1
|
Choi B, Kim TI, Kim HH, Kim CM, Park S, Lee S. Enhancing energy and nitrogen removal efficiency through automatic split injection and innovative aeration device: A study of low C/N ratio environments. WATER RESEARCH 2024; 266:122389. [PMID: 39244866 DOI: 10.1016/j.watres.2024.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/29/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
A new aeration device based on Bernoulli's principle, Jetventrumixer (JVM), was introduced into an aeration tank in denitrification process, which involved an automatic split injection system (ASIS) into two denitrification tanks every 10 minutes. Real-time monitoring of influent water allowed the calculation of the C/N ratio, enhancing the utilization efficiency of internal carbon sources while reducing the need for external carbon. The comparison of the JVM with the conventional air diffuser for 100 days operation showed that the removal efficiency for NH4+-N in both systems was approximately 98 %, but the nitrification efficiencies were 84 % and 80 %, respectively. This indicates that the JVM achieves an high enough removal efficiency and nitrification efficiency compared with conventional air diffuser system with dramatic reduction in energy consumption by 52.1 %. When the influent wastewater was split and injected into duplicate denitrification tanks at ratios of 3:7, 5:5, and 7:3, the total nitrogen (TN) removal efficiencies were 77 %, 73 %, and 72 %, respectively. In contrast, with the implementation of the ASIS, the TN removal efficiency increased up to 82 %. The increase in TN removal indicates that real-time monitoring could stably track changes chemical composition in wastewater influent over 24 h and introducing ASIS facilitate the efficient utilization of internal carbon sources, thereby enhancing denitrification efficiency and improving TN removal efficiency. Finally, the greenhouse gas (GHG) emissions from the JVM and air diffuser were 9.39401 and 19.60488 tCO2eq year-1, respectively, representing a 52% reduction. Therefore, JVM and ASIS successfully reduced energy consumption and enhanced both nitrification and denitrification efficiencies.
Collapse
Affiliation(s)
- Byeongwook Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Earth Environmental System Science (Major in Environmental Engineering), Pukyong National University, Busan 48513, Republic of Korea; Department of Environmental Science, Hankuk University of Foreign Studies, Oedae-ro 81, Yongin-si, Gyeonggi-do 17035, Republic of Korea
| | - Tae-In Kim
- Department of Environmental Science, Hankuk University of Foreign Studies, Oedae-ro 81, Yongin-si, Gyeonggi-do 17035, Republic of Korea
| | - Hoo Hugo Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Chang-Min Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Future and Fusion Lab of Architectural, Civil and Environmental Engineering, Korea University, 9 Seoul 02841, Republic of Korea
| | - Sanghun Park
- Division of Earth Environmental System Science (Major in Environmental Engineering), Pukyong National University, Busan 48513, Republic of Korea.
| | - Sungjong Lee
- Department of Environmental Science, Hankuk University of Foreign Studies, Oedae-ro 81, Yongin-si, Gyeonggi-do 17035, Republic of Korea.
| |
Collapse
|
2
|
Gutiérrez MC, Cáceres A, Herruzo-Ruiz AM, Siles JA, Vázquez F, Alhama J, Michán C, Martín MA. Assessment of nitrification process in a sequencing batch reactor: Modelling and genomic approach. ENVIRONMENTAL RESEARCH 2024; 246:118035. [PMID: 38199477 DOI: 10.1016/j.envres.2023.118035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Nitrification of ammoniacal nitrogen (N-NH4+) to nitrate (N-NO3-) was investigated in a lab-scale sequencing batch reactor (SBR) to evaluate its efficiency. During the nitrification process the removal of N-NH4+ reached 96%, resulting in 73% formation of N-NO3-. A lineal correlation (r2 = 0.9978) was obtained between the concentration of volatile suspended solids (VSS) and the maximal N-NO3- concentration at the end of each batch cycle under stationary state. The bacterial taxons in the initial inoculum were identified, revealing a complex diverse community mainly in the two major bacterial phyla Proteobacteria and Actinobacteria. The FAPROTAX algorithm predicted the presence in the inoculum of taxa involved in relevant processes of the nitrogen metabolism, highlighting the bacterial genera Nitrospira and Nitrosomonas that are both involved in the nitrification process. A kinetic model was formulated for predicting and validating the transformation of N-NH4+, N-NO2- and N-NO3- and the removal of organic and inorganic carbon (TOC and IC, respectively). The results showed how the increase in biomass concentration slowed down the transformation to oxidised forms of nitrogen and increased denitrification in the settling and filling stages under free aeration conditions.
