1
|
Moghaddam AH, Hashemi SH, Bashtamian M. Source identification, accumulation and dispersion of heavy metals pollution into the surface sediments of urban runoff (case study, channels of Tehran City). JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2025; 23:12. [PMID: 40161399 PMCID: PMC11953515 DOI: 10.1007/s40201-025-00938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Heavy metals (HMs) pollution presents a significant challenge for both human health and natural ecosystems on a global scale. This study investigates the pollution of surface sediments resulting from urban runoff, identifies potential pollution sources, and examines the correlation between HMs and two factors: total organic carbon (TOC%) and particle size distribution (PSD). A total of 30 surface sediment samples were collected from three urban channels in the Tehran megacity. The concentrations of key elements, including strontium (Sr), lead (Pb), cadmium (Cd), nickel (Ni), and copper (Cu), were determined using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). The mean concentrations of Cd, Ni, Cu, Pb, Sr, were 0.46, 39.80, 161.25, 261.75, 388.50 mg/litter, respectively, following the sequence Sr > Pb > Cu > Ni > Cd. To identify the HMs accumulation, factor analysis(FA) was employed. The HMs rank order based on FA was as follows: 37.7% > 24.4% > 24.1%. According to (FA), the possible accumulation source of Pb and Sr is as different as Cu, Ni, and Cd elements. A significant correlation between Sr with TOC% (r = 0.901, sig = 0.000), Pb with both TOC% and particles < 75µm (r = 0.77, r = 0.63, Sig = 0.000 respectively), while Cu, Ni and Cd with particles < 150µm (r = 0.68, r = 0.81, r = 0.87, Sig = 0.000 respectively) were observed). Overall, the concentration of heavy metals (HMs) demonstrated a significant negative correlation with the particle size of surface sediments.
Collapse
Affiliation(s)
- Amin Hasani Moghaddam
- Environmental Sciences Research Institute, University of Shahid Beheshti, Tehran, Iran
| | - Seyed Hossein Hashemi
- Environmental Sciences Research Institute, University of Shahid Beheshti, Tehran, Iran
| | - Mojtaba Bashtamian
- Geograghical Information System Institute, University of Shahid Beheshti, Tehran, Iran
| |
Collapse
|
2
|
Pacín C, Fernández JÁ, Conde-Amboage M, Lazzari M, García-Seoane R, G Viana I, Varela Z, Real C, Villares R, Aboal JR. Three Decades of Change in Potentially Toxic Elements in Brown Algae in the Northeast Atlantic Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40401394 DOI: 10.1021/acs.est.4c14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Marine pollution from potentially toxic elements (PTEs) threatens coastal ecosystems, making long-term assessments essential. This study analyzes trends in Al, Cr, Fe, Ni, Cu, Zn, As, Cd, and Hg using 446 samples of Fucus ceranoides, F. spiralis, and F. vesiculosus collected between 1990 and 2021 at 173 coastal sites in NW Spain. A consistent resampling approach revealed significant declines in most anthropogenic PTEs, including Cu (-84.7%), Cr (-84.6%), Hg (-49.6%), and Cd (-36.7%) over time. In contrast, arsenic increased by 36.1%, but the underlying causes remain unclear, with potential factors including changes in sediment inputs, bioavailability, or emerging sources such as groundwater discharges. Higher PTE levels were detected in inner estuarine areas, but no consistent latitudinal patterns emerged. Overall, the results suggest effective mitigation of coastal pollution, with reduced bioavailable PTEs entering the food web via Fucus spp. However, rising As levels and complex contamination dynamics underscore the need for continued monitoring. This study offers the most comprehensive standardized assessment of long-term PTE trends in brown algae to date, providing valuable insights for environmental policy and coastal management.
Collapse
Affiliation(s)
- Carme Pacín
- CRETUS Centre, Department of Functional Biology, Ecology Unit, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- CIQUS Centre, Department of Physical Chemistry, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - J Ángel Fernández
- CRETUS Centre, Department of Functional Biology, Ecology Unit, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Mercedes Conde-Amboage
- Department of Statistics, Mathematical Analysis and Optimization, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Massimo Lazzari
- CIQUS Centre, Department of Physical Chemistry, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Rita García-Seoane
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de A Coruña, A Coruña 15001, Spain
- Department of Earth Sciences, University of Hawaii at Ma̅noa, 1680 East-West Road, POST 719B, Honolulu, Hawaii 96822, United States
| | - Inés G Viana
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de A Coruña, A Coruña 15001, Spain
| | - Zulema Varela
- CRETUS Centre, Department of Functional Biology, Ecology Unit, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Carlos Real
- Department of Functional Biology, Ecology Unit, Universidade de Santiago de Compostela, Escola Politécnica Superior de Enxeñaría, Lugo 27002, Spain
| | - Rubén Villares
- Department of Functional Biology, Ecology Unit, Universidade de Santiago de Compostela, Escola Politécnica Superior de Enxeñaría, Lugo 27002, Spain
| | - Jesús R Aboal
- CRETUS Centre, Department of Functional Biology, Ecology Unit, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
3
|
Shimshoni JA, Andrushenko Y, Garber OG, Rosen VV. Dietary Risk Assessment and Classification Model Based on Trace Elemental Analysis in Commercially Available Dried Seaweed Products. J Food Prot 2025; 88:100509. [PMID: 40246235 DOI: 10.1016/j.jfp.2025.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Seaweed, particularly kombu, wakame, and nori, has become increasingly popular food in Western nations. In the present study, commercially available edible seaweeds (n = 100), imported from China and South Korea, and purchased from local supermarkets in Tel Aviv, Israel, were analyzed in a recent study to assess 22 trace element concentrations for consumer health risk assessment and to construct an authenticity classification. Trace elements showed a broad concentration range, with copper (Cu), manganese (Mn), zinc (Zn), cadmium (Cd), selenium (Se), and tin (Sn) levels exceeding previously reported averages by at least double. Nori contained more Cu, vanadium (V), and molybdenum (Mo), while kombu and wakame had significantly higher iodine and total arsenic (total As) levels. Despite negligible health risks from chronic exposure to toxic elements, weekly chronic consumption of kombu and wakame may expose consumers to hazardous concentrations of iodine. In fact, kombu increased weekly iodine intake by 400-800%, and wakame by 159% and 95% in children and adults, respectively. Hence, regular consumption by children of 5 g of kombu seaweed per week, which corresponds to the average weekly intake of dried seaweed in the European population, is strongly discouraged. As for wakame, the consumption should be limited to no more than once a month, particularly for children. Finally, the study successfully classified the types of seaweed, showcasing the potential for an authenticity method for seaweed products.
Collapse
Affiliation(s)
- Jakob Avi Shimshoni
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel.
| | - Yuliana Andrushenko
- The Scientific Service Core Facility, The Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Orit Gal Garber
- The Scientific Service Core Facility, The Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Vasiliy V Rosen
- The Scientific Service Core Facility, The Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
4
|
Varas M, Castro-Rojas J, Contreras-Porcia L, Ureta-Zañartu MS, Blanco E, Escalona N, Muñoz E, Garrido-Ramírez E. Enhancing the Biosorption Capacity of Macrocystis pyrifera: Effects of Acid and Alkali Pretreatments on Recalcitrant Organic Pollutants Removal. Int J Mol Sci 2025; 26:3307. [PMID: 40244170 PMCID: PMC11989721 DOI: 10.3390/ijms26073307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The effects of acid and alkali pretreatments on the physicochemical and textural properties of Macrocystis pyrifera were evaluated to assess its potential for removing recalcitrant organic pollutants from aquatic systems. Untreated (UB), acid-pretreated (ACPB), and alkali-pretreated (ALPB) seaweed biomass were characterized using SEM, FTIR-ATR, N2 adsorption-desorption, and potentiometric titrations. Adsorption isotherms and kinetic studies, using methylene blue (MB) as a model pollutant, were conducted to evaluate removal performance. All biosorbents exhibited Langmuir behavior, with maximum adsorption capacities of 333 mg g-1 (UB), 189 mg g-1 (ACPB), and 526 mg g-1 (ALPB). FTIR-ATR and SEM analyses revealed that alkali pretreatment increased the abundance of hydroxyl, carboxylate, and sulfonated functional groups on the seaweed cell walls, along with greater porosity and surface roughness, resulting in enhanced MB adsorption. In contrast, acid pretreatment increased the exposure of carboxylic, amine, and amide functional groups, reducing the electrostatic interactions. The adsorption energy values further supported this, while the intra-particle diffusion model indicated a two-step process involving MB diffusion onto the seaweed surface, followed by diffusion into internal pores. These findings highlight the potential application of Macrocystis pyrifera-based biosorbents in the treatment of wastewater containing recalcitrant organic pollutants.
Collapse
Affiliation(s)
- Magdalena Varas
- Escuela de Ciencias Ambientales y Sustentabilidad, Universidad Andres Bello, República 440, Santiago 8370251, Chile (J.C.-R.)
| | - Jorge Castro-Rojas
- Escuela de Ciencias Ambientales y Sustentabilidad, Universidad Andres Bello, República 440, Santiago 8370251, Chile (J.C.-R.)
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370251, Chile;
- Centro de Investigación Marina Quintay (CIMARQ), Facultad Ciencias de la Vida, Universidad Andres Bello, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - María Soledad Ureta-Zañartu
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile;
| | - Elodie Blanco
- Departamento de Ingeniería y Gestión de Construcción, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
- ANID–Millennium Science Initiative Program, Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC), Santiago 7820436, Chile
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Néstor Escalona
- ANID–Millennium Science Initiative Program, Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC), Santiago 7820436, Chile
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Edmundo Muñoz
- Centro de Investigación para la Sustentabilidad (CIS), Facultad Ciencias de La Vida, Universidad Andres Bello, República 440, Santiago 8370251, Chile;
| | - Elizabeth Garrido-Ramírez
- Centro de Investigación para la Sustentabilidad (CIS), Facultad Ciencias de La Vida, Universidad Andres Bello, República 440, Santiago 8370251, Chile;
| |
Collapse
|
5
|
Zhao M, Wang D, Fan Z, Lu J, Li Y, Zhang Y, Lv M, Sun M, Wang W. Algae Biomass Hydrogels for Enhanced Removal of Heavy Metal Ions. Gels 2025; 11:150. [PMID: 40136855 PMCID: PMC11941896 DOI: 10.3390/gels11030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/19/2025] [Accepted: 01/28/2025] [Indexed: 03/27/2025] Open
Abstract
Heavy metal ion pollution in aquatic environments is a critical global issue, damaging ecosystems and threatening human health via bioaccumulation in the food chain. Despite promising progress with biosorbents, the development of environmentally friendly and stable heavy metal adsorbents requires further exploration. In this study, we present an algae-loaded alginate hydrogel as a composite adsorbent for heavy metals. The incorporation of algae enhanced the hydrogel's adsorption capacity by 38.0%, 20.6%, and 27.1% for Cu2+, Cr3+, and Co2+, respectively. Additionally, the composite hydrogel demonstrated excellent stability and recyclability after adsorption, reducing the ecological risks associated with algae biomass usage. This algae-loaded alginate hydrogel offers an efficient and eco-friendly strategy for removing heavy metal ions from aquatic systems, highlighting its potential for environmental remediation applications.
Collapse
Affiliation(s)
- Mingjie Zhao
- Shanghai Landscape Architecture Design and Research Institute, 45 Xin Le Road, Shanghai 200031, China; (M.Z.); (J.L.); (Y.L.); (Y.Z.)
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China; (Z.F.); (M.L.)
| | - Dadong Wang
- Shanghai Engineering Technology Research Center for Ecological Landscape Water Environment, 202 Wukang Road, Shanghai 200031, China;
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China; (Z.F.); (M.L.)
| | - Jian Lu
- Shanghai Landscape Architecture Design and Research Institute, 45 Xin Le Road, Shanghai 200031, China; (M.Z.); (J.L.); (Y.L.); (Y.Z.)
