenetic, from day 14 until the end of the trial. We found the main core microbiome comprised of twelve bacterial taxa (~16.25% of the total sequences) known to be capable of nitrogen fixation and to confer plant-disease suppression. Accordingly, functional diversity included increases in specific genes related to nitrogen fixation and synthesis of plant hormones (salicylic acid) after 91 days. Together, the findings support the use of grape marc vermicompost for sustainable practices in the wine industry by disposing of this high-volume winery by-product and capturing its value to improve soil fertility.
Collapse
|
44
|
Zhong H, Liu X, Zhu L, Yang Y, Yan S, Zhang X. Bioelectrochemically-assisted vermibiofilter process enhancing stabilization of sewage sludge with synchronous electricity generation. BIORESOURCE TECHNOLOGY 2019; 289:121740. [PMID: 31323716 DOI: 10.1016/j.biortech.2019.121740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Bioelectrochemically-assisted vermifilter (VBFBE) with sewage sludge as the anode fuel was constructed to accelerate composting of sewage sludge, which could increase the quality of the compost and harvest electric energy in comparison with vermicomposting and electrochemical only. Results revealed that the sludge stabilization with a higher soluble chemical oxygen demand (SCOD) and lower NH4+-H during 40 days of composting. At the composting, pH, C/N, electrical conductivity (EC) and germination index (GI) results demonstrated that the maturity degree of VBFBE4 was higher than that of other VBFBE. The VBFBE4 yielded a voltage of 1.024 V and maximum power density of 105.28 mW/m2 on 3th day. The bacteria in VBFBE4 were richer and higher in terms of diversity than those in other VBFBE, that was demonstrated that combination vermicomposting and electrochemistry could improve the sludge stabilization degree, accelerate sludge composting process and enhance composting maturity.
Collapse
Affiliation(s)
- Huiyuan Zhong
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063000, PR China.
| | - Xiao Liu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| | - Li Zhu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| | - Yong Yang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| | - Shan Yan
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| | - Xinyuan Zhang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063000, PR China
| |
Collapse
|
45
|
Xia H, Chen J, Chen X, Huang K, Wu Y. Effects of tetracycline residuals on humification, microbial profile and antibiotic resistance genes during vermicomposting of dewatered sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1068-1077. [PMID: 31252104 DOI: 10.1016/j.envpol.2019.06.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Vermicomposting is a green technology used in the recycling of sewage sludge using the joint action of earthworms and microorganisms. Although tetracycline is present in abundance in sewage sludge, little attention has been given to its influence on vermicomposts. This study investigated the effects of different tetracycline concentrations (0, 100, 500 and 1000 mg/kg) on the decomposition of organic matter, microbial community and antibiotic resistance genes (ARGs) during vermicomposting of spiked sludge. The results showed that 100 mg/kg tetracycline could stimulate earthworms' growth, accompanied by the highest humification and decomposition rates of organic matter in the sludge. The abundance of active microbial cells and diversity decreased with the increase in tetracycline concentrations. The member of Bacteroidetes dominated in the tetracycline spiked treatments, especially in the higher concentration treatments. Compared to its counterparts, the addition of tetracycline significantly increased the abundances of ARGs (tetC, tetM, tetX, tetG and tetW) and Class 1 integron (int-1) by 4.7-186.9 folds and 4.25 folds, respectively. The genera of Bacillus and Mycobacterium were the possible bacterial pathogen hosts of ARGs enriched in tetracycline added group. This study suggests that higher concentration of tetracycline residual can modify microbial communities and increase the dissemination risk of ARGs for final sludge vermicompost.
Collapse
Affiliation(s)
- Hui Xia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jingyang Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xuemin Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kui Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Ying Wu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
46
|
Response of Microbial Activities in Soil to Various Organic and Mineral Amendments as an Indicator of Soil Quality. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presented paper deals with the analysis of potential differences between organic waste compost (CBD), vermicompost (CVER) and mineral fertilizer (MF; 27% of N) applications affecting the quality of arable soil by influencing microbial activity therein. The selected types of compost represent alternatives to conventional organic fertilizers, which are, however, not available to Czech and Slovak farmers in sufficient amounts. Their mutual comparison and the comparison with organic fertilizers aim to provide farmers further information about their influence on arable land and thus to give them the possibility of deciding on the most suitable amendments. To demonstrate the effect of these amendments, six variants were prepared: one without the addition of fertilizers; two variants with the addition of 40 Mg/ha of CVER and CBD; one variant with the addition of double dosed CVER (80 Mg/ha), and the remaining two variants were fertilized only with MF (0.22 Mg/ha) and with the combination of CVER (0.20 Mg/ha) and MF (0.11 Mg/ha). Substrate induced respiration (SIR), basal respiration (BS), microbial carbon (Cmic) and enzymatic activities (hydrolysis of fluorescein diacetate—FDA, dehydrogenase activity—DHA, and phosphatase activity—PA) were used to evaluate the effect of CBD, CVER and MF application on the soil quality. Both organic and mineral amendments affected BS and SIR. The highest BS and SIR rates were found in variants with compost application (CVER and CBD). All variants treated with the mineral fertilizer showed the lowest level of enzyme activities; lower by about 30% in comparison with variants where CVER, CBD and the combination of MF and CVER were applied. We found insignificant differences between the individual types of compost. More importantly, we compared the situation at the beginning of the experiment and after its end. It was found that the application of mineral fertilizers automatically led to the deterioration of all enzymatic parameters, on average by more than 25%, as compared with the situation at the beginning of the experiment. However, when the mineral fertilizer dose was supplemented with organic amendments (CVER), this negative effect was eliminated or significantly reduced. Furthermore, both composts (CVER and CBD) positively affected plant biomass production, which reached a level of production enhanced by the MF. Results clearly showed that the application of both compost types could be used to improve soil quality in agriculture.
Collapse
|
47
|
Khan MB, Cui X, Jilani G, Ting Y, Zehra A, Hamid Y, Hussain B, Tang L, Yang X, He Z. Preincubation and vermicomposting of divergent biosolids exhibit vice versa multielements stoichiometry and earthworm physiology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 243:144-156. [PMID: 31100659 DOI: 10.1016/j.jenvman.2019.04.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/02/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Sewage sludge and kitchen refuse are ubiquitously mounting wastes with high organic load, which if reprocessed they could salvage the environment. Reckoned with this certitude, an incubating study was initiated on sequential preincubation of sewage sludge with kitchen waste in 100:0, 70:30, 50:50, and 30:70 ratios for 16 days ensued by vermicomposting of 30 days using Eisenia fetida. Concentration of heavy metals (Cd, Cr, Cu, Mn, Pb, and Zn) in the biosolid mixtures increased during preincubation but reduced progressively through vermicomposting due to bioaccumulation of these metals in the earthworm tissues. Earthworm growth parameters data reflected that sewage sludge and kitchen waste mixture with 70:30 ratio increased the number of cocoons (10.6%), biomass (8.2%), growth rate (8.3%), reproduction rate (12.2%), and decreased their mean mortality rate (80.1%) as compared to that in sole sewage sludge (control). Results of chemical analysis and SEM/EDS imaging, showed that alkalinity, organic carbon, C/N ratio, organic matter and concentration of trace elements (Cd, Cr, Cu, Mn, Pb, and Zn) reduced while macronutrients (N, P, K, Ca and Mg) increased in the final vermicompost as compared to that in initial mixtures. The FT-IR analysis also revealed that various biochemical functional groups underwent biodegradation during combined preincubation-vermicomposting. Bioaccumulation factor (BAF) of all trace elements in the earthworm tissues was higher with 70:30 ratio of substrates, with the trend of Cd > Zn > Cu > Mn > Pb > Cr. Hence, this study concludes that combined preincubation-vermicomposting is the most efficient and ecofriendly technique for biodegradation, stabilization, and conversion of sewage sludge and kitchen waste into organic fertilizer. The nutrient rich vermicompost can be safely used as horticultural substrate and soil conditioner for efficient management of degraded soils. Finally, combined preincubation-vermicomposting is a sustainable system of recycling the sewage sludge along with kitchen waste.
Collapse
Affiliation(s)
- Muhammad Bilal Khan
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqiang Cui
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ghulam Jilani
- Institute of Soil Science, PMAS, Arid Agriculture University Rawapindi, 46300, Pakistan
| | - Yan Ting
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Afsheen Zehra
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Botany, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Yasir Hamid
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bilal Hussain
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin Tang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhenli He
- Soil and Water Science Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, 34945, USA
| |
Collapse
|
48
|
Domínguez J, Aira M, Kolbe AR, Gómez-Brandón M, Pérez-Losada M. Changes in the composition and function of bacterial communities during vermicomposting may explain beneficial properties of vermicompost. Sci Rep 2019; 9:9657. [PMID: 31273255 PMCID: PMC6609614 DOI: 10.1038/s41598-019-46018-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
Vermicomposting is the process by which organic waste is broken down through the synergistic actions of earthworms and microbial communities. Although vermicomposting has been shown to effectively reduce organic biomass and generate high-quality fertilizer for plants, little is known about the bacterial communities that are involved in this decomposition process. Since optimization of vermicomposting for commercial use necessitates additional knowledge of the underlying biological processes, this study sought to characterize the bacterial succession involved in the vermicomposting of Scotch broom (Cytisus scoparius), a leguminous shrub that has become invasive around the world with consequences for the dynamics and productivity of the ecosystems they occupy. Scotch broom was processed in a pilot-scale vermireactor for 91 days with the earthworm species Eisenia andrei. Samples were taken at the initiation of vermicomposting, and days 14, 42 and 91, representing both active and mature stages of vermicomposting. Significant changes (P < 0.0001) in the bacterial community composition (richness and evenness) were observed throughout the process. Increases in taxonomic diversity were accompanied by increases in functional diversity of the bacterial community, including metabolic capacity, streptomycin and salicylic acid synthesis, and nitrification. These results highlight the role of bacterial succession during the vermicomposting process and provide evidence of microbial functions that may explain the beneficial effects of vermicompost on soil and plants.
Collapse
Affiliation(s)
- Jorge Domínguez
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310, Vigo, Pontevedra, Spain
| | - Manuel Aira
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310, Vigo, Pontevedra, Spain
| | - Allison R Kolbe
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA, 20147, USA
| | - María Gómez-Brandón
- Grupo de Ecoloxía Animal (GEA), Universidade de Vigo, E-36310, Vigo, Pontevedra, Spain.
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA, 20147, USA.,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
49
|
Zhang J, Sugir ME, Li Y, Yuan L, Zhou M, Lv P, Yu Z, Wang L, Zhou D. Effects of vermicomposting on the main chemical properties and bioavailability of Cd/Zn in pure sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20949-20960. [PMID: 31115804 DOI: 10.1007/s11356-019-05328-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
To study the effects of vermicomposting on the chemical properties and bioavailability of Cd/Zn in sludge, earthworms (Eisenia foetida) at different densities were inoculated into pure sludge, and sludge and earthworms were collected regularly to determine the earthworm biomass, the main chemical indexes, the structure of the functional groups, and the Cd/Zn content in the sludge. The results showed that the growth curve of earthworms in pure sludge could be well fitted by the logistic model. Earthworm activity eventually reduced the total organic carbon (TOC), fulvic acid (FA), and C/N ratio and increased the electrical conductivity (EC), total nitrogen (TN), humic acid (HA), and HA/FA ratio in the sludge. TOC, TN, and pH inhibited the bioavailability of Cd/Zn, while HA and EC promoted the bioavailability of Cd/Zn. Earthworm activity ultimately increased the content of Cd/Zn in the sludge. The bioavailability of Cd/Zn was reduced during the rapid growth period of the earthworms but increased during the stable growth period of the earthworms. A suitable vermicomposting time should be determined to ensure the activation or passivation of Cd/Zn.
Collapse
Affiliation(s)
- Jizhou Zhang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
- National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Maral Erdene Sugir
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yunying Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Yuan
- National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Meng Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
- Department of Biological Center, Harbin Academy of Agricultural Sciences, Harbin, 150028, China
| | - Pin Lv
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China
- National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Zhimin Yu
- National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Limin Wang
- National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
50
|
Bacterial succession and functional diversity during vermicomposting of the white grape marc Vitis vinifera v. Albariño. Sci Rep 2019; 9:7472. [PMID: 31097737 PMCID: PMC6522490 DOI: 10.1038/s41598-019-43907-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/03/2019] [Indexed: 12/31/2022] Open
Abstract
Winemaking produces millions of tons of grape marc, a byproduct of grape pressing, each year. Grape marc is made up of the skins, stalks, and seeds remaining after pressing. Raw grape marc can be hazardous to the environment due to its low pH and high polyphenol content, but previous work has shown that grape marc can be stabilized via vermicomposting to produce organic fertilizer. Here, we utilize 16S rRNA high-throughput sequencing to characterize the bacterial community composition, diversity and metabolic function during vermicomposting of the white grape marc Vitis vinifera v. Albariño for 91 days. Large, significant changes in the bacterial community composition of grape marc vermicompost were observed by day 7 of vermicomposting and throughout the duration of the experiment until day 91. Similarly, taxonomic and phylogenetic α-diversity increased throughout the experiment and estimates of β-diversity differed significantly between time points. Functional diversity also changed during vermicomposting, including increases in cellulose metabolism, plant hormone synthesis, and antibiotic synthesis. Thus, vermicomposting of white grape marc resulted in a rich, stable bacterial community with functional properties that may aid plant growth. These results support the use of grape marc vermicompost for sustainable agricultural practices in the wine industry.
Collapse
|