Collapse
Affiliation(s)
- M C Gutiérrez
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, University of Cordoba, Campus Universitario de Rabanales, Carretera N-IV, km 396, edificio Marie Curie, 14071, Córdoba, Spain
| | - A Cáceres
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, University of Cordoba, Campus Universitario de Rabanales, Carretera N-IV, km 396, edificio Marie Curie, 14071, Córdoba, Spain
| | - A M Herruzo-Ruiz
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Excelencia Internacional Agroalimentario ceiA3, edificio Severo Ochoa, 14071, Córdoba, Spain
| | - J A Siles
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, University of Cordoba, Campus Universitario de Rabanales, Carretera N-IV, km 396, edificio Marie Curie, 14071, Córdoba, Spain
| | - F Vázquez
- Department of Electrical Engineering and Automation, University of Cordoba, Cordoba, 14071, Spain
| | - J Alhama
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Excelencia Internacional Agroalimentario ceiA3, edificio Severo Ochoa, 14071, Córdoba, Spain
| | - C Michán
- Department of Biochemistry and Molecular Biology, University of Cordoba, Campus de Excelencia Internacional Agroalimentario ceiA3, edificio Severo Ochoa, 14071, Córdoba, Spain
| | - M A Martín
- Department of Inorganic Chemistry and Chemical Engineering, Area of Chemical Engineering, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Campus de Excelencia Internacional Agroalimentario ceiA3, University of Cordoba, Campus Universitario de Rabanales, Carretera N-IV, km 396, edificio Marie Curie, 14071, Córdoba, Spain.
| |
Collapse
|
3
|
Nguyen Quoc B, Peng B, De Clippeleir H, Winkler MKH. Case study: Bioaugmenting the comammox dominated biomass from B-stage to enhance nitrification in A-stage at Blue Plains AWWTP. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11005. [PMID: 38407520 DOI: 10.1002/wer.11005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
A comprehensive case study was undertaken at the Blue Plains wastewater treatment plant (WWTP) to explore the bioaugmentation technique of introducing nitrifying sludge into the non-nitrifying stage over the course of two operational years. This innovative approach involved the return of waste activated sludge (WAS) from the biological nutrient removal (BNR) system to enhance the nitrification in the high carbon removal rate system. The complete ammonia oxidizer (comammox) Nitrospira Nitrosa was identified as the main nitrifier in the system. Bioaugmentation was shown to be successful as nitrifiers returned from BNR were able to increase the nitrifying activity of the high carbon removal rate system. There was a positive correlation between returned sludge from the BNR stage and the specific total kjeldahl nitrogen (TKN) removal rate in A stage. The bioaugmentation process resulted in a remarkable threefold increase in the specific TKN removal rate within the A stage. Result suggested that recycling of WAS is a simple technique to bio-augment a low SRT system with nitrifiers and add ammonia oxidation to a previously non-nitrifying stage. The results from this case study hold the potential for applicable implications for other WWTPs that have a similar operational scheme to Blue Plains, allowing them to reuse WAS from the B stage, previously considered waste, to enhance nitrification and thus improving overall nitrogen removal performance. PRACTITIONER POINTS: Comammox identifying as main nitrifier in the B stage. Comammox enriched sludge from B stage successfully bio-augmented the East side of A stage up to threefold. Bioaugmentation of comammox in the West side of A stage was potentially inhibited by the gravity thickened overflow. Sludge returned from B stage to A stage can improve nitrification with a very minor retrofits and short startup times.
Collapse
Affiliation(s)
- Bao Nguyen Quoc
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Bo Peng
- DC Water and Sewer Authority, Washington, District of Columbia, USA
| | | | - Mari-Karoliina H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Liu C, Zhuo Y, Chen Y, Mao Y, Shen Q, Ma J, Ma R, Cheng L, Ji F, Xu X. Synthesis of amorphous-MnO 2/Clinoptilolite and its utilization for NH 4+-N oxidation in an anoxic environment. ENVIRONMENTAL RESEARCH 2024; 241:117574. [PMID: 37931738 DOI: 10.1016/j.envres.2023.117574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Mediating the anoxic ammonia oxidation with manganese oxide (MnOx) can reduce the requirements of dissolved oxygen (DO) concentrations in constructed wetlands (CWs) and improve the removal of ammonium nitrogen (NH4+-N). Recent studies that employed natural manganese ore and/or mine waste as substrates in CWs may develop potentially negative environmental effects due to leachates. However, removing NH4+-N by anoxic ammonia oxidation is influenced by the crystal form of MnOx. In this study, a novel clinoptilolite-based amorphous-MnO2 (amorphous-MnO2/clinoptilolite) was synthesized by the sol-gel method as an alternative substrate to improve the efficiency of anoxic ammonia oxidation and reduce the impact of Mn ion leaching. According to the anoxic ammonia oxidation experiment of clinoptilolite, amorphous-MnO2/clinoptilolite, and manganese ore on NH4+-N, the amounts of NH4+-N removed were 24.55 mg/L/d, 44.55 mg/L/d, and 11.04 mg/L/d, respectively, and the initial NH4+-N concentration was 49.53 mg/L. These results indicated that the amorphous-MnO2/clinoptilolite had both the adsorption and the anoxic ammonia oxidation performance. The recycling experiment demonstrated that the effect of anoxic ammonia oxygen mediated by amorphous-MnO2 would not diminish with the gradual saturation of clinoptilolite for NH4+-N. Furthermore, the anoxic ammonia oxidation consumed NH4+-N in the clinoptilolite, which restored the adsorption capacity of the clinoptilolite and simultaneously decreased the leakage of manganese ions in the process, making it environmentally friendly. Therefore, the amorphous-MnO2/clinoptilolite provided an excellent substrate material for the constructed wetland under an anoxic environment, which greatly improved the nitrogen removal capacity compared to existing substrate materials.
Collapse
Affiliation(s)
- Caocong Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Yiyuan Zhuo
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Yuzhe Chen
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China.
| | - Yuanxiang Mao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Qiushi Shen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Jiangsen Ma
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Rui Ma
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Linsong Cheng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Fangying Ji
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Xiaoyi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215001, China.
| |
Collapse
|
5
|
Zhang C, Zhao G, Jiao Y, Quan B, Lu W, Su P, Tang Y, Wang J, Wu M, Xiao N, Zhang Y, Tong J. Critical analysis on the transformation and upgrading strategy of Chinese municipal wastewater treatment plants: Towards sustainable water remediation and zero carbon emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165201. [PMID: 37406711 DOI: 10.1016/j.scitotenv.2023.165201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
In the light of circular economy aspects, processing of large-scale municipal wastewater treatment plants (WWTPs) needs reconsideration to limit the overuse of energy, implement of non-green technologies and emit abundant greenhouse gas. Along with the huge increase in the worldwide population and agro-industrial activities, global environmental organizations have issued several recent roles to boost scientific and industrial communities towards sustainable development. Over recent years, China has imposed national and regional standards to control and manage the discharged liquid and solid waste, as well as to achieve carbon peaking and carbon neutrality. The aim of this report is to analyze the current state of Chinese WWTPs routing and related issues such as climate change and air pollution. The used strategies in Chinese WWTPs and upgrading trends were critically discussed. Several points were addressed including the performance, environmental impact, and energy demand of bio-enhanced technologies, including hydrolytic acidification pretreatment, efficient (toxic) strain treatment, and anaerobