1
|
Zhang ZG, Shen X, Jiang SK, Lin JC, Yi Y, Ji XJ. Biocatalytic Hydrogenation of Biomass-Derived Furan Aldehydes to Alcohols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2266-2278. [PMID: 39808924 DOI: 10.1021/acs.jafc.4c11258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The biomass-derived furan aldehydes furfural (FF) and 5-hydroxymethylfurfural (HMF) are versatile platform chemicals used to produce various value-added chemicals through further valorization processes. Selectively reducing C═O in FF and HMF molecules to form furfuryl alcohol (FAL) and 2,5-bis(hydroxymethyl)furan (BHMF), represents an important research field in upgrading biomass-based furan compounds. Currently, the reduction of furan aldehydes to furan alcohols through chemical transformation often leads to unavoidable environmental issues and the formation of potential byproducts. Biocatalysis has demonstrated expanded applications in converting biomass-derived furan aldehydes into a diverse array of value-added chemicals. This process exhibits significant potential in organic synthesis and biotechnology due to its green and sustainable properties. The biocatalytic reduction of FF and HMF represents an especially important route for the selective synthesis of FAL and BHMF. This review discusses recent progress in the biosynthesis of FAL and BHMF from biomass-derived FF and HMF through biocatalytic processes. Recently discovered enzymes and whole cells used as biocatalysts for the production of furan alcohols are summarized. In addition, chemoenzymatic cascades for synthesizing furan alcohols from biomass hydrolysate and raw biomass materials are also discussed.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Xi Shen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Shi-Kai Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Jia-Chun Lin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Yan Yi
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
2
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
3
|
Tang Y, Xiao D, Liu C. Two-Step Epimerization of Deoxynivalenol by Quinone-Dependent Dehydrogenase and Candida parapsilosis ACCC 20221. Toxins (Basel) 2023; 15:toxins15040286. [PMID: 37104224 PMCID: PMC10146952 DOI: 10.3390/toxins15040286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Deoxynivalenol (DON), one of the main mycotoxins with enteric toxicity, genetic toxicity, and immunotoxicity, and is widely found in corn, barley, wheat, and rye. In order to achieve effective detoxification of DON, the least toxic 3-epi-DON (1/357th of the toxicity of DON) was chosen as the target for degradation. Quinone-dependent dehydrogenase (QDDH) reported from Devosia train D6-9 detoxifies DON by converting C3-OH to a ketone group with toxicity of less than 1/10 that of DON. In this study, the recombinant plasmid pPIC9K-QDDH was constructed and successfully expressed in Pichia pastoris GS115. Within 12 h, recombinant QDDH converted 78.46% of the 20 μg/mL DON to 3-keto-DON. Candida parapsilosis ACCC 20221 was screened for its activity in reducing 86.59% of 3-keto-DON within 48 h; its main products were identified as 3-epi-DON and DON. In addition, a two-step method was performed for epimerizing DON: 12 h catalysis by recombinant QDDH and 6 h transformation of the C. parapsilosis ACCC 20221 cell catalyst. The production rates of 3-keto-DON and 3-epi-DON were 51.59% and 32.57%, respectively, after manipulation. Through this study, effective detoxification of 84.16% of DON was achieved, with the products being mainly 3-keto-DON and 3-epi-DON.
Collapse
Affiliation(s)
- Yuqian Tang
- School of Food Science and Engineering, South China University of Technology, Wu Shan, Guangzhou 510640, China
| | - Dingna Xiao
- School of Food Science and Engineering, South China University of Technology, Wu Shan, Guangzhou 510640, China
| | - Chendi Liu
- School of Food Science and Engineering, South China University of Technology, Wu Shan, Guangzhou 510640, China
| |
Collapse
|
4
|
A Hybrid Strategy for the Efficient Biosynthesis of Fufuryl Alcohol from Corncob in Formic Acid–Water. Catal Letters 2022. [DOI: 10.1007/s10562-022-04003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Mokale Kognou AL, Shrestha S, Jiang ZH, Xu C, Sun F, Qin W. High-fructose corn syrup production and its new applications for 5-hydroxymethylfurfural and value-added furan derivatives: Promises and challenges. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
6
|
Liu D, Gou L, Bai Y, Fan TP, Zheng X, Cai Y. Converting the 3-quinuclidinone reductase from Agrobacterium tumefaciens into the ethyl 4-chloroacetoacetate reductase by site-directed mutagenesis. Biotechnol Appl Biochem 2021; 69:1428-1437. [PMID: 34148265 DOI: 10.1002/bab.2214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
In this study, the 3-quinuclidinone reductase from Agrobacterium tumefaciens (AtQR) was modified by site-directed mutagenesis. And we further obtained a saturation mutant library in which the residue 197 was mutated. A single-point mutation converted the wild enzyme that originally had no catalytic activity in reduction of ethyl 4-chloroacetoacetate (COBE) into an enzyme with catalytic activity. The results of enzyme activity assays showed that the seven variants could asymmetrically reduce COBE to ethyl (S)-4-chloro-3-hydroxybutyrate ((S)-CHBE) with NADH as coenzyme. In the library, the variant E197N showed higher catalytic efficiency than others. The E197N was optimally active at pH 6.0 and 40°C, and the catalytic efficiency (kcat /Km ) for COBE was 51.36 s-1 ·mM-1 . This study showed that the substrate specificity of AtQR could be changed through site-directed mutagenesis at the residue 197.
Collapse
Affiliation(s)
- Di Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Linbo Gou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Yajuan Z, Yajuan D, Lingli Z, Zhoukun L, Zhongli C, Yan H. Characterization of a novel aldo-keto reductase with anti-Prelog stereospecificity from Corallococcus sp. EGB. Int J Biol Macromol 2020; 146:36-44. [DOI: 10.1016/j.ijbiomac.2019.12.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/03/2019] [Accepted: 12/24/2019] [Indexed: 11/26/2022]
|
8
|
Shah S, Sunder AV, Singh P, Wangikar PP. Characterization and Application of a Robust Glucose Dehydrogenase from Paenibacillus pini for Cofactor Regeneration in Biocatalysis. Indian J Microbiol 2020; 60:87-95. [PMID: 32089578 DOI: 10.1007/s12088-019-00834-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
Glucose dehydrogenases are important auxiliary enzymes in biocatalysis, employed in the regeneration of reduced nicotinamide cofactors for oxidoreductase catalysed reactions. Here we report the identification and characterization of a novel glucose-1-dehydrogenase (GDH) from Paenibacillus pini that prefers NAD+ as cofactor over NADP+. The purified recombinant P. pini GDH displayed a specific activity of 247.5 U/mg. The enzyme was stable in the pH range 4-8.5 and exhibited excellent thermostability till 50 °C for 24 h, even in the absence of NaCl or glycerol. Paenibacillus pini GDH was also tolerant to organic solvents, demonstrating its potential for recycling cofactors for biotransformation. The potential application of the enzyme was evaluated by coupling with a NAD+-dependent alcohol dehydrogenase for the reduction of acetophenone and ethyl-4-chloro-3-oxo-butanoate. Conversions higher than 95% were achieved within 2 h with low enzyme loading using lyophilized cell lysate, suggesting that P. pini GDH could be highly effective for recycling NADH in redox biocatalysis.
Collapse
Affiliation(s)
- Shikha Shah
- 1Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Avinash Vellore Sunder
- 1Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Pooja Singh
- 1Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India.,2Department of Biochemistry, Savitribai Phule Pune University, Pune, 411007 India
| | - Pramod P Wangikar
- 1Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| |
Collapse
|
9
|
Kluson P, Stavarek P, Penkavova V, Vychodilova H, Hejda S, Jaklova N, Curinova P. Stereoselective synthesis of optical isomers of ethyl 4-chloro-3-hydroxybutyrate in a microfluidic chip reactor. J Flow Chem 2019. [DOI: 10.1007/s41981-019-00043-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Jin Q, Wu Z, Dou Y, Yang Y, Xia J, Jin Z. A novel carbonyl reductase with anti-Prelog stereospecificity for the production of t-butyl 6-cyano-(3 R, 5 R)-dihydroxyhexanoate. 3 Biotech 2019; 9:194. [PMID: 31065494 DOI: 10.1007/s13205-019-1722-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/17/2019] [Indexed: 11/24/2022] Open
Abstract
A novel gene (crc1) from Candida boidinii was cloned and then overexpressed in a recombinant strain BL21(DE3)/pET30a-crc1 of Escherichia coli. The resulting carbonyl reductase was prepared through fermentations using the recombinant strain. The purified enzyme showed an NADPH-dependent activity and specific activity was 4.65 U/mg using t-butyl 6-cyano-(5R)-hydroxy-3-oxohexanoate (ATS-6) as substrate. The enzyme was optimally active at 35 °C and pH 7, respectively. The apparent K m and V max of the enzyme for ATS-6 are 1.5 mM and 21.1 μmol/min mg, respectively, indicating excellent anti-Prelog stereospecificity. Under the optimum condition, t-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate (ATS-7) was prepared with the enzyme with high d.e. value (99.9%) and good conversion (94%) in 4 h, indicating high stereoselectivity and conversion efficiency in biotransformation of ATS-6 to ATS-7.
Collapse
Affiliation(s)
- Qingchao Jin
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| | - Zhige Wu
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| | - Yanping Dou
- Agriculture, Food & Life, SGS-CSTC Standards Technical Services Co., Ltd, Ningbo Branch, Ningbo, 315040 China
| | - Yu Yang
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| | - Jingjing Xia
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| | - Zhihua Jin
- 1School of Biological and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100 China
| |
Collapse
|
11
|
Anteneh YS, Franco CMM. Whole Cell Actinobacteria as Biocatalysts. Front Microbiol 2019; 10:77. [PMID: 30833932 PMCID: PMC6387938 DOI: 10.3389/fmicb.2019.00077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Production of fuels, therapeutic drugs, chemicals, and biomaterials using sustainable biological processes have received renewed attention due to increasing environmental concerns. Despite having high industrial output, most of the current chemical processes are associated with environmentally undesirable by-products which escalate the cost of downstream processing. Compared to chemical processes, whole cell biocatalysts offer several advantages including high selectivity, catalytic efficiency, milder operational conditions and low impact on the environment, making this approach the current choice for synthesis and manufacturing of different industrial products. In this review, we present the application of whole cell actinobacteria for the synthesis of biologically active compounds, biofuel production and conversion of harmful compounds to less toxic by-products. Actinobacteria alone are responsible for the production of nearly half of the documented biologically active metabolites and many enzymes; with the involvement of various species of whole cell actinobacteria such as Rhodococcus, Streptomyces, Nocardia and Corynebacterium for the production of useful industrial commodities.
Collapse
Affiliation(s)
- Yitayal Shiferaw Anteneh
- College of Medicine and Public Health, Medical Biotechnology, Flinders University, Bedford Park, SA, Australia
- Department of Medical Microbiology, College of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
12
|
Xue XX, Ma CL, Di JH, Huo XY, He YC. One-pot chemo-enzymatic conversion of D-xylose to furfuralcohol by sequential dehydration with oxalic acid plus tin-based solid acid and bioreduction with whole-cells. BIORESOURCE TECHNOLOGY 2018; 268:292-299. [PMID: 30086456 DOI: 10.1016/j.biortech.2018.07.152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
In this study, organic acid could be used as co-catalyst for assisting solid acid SO42-/SnO2-argil to convert hemicellulose-derived D-xylose into furfural. The relationship between pKa of organic acid and turnover frequency (TOF) of co-catalysis with organic acid plus SO42-/SnO2-argil was explored on the conversion of D-xylose to furfural. Oxalic acid (pKa = 1.25) (0.35 wt%) was found to be the optimum co-catalyst for assisting SO42-/SnO2-argil (3.6 wt%) to synthesize furfural from D-xylose (20 g/L) at 180 °C for 20 min, and the furfural yield and TOF could be obtained at 57.07% and 6.26 h-1, respectively. Finally, the obtained furfural (107.6 mM) could be completely biotransformed to furfuralcohol by recombinant Escherichia coli CCZU-K14 whole-cells at 30 °C and pH 6.5 in the presence of 1.5 mol glucose/mol furfural and 400 mM D-xylose. Clearly, this strategy shows high potential application for the effective synthesis of furfuralcohol from biomass-derived D-xylose.
Collapse
Affiliation(s)
- Xin-Xia Xue
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Cui-Luan Ma
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China
| | - Jun-Hua Di
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Xiao-Yu Huo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Yu-Cai He
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, PR China.
| |
Collapse
|
13
|
Semi-rational engineering of carbonyl reductase YueD for efficient biosynthesis of halogenated alcohols with in situ cofactor regeneration. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Shah S, Agera R, Sharma P, Sunder AV, Singh H, James HM, Gaikaiwari RP, Wangikar PP. Development of biotransformation process for asymmetric reduction with novel anti-Prelog NADH-dependent alcohol dehydrogenases. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
He YC, Jiang CX, Chong GG, Di JH, Ma CL. Biological synthesis of 2,5-bis(hydroxymethyl)furan from biomass-derived 5-hydroxymethylfurfural by E. coli CCZU-K14 whole cells. BIORESOURCE TECHNOLOGY 2018; 247:1215-1220. [PMID: 28943097 DOI: 10.1016/j.biortech.2017.09.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/23/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
Biocatalytic upgrading of bio-based platform chemical 5-hydroxymethylfurfural (5-HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) is currently of great interest due to the product specificity, mild reaction and high efficiency. In this work, 200mM 5-HMF could be effectively biotransformed to BHMF at 90.6% with highly 5-HMF-tolerant recombinant E. coli CCZU-K14 whole cells at pH 6.5 and 30°C under the optimum reaction conditions (cosubstrate glucose 1.0mol glucose/(mol 5-HMF), D-xylose 400mM, l-glutamic acid 250mM, Mg2+ 1.5mM, 0.2mol β-cyclodextrin/(mol 5-HMF), CTAB (cetyltrimethyl ammonium bromide) 12.5mM, and 0.1g wet cells/mL). It was found that E. coli CCZU-K14 was highly tolerant to 5-HMF (up to 400mM). Effective bioreduction of biomass-derived 5-HMF (≤200) to BHMF was successfully demonstrated in this study. In conclusion, this strategy showed high potential application for the synthesis of BHMF.
Collapse
Affiliation(s)
- Yu-Cai He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China.
| | - Chun-Xia Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Gang-Gang Chong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
16
|
He YC, Jiang CX, Chong GG, Di JH, Wu YF, Wang BQ, Xue XX, Ma CL. Chemical-enzymatic conversion of corncob-derived xylose to furfuralcohol by the tandem catalysis with SO 42-/SnO 2-kaoline and E. coli CCZU-T15 cells in toluene-water media. BIORESOURCE TECHNOLOGY 2017; 245:841-849. [PMID: 28926917 DOI: 10.1016/j.biortech.2017.08.219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 05/14/2023]
Abstract
One-pot synthesis of furfuralcohol from corncob-derived xylose was attempted by the tandem catalysis with solid acid SO42-/SnO2-kaoline and recombination Escherichia coli CCZU-T15 whole-cells in the toluene-water media. Using SO42-/SnO2-kaoline (3.5wt%) as catalyst, the furfural yield of 74.3% was obtained from corncob-derived xylose in the toluene-water (1:2, v:v) containing 10mM OP-10 at 170°C for 30min. After furfural liquor was mixed with corncob-hydrolysate from the enzymatic hydrolysis of oxalic acid-pretreated corncob residue, furfural (50.5mM) could be completely biotransformed to furfuralcohol with Escherichia coli CCZU-T15 whole-cells harboring an NADH-dependent reductase (ClCR) in the toluene-water (1:3, v:v) containing 12.5mM OP-10 and 1.6mM glucose/mM furfural at 30°C and pH 6.5. Furfuralcohol was obtained at 13.0% yield based on starting material corncob (100% furfuralcohol yield for bioreduction of furfural step). Clearly, this one-pot synthesis of furfuralcohol strategy shows high potential application for the effective utilization of corncob.