- Shanghai Engineering Technology Research Center for Ecological Landscape Water Environment, 202 Wukang Road, Shanghai 200031, China;
| | - Yibo Li
- Shanghai Landscape Architecture Design and Research Institute, 45 Xin Le Road, Shanghai 200031, China; (M.Z.); (J.L.); (Y.L.); (Y.Z.)
| | - Yongwei Zhang
- Shanghai Landscape Architecture Design and Research Institute, 45 Xin Le Road, Shanghai 200031, China; (M.Z.); (J.L.); (Y.L.); (Y.Z.)
| | - Mingchen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China; (Z.F.); (M.L.)
| | - Min Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China; (Z.F.); (M.L.)
| | - Wenji Wang
- Shanghai Landscape Architecture Design and Research Institute, 45 Xin Le Road, Shanghai 200031, China; (M.Z.); (J.L.); (Y.L.); (Y.Z.)
- Shanghai Engineering Technology Research Center for Ecological Landscape Water Environment, 202 Wukang Road, Shanghai 200031, China;
- Graduate School of Architecture Planning and Preservation, Columbia University in the City of New York, 116th St & Broadway, New York, NY 10027, USA
| |
Collapse
|
6
|
Passucci V, Thomas-Chemin O, Dib O, Assaf AA, Durand MJ, Dague E, Areco MM, Formosa-Dague C. Investigating the role of extracellular polymeric substances produced by Parachlorella kessleri in Zn(II) bioremediation using atomic force microscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125082. [PMID: 39374767 DOI: 10.1016/j.envpol.2024.125082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/25/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Microalgae, such as Parachlorella kessleri, have significant potential for environmental remediation, especially in removing heavy metals like zinc from water. This study investigates how P. kessleri, isolated from a polluted river in Argentina, can remediate zinc. Using atomic force microscopy (AFM), the research examined the interactions between Zn particles and cells grown with different nitrogen sources-nitrate or ammonium. The results showed that cells grown with nitrate produced extracellular polymeric substances (EPS), while those grown with ammonium did not. Raman spectroscopy revealed distinct metabolic responses based on the nitrogen source, with nitrate-grown cells showing altered profiles after zinc exposure. Zinc exposure also changed the surface roughness and nanomechanical properties of the cells, particularly in those producing EPS. AFM force spectroscopy experiments then confirmed strong Zn binding to EPS in nitrate-grown cells, while interactions were weaker in ammonium-grown cells that lacked EPS. Overall, our results elucidate the critical role of EPS in Zn removal by P. kessleri cells and show that Zn remediation is mediated by EPS adsorption. This study underscores the significance of regulating nitrogen sources to stimulate EPS production, offering insights that are essential for subsequent bioremediation applications.
Collapse
Affiliation(s)
- Victoria Passucci
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Godoy Cruz 2290 CP (1033), Buenos Aires, Argentina
| | | | - Omar Dib
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, La Roche-sur-Yon, F-85000, France
| | - Antony Ali Assaf
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, La Roche-sur-Yon, F-85000, France
| | - Marie-José Durand
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, La Roche-sur-Yon, F-85000, France
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | - Maria Mar Areco
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Godoy Cruz 2290 CP (1033), Buenos Aires, Argentina.
| | | |
Collapse
|
7
|
Peng Y, Zhang C, Li X, Feng T, Gong X. Mercury Adsorption by Ca-Based Shell-Type Polymers Synthesized by Self-Assembly Mineralization. Polymers (Basel) 2024; 16:3454. [PMID: 39771306 PMCID: PMC11678989 DOI: 10.3390/polym16243454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Adsorption is one of the most promising strategies for heavy metal removal. For Hg(II) removal, mineralized Ca-based shell-type self-assembly beads (MCABs) using alginate as organic polymer template were synthesized in this work. The adsorbent preparation consists of gelation of a Ca-based spherical polymer template (CAB) and rate-controlled self-assembly mineralization in bicarbonate solution with various concentrations. The comparative study demonstrates that 1% (MCAB-1) is the optimal concentration of bicarbonate. Based on this condition, the maximum adsorption capacity (48 ± 4 mg/g) of MCAB-1 was observed at pH = 5 in a batch test, which was 2.67 times more than that of the unmodified one, CAB, at 18 ± 1 mg/g. Long-duration (10 h) adsorption tests showed that MCAB-1 exhibited remarkable performance stability and anti-wear ability (43.2% removal efficiency and 74.3% mass retention, compared to 2.7% and 38.6% for CAB at pH = 3, respectively). The morphology determination showed that a shell-type porous amorphous carbonate layer was formed at the surface of the organic polymer template by rate-controlled self-assembly mineralization. This transition not only promotes the pore structure and activated cation binding functional sites, but also improves the anti-wear ability of materials effectively.
Collapse
Affiliation(s)
- Yang Peng
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, No. 1, Daxue Road, Xuzhou 221116, China
| | - Chuxuan Zhang
- Department of Electrical Engineering, Xi’an University of Technology, Xi’an 710054, China;
| | - Xiaomin Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (T.F.); (X.G.)
| | - Tianyi Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (T.F.); (X.G.)
| | - Xun Gong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (X.L.); (T.F.); (X.G.)
| |
Collapse
|
8
|
Zhao X, Xie Z, Liu T, Zhao Z, Song F, Liu Z. Microcystis aeruginosa aggravated arsenic accumulation in silver carp during silver carp controlling algal bloom in arsenic-contaminated water. J Environ Sci (China) 2024; 146:81-90. [PMID: 38969464 DOI: 10.1016/j.jes.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2024]
Abstract
Silver carp mediated biological control techniques are often advocated for controlling cyanobacteria blooms in eutrophic water, which are often enriched with arsenic (As). However, the transfer and fate of As during the biological control of cyanobacteria blooms by silver carp in As-rich eutrophic water remain unclear. Based on the simulated ecosystem experiment, the accumulation of As in silver carp and the transfer and fate of As in the water-algae-silver carp system during Microcystis aeruginosa blooms controlled by silver carp were investigated. Microcystis aeruginosa showed high tolerance to As(V). The accumulation of As in different tissues of silver carp was different, as follows: intestine > liver > gill > skin > muscle. After silver carp ingested As-rich Microcystis aeruginosa, As accumulation in the intestine, liver, gill, and skin of silver carp was enhanced under the action of digestion and skin contact. Compared with the system without algal, As accumulation in the intestine, liver, gill, and skin of silver carp increased by 1.1, 3.3, 3.3, and 9.6 times, respectively, after incubation for 30 days in the system with Microcystis aeruginosa, while the accumulation of As in the muscle was only slightly increased by 0.56 mg/kg. This work revealed the transfer and fate of As during algal control by silver carp, elucidated the accumulation mechanism of As in water-algae-silver carp system, enriched our understanding of As bioaccumulation and transformation in As-rich eutrophication water, and provided a scientific basis for assessing and predicting As migration and enrichment in water-algae-silver carp system.
Collapse
Affiliation(s)
- Xinxin Zhao
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Zuoming Xie
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Taikun Liu
- Linyi Vocational University of Science and Technology, Linyi 276000, China
| | - Zuoping Zhao
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Fengmin Song
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Zhifeng Liu
- State Key Laboratory of Qinba Bio-Resource and Ecological Environment, School of Chemistry & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
9
|
Zhang F, Zhang C, Zhang B, Han D, Du L, Wu L. Preparation of MgAl-LDHs loaded with blast furnace slag and its removal of Cu(II) and methylene blue from aqueous solution. ENVIRONMENTAL TECHNOLOGY 2024; 45:5688-5699. [PMID: 38234093 DOI: 10.1080/09593330.2024.2304663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024]
Abstract
Blast furnace slag (BFS) is a kind of waste produced in industrial production, as well as a valuable secondary resource. In this paper, layered double hydroxides composites (BFS/LDHs) were prepared by aqueous polymerization, with industrial waste BFS as modifier and magnesium nitrate, aluminium nitrate, and urea as raw materials. BFS/LDHs have been characterized by using scanning electron microscopy (SEM), fourier infrared spectrometer (FT IR), x-ray diffraction (XRD), and the specific surface area analyser (BET). The adsorption of BFS/LDHs on Cu (II) and methylene blue (MB) was investigated by batch experiments. The results showed that the adsorption capacity of BFS/LDHs to Cu (II) is stronger than that of MB. What's more, the solid concentration effect was found in the process of sorption kinetics and sorption isotherms. The sorption kinetics curves of Cu (II) and MB on BFS/LDHs were well fitted by the quasi-second-order kinetics under different adsorbent concentrations. Langmuir and Freundlich sorption isotherm models were used to analyse the adsorption. It showed that the adsorption conforms to Langmuir and Freundlich's adsorption isotherm models. The BFS/LDHs composites have good recycling availability in this adsorption process of Cu (II) and MB, the removal capacity of which was reduced by 16.1% and 3.8% after being recycled for six times, respectively. More importantly, BFS/LDHs composites are not only expected to become a sewage treatment agent, but also to solve the problem of industrial waste treatment, which is a win-win strategy.
Collapse
Affiliation(s)
- Fengrong Zhang
- School of Chemistry and Chemical Engineering, Heze University, Heze, People's Republic of China
| | - Cuilan Zhang
- Guiyang Road Primary School, Heze, People's Republic of China
| | - Binghan Zhang
- School of Chemistry and Chemical Engineering, Heze University, Heze, People's Republic of China
| | - Dandan Han
- School of Chemistry and Chemical Engineering, Heze University, Heze, People's Republic of China
| | - Longwei Du
- School of Chemistry and Chemical Engineering, Heze University, Heze, People's Republic of China
| | - Lishun Wu
- School of Chemistry and Chemical Engineering, Heze University, Heze, People's Republic of China
| |
Collapse
|
10
|
do Nascimento Júnior WJ, de Aguiar GH, Massarelli RC, Landers R, Vieira MGA, da Motta Sobrinho MA. Multi-pollutant biosorption of organic and inorganic pollutants by brown algae waste from alginate production: batch and fixed-bed investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53580-53597. [PMID: 37924398 DOI: 10.1007/s11356-023-30511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
The reuse of biomass waste has been gaining attention in adsorption processes to remove pollutants of emerging concern from water and wastewater. In this work, the potential of alginate-extracted macro-algae waste to uptake synthetic dyes and metal cations was evaluated in comparison with raw algae. In affinity assays, both materials were able to remove metal cations and cationic dyes up to maximum rates, and no significant removal was observed for an anionic dye in an acidic medium. Competition was observed in multi-component systems of metal cations and dyes. For binary samples containing organic and inorganic contaminants, kinetic modeling evidenced the distinct nature of both types of adsorbates. Pb(II) biosorption was best described as a first-order process, while second-order and Elovich models better fitted methyl blue (MB) uptake data. For equimolar binary samples, the Sips isothermal model fitted the experimental data more satisfactorily at room temperature. Isotherms for 20, 30, 40, and 60 °C exhibited favorable adsorption profiles with spontaneous ΔG values for both raw macro-algae and waste from alginate extraction. Maximum adsorption capacities were competitive with previous reports in the literature for a wide range of biomaterials, pointing to the slightly higher efficiency with algae waste in batch experiments. In elution tests, HNO3 (0.5 M) showed the best recovery rates of metal cations. Continuous biosorption operation revealed the performance of the brown algae waste was considerably more efficient than raw algae with breakthrough biosorption capacities up to 3.96 and 0.97 mmol.g-1 for the removal of Pb(II) and MB, respectively. A total of 3.0 g of algae and algae waste were able to deliver 1.20 and 1.62 L of contaminant-free water, respectively. XPS analyses corroborate previous assays that pointed to the prevalence of physisorption with evidence of complexation, ionic exchange, and hydrogen displacement mechanisms.
Collapse
Affiliation(s)
- Welenilton José do Nascimento Júnior
- School of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Jornalista Anibal Fernandes Av., Cidade Universitária, Recife, 50740-560, Brazil.
| | - Giovane Henrique de Aguiar
- School of Chemical Engineering, Federal University of Pernambuco (UFPE), Prof. Arthur de Sá Av., Cidade Universitária, Recife, 50740-520, Brazil
| | - Renan Costa Massarelli
- School of Chemical Engineering, Federal University of Pernambuco (UFPE), Prof. Arthur de Sá Av., Cidade Universitária, Recife, 50740-520, Brazil
| | - Richard Landers
- University of Campinas (UNICAMP), Gleb Wataghin Institute of Physics, Sérgio Buarque de Holanda St., Cidade Universitária, Campinas, 13083-859, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas (UNICAMP), Albert Einstein Av., Cidade Universitária, Campinas, 13083-852, Brazil
| | - Mauricio Alves da Motta Sobrinho
- School of Chemical Engineering, Federal University of Pernambuco (UFPE), Prof. Arthur de Sá Av., Cidade Universitária, Recife, 50740-520, Brazil
| |
Collapse
|
11
|
Amjadi T, Razeghi J, Motafakkerazad R, Zareipour R. Interaction between Haematococcus pluvialis microalgae and lead nitrate: lead adsorption from water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1168-1179. [PMID: 38165083 DOI: 10.1080/15226514.2023.2298773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Our study aims to investigate the response of the unicellular alga, Haematococcus pluvialis, to the toxicity of lead and propose a low-cost, highly efficient biological adsorbent for the purification of wastewater and lead-contaminated water. The first part examines the effects of lead toxicity on certain physiological indicators of this alga. In the second part, the potential of this alga in lead removal and its adsorption capacity was assessed. The alga was cultivated in a BG11 medium and treated with lead nitrate concentrations of 10, 50, and 200 mg/L during its exponential growth. The results showed that with an increase in lead concentration up to 200 mg/L, the growth rate, chlorophyll a, chlorophyll b, carotenoid and total protein content decreased, while malondialdehyde (MDA) content increased. The astaxanthin content slightly increased at the 10 mg/L but decreased at the 200 mg/L treatment. Maximum lead adsorption was observed at 98.69% under optimal conditions, including a pH of 6, an adsorbent dose of 1 g/L, a lead concentration of 25 mg/L, a temperature of 25 °C, and an exposure time of 120 min. The results of this study demonstrate that Haematococcus pluvialis has the potential for effective lead removal from aquatic environments.
Collapse
Affiliation(s)
- Tayebeh Amjadi
- Department of Plant, Cell and Molecular biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Jafar Razeghi
- Department of Plant, Cell and Molecular biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Rouhollah Motafakkerazad
- Department of Plant, Cell and Molecular biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Zareipour
- Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
12
|
Elboughdiri N, Ferkous H, Rouibah K, Boublia A, Delimi A, Yadav KK, Erto A, Ghernaout D, Salih AAM, Benaissa M, Benguerba Y. Comprehensive Investigation of Cu 2+ Adsorption from Wastewater Using Olive-Waste-Derived Adsorbents: Experimental and Molecular Insights. Int J Mol Sci 2024; 25:1028. [PMID: 38256105 PMCID: PMC10816160 DOI: 10.3390/ijms25021028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
This study investigates the efficacy of adsorbents from locally sourced olive waste-encompassing olive skins, leaves, and pits, recovered from the initial centrifugation of olives (OWP)-and a composite with sodium alginate (OWPSA) for the removal of Cu2+ ions from synthetic wastewater. Experimental analyses conducted at room temperature, with an initial Cu2+ concentration of 50 mg/L and a solid/liquid ratio of 1 g/L, showed that the removal efficiencies were approximately 79.54% and 94.54% for OWP and OWPSA, respectively, highlighting the positive impact of alginate on adsorption capacity. Utilizing statistical physics isotherm models, particularly the single-layer model coupled to real gas (SLMRG), allowed us to robustly fit the experimental data, providing insights into the adsorption mechanisms. Thermodynamic parameters affirmed the spontaneity and endothermic nature of the processes. Adsorption kinetics were interpreted effectively using the pseudo-second-order (PSO) model. Molecular modeling investigations, including the conductor-like screening model for real solvents (COSMO-RS), density functional theory (DFT), and atom-in-molecule (AIM) analysis, unveiled intricate molecular interactions among the adsorbent components-cellulose, hemicellulose, lignin, and alginate-and the pollutant Cu2+, confirming their physically interactive nature. These findings emphasize the synergistic application of experimental and theoretical approaches, providing a comprehensive understanding of copper adsorption dynamics at the molecular level. This methodology holds promise for unraveling intricate processes across various adsorbent materials in wastewater treatment applications.
Collapse
Affiliation(s)
- Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia; (D.G.); (A.A.M.S.); (M.B.); (Y.B.)
| | - Hana Ferkous
- Laboratoire de Génie Mécanique et Matériaux, Faculté de Technologie, Université de Skikda, Skikda 21000, Algeria; (H.F.); (A.D.)
| | - Karima Rouibah
- Laboratory of Materials-Elaborations-Properties-Applications (LMEPA), University of MSBY Jijel, PB98 Ouled Aissa, Jijel 18000, Algeria;
| | - Abir Boublia
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria;
| | - Amel Delimi
- Laboratoire de Génie Mécanique et Matériaux, Faculté de Technologie, Université de Skikda, Skikda 21000, Algeria; (H.F.); (A.D.)
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal 462044, India;
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Alessandro Erto
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, 80125 Napoli, Italy;
| | - Djamel Ghernaout
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia; (D.G.); (A.A.M.S.); (M.B.); (Y.B.)
| | - Alsamani A. M. Salih
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia; (D.G.); (A.A.M.S.); (M.B.); (Y.B.)
| | - Mhamed Benaissa
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia; (D.G.); (A.A.M.S.); (M.B.); (Y.B.)
| | - Yacine Benguerba
- Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81441, Saudi Arabia; (D.G.); (A.A.M.S.); (M.B.); (Y.B.)
- Laboratoire de Biopharmacie et Pharmacotechnie (LBPT), Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
| |
Collapse
|
13
|
Kumar A, Ponmani S, Sharma GK, Sangavi P, Chaturvedi AK, Singh A, Malyan SK, Kumar A, Khan SA, Shabnam AA, Jigyasu DK, Gull A. Plummeting toxic contaminates from water through phycoremediation: Mechanism, influencing factors and future outlook to enhance the capacity of living and non-living algae. ENVIRONMENTAL RESEARCH 2023; 239:117381. [PMID: 37832769 DOI: 10.1016/j.envres.2023.117381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Freshwater habitats hold a unique role in the survival of all living organisms and supply water for drinking, irrigation, and life support activities. In recent decades, due to anthropogenic activities, deterioration in the water quality has been a long-lasting problem and challenge to the scientific fraternity. Although, these freshwater bodies have a bearable intrinsic capacity for pollution load however alarming increase in pollution limits the intrinsic capacities and requires additional technological interventions. The release of secondary pollutants from conventional interventions further needs revisiting the existing methodologies and asking for green interventions. Green interventions such as phycoremediation are natural, eco-friendly, economic, and energy-efficient alternatives and provide additional benefits such as nutrient recovery, biofuel production, and valuable secondary metabolites from polluted freshwater bodies. This systemic review in a nut-shell comprises the recent research insights on phycoremediation, technological implications, and influencing factors, and further discusses the associated mechanisms of metal ions biosorption by living and non-living algae, its advantages, and limitations. Besides, the article explores the possibility of future research prospects for applicability at a field scale that will help in the efficient utilization of resources, and improved ecological and health risks.
Collapse
Affiliation(s)
- A Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - S Ponmani
- Mother Terasa College of Agriculture, Tamil Nadu Agricultural University, Pudukkottai, 622 201, TN, India; Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, TN, India.
| | - G K Sharma
- ICAR-Indian Institute of Soil and Water Conservation, Research Centre, Dadwara Kota, 324002, Rajasthan, India.
| | - P Sangavi
- Mother Terasa College of Agriculture, Tamil Nadu Agricultural University, Pudukkottai, 622 201, TN, India; Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, TN, India.
| | - A K Chaturvedi
- Land and Water Management Research Group, Centre for Water Resources Development and Management, Kozhikode, Kerala, India.
| | - A Singh
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - S K Malyan
- Department of Environmental Studies, Dyal Singh Evening College, University of Delhi, New Delhi, 110003, India.
| | - A Kumar
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, 785000, India; Central Sericultural Research and Training Institute, Central Silk Board, Mysore, Karnataka, 570008, India.
| | - S A Khan
- Division of Environmental Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Aftab A Shabnam
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, 785000, India.
| | - D K Jigyasu
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, 785000, India.
| | - A Gull
- Central Sericultural Research and Training Institute, Central Silk Board, Mysore, Karnataka, 570008, India.
| |
Collapse
|
14
|
Sengupta SL, Chaudhuri RG, Dutta S. A critical review on phycoremediation of pollutants from wastewater-a novel algae-based secondary treatment with the opportunities of production of value-added products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114844-114872. [PMID: 37919498 DOI: 10.1007/s11356-023-30470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Though the biological treatment employing bacterial strains has wide application in effluent treatment plant, it has got several limitations. Researches hence while looking for alternative biological organisms that can be used for secondary treatment came up with the idea of using microalgae. Since then, a large number of microalgal/cyanobacterial strains have been identified that can efficiently remove pollutants from wastewater. Some researchers also found out that the algal biomass not only acts as a carbon sink by taking up carbon dioxide from the atmosphere and giving oxygen but also is a renewable source of several value-added products that can be extracted from it for the commercial use. In this work, the cleaning effect of different species of microalgae/cyanobacteria on wastewater from varied sources along with the value-added products obtained from the algal biomass as observed by researchers during the past few years are reviewed. While a number of review works in the field of phycoremediation technology was reported in literature, a comprehensive study on phycoremediation of wastewater from different industries and household individually is limited. In the present review work, the efficiency of diverse microalgal/cyanobacterial strains in treatment of wide range of industrial effluents along with municipal wastewater having multi-pollutants has been critically reviewed.
Collapse
Affiliation(s)
- Swagata Laxmi Sengupta
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Rajib Ghosh Chaudhuri
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Susmita Dutta
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
15
|
Vázquez-Arias A, Aboal JR, Fernández JÁ. What dead seaweeds can tell us about metal uptake and their application to control marine pollution. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132216. [PMID: 37586241 DOI: 10.1016/j.jhazmat.2023.132216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
The mechanisms of trace element uptake by seaweeds are still unknown, despite being key to understand the impact of pollution in coastal environments. This knowledge gap, in addition to the lack of standardization, have also hindered the use of seaweeds to monitor seawater pollution. To address these shortcomings, we tested the use of devitalization as a pre-exposure treatment for brown seaweed transplants, and we compared devitalized and fresh transplants to gain some insights into the mechanisms of element uptake. We exposed four types of Fucus vesiculosus transplants in 6 sites for 4, 8 and 20 days: fresh and devitalized (dried or boiled) algal segments held in mesh bags, and whole algal thalli imitating natural conditions. We then determined he concentrations of 11 trace elements in the algal tissues. The element concentrations were highest in the devitalized transplants, but the material lost consistency and weight throughout the exposure period, limiting their use to short periods. We proposed several factors that may contribute to the different accumulation patterns between treatments, and examined the implications for the uptake mechanisms, revealing that two of the most important are surface adsorption of sediment particles and chemical bounds to extracellular components.
Collapse
Affiliation(s)
- Antón Vázquez-Arias
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Jesús R Aboal
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - J Ángel Fernández
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
16
|
Cipolloni OA, Baudrimont M, Simon-Bouhet B, Dassié ÉP, Gigault J, Connan S, Pascal PY. Kinetics of metal and metalloid concentrations in holopelagic Sargassum reaching coastal environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104779-104790. [PMID: 37704822 DOI: 10.1007/s11356-023-29782-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Since 2011, the Caribbean Islands have experienced unprecedented stranding of a pelagic brown macroalgae Sargassum inducing damages for coastal ecosystems and economy. This study measures the kinetics of metal trace elements (MTE) in Sargassum reaching different coastal environments. In July 2021, over a period of 25 days, fixed experimental floating cages containing the three Sargassum morphotypes (S. fluitans III and S. natans I and VIII) were placed in three different coastal habitats (coral reef, seagrass, and mangrove) in Guadeloupe (French West Indies). Evolution of biomasses and their total phenolic content of Sargassum reveals that environmental conditions of caging were stressful and end up to the death of algae. Concentrations of 19 metal(loid) trace elements were analyzed and three shapes of kinetics were identified with the MTE that either concentrate, depurate, or remains stable. In the mangrove, evolution of MTE was more rapid than the two other habitats a decrease of the As between 70 and 50 μg g-1 in the mangrove. Sargassum natans I presented a different metal composition than the two other morphotypes, with higher contents of As and Zn. All Sargassum morphotype are rapidly releasing the metal(oid)s arsenic (As) when they arrive in studied coastal habitats. In order to avoid the transfer of As from Sargassum to coastal environments, Sargassum stranding should be avoided and their valorization must take into account their As contents.
Collapse
Affiliation(s)
- Océanne-Amaya Cipolloni
- Équipe Biologie de la mangrove, Institut de Systématique, Évolution, Biodiversité, ISYEB, UMR 7205, 97100, Pointe-à-Pitre, France.
| | - Magalie Baudrimont
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Benoît Simon-Bouhet
- LIENSs, Institut du littoral et de l'Environnement, CNRS-ULR, La Rochelle, France
| | | | - Julien Gigault
- Université de Laval, International Research Laboratory Takuvik (IRL) Québec, Québec, Canada
| | - Solène Connan
- Univ de Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzane, France
| | - Pierre-Yves Pascal
- Équipe Biologie de la mangrove, Institut de Systématique, Évolution, Biodiversité, ISYEB, UMR 7205, 97100, Pointe-à-Pitre, France
| |
Collapse
|
17
|
Akl FMA, Ahmed SI, El-Sheekh MM, Makhlof MEM. Bioremediation of n-alkanes, polycyclic aromatic hydrocarbons, and heavy metals from wastewater using seaweeds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104814-104832. [PMID: 37713082 PMCID: PMC10567841 DOI: 10.1007/s11356-023-29549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
The removal of n-alkanes, polycyclic aromatic hydrocarbons, and heavy metals from wastewater using three dried seaweeds Ulva intestinalis Linnaeus (green alga), Sargassum latifolium (Turner) C.Agardh (brown alga), and Corallina officinalis Kützing (red alga) has been shown to evaluate their potential usage as inexpensive adsorbents. Under natural environmental conditions, numerous analytical methods, including zeta potential, energy dispersive X-ray spectroscopy (EDX), SEM, and FT-IR, are used in this study. The results showed that n-alkanes and polycyclic aromatic hydrocarbons adsorption increased with increasing contact time for all three selected algae, with a large removal observed after 15 days, while the optimal contact time for heavy metal removal was 3 h. S. latifolium dry biomass had more potential as bioadsorbent, followed by C. officinalis and then U. intestinalis. S. latifolium attained removal percentages of 65.14%, 72.50%, and 78.92% for light n-alkanes, heavy n-alkanes, and polycyclic aromatic hydrocarbons (PAHs), respectively, after 15 days. Furthermore, it achieved removal percentages of 94.14, 92.62, 89.54, 87.54, 82.76, 80.95, 77.78, 73.02, and 71.62% for Mg, Zn, Cu, Fe, Cr, Pb, Cd, Mn, and Ni, respectively, after 3 h. Carboxyl and hydroxyl from FTIR analysis took part in wastewater treatment. The zeta potentials revealed that algal cells have a negatively charged surface, and the cell surface of S. latifolium has a more negative surface charge than U. intestinalis and C. officinalis. Our study suggests that seaweeds could play an important role in wastewater treatment and thus help as an economical, effective, and ecofriendly bioremediation system for ecological health and life protection.
Collapse
Affiliation(s)
- Faiza M A Akl
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Suzan I Ahmed
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mofida E M Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
18
|
García-Seoane R, Antelo J, Fiol S, Fernández JA, Aboal JR. Unravelling the metal uptake process in mosses: Comparison of aquatic and terrestrial species as air pollution biomonitors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122069. [PMID: 37330186 DOI: 10.1016/j.envpol.2023.122069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/19/2023]
Abstract
Transplanted mosses have been widely shown to be excellent tools for biomonitoring air pollution; however, it is not clear how the functional groups present on their surfaces affect the uptake of metal cations. In the present study, we examined differences in trace metal accumulation in two terrestrial and one aquatic moss species, and investigated whether the differences depended on their physico-chemical characteristics. In the laboratory, we determined C, N and H contents in their tissues and obtained the ATR-FTIR spectra (to identify the presence of functional groups). We also conducted surface acid-base titrations and metal adsorption assays with Cd, Cu and Pb. In the field, we exposed transplants of each species near different air-polluting industries, and determined the mosses enrichment of Al, Cd, Co, Cr, Cu, Fe, Ni, Pb and V. Laboratory results demonstrated higher metal uptake capacity in the terrestrial mosses Sphagnum palustre and Pseudoscleropodium purum, compared to that in the aquatic moss Fontinalis antipyretica, which can be attributed to a greater abundance of acidic functional groups (i.e. negatively charged binding sites) on the surface of the terrestrial mosses. The affinity of moss for certain elements depends on the abundance and nature of surface functional groups. Accordingly, the metal concentrations generally reached higher levels in S. palustre transplants compared to the other species, except for the uptake of Hg, which was higher in F. antipyretica. However, the findings also suggest an interaction between the type of environment (terrestrial or aquatic) and the moss characteristics that may influence the abovementioned trend. Thus, irrespective of the physico-chemical characteristics, metal uptake varied depending on the environment of origin of the mosses "i.e. atmospheric or aquatic". In other words, the findings suggest that species that accumulate more metals in terrestrial environments will accumulate lower amounts of metals in aquatic environments and vice versa.
Collapse
Affiliation(s)
- R García-Seoane
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de A Coruña, 15001, A Coruña, Spain.
| | - J Antelo
- CRETUS, Department of Soil Science and Agricultural Chemistry, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - S Fiol
- CRETUS, Department of Physical Chemistry, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - J A Fernández
- CRETUS, Department of Functional Biology, Ecology Unit, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - J R Aboal
- CRETUS, Department of Functional Biology, Ecology Unit, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
19
|
Rathi BS, Kumar PS, Rangasamy G. A Short Review on Current Status and Obstacles in the Sustainable Production of Biohydrogen from Microalgal Species. Mol Biotechnol 2023:10.1007/s12033-023-00840-w. [PMID: 37566189 DOI: 10.1007/s12033-023-00840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Biohydrogen is an economical fuel which has enormous promise as an alternative energy source. The synthesis of biohydrogen can be done more affordably and sustainably using microalgae. For the generation of biohydrogen and the treatment of wastewater, microalgae derived from effluent have been showing very impressive outcomes. In comparison to traditional fuel sources, microalgae have benefits. Microalgae are capable of fixing ambient Carbon dioxide and converting it to carbohydrates, which are subsequently processed biochemically to provide fuel. When compared to terrestrial crops, they require less water and minerals for production. But besides these benefits, there are certain technological restrictions on the scale-up implementations of microalgae bioenergy. In this work, we explored the production of biohydrogen from several types of microalgae. The process of producing biohydrogen is affected by a number of variables, including pH, substrate concentration, the kinds of microalgal species, and others. The most recent studies and difficulties related to each stage of the biohydrogen manufacturing process are outlined. The synthesis of microalgal biohydrogen is improved using promising approaches that are discussed. Also, the specific future direction are covered. The possibility for microalgae-based production of biohydrogen to serve as an environmentally friendly and carbon-free biofuel solution that might handle the impending fuel scarcity was demonstrated. However, additional study is required on both the upstream and downstream processes of the synthesis of biohydrogen.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu, 603110, India.
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu, 603110, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - Gayathri Rangasamy
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
- School of Engineering, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
20
|
Krishnani KK, Boddu VM, Singh RD, Chakraborty P, Verma AK, Brooks L, Pathak H. Plants, animals, and fisheries waste-mediated bioremediation of contaminants of environmental and emerging concern (CEECs)-a circular bioresource utilization approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84999-85045. [PMID: 37400699 DOI: 10.1007/s11356-023-28261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/10/2023] [Indexed: 07/05/2023]
Abstract
The release of contaminants of environmental concern including heavy metals and metalloids, and contaminants of emerging concern including organic micropollutants from processing industries, pharmaceuticals, personal care, and anthropogenic sources, is a growing threat worldwide. Mitigating inorganic and organic contaminants, which can be coined as contaminants of environmental and emerging concern (CEECs), is a big challenge as traditional physicochemical processes are not economically viable for managing mixed contaminants of low concentrations. As a result, low-cost materials must be designed to provide high CEEC removal efficiency. One of the environmentally viable and energy-efficient approaches is biosorption, which involves using biomass or biopolymers isolated from plants or animals to decontaminate heavy metals in contaminated environments using inherent biological mechanisms. Among chemical constituents in plant biomass, cellulose, lignin, hemicellulose, proteins, polysaccharides, phenolic compounds, and animal biomass include polysaccharides and other compounds to bind heavy metals covalently and non-covalently. These functional groups include carboxyl, hydroxyl, carbonyl, amide, amine, and sulfhydryl. Cation-exchange capacities of these bioadsorbents can be improved by applying chemical modifications. The relevance of chemical constituents and bioactives in biosorbents derived from agricultural production such as food and fodder crops, bioenergy and cash crops, fruit and vegetable crops, medicinal and aromatic plants, plantation trees, aquatic and terrestrial weeds, and animal production such as dairy, goatery, poultry, duckery, and fisheries is highlighted in this comprehensive review for sequestering and bioremediation of CEECs, including as many as ten different heavy metals and metalloids co-contaminated with other organic micropollutants in circular bioresource utilization and one-health concepts.
Collapse
Affiliation(s)
- Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India.
| | - Veera Mallu Boddu
- Homeland Security & Material Management Division (HSMMD), Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Rajkumar Debarjeet Singh
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Ajit Kumar Verma
- ICAR-Central Institute of Fisheries Education (Deemed University), Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Lance Brooks
- Homeland Security & Material Management Division (HSMMD), Center for Environmental Solutions & Emergency Response (CESER), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Himanshu Pathak
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India
| |
Collapse
|
21
|
Luo Y, Pang J, Peng C, Ye J, Long B, Tong J, Shi J. Cr(VI) Reduction and Fe(II) Regeneration by Penicillium oxalicum SL2-Enhanced Nanoscale Zero-Valent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37474249 DOI: 10.1021/acs.est.3c01390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Nanoscale zero-valent iron (nZVI) faces significant challenges in Cr(VI) remediation through aggregation and passivation. This study identified a Cr(VI)-resistant filamentous fungus (Penicillium oxalicum SL2) for nZVI activation and elucidated the synergistic mechanism in chromium remediation. P. oxalicum SL2 and nZVI synergistically and effectively removed Cr(VI), mainly by extracellular nonenzymatic reduction (89.1%). P. oxalicum SL2 exhibited marked iron precipitate solubilization and Fe(II) regeneration capabilities. The existence of the Fe(II)-Cr(V)-oxalate complex (HCrFeC4O9) indicated that in addition to directly reducing Cr(VI), iron ions generated by nZVI stimulated Cr(VI) reduction by organic acids secreted by P. oxalicum SL2. RNA sequencing and bioinformatics analysis revealed that P. oxalicum SL2 inhibited phosphate transport channels to suppress Cr(VI) transport, facilitated iron and siderophore transport to store Fe, activated the glyoxylate cycle to survive harsh environments, and enhanced organic acid and riboflavin secretion to reduce Cr(VI). Cr(VI) exposure also stimulated the antioxidative system, promoting catalase activity and maintaining the intracellular thiol/disulfide balance. Cr(VI)/Fe(III) reductases played crucial roles in the intracellular reduction of chromium and iron, while nZVI decreased cellular oxidative stress and alleviated Cr(VI) toxicity to P. oxalicum SL2. Overall, the P. oxalicum SL2-nZVI synergistic system is a promising approach for regenerating Fe(II) while reducing Cr(VI).
Collapse
Affiliation(s)
- Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingli Pang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jien Ye
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Bibo Long
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
22
|
Jamil Emon F, Rohani MF, Sumaiya N, Tuj Jannat MF, Akter Y, Shahjahan M, Abdul Kari Z, Tahiluddin AB, Goh KW. Bioaccumulation and Bioremediation of Heavy Metals in Fishes-A Review. TOXICS 2023; 11:510. [PMID: 37368610 DOI: 10.3390/toxics11060510] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/29/2023]
Abstract
Heavy metals, the most potent contaminants of the environment, are discharged into the aquatic ecosystems through the effluents of several industries, resulting in serious aquatic pollution. This type of severe heavy metal contamination in aquaculture systems has attracted great attention throughout the world. These toxic heavy metals are transmitted into the food chain through their bioaccumulation in different tissues of aquatic species and have aroused serious public health concerns. Heavy metal toxicity negatively affects the growth, reproduction, and physiology of fish, which is threatening the sustainable development of the aquaculture sector. Recently, several techniques, such as adsorption, physio-biochemical, molecular, and phytoremediation mechanisms have been successfully applied to reduce the toxicants in the environment. Microorganisms, especially several bacterial species, play a key role in this bioremediation process. In this context, the present review summarizes the bioaccumulation of different heavy metals into fishes, their toxic effects, and possible bioremediation techniques to protect the fishes from heavy metal contamination. Additionally, this paper discusses existing strategies to bioremediate heavy metals from aquatic ecosystems and the scope of genetic and molecular approaches for the effective bioremediation of heavy metals.
Collapse
Affiliation(s)
- Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Nusrat Sumaiya
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mst Fatema Tuj Jannat
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Yeasmin Akter
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | - Albaris B Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, Bongao 7500, Philippines
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
23
|
Diaconu LI, Covaliu-Mierlă CI, Păunescu O, Covaliu LD, Iovu H, Paraschiv G. Phytoremediation of Wastewater Containing Lead and Manganese Ions Using Algae. BIOLOGY 2023; 12:773. [PMID: 37372058 DOI: 10.3390/biology12060773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023]
Abstract
Heavy metal pollution of water from industrial discharge is a major problem worldwide. Thus, the quality of the environment and human health are severely affected. Various conventional technologies have been applied for water treatment, but these can be expensive, especially for industrial water treatment, and may have limited treatment efficiencies. Phytoremediation is a method that is successfully applied to remove metal ions from wastewater. In addition to the high efficiency of the depollution treatment, this method has the advantages of a low cost of the operation and the existence of many plants that can be used. This article presents the results of using algae (Sargassum fusiforme and Enteromorpha prolifera) to treat water containing manganese and lead ions. It was observed that maximum efficiencies for wastewater treatment were obtained when was used the algae Enteromorpha prolifera for a 600 min contact time period. The highest wastewater treatment efficiency obtained using Sargassum fusiforme was 99.46%.
Collapse
Affiliation(s)
- Loredana Ioana Diaconu
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Cristina Ileana Covaliu-Mierlă
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Oana Păunescu
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Leon Dumitru Covaliu
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Horia Iovu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe POLIZU Street, Sector 1, 011061 Bucharest, Romania
| | - Gigel Paraschiv
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| |
Collapse
|
24
|
Huang KX, Zhou LY, Chen JQ, Peng N, Chen HX, Gu HZ, Zou T. Applications and perspectives of quaternized cellulose, chitin and chitosan: A review. Int J Biol Macromol 2023:124990. [PMID: 37211070 DOI: 10.1016/j.ijbiomac.2023.124990] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Recently, increasing attention has been paid to natural polysaccharides for their low cost, biocompatibility and biodegradability. Quaternization is a modification method to improve the solubility and antibacterial ability of natural polysaccharides. Water-soluble derivatives of cellulose, chitin and chitosan offer the prospect of diverse applications in a wide range of fields, such as antibacterial products, drug delivery, wound healing, sewage treatment and ion exchange membranes. By combining the inherent properties of cellulose, chitin and chitosan with the inherent properties of the quaternary ammonium groups, new products with multiple functions and properties can be obtained. In this review, we summarized the research progress in the applications of quaternized cellulose, chitin and chitosan in recent five years. Moreover, ubiquitous challenges and personal perspectives on the further development of this promising field are also discussed.
Collapse
Affiliation(s)
- Ke-Xin Huang
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Ling-Yue Zhou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Jia-Qi Chen
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Na Peng
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Hong-Xiang Chen
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Hua-Zhi Gu
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Tao Zou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
25
|
Alharbi RM, Sholkamy EN, Alsamhary KI, Abdel-Raouf N, Ibraheem IBM. Optimization Study of the Capacity of Chlorella vulgaris as a Potential Bio-Remediator for the Bio-Adsorption of Arsenic (III) from Aquatic Environments. TOXICS 2023; 11:toxics11050439. [PMID: 37235253 DOI: 10.3390/toxics11050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
This study examined the ability of the green microalgae Chlorella vulgaris to remove arsenic from aqueous solutions. A series of studies was conducted to determine the optimal conditions for biological arsenic elimination, including biomass amount, incubation time, initial arsenic level, and pH values. At 76 min, pH 6, 50 mgL-1 metal concentration, and 1 gL-1 bio-adsorbent dosage, the maximum removal of arsenic from an aqueous solution was 93%. The uptake of As (III) ions by C. vulgaris reached an equilibrium at 76 min of bio-adsorption. The maximum adsorptive rate of arsenic (III) by C. vulgaris was 55 mg/gm. The Langmuir, Freundlich, and Dubinin-Radushkevich equations were used to fit the experimental data. The best theoretical isotherm of Langmuir, Freundlich, or/and Dubinin-Radushkevich for arsenic bio-adsorption by Chlorella vulgaris was determined. To choose the best theoretical isotherm, the coefficient of correlation was used. The data on absorption appeared to be linearly consistent with the Langmuir (qmax = 45 mgg-1; R2 = 0.9894), Freundlich (kf = 1.44; R2 = 0.7227), and Dubinin-Radushkevich (qD-R = 8.7 mg/g; R2 = 0.951) isotherms. The Langmuir and Dubinin-Radushkevich isotherms were both good two-parameter isotherms. In general, Langmuir was demonstrated to be the most accurate model for As (III) bio-adsorption on the bio-adsorbent. Maximum bio-adsorption values and a good correlation coefficient were observed for the first-order kinetic model, indicating that it was the best fitting model and significant in describing the arsenic (III) adsorption process. SEM micrographs of treated and untreated algal cells revealed that ions adsorbed on the algal cell's surface. A Fourier-transform infrared spectrophotometer (FTIR) was used to analyze the functional groups in algal cells, such as the carboxyl group, hydroxyl, amines, and amides, which aided in the bio-adsorption process. Thus, C. vulgaris has great potential and can be found in eco-friendly biomaterials capable of adsorbing arsenic contaminants from water sources.
Collapse
Affiliation(s)
- Reem Mohammed Alharbi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | - Essam Nageh Sholkamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khawla Ibrahim Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Neveen Abdel-Raouf
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Salah Salem Street, Beni-Suef 62511, Egypt
| | - Ibraheem Borie M Ibraheem
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Salah Salem Street, Beni-Suef 62511, Egypt
| |
Collapse
|
26
|
Wang Y, Huang Z, Sheng L, Ma Y. Effect of modified humic acid residue on the adsorption and passivation of Hg2+/Pb2+ in solution and soil. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
27
|
Kumar A, Sidharth S, Kandasubramanian B. A review on algal biosorbents for heavy metal remediation with different adsorption isotherm models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39474-39493. [PMID: 36780087 DOI: 10.1007/s11356-023-25710-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/31/2023] [Indexed: 02/14/2023]
Abstract
Biosorbent composites like chitin, alginate, moss, xanthene, and cotton can be derived from biotic species such as plants, algae, fungi, and bacteria which can be used for the exclusion of both organic and inorganic toxicants from sewage, industrial effluent, polluted soils, and many more. The use of composites in place of raw substrates like alginate and chitin increases the adsorption capacity as CS4CPL1 beads increase the adsorption capacity for copper and nickel from 66.7 mg/g and 15.3 mg/g in the case of alginate microsphere to 719.38 mg/g and 466.07 mg/g respectively. Biosorbent fabricated from algae Chlorella vulgaris having surface area of 12.1 m2/g and pore size of 13.7 nm owing to which it displayed a higher adsorption capacity for Pb 0.433 mmol/g indicating their potential as an efficient biosorbent material. This article contains detailed information related to heavy metals as well as biosorbent that includes different isotherms, kinetics, techniques to estimate heavy metal concentration, removal methods, and adverse health effects caused due to heavy metal pollution. Apart from the above recovery and reuse of biosorbent, correlation with the sustainable development goals has also been included.
Collapse
Affiliation(s)
- Alok Kumar
- Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra, India
| | - Sumati Sidharth
- Technology Management, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra, India.
| |
Collapse
|
28
|
Smii H, Leite C, Pinto J, Henriques B, Beyrem H, Soares AMVM, Dellali M, Pereira E, Freitas R. The environmental remediation capacity of Ulva lactuca: the potential of macroalgae to reduce the threats caused by Titanium in marine invertebrate species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159586. [PMID: 36273566 DOI: 10.1016/j.scitotenv.2022.159586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
As a result of the wide use of Titanium (Ti) compounds in various products, Ti and Ti nanoparticles (nTi) are released into aquatic environments, inducing varying degrees of toxicity on aquatic fauna. Ulva lactuca, green macroalgae commonly found in coastal areas, has been extensively studied due to its worldwide distribution and capacity to accumulate trace elements under toxic conditions, which makes it a good universal sorbent. The present study aimed to establish the remediation properties of U. lactuca by evaluating the toxicity of Ti and nTi in bivalves, in the presence and absence of algae. Using the bivalve species Mytilus galloprovincialis, Ti toxicity was evaluated by assessing changes in mussel's metabolic capacity and oxidative status. Results evidenced cellular damage in M. galloprovincialis exposed to Ti and nTi. This was a result of the inactivation of antioxidant defences. The presence of U. lactuca limited cellular damage, however, this was not a result of the previously demonstrated bioremediation capacity, as no accumulation of Ti was verified in algal tissues. As a metabolic depression was verified for mussels exposed to Ti/nTi in the presence of algae, we hypothesise that U. lactuca may have been responsible for changes to the water quality which induced this response.
Collapse
Affiliation(s)
- Hanen Smii
- Department of Coastal Ecology and Ecotoxicology Unit, LR01ES14 Laboratory of Environment Biomonitoring, Faculty of Sciences of Bizerte, University of Carthage, Tunis 7021, Tunisia
| | - Carla Leite
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Hamouda Beyrem
- Department of Coastal Ecology and Ecotoxicology Unit, LR01ES14 Laboratory of Environment Biomonitoring, Faculty of Sciences of Bizerte, University of Carthage, Tunis 7021, Tunisia
| | - Amadeu M V M Soares
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mohamed Dellali
- Department of Coastal Ecology and Ecotoxicology Unit, LR01ES14 Laboratory of Environment Biomonitoring, Faculty of Sciences of Bizerte, University of Carthage, Tunis 7021, Tunisia
| | - Eduarda Pereira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
29
|
Vázquez-Arias A, Pacín C, Ares Á, Fernández JÁ, Aboal JR. Do we know the cellular location of heavy metals in seaweed? An up-to-date review of the techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159215. [PMID: 36208739 DOI: 10.1016/j.scitotenv.2022.159215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Seaweeds are dominant organisms in coastal environments. However, in the context of global change, the integrity of these organisms is threatened by metal pollution. It is therefore important to understand how seaweeds are affected by metal concentrations in the water. Measuring the concentrations of metals in seaweed provides information about the effects of metal pollution on the seaweeds themselves and their ecosystems. Nonetheless, correct interpretation of this type of analysis requires knowledge of the cellular location of the pollutants, as the effects will differ depending on whether the metals are present in particles adhered to the surface, attached to external polysaccharides or dissolved in the cytoplasm. Thus, the objectives of this study were to compile the available information on the subcellular distribution of metals in seaweeds and to conduct a critical review of the information. We found that the existing studies provide contrasting, sometimes contradictory, results. Thus, metals have been detected entirely intracellularly and also mainly outside of the cells. In all of the studies reviewed, which used different techniques (mainly extracellular elution, X-ray microanalysis and centrifugation), methodological and/or conceptual problems were identified that raise questions about the effectiveness of each approach. To obtain reliable information about the distribution of metals in algal cells, further studies must be conducted that take into consideration the differences between elements and algal species and the limits of the methods used to measure the elements.
Collapse
Affiliation(s)
- Antón Vázquez-Arias
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Carme Pacín
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Ángela Ares
- Marine Biophysics Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, Japan
| | - J Ángel Fernández
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Jesús R Aboal
- CRETUS Institute, Ecology Area, Department of Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| |
Collapse
|
30
|
Application of Response Surface Methodology for Optimization of the Biosorption Process from Copper-Containing Wastewater. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010444. [PMID: 36615635 PMCID: PMC9823698 DOI: 10.3390/molecules28010444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023]
Abstract
Copper-containing wastewater is a significant problem in the water industry. In this work, biosorption of copper ions on alginate beads have been considered as a promising solution. The effective diffusion coefficient De is the parameter describing the diffusion of copper ions in calcium alginate granules. Granules with a wide spectrum of alginate content from several to several dozen percent (0.6-20%) were tested. The granules with an alginate content of 20% were produced by a new method. The conductometric method was used to determine De. The study determined the De values depending on the process parameters (temperature and pH of copper solutions) and the alginate content in the granules. The RSM method was used to analyze the obtained results. The conducted research proved that all analyzed factors significantly affect the value of the diffusion coefficient (R2 = 0.98). The optimum operating conditions for biosorption of copper ions from CuCl2 salt, on alginate beads obtained by RSM were as follows: 0.57% of alginate content in the granules, temperature of 60.2 °C, and pH of 2. The maximum value of De was found to be 2.42·10-9 m2/s.
Collapse
|
31
|
Moula A, Borgi MA, Ellafi A, Chaieb M, Mekki A. Biosorption of heavy metals from phosphate-processing effluent by Serratia rubidaea NCTC12971 immobilized in Ca-alginate beads. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023; 26:149-160. [PMID: 36260156 DOI: 10.1007/s10123-022-00284-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 01/06/2023]
Abstract
In this study, the biosorption ability of various potentially toxic elements from phosphate-processing effluent (PPE) using the indigenous bacterium Serratia rubidaea NCTC12971 immobilized in Ca-alginate beads was investigated. The experimental data analyzed by the Langmuir isotherm revealed that the optimum dose of 2 g·100 ml-1 of immobilized S. rubidaea NCTC12971 at pH 7 and a contact time of 48 h allowed the removal of 92.07%, 98.05%, 95.57%, and 88.39% of lead (Pb (II)), cadmium (Cd (II)), copper (Cu (II)), and zinc (Zn (II)), respectively. Moreover, under the Langmuir isotherm, the maximum single-layer adsorption capacity (qmax) of the biosorbent was estimated to 32.14 mg g-1, 45.87 mg g-1, 0.06 mg g-1, and 3.01 mg g-1 for Pb (II), Cd (II), Cu (II), and Zn (II), respectively, under the stated conditions. Alternatively, the regeneration and reuse of the Ca-alginate beads was evaluated. Indeed, after four consecutive adsorption-desorption cycles, there was no significant loss in the biosorption capacity. The effectiveness of the bacterial biosorption as treatment process was evaluated by assessing the phytotoxicity of the treated effluent (TE) on Medicago sativa and Lactuca sativa seed germination and their root elongation. Results exhibited a significant toxicity removal expressed by a notable increase in the germination indices (GI), which reach 80% and 70%, respectively, for Medicago sativa and Lactuca sativa compared to the GI values of 46.6% and 16.6% of the same species in presence of the untreated effluent (PPE).
Collapse
Affiliation(s)
- Amel Moula
- Faculty of Sciences of Sfax, Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Environment, Sfax University, Sfax, Tunisia.,Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems (LBBEEO), Gafsa University, Gafsa, Tunisia
| | - Mohamed Ali Borgi
- Faculty of Sciences of Gafsa, Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems (LBBEEO), Gafsa University, Gafsa, Tunisia
| | - Ali Ellafi
- Faculty of Pharmacy, Laboratory of Analysis, Treatment and Valorization of Environment Pollutants and Products, Monastir University, Monastir, Tunisia
| | - Mohamed Chaieb
- Faculty of Sciences of Sfax, Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Environment, Sfax University, Sfax, Tunisia
| | - Ali Mekki
- Faculty of Sciences of Sfax, Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Environment, Sfax University, Sfax, Tunisia. .,Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, AUF (PER-LBPE), Sfax, Tunisia.
| |
Collapse
|
32
|
Gobert T, Gautier A, Connan S, Rouget ML, Thibaut T, Stiger-Pouvreau V, Waeles M. Trace metal content from holopelagic Sargassum spp. sampled in the tropical North Atlantic Ocean: Emphasis on spatial variation of arsenic and phosphorus. CHEMOSPHERE 2022; 308:136186. [PMID: 36041518 DOI: 10.1016/j.chemosphere.2022.136186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/04/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
We document for the first time, the spatial distribution at basin scale (North tropical Atlantic Ocean) of As, P and trace metal (TM) concentrations in the three morphotypes belonging to the two holopelagic species Sargassum natans and S. fluitans and three morphotypes: S. natans VIII, S. natans I and S. fluitans III. These samples collected in the North equatorial current (NEC) and in the subtropical Sargasso Sea (sSS) (∼25°N, 60°W) were also compared to coastal samples collected downwind Guadeloupe Island and on the strand of Martinique (mangrove and beach). Along the studied zonal oceanic transect, the highest values of As (range 120-240 μg g-1, dry weight, dw) were found in the sSS area where primary production is highly limited by phosphorus. At these stations, the P content of Sargassum spp. was minimal (range 500-1000 μg g-1, dw) as well as the content in Cd and Zn known for their nutrient-like oceanic behaviors and distributions very similar to P. This illustrates for the first time in the natural environment, the higher bioaccumulation of arsenic in Sargassum spp. in P-limiting conditions which is due to the competition in the phosphate transporter between arsenate and phosphate. As compared to samples collected at sea, the Sargassum spp. collected in the strand of Martinique had (1) lower As concentrations (typical range 30-45 μg g-1, dw) and (2) much higher Al, Fe, Mn, Cr and Co concentrations, showing a certain ability of Sargassum spp. to be depurated of its As content in the coastal zone following competitive exchange with terrigenous metals.
Collapse
Affiliation(s)
- Tristan Gobert
- University of Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzane, France
| | - Ambre Gautier
- University of Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzane, France
| | - Solène Connan
- University of Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzane, France
| | | | - Thierry Thibaut
- Aix Marseille University and Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France
| | | | - Matthieu Waeles
- University of Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzane, France.
| |
Collapse
|
33
|
Aden M, Elmi A, Husson J, Idriss S, Filiatre C, Knorr M. Silica-Supported Alginates From Djiboutian Seaweed as Biomass-Derived Materials for Efficient Adsorption of Ni(II). CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Kulpa-Koterwa A, Ryl J, Górnicka K, Niedziałkowski P. New nanoadsorbent based on magnetic iron oxide containing 1,4,7,10-tetraazacyclododecane in outer chain (Fe3O4@SiO2-cyclen) for adsorption and removal of selected heavy metal ions Cd2+, Pb2+, Cu2+. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Lin H, Tang Y, Dong Y. Construction and carbon source optimization of a microbial-plant coupled reactor for treating acid mine drainage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78862-78873. [PMID: 35701696 DOI: 10.1007/s11356-022-21329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Acid mine drainage (AMD) is recognized as one of the most serious contamination sources in the nonferrous metal mining industry. In this study, aerobic strains VCZ02 and VCZ09, which were identified as Leclercia adecarboxylata and Klebsiella aerogenes, were screened from 11 strains of copper-zinc-resistant bacteria in the soil of the Dexing copper mine with Cu2+/Zn2+ removal rates of 46.32%/41.03% and 57.96%/67.05%, respectively. The composition of extracellular polymers plays an important role in the removal of heavy metals by these two strains. A mixed community consisting of VCZ02 and VCZ09 was coupled with Sagittaria trifolia L.var.sinensis (Sims) Mak to construct a microbial-plant coupled reactor to remediate AMD. Under the optimal condition of sodium acetate as carbon source, the pH of AMD increased from less than 5 to above 6.5, showing Cu2+/Zn2+ removal rates of 70-80% and above 30%, respectively. SEM-EDS results showed that VZC02 and VZC09 in the coupled reactor also helped with resisting the toxicity of heavy metals to plants by forming biofilms on the root surface and increasing the content of heavy metals on the surface of roots, thus improving the treatment effect of plants. This study provides a theoretical basis for the bioremediation of AMD and its application.
Collapse
Affiliation(s)
- Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yalu Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
36
|
Yuan B, Huang X, Yang S, Yang Y, Lin Z, Semiat R, Paul Chen J. Development of a magnetic calcium-alginate hydrogel-sphere encapsulated with Fe–Mn–Zr ternary metal composite for heavy metal adsorption. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Wang S, Ma Z, Yue G, Wu H, Wang P, Zhu L, Liang C, Xie C, Wang S, Jiao W, Zou B, Liu B. Spatial Distribution and Assessment of the Human Health Risks of Heavy Metals in a Retired Pharmaceutical Industrial Area, Southwest China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:808-816. [PMID: 36056950 DOI: 10.1007/s00128-022-03503-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/03/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals pollution in pharmaceutical industries received increasing attention. A total of 94 soil samples were collected in this study. Results showed the mean contents of Hg, Cd, As, Pb, Ni and Cu were 0.21, 0.26, 9.59, 55.06, 51.52 and 50.81 mg·kg-1, respectively. The spatial distribution of metals in topsoil largely attributed to the pharmaceutical production process. The distribution of Hg and As were related to the production of medical absorbent cotton. While Ni was related to the fuel supply of Ni-rich coal. Cr, Cu and Pb mainly distributed in the process which they were used as catalysts. The vertical migration of metals was complex in soil. To a great extent, it was related to the texture of the soil and the properties of metals in this filed. The total non-cancer and cancer human health risk were within the limits of USEPA (10-6 a-1). This demonstrated the health risks of individual's exposure to heavy metals in this factory was acceptable.
Collapse
Affiliation(s)
- Shiyu Wang
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, People's Republic of China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Zhaohui Ma
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, People's Republic of China
| | - Guoren Yue
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye, 734000, Gansu, People's Republic of China
| | - Haolan Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Pingping Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ling Zhu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| | - Cunzhen Liang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| | - Chengcheng Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Shuo Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Wentao Jiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Bendong Zou
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, People's Republic of China
| | - Baoxian Liu
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing, 100048, People's Republic of China
| |
Collapse
|
38
|
R L, Rejiniemon TS, Sathya R, Kuppusamy P, Al-Mekhlafi FA, Wadaan MA, Rajendran P. Adsorption of heavy metals from the aqueous solution using activated biomass from Ulva flexuosa. CHEMOSPHERE 2022; 306:135479. [PMID: 35753418 DOI: 10.1016/j.chemosphere.2022.135479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The removal of various highly toxic heavy metals from wastewater environment is an important task to improve environment. The biosorption potential of cadmium, cobalt and zinc was evaluated using Ulva flexuosa biomass. The impacts of adsorbent dosage, pH of the medium, contact time, and agitation speed were analyzed. The maximum biosorption potential was reached at pH 4.0, 0.4 g initial biosorbent dosage, contact time 40 min and 30 mg/L initial metal concentration for cadmium, while the other factors were similar to zinc, except 35 min contact time (p < 0.01). The optimum absorption was pH 4, 0.6% adsorbent dosage, after 30 min contact time with the heavy metals and 40 mg/L cobalt concentration. Heavy metal removal efficiency was 94.8 ± 3.3%, 87.5 ± 2.3%, and 90.8 ± 1.4%, for cadmium, cobalt, and zinc, respectively (p < 0.01). The Langmuir constant (R2) was 0.980 for cadmium, 0.838 for cobalt and it was 0.718 for zinc. The present results revealed that the selected acid modified biomass was highly suitable for the adsorption of metal ions such as, Cd2+, Co2+ and Zn2+. The present work revealed the potential application of algal biomass for the removal of various heavy metals from the environment.
Collapse
Affiliation(s)
- Lekshmi R
- Department of Botany and Biotechnology, Milad-E-Sherif Memorial (MSM) College, Kayamkulam, Kerala, India
| | - T S Rejiniemon
- Department of Botany and Biotechnology, AJ College of Science and Technology, Thonnakal, Trivandrum, India
| | - Rengasamy Sathya
- Department of Microbiology, Centre for Research and Development, PRIST University, Tamil Nadu, 613 403, India
| | - Palaniselvam Kuppusamy
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Fahd A Al-Mekhlafi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad A Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - P Rajendran
- Kanyakumari Field Centre of Central Marine Fisheries Research Institute, Kanyakumari, 629702, Tamilnadu, India.
| |
Collapse
|
39
|
Zeng G, He Y, Liang D, Wang F, Luo Y, Yang H, Wang Q, Wang J, Gao P, Wen X, Yu C, Sun D. Adsorption of Heavy Metal Ions Copper, Cadmium and Nickel by Microcystis aeruginosa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13867. [PMID: 36360745 PMCID: PMC9656734 DOI: 10.3390/ijerph192113867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
To investigate the treatment effect of algae biosorbent on heavy metal wastewater, in this paper, the adsorption effect of M. aeruginosa powder on heavy metal ions copper, cadmium and nickel was investigated using the uniform experimental method, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and TG-DSC comprehensive thermal analysis. The experimental results showed that the initial concentration of copper ion solution was 25 mg/L, the temperature was 30 °C, the pH value was 8 and the adsorption time was 5 h, which was the best condition for the removal of copper ions by algae powder adsorption, and the removal rate was 83.24%. The initial concentration of cadmium ion solution was 5 mg/L, the temperature was 35 °C, the pH value was 8 and the adsorption time was 4 h, which was the best condition for the adsorption of cadmium ion by algae powder, and the removal rate was 92.00%. The initial nickel ion solution concentration of 15 mg/L, temperature of 35 °C, pH value of 7 and adsorption time of 1 h were the best conditions for the adsorption of nickel ions by algae powder, and the removal rate was 88.67%. The spatial structure of algae powder changed obviously before and after adsorbing heavy metals. The functional groups such as amino and phosphate groups on the cell wall of M. aeruginosa enhanced the adsorption effect of heavy metal ions copper, cadmium and nickel. Additionally, M. aeruginosa adsorption of heavy metal ions copper, cadmium, nickel is an exothermic process. The above experiments show that M. aeruginosa can be used as a biological adsorbent to remove heavy metals, which lays a theoretical foundation for the subsequent treatment of heavy metal pollution by algae.
Collapse
Affiliation(s)
- Guoming Zeng
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
- Intelligent Building Technology Application Service Center, Chongqing City Vocational College, Chongqing 402160, China
| | - Yu He
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Dong Liang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Fei Wang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yang Luo
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Haodong Yang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Quanfeng Wang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jiale Wang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Pei Gao
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xin Wen
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, School of Architecture and Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chunyi Yu
- Department of Construction Management and Real Estate, Chongqing Jianzhu College, Chongqing 400072, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
40
|
Singh Y, Saxena MK. Insights into the recent advances in nano-bioremediation of pesticides from the contaminated soil. Front Microbiol 2022; 13:982611. [PMID: 36338076 PMCID: PMC9626991 DOI: 10.3389/fmicb.2022.982611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 09/19/2023] Open
Abstract
In the present scenario, the uncontrolled and irrational use of pesticides is affecting the environment, agriculture and livelihood worldwide. The excessive application of pesticides for better production of crops and to maintain sufficient food production is leading to cause many serious environmental issues such as soil pollution, water pollution and also affecting the food chain. The efficient management of pesticide use and remediation of pesticide-contaminated soil is one of the most significant challenges to overcome. The efficiency of the current methods of biodegradation of pesticides using different microbes and enzymes depends on the various physical and chemical conditions of the soil and they have certain limitations. Hence, a novel strategy is the need of the hour to safeguard the ecosystem from the serious environmental hazard. In recent years, the application of nanomaterials has drawn attention in many areas due to their unique properties of small size and increased surface area. Nanotechnology is considered to be a promising and effective technology in various bioremediation processes and provides many significant benefits for improving the environmental technologies using nanomaterials with efficient performance. The present article focuses on and discusses the role, application and importance of nano-bioremediation of pesticides and toxic pollutants to explore the potential of nanomaterials in the bioremediation of hazardous compounds from the environment.
Collapse
Affiliation(s)
| | - Mumtesh Kumar Saxena
- Department of Animal Genetics and Breeding, College of Veterinary and Animal Sciences, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
41
|
Jakovljević V, Grujić S, Simić Z, Ostojić A, Radojević I. Finding the best combination of autochthonous microorganisms with the most effective biosorption ability for heavy metals removal from wastewater. Front Microbiol 2022; 13:1017372. [PMID: 36267171 PMCID: PMC9577556 DOI: 10.3389/fmicb.2022.1017372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of heavy metals (HMs) in the environment represents a serious environmental problem. In this regard, this work was conceived with the aim of finding, among indigenous microorganisms, the species and their combinations with the best biosorption activity for the following HMs: zinc, lead, cadmium, copper, and nickel. The experiment was carried out in several steps: (1) isolation and identification of microbial strains from the Central Effluent Treatment Plant’s wastewater; (2) studying the interaction of microorganisms and the ability to form biofilms in 96-well plates; (3) testing the resistance of biofilms to HMs; (4) testing the growth of biofilms on AMB media carriers in the presence of HMS; and (5) biosorption assay. The selected strains used in this study were: Enterobacter cloacae, Klebsiella oxytoca, Serratia odorifera, and Saccharomyces cerevisiae. The best biofilm producers in control medium were K. oxytoca/S. odorifera (KS), followed by K. oxytoca/S. odorifera/S. cerevisiae (KSC), and E. cloacae/K. oxytoca/S. odorifera (EKS) after 10 days of incubation. Mixed cultures composed of three species showed the highest resistance to the presence of all tested metals. The best biosorption capacity was shown by KSC for Cu2+ (99.18%), followed by EKS for Pb2+ (99.14%) and Cd2+ (99.03%), K. oxytoca for Ni2+ (98.47%), and E. cloacae for Zn2+ (98.06%). This research offers a novel approach to using mixed biofilms for heavy metal removal processes as well as its potential application in the bioremediation of wastewater.
Collapse
Affiliation(s)
- Violeta Jakovljević
- Department of Natural-Mathematic Sciences, State University of Novi Pazar, Novi Pazar, Serbia
| | - Sandra Grujić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Zoran Simić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Ostojić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Ivana Radojević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
- *Correspondence: Ivana Radojević,
| |
Collapse
|
42
|
Alvarez-Galvan Y, Minofar B, Futera Z, Francoeur M, Jean-Marius C, Brehm N, Yacou C, Jauregui-Haza UJ, Gaspard S. Adsorption of Hexavalent Chromium Using Activated Carbon Produced from Sargassum ssp.: Comparison between Lab Experiments and Molecular Dynamics Simulations. Molecules 2022; 27:6040. [PMID: 36144787 PMCID: PMC9503432 DOI: 10.3390/molecules27186040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 12/04/2022] Open
Abstract
Adsorption is one of the most successful physicochemical approaches for removing heavy metal contaminants from polluted water. The use of residual biomass for the production of adsorbents has attracted a lot of attention due to its cheap price and environmentally friendly approach. The transformation of Sargassum-an invasive brown macroalga-into activated carbon (AC) via phosphoric acid thermochemical activation was explored in an effort to increase the value of Sargassum seaweed biomass. Several techniques (nitrogen adsorption, pHPZC, Boehm titration, FTIR and XPS) were used to characterize the physicochemical properties of the activated carbons. The SAC600 3/1 was predominantly microporous and mesoporous (39.6% and 60.4%, respectively) and revealed a high specific surface area (1695 m2·g-1). To serve as a comparison element, a commercial reference activated carbon with a large specific surface area (1900 m2·g-1) was also investigated. The influence of several parameters on the adsorption capacity of AC was studied: solution pH, solution temperature, contact time and Cr(VI) concentration. The best adsorption capacities were found at very acid (pH 2) solution pH and at lower temperatures. The adsorption kinetics of SAC600 3/1 fitted well a pseudo-second-order type 1 model and the adsorption isotherm was better described by a Jovanovic-Freundlich isotherm model. Molecular dynamics (MD) simulations confirmed the experimental results and determined that hydroxyl and carboxylate groups are the most influential functional groups in the adsorption process of chromium anions. MD simulations also showed that the addition of MgCl2 to the activated carbon surface before adsorption experiments, slightly increases the adsorption of HCrO4- and CrO42- anions. Finally, this theoretical study was experimentally validated obtaining an increase of 5.6% in chromium uptake.
Collapse
Affiliation(s)
- Yeray Alvarez-Galvan
- Laboratoire COVACHIM-M2E, EA 3592, Campus de Fouillole, Université des Antilles, 97157 Pointe à Pitre, France
- NBC SARL Company, 8, Rue Saint Cyr, Résidence Océane—Apt no. 5, 97300 Cayenne, France
| | - Babak Minofar
- Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zamek 136, 37333 Nové Hrady, Czech Republic
| | - Zdeněk Futera
- Faculty of Science, University of South Bohemia České Budějovice, Branišovská 1760/31a, 37005 České Budějovice, Czech Republic
| | - Marckens Francoeur
- Laboratoire COVACHIM-M2E, EA 3592, Campus de Fouillole, Université des Antilles, 97157 Pointe à Pitre, France
| | - Corine Jean-Marius
- Laboratoire COVACHIM-M2E, EA 3592, Campus de Fouillole, Université des Antilles, 97157 Pointe à Pitre, France
| | - Nicolas Brehm
- NBC SARL Company, 8, Rue Saint Cyr, Résidence Océane—Apt no. 5, 97300 Cayenne, France
| | - Christelle Yacou
- Laboratoire COVACHIM-M2E, EA 3592, Campus de Fouillole, Université des Antilles, 97157 Pointe à Pitre, France
| | | | - Sarra Gaspard
- Laboratoire COVACHIM-M2E, EA 3592, Campus de Fouillole, Université des Antilles, 97157 Pointe à Pitre, France
| |
Collapse
|
43
|
Bhatt P, Bhandari G, Turco RF, Aminikhoei Z, Bhatt K, Simsek H. Algae in wastewater treatment, mechanism, and application of biomass for production of value-added product. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119688. [PMID: 35793713 DOI: 10.1016/j.envpol.2022.119688] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/21/2022] [Accepted: 06/24/2022] [Indexed: 05/16/2023]
Abstract
The pollutants can enter water bodies at various point and non-point sources, and wastewater discharge remains a major pathway. Wastewater treatment effectively reduces contaminants, it is expensive and requires an eco-friendly and sustainable alternative approach to reduce treatment costs. Algae have recently emerged as a potentially cost-effective method to remediate toxic pollutants through the mechanism of biosorption, bioaccumulation, and intracellular degradation. Hence, before discharging the wastewater into the natural environment better solutions for environmental resource recovery and sustainable developments can be applied. More importantly, algae are a potential feedstock material for various industrial applications such as biofuel production. Currently, researchers are developing algae as a source for pharmaceuticals, biofuels, food additives, and bio-fertilizers. This review mainly focused on the potential of algae and their specific mechanisms involved in wastewater treatment and energy recovery systems leading to important industrial precursors. The review is highly beneficial for scientists, wastewater treatment plant operators, freshwater managers, and industrial communities to support the sustainable development of natural resources.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, 248016, Uttarakhand, India
| | - Ronald F Turco
- Department of Agronomy, Purdue University, West Lafayette, IN, 47906, USA
| | - Zahra Aminikhoei
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Offshore Fisheries Research Center, Chabahar, Iran
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
44
|
Cavalletti E, Romano G, Palma Esposito F, Barra L, Chiaiese P, Balzano S, Sardo A. Copper Effect on Microalgae: Toxicity and Bioremediation Strategies. TOXICS 2022; 10:527. [PMID: 36136491 PMCID: PMC9504759 DOI: 10.3390/toxics10090527] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Microalgae are increasingly recognised as suitable microorganisms for heavy metal (HM) removal, since they are able to adsorb them onto their cell wall and, in some cases, compartmentalise them inside organelles. However, at relatively high HM concentrations, they could also show signs of stress, such as organelle impairments and increased activities of antioxidant enzymes. The main aim of this review is to report on the mechanisms adopted by microalgae to counteract detrimental effects of high copper (Cu) concentrations, and on the microalgal potential for Cu bioremediation of aquatic environments. Studying the delicate balance between beneficial and detrimental effects of Cu on microalgae is of particular relevance as this metal is widely present in aquatic environments facing industrial discharges. This metal often induces chloroplast functioning impairment, generation of reactive oxygen species (ROS) and growth rate reduction in a dose-dependent manner. However, microalgae also possess proteins and small molecules with protective role against Cu and, in general, metal stress, which increase their resistance towards these pollutants. Our critical literature analysis reveals that microalgae can be suitable indicators of Cu pollution in aquatic environments, and could also be considered as components of eco-sustainable devices for HM bioremediation in association with other organisms.
Collapse
Affiliation(s)
- Elena Cavalletti
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Giovanna Romano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Lucia Barra
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Sergio Balzano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
- Department of Marine Microbiology and Biogeochemistry (MMB), Netherland Institute for Sea Research (NIOZ), Landsdiep 4, 1793 AB Texel, The Netherlands
| | - Angela Sardo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
- Istituto di Scienze Applicate e Sistemi Intelligenti “Eduardo Caianiello” (ISASI), CNR, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy
| |
Collapse
|
45
|
Liu C, Lin J, Chen H, Wang W, Yang Y. Comparative Study of Biochar Modified with Different Functional Groups for Efficient Removal of Pb(II) and Ni(II). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811163. [PMID: 36141437 PMCID: PMC9517685 DOI: 10.3390/ijerph191811163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 05/27/2023]
Abstract
The potential application of biochar in water treatment is attracting interest due to its sustainability and low production cost. In the present study, H3PO4-modified porous biochar (H-PBC), ethylenediaminetetraacetic acid-modified porous biochar (E-PBC), and NaOH-modified porous biochar (O-PBC) were prepared for Ni(II) and Pb(II) adsorption in an aqueous solution. Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Brunauer-Emmett-Teller analysis (BET), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the as-obtained samples, and their capacities for Ni(II) and Pb(II) adsorption were determined. SEM showed that H-PBC retained the hierarchical porous structure of pristine biochar. FT-IR showed that H-PBC possessed abundant oxygen-containing and phosphorus-containing functional groups on the surface. BET analysis demonstrated that the surface areas of H-PBC (344.17 m2/g) was higher than O-PBC (3.66 m2/g), and E-PBC (1.64 m2/g), respectively. H-PBC, E-PBC, and O-PBC all exhibited excellent performance at Ni(II) and Pb(II) adsorption with maximum adsorption capacity of 64.94 mg/g, 47.17 mg/g, and 60.24 mg/g, and 243.90 mg/g, 156.25 mg/g, and 192.31 mg/g, respectively, which were significantly higher than the adsorption capacity (19.80 mg/g and 38.31 mg/g) of porous biochar (PBC). Pseudo-second order models suggested that the adsorption process was controlled by chemical adsorption. After three regeneration cycles, the Ni(II) and Pb(II) removal efficiency with H-PBC were still 49.8% and 56.3%. The results obtained in this study suggest that H-PBC is a promising adsorbent for the removal of heavy metals from aqueous solutions.
Collapse
Affiliation(s)
- Chengcheng Liu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Jiaxin Lin
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Haojia Chen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Synergy Innovation Institute of GDUT, Shantou 515041, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, China
| | - Wanjun Wang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Synergy Innovation Institute of GDUT, Shantou 515041, China
| | - Yan Yang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Synergy Innovation Institute of GDUT, Shantou 515041, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515041, China
| |
Collapse
|
46
|
Li R, Wang B, Niu A, Cheng N, Chen M, Zhang X, Yu Z, Wang S. Application of biochar immobilized microorganisms for pollutants removal from wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155563. [PMID: 35504384 DOI: 10.1016/j.scitotenv.2022.155563] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Microbial immobilization technology (MIT) has been rapidly developed and used to remove pollutants from water/wastewater in recent years, owing to its high stability, rapid reaction rate, and high activity. Microbial immobilization carrier with low cost and high removal efficiency is the key of MIT. Biochar is considered to be an efficient carrier for microbial immobilization because of its high porosity and good adsorption effect, which can provide a habitat for microorganisms. The use of biochar immobilized microorganisms to treat different pollutants in wastewater is a promising treatment method. Compared with the other biological treatment technology, biochar immobilized microorganisms can improve microbial abundance, repeated utilization ratio, microbial metabolic capacity, etc. However, current research on this method is still in its infancy. Little attention has been paid to the interaction mechanisms between biochar and microorganisms, and many studies are only carried out in the laboratory. There are still problems such as difficult recovery after use and secondary pollution caused by residual pollutants after biochar adsorption, which need further clarification. To have comprehensive digestion and an in-depth understanding of biochar immobilized microorganisms technology in wastewater treatment, the wastewater treatment methods based on biochar are firstly summarized in this review. Then the mechanisms of immobilized microorganisms were explored, and the applications of biochar immobilized microorganisms in wastewater were systematically reviewed. Finally, suggestions and perspectives for future research and practical application are put forward.
Collapse
Affiliation(s)
- Rui Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Aping Niu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ning Cheng
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Zebin Yu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment & Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
47
|
Wang H, Wang Y, Li C, Jia L. Fabrication of eco-friendly calcium crosslinked alginate electrospun nanofibres for rapid and efficient removal of Cu(II). Int J Biol Macromol 2022; 219:1-10. [DOI: 10.1016/j.ijbiomac.2022.07.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
|
48
|
Chromium adsorption using Sargassum filipendula algae waste from alginate extraction: Batch and fixed-bed column studies. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
49
|
Bioremediation of Vanadium from Contaminated Water in Bioreactor Using Methylocystis hirsuta Bacterium: Comparisons with In Silico 2D and 3D Simulations. SUSTAINABILITY 2022. [DOI: 10.3390/su14148807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The elimination of poisonous wastes (e.g., heavy metals) from polluted water remains challenging, both in industrialized societies and developing countries. To overcome this human health and environmental issue, biotechnology (e.g., biosorption, bioaccumulation) is being applied as an economic and eco-friendly option compared to physicochemical methods (e.g., adsorption, membrane filtration, and coagulation–flocculation). The development of the appropriate biotechnology process (i.e., bioremediation) requires more accurate information and details, which are possible to obtain through the design of a set of resources and various computer applications. In sustainable remediation, microorganisms are one of the feasible choices for modifying and remaking the natural condition. In this in silico study, the methanotroph Methylocystis hirsuta (M. hirsuta) was used for the first time to simulate the removal of vanadium (Vn) from contaminated water through two-dimensional (2D) and three-dimensional (3D) modeling using COMSOL 4.4 software. Rotating machinery-laminar flow, transport of diluted species, and reaction engineering physics were also used. Independency analyses of the numerical network, concentration contour, velocity contour, concentration–time, and velocity–distance charts were also calculated. The data consistently showed that the removal of Vn increased with increasing velocity (which depends on time). Indeed, the amount of pollutant removal at 120 rpm, 160 rpm, and 200 rpm was maintained at 10%, 12%, and 12%, respectively. The simulation results showed excellent conformity (less than 20%) with previously reported laboratory results. This proposed model of bioremediation is thus a reliable and accurate solution for the removal of heavy metals (i.e., Vn and possibly others) from polluted areas (such as contaminated water).
Collapse
|
50
|
Zeid HAA, El-Zayat MM, Abdrabouh AES. Ecotoxicological impacts of industrial effluents on irrigation water quality, animal health and the role of calcium alginate in effluents treatment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:586. [PMID: 35838845 PMCID: PMC9287238 DOI: 10.1007/s10661-022-10216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The effluents discharged from Mansoura Company for Resins and Chemicals Industry were evaluated for drinking and irrigation purposes. Calcium-alginate beads were used for effluents treatment in this study. Young male rats were also allowed to drink effluents at different concentrations (10%, 50%, 100%) and treated 100% effluents with calcium-alginate for 11 weeks. Results indicated high concentrations of some physicochemical parameters and Cd, Co, Fe, Mn, Ni, Pb, and Zn in effluents that exceeded the permissible limits for drinking and irrigation purposes. Treatment by calcium-alginate alleviate heavy metals concentration but did not affect the physicochemical parameters. Depending on effluents concentration, the liver of young male rats showed high accumulation of Fe, Mn, Zn, Pb, Cd, Co, Cu, Cr, and Ni compared to the control group. Serum levels of liver enzymes, total bilirubin significantly increased while total protein, and albumin contents decreased in effluent groups. Liver concentrations of malondialdehyde and protein carbonyl significantly elevated along with significant decrease in superoxide dismutase, catalase, glutathione-S-transferase activities, and glutathione content. Moreover, growth and thyroid hormones were significantly reduced along with significant elevation in thyroid stimulating hormone. This was accompanied by significant decrease in the body weight, especially with 100% effluents concentration compared to control group. Also, histological investigations of both liver and thyroid gland using hematoxylin and eosin showed distortion in the structure of both organs especially with 50% and 100% effluent groups. However, treatment of effluents by calcium-alginate improved these changes. The study revealed that calcium-alginate are effective biosorbents for heavy metals and consequently decrease animal and human health hazards, but further studies are needed to alleviate physicochemical characteristics.
Collapse
Affiliation(s)
| | - Moustafa Mohsen El-Zayat
- Genetic Engineering and Biotechnology Unit, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|