Collapse
Affiliation(s)
- Yu-Cai He
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China; Key Laboratory of Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Chun-Xia Jiang
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Gang-Gang Chong
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Yan-Fei Wu
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Bing-Qian Wang
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Xin-Xia Xue
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Platform of Bioethanol, Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
17
|
Xue XX, Di JH, He YC, Wang BQ, Ma CL. Effective Utilization of Carbohydrate in Corncob to Synthesize Furfuralcohol by Chemical-Enzymatic Catalysis in Toluene-Water Media. Appl Biochem Biotechnol 2017; 185:42-54. [PMID: 29082476 DOI: 10.1007/s12010-017-2638-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/17/2017] [Indexed: 11/27/2022]
Abstract
In this study, carbohydrates (cellulose plus hemicellulose) in corncob were effectively converted furfuralcohol (FOL) via chemical-enzymatic catalysis in a one-pot manner. After corncob (2.5 g, dry weight) was pretreated with 0.5 wt% oxalic acid, the obtained corncob-derived xylose (19.8 g/L xylose) could be converted to furfural at 60.1% yield with solid acid catalyst SO42-/SnO2-attapulgite (3.6 wt% catalyst loading) in the water-toluene (3:1, v/v) at 170 °C for 20 min. Moreover, the oxalic acid-pretreated corncob residue (1.152 g, dry weight) was enzymatically hydrolyzed to 0.902 g glucose and 0.202 g arabinose. Using the corncob-derived glucose (1.0 mM glucose/mM furfural) as cosubstrate, the furfural liquor (48.3 mM furfural) was successfully biotransformed to FOL by recombinant Escherichia coli CCZU-A13 cells harboring an NADH-dependent reductase (SsCR) in the water-toluene (4:1, v/v) under the optimum conditions (50 mM PEG-6000, 0.2 mM Zn2+, 0.1 g wet cells/mL, 30 °C, pH 6.5). After the bioreduction for 2 h, FAL was completely converted to FOL. The FOL yield was obtained at 0.11 g FOL/g corncob. Clearly, this one-pot synthesis strategy shows high potential application for the effective synthesis of FOL.
Collapse
Affiliation(s)
- Xin-Xia Xue
- Platform of Biofuels and Biobased Products, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Platform of Biofuels and Biobased Products, Changzhou University, Changzhou, China
| | - Yu-Cai He
- Platform of Biofuels and Biobased Products, Changzhou University, Changzhou, China. .,Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China. .,Key Laboratory of Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Bing-Qian Wang
- Platform of Biofuels and Biobased Products, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
18
|
He YC, Jiang CX, Jiang JW, Di JH, Liu F, Ding Y, Qing Q, Ma CL. One-pot chemo-enzymatic synthesis of furfuralcohol from xylose. BIORESOURCE TECHNOLOGY 2017; 238:698-705. [PMID: 28501001 DOI: 10.1016/j.biortech.2017.04.101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
Furfuralcohol (FOL) is an important intermediate for the production of lysine, ascorbic acid, and lubricants. It can be used as a hypergolic fuel in rocketry. In this study, it was attempted to synthesize FOL from xylose by tandem catalysis with solid acid SO42-/SnO2-Montmorillonite and recombination Escherichia coli CCZU-K14 whole cells. Using SO42-/SnO2-Montmorillonite (3.0wt% dosage) as catalyst, a highest furfural yield of 41.9% was achieved from xylose at 170°C for 20min. Furthermore, Escherichia coli CCZU-K14 whole cells were used for bioconverting furfural to FOL. The optimum biocatalytic reaction temperature, reaction pH, cosubstrate concentration, and substrate concentration were 30°C, 6.5, 1.5mol glucose/mol furfural, and 200mM, respectively. Finally, the yield of FOL from 200mM furfural was achieved to 100% by Escherichia coli CCZU-K14 whole cells after 24h. In conclusion, this strategy show high potential application for the effective synthesis of FOL.
Collapse
Affiliation(s)
- Yu-Cai He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Chun-Xia Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Ji-Wei Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Feng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Yun Ding
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Qing Qing
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
19
|
A stereoselective esterase from Bacillus megaterium : Purification, gene cloning, expression and catalytic properties. Protein Expr Purif 2017; 136:66-72. [DOI: 10.1016/j.pep.2015.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/29/2015] [Accepted: 10/01/2015] [Indexed: 11/22/2022]
|
20
|
Basak S, Sahoo NG, Pavanasam AK. Genome mining, in silico validation and phase selection of a novel aldo-keto reductase from Candida glabrata for biotransformation. Bioengineered 2017. [PMID: 28644714 PMCID: PMC5972913 DOI: 10.1080/21655979.2017.1342911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Previously, we published cloning, overexpression, characterization and subsequent exploitation of a carbonyl reductase (cr) gene, belonging to general family aldo-keto reductase from Candida glabrata CBS138 to convert keto ester (COBE) to a chiral alcohol (ethyl-4-chloro-3-hydroxybutanoate or CHBE). Exploiting global transcription factor CRP, rDNA and transporter engineering, we have improved batch production of CHBE by trinomial bioengineering. Herein, we present the exploration of cr gene in Candida glabrata CBS138 through genome mining approach, in silico validation of its activity and selection of its biocatalytic phase. For exploration of the gene under investigation, 3 template genes were chosen namely Saccharomyces cerevisae YDR541c, YGL157w and YOL151w. The CR showed significant homology match, overlapping of substrate binding site and NADPH binding site with the template proteins. The binding affinity of COBE toward CR (-4.6 Kcal/ mol) was found higher than that of the template proteins (-3.5 to -4.5 Kcal/ mol). Biphasic biocatalysis with cofactor regeneration improved product titer 4∼5 times better than monophasic biotransformation. Currently we are working on DNA Shuffling as a next level of strain engineering and we demonstrate this approach herein as a future strategy of biochemical engineering.
Collapse
Affiliation(s)
- Souvik Basak
- a Dr. B.C. Roy College of Pharmacy & Allied Health Sciences , Durgapur , WB , India
| | - Nanda Gopal Sahoo
- b Nanoscience and Nanotechnology Centre, Department of Chemistry , Kumaun University , Nainital , Uttarakhand , India
| | - Angayar K Pavanasam
- c International College of Engineering and Management (University of Central Lancashire, UK Affiliation) , Muscat , Oman
| |
Collapse
|
21
|
Efficient bioreductive production of (R)-N-Boc-3-hydroxypiperidine by a carbonyl reductase. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Chen LF, Fan HY, Zhang YP, Wei W, Lin JP, Wei DZ, Wang HL. Enhancement of ethyl ( S )-4-chloro-3-hydroxybutanoate production at high substrate concentration by in situ resin adsorption. J Biotechnol 2017; 251:68-75. [DOI: 10.1016/j.jbiotec.2017.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/09/2017] [Accepted: 04/15/2017] [Indexed: 10/19/2022]
|
23
|
Engineering Streptomyces coelicolor Carbonyl Reductase for Efficient Atorvastatin Precursor Synthesis. Appl Environ Microbiol 2017; 83:AEM.00603-17. [PMID: 28389544 DOI: 10.1128/aem.00603-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/04/2017] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor CR1 (ScCR1) has been shown to be a promising biocatalyst for the synthesis of an atorvastatin precursor, ethyl-(S)-4-chloro-3-hydroxybutyrate [(S)-CHBE]. However, limitations of ScCR1 observed for practical application include low activity and poor stability. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. First, the crystal structure of ScCR1 complexed with NADH and cosubstrate 2-propanol was solved, and the specific activity of ScCR1 was increased from 38.8 U/mg to 168 U/mg (ScCR1I158V/P168S) by structure-guided engineering. Second, directed evolution was performed to improve the stability using ScCR1I158V/P168S as a template, affording a triple mutant, ScCR1A60T/I158V/P168S, whose thermostability (T5015, defined as the temperature at which 50% of initial enzyme activity is lost following a heat treatment for 15 min) and substrate tolerance (C5015, defined as the concentration at which 50% of initial enzyme activity is lost following incubation for 15 min) were 6.2°C and 4.7-fold higher than those of the wild-type enzyme. Interestingly, the specific activity of the triple mutant was further increased to 260 U/mg. Protein modeling and docking analysis shed light on the origin of the improved activity and stability. In the asymmetric reduction of ethyl-4-chloro-3-oxobutyrate (COBE) on a 300-ml scale, 100 g/liter COBE could be completely converted by only 2 g/liter of lyophilized ScCR1A60T/I158V/P168S within 9 h, affording an excellent enantiomeric excess (ee) of >99% and a space-time yield of 255 g liter-1 day-1 These results suggest high efficiency of the protein engineering strategy and good potential of the resulting variant for efficient synthesis of the atorvastatin precursor.IMPORTANCE Application of the carbonyl reductase ScCR1 in asymmetrically synthesizing (S)-CHBE, a key precursor for the blockbuster drug Lipitor, from COBE has been hindered by its low catalytic activity and poor thermostability and substrate tolerance. In this work, protein engineering was employed to improve the catalytic efficiency and stability of ScCR1. The catalytic efficiency, thermostability, and substrate tolerance of ScCR1 were significantly improved by structure-guided engineering and directed evolution. The engineered ScCR1 may serve as a promising biocatalyst for the biosynthesis of (S)-CHBE, and the protein engineering strategy adopted in this work would serve as a useful approach for future engineering of other reductases toward potential application in organic synthesis.
Collapse
|
24
|
Chen LF, Fan HY, Zhang YP, Wu K, Wang HL, Lin JP, Wei DZ. Development of a practical biocatalytic process for ( S )- N -Boc-3-hydroxypiperidine synthesis. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Basak S, Ghosh SK, Punetha VD, Aphale AN, Patra PK, Sahoo NG. An experimental modeling of trinomial bioengineering- crp, rDNA, and transporter engineering within single cell factory for maximizing two-phase bioreduction. Int J Biol Macromol 2016; 95:818-825. [PMID: 27923567 DOI: 10.1016/j.ijbiomac.2016.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
A carbonyl reductase (cr) gene from Candida glabrata CBS138 has been heterologously expressed in cofactor regenerating E. coli host to convert Ethyl-4-chloro-3-oxobutanoate (COBE) into Ethyl-4-chloro-3-hydroxybutanoate (CHBE). The CR enzyme exhibited marked velocity at substrate concentration as high as 363mM with highest turnover number (112.77±3.95s-1). Solitary recombineering of such catalytic cell reproduced CHBE 161.04g/L per g of dry cell weight (DCW). Introduction of combinatorially engineered crp (crp*, F136I) into this heterologous E. coli host yielded CHBE 477.54g/L/gDCW. Furthermore, using nerolidol as exogenous cell transporter, the CHBE productivity has been towered to 710.88g/L/gDCW. The CHBE production has thus been upscaled to 8-12 times than those reported so far. qRT-PCR studies revealed that both membrane efflux channels such as acrAB as well as ROS scavenger genes such as ahpCF have been activated by engineering crp. Moreover, membrane protecting genes such as manXYZ together with solvent extrusion associated genes such as glpC have been upregulated inside mutant host. Although numerous proteins have been investigated to convert COBE to CHBE; this is the first approach to use engineering triad involving crp engineering, recombinant DNA engineering and transporter engineering together for improving cell performance during two-phase biocatalysis.
Collapse
Affiliation(s)
- Souvik Basak
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, WB, India.
| | - Sumanta Kumar Ghosh
- Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, WB, India
| | - Vinay Deep Punetha
- Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Ashish N Aphale
- Department of Biomedical Engineering, School of Engineering, University of Bridgeport, CT, USA
| | - Prabir K Patra
- Department of Biomedical Engineering, School of Engineering, University of Bridgeport, CT, USA; Department of Mechanical Engineering, School of Engineering, University of Bridgeport, CT, USA
| | - Nanda Gopal Sahoo
- Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, India.
| |
Collapse
|
26
|
Zhang Y, Wang H, Chen L, Wu K, Xie J, Wei D. Efficient production of ethyl ( R )-4-chloro-3-hydroxybutanoate by a novel alcohol dehydrogenase from Lactobacillus curieae S1L19. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Dai Y, Huan B, Zhang HS, He YC. Effective Biotransformation of Ethyl 4-Chloro-3-Oxobutanoate into Ethyl (S)-4-Chloro-3-Hydroxybutanoate by Recombinant E. coli CCZU-T15 Whole Cells in [ChCl][Gly]–Water Media. Appl Biochem Biotechnol 2016; 181:1347-1359. [DOI: 10.1007/s12010-016-2288-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
|
28
|
Chen X, Liu ZQ, Lin CP, Zheng YG. Efficient biosynthesis of ethyl (R)-4-chloro-3-hydroxybutyrate using a stereoselective carbonyl reductase from Burkholderia gladioli. BMC Biotechnol 2016; 16:70. [PMID: 27756363 PMCID: PMC5070160 DOI: 10.1186/s12896-016-0301-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 10/13/2016] [Indexed: 12/25/2022] Open
Abstract
Background Ethyl (R)-4-chloro-3-hydroxybutyrate ((R)-CHBE) is a versatile chiral precursor for many pharmaceuticals. Although several biosynthesis strategies have been documented to convert ethyl 4-chloro-3-oxobutanoate (COBE) to (R)-CHBE, the catalytic efficiency and stereoselectivity are still too low to be scaled up for industrial applications. Due to the increasing demand of (R)-CHBE, it is essential to explore more robust biocatalyst capable of preparing (R)-CHBE efficiently. Results A stereoselective carbonyl reductase toolbox was constructed and employed into the asymmetric reduction of COBE to (R)-CHBE. A robust enzyme designed as BgADH3 from Burkholderia gladioli CCTCC M 2012379 exhibited excellent activity and enantioselectivity, and was further characterized and investigated in the asymmetric synthesis of (R)-CHBE. An economical and satisfactory enzyme-coupled cofactor recycling system was created using recombinant Escherichia coli cells co-expressing BgADH3 and glucose dehydrogenase genes to regenerate NADPH in situ. In an aqueous/octanol biphasic system, as much as 1200 mmol COBE was completely converted by using substrate fed-batch strategy to afford (R)-CHBE with 99.9 % ee at a space-time yield per gram of biomass of 4.47 mmol∙L−1∙h−1∙g DCW−1. Conclusions These data demonstrate the promising of BgADH3 in practical synthesis of (R)-CHBE as a valuable chiral synthon. This study allows for the further application of BgADH3 in the biosynthesis of chiral alcohols, and establishes a preparative scale process for producing (R)-CHBE with excellent enantiopurity. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0301-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiang Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chao-Ping Lin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China. .,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
29
|
Candida parapsilosis: A versatile biocatalyst for organic oxidation-reduction reactions. Bioorg Chem 2016; 68:187-213. [DOI: 10.1016/j.bioorg.2016.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 11/22/2022]
|
30
|
He YC, Tao ZC, Di JH, Chen L, Zhang LB, Zhang DP, Chong GG, Liu F, Ding Y, Jiang CX, Ma CL. Effective asymmetric bioreduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate by recombinant E. coli CCZU-A13 in [Bmim]PF6-hydrolyzate media. BIORESOURCE TECHNOLOGY 2016; 214:411-418. [PMID: 27155796 DOI: 10.1016/j.biortech.2016.04.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
It was the first report that the concentrated hydrolyzates from the enzymatic hydrolysis of dilute NaOH (3wt%)-soaking rice straw at 30°C was used to form [Bmim]PF6-hydrolyzate (50:50, v/v) media for bioconverting ethyl 4-chloro-3-oxobutanoate (COBE) into ethyl (R)-4-chloro-3-hydroxybutanoate [(R)-CHBE] (>99% e.e.) with recombinant E. coli CCZU-A13. Compared with pure glucose, the hydrolyzates could promote both initial reaction rate and the intracellular NADH content. Furthermore, emulsifier OP-10 (20mM) was employed to improve the reductase activity. Moreover, Hp-β-cyclodextrin (0.01mol Hp-β-cyclodextrin/mol COBE) was also added into this bioreaction system for enhancing the biosynthesis of (R)-CHBE from COBE by E. coli CCZU-A13 whole-cells. The yield of (R)-CHBE (>99% e.e.) from 800mM COBE was obtained at 100% in the [Bmim]PF6-hydrolyzate (50:50, v/v) media by supplementation of OP-10 (20mM) and Hp-β-CD (8mM). In conclusion, an effective strategy for the biosynthesis of (R)-CHBE was successfully demonstrated.
Collapse
Affiliation(s)
- Yu-Cai He
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, China; Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA.
| | - Zhi-Cheng Tao
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Liang Chen
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Lin-Bing Zhang
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Dan-Ping Zhang
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Gang-Gang Chong
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Feng Liu
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yun Ding
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Chun-Xia Jiang
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| |
Collapse
|
31
|
He YC, Zhang DP, Di JH, Wu YQ, Tao ZC, Liu F, Zhang ZJ, Chong GG, Ding Y, Ma CL. Effective pretreatment of sugarcane bagasse with combination pretreatment and its hydrolyzates as reaction media for the biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by whole cells of E. coli CCZU-K14. BIORESOURCE TECHNOLOGY 2016; 211:720-726. [PMID: 27060248 DOI: 10.1016/j.biortech.2016.03.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/26/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
In this study, sugarcane bagasse (SB) was pretreated with combination pretreatment (e.g., sequential KOH extraction and ionic liquid soaking, sequential KOH extraction and Fenton soaking, or sequential KOH extraction and glycerol soaking). After the enzymatic hydrolysis of pretreated SBs, it was found that all these three concentrated hydrolyzates could be used for the asymmetric bioreduction of ethyl 4-chloro-3-oxobutanoate (COBE) into ethyl (S)-4-chloro-3-hydroxybutanoate [(S)-CHBE]. Compared with glucose, arabinose and cellobiose couldn't promote the initial reaction rate, and xylose could increase the intracellular NADH content. Moreover, it was the first report that hydrolyzates could be used for the effective biosynthesis of (S)-CHBE (∼500g/L; 98.0% yield) from 3000 COBE by whole cells of Escherichia coli CCZU-K14 in the presence of β-CD (0.4mol β-CD/mol COBE), l-glutamine (200mM) and glycine (500mM). In conclusion, it is a new alternative to utilize bioresource for the synthesis of key chiral intermediate (S)-CHBE.
Collapse
Affiliation(s)
- Yu-Cai He
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA.
| | - Dan-Ping Zhang
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Jun-Hua Di
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yin-Qi Wu
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Zhi-Cheng Tao
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Feng Liu
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Gang-Gang Chong
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yun Ding
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Cui-Luan Ma
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| |
Collapse
|
32
|
Xu Q, Tao WY, Huang H, Li S. Highly efficient synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by a novel carbonyl reductase from Yarrowia lipolytica and using mannitol or sorbitol as cosubstrate. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Asymmetric synthesis of lipitor chiral intermediate using a robust carbonyl reductase at high substrate to catalyst ratio. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
C-Terminal-oriented Immobilization of Enzymes Using Sortase A-mediated Technique. Macromol Biosci 2015; 15:1375-80. [DOI: 10.1002/mabi.201500113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/29/2015] [Indexed: 11/07/2022]
|
35
|
He YC, Tao ZC, Ding Y, Zhang DP, Wu YQ, Lu Y, Liu F, Xue YF, Wang C, Xu JH. Effective biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate by supplementation of l-glutamine, d-xylose and β-cyclodextrin in n-butyl acetate–water media. J Biotechnol 2015; 203:62-7. [DOI: 10.1016/j.jbiotec.2015.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/15/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
36
|
He YC, Zhang DP, Tao ZC, Lu Y, Ding Y, Liu F, Zhu ZZ, Rui H, Zheng GW, Zhang X. Improved biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by adding L-glutamine plus glycine instead of NAD+ in β-cyclodextrin-water system. BIORESOURCE TECHNOLOGY 2015; 182:98-102. [PMID: 25682229 DOI: 10.1016/j.biortech.2015.01.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
To reduce dependence on the expensive cofactor and effectively biotransform ethyl 4-chloro-3-oxobutanoate, L-glutamine and glycine were found to enhance the content of intracellular NADH and the reductase activity. Adding the mixture of 200 mM of L-glutamine and 500 mM of glycine to the reaction media, a 1.67-fold of reductase activity was increased over the control without the addition of the two compounds. Moreover, β-cyclodextrin (0.4 mol β-cyclodextrin/mol ethyl 4-chloro-3-oxobutanoate) was also added into this reaction media, and the biocatalytic activity of the whole-cell biocatalyst of Escherichia coli CCZU-K14 was increased by 1.34-fold than that without β-cyclodextrin. In this β-cyclodextrin-water media containing L-glutamine (200 mM) plus glycine (500 mM), ethyl (S)-4-chloro-3-hydroxybutanoate (>99% ee) could be obtained from 3000 mM ethyl 4-chloro-3-oxobutanoate in the yield of 98.0% after 8h. All the positive features demonstrate the potential applicability of the bioprocess for the large-scale production of ethyl (S)-4-chloro-3-hydroxybutanoate.
Collapse
Affiliation(s)
- Yu-Cai He
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| | - Dan-Ping Zhang
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Zhi-Cheng Tao
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yun Lu
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Yun Ding
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Feng Liu
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Zheng-Zhong Zhu
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Huan Rui
- Laboratory of Biochemical Engineering, College of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xian Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
37
|
He YC, Zhang DP, Lu Y, Tao ZC, Ding Y, Wang LQ, Liu F. Biosynthesis of ethyl (S)-4-chloro-3-hydroxybutanoate with an NADH-dependent reductase (ClCR) discovered by genome data mining using a modified colorimetric screening strategy. Bioengineered 2015; 6:170-4. [PMID: 25723767 DOI: 10.1080/21655979.2015.1017696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
An NADH-dependent reductase (ClCR) was discovered by genome data mining. After ClCR was overexpressed in E. coli BL21, recombinant E. coli CCZU-T15 with high reductase activity and excellent stereoselectivity for the reduction of ethyl 4-chloro-3-oxobutanoate (COBE) into ethyl (S)-4-chloro-3-hydroxybutanoate [(S)-CHBE] was screened using a modified high-throughput colorimetric screening strategy. After the reaction optimization, a highly stereoselective bioreduction of COBE into (S)-CHBE (>99% ee) with the resting cells of E. coli CCZU-T15 was successfully demonstrated in toluene-water (50:50, v/v) biphasic system. Biotransformation of 1000 mM COBE for 24 h in the biphasic system, (S)-CHBE (>99% ee) could be obtained in the high yield of 96.4%. Significantly, E. coli CCZU-T15 shows high potential in the industrial production of (S)-CHBE (>99% ee).
Collapse
Affiliation(s)
- Yu-Cai He
- a Laboratory of Biocatalysis and Bioprocessing ; College of Pharmaceutical Engineeing and Life Sciences; Changzhou University , Changzhou , PR China
| | | | | | | | | | | | | |
Collapse
|
38
|
Xu GC, Yu HL, Shang YP, Xu JH. Enantioselective bioreductive preparation of chiral halohydrins employing two newly identified stereocomplementary reductases. RSC Adv 2015. [DOI: 10.1039/c4ra16779a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two robust stereocomplementary carbonyl reductases (DhCR andCgCR) for preparation of hylohydrins were identified through rescreening the carbonyl reductase toolbox.
Collapse
Affiliation(s)
- Guo-Chao Xu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- and Shanghai Collaborative Innovation Center for Biomanufacturing Technology
- Shanghai 200237
- China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- and Shanghai Collaborative Innovation Center for Biomanufacturing Technology
- Shanghai 200237
- China
| | - Yue-Peng Shang
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- and Shanghai Collaborative Innovation Center for Biomanufacturing Technology
- Shanghai 200237
- China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- and Shanghai Collaborative Innovation Center for Biomanufacturing Technology
- Shanghai 200237
- China
| |
Collapse
|
39
|
He YC, Zhang DP, Tao ZC, Zhang X, Yang ZX. Discovery of a reductase-producing strain recombinant E. coli CCZU-A13 using colorimetric screening and its whole cell-catalyzed biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate. BIORESOURCE TECHNOLOGY 2014; 172:342-348. [PMID: 25277262 DOI: 10.1016/j.biortech.2014.09.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/11/2014] [Accepted: 09/14/2014] [Indexed: 06/03/2023]
Abstract
An NADH-dependent reductase (SsCR) was discovered by genome data mining. After SsCR was overexpressed in E. coli BL21, recombinant E. coli CCZU-A13 with high reductase activity and excellent stereoselectivity for the reduction of ethyl 4-chloro-3-oxobutanoate (COBE) into ethyl (R)-4-chloro-3-hydroxybutanoate ((R)-CHBE) was screened using one high-throughput colorimetric screening strategy. After the reaction optimization, a highly stereoselective bioreduction of COBE into (R)-CHBE (>99% ee) with the resting cells of E. coli CCZU-A13 was successfully demonstrated in n-butyl acetate-water (10:90, v/v) biphasic system. Biotransformation of 600mM COBE for 8h in the biphasic system, (R)-CHBE (>99% ee) could be obtained in the high yield of 100%. Moreover, the broad substrate specificity in the reduction of aliphatic and aromatic carbonyl compounds was also found. Significantly, E. coli CCZU-A13 shows high potential in the industrial production of (R)-CHBE (>99% ee) and its derivatives.
Collapse
Affiliation(s)
- Yu-Cai He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China.
| | - Dan-Ping Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Zhi-Cheng Tao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| | - Xian Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Zhen-Xing Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, PR China
| |
Collapse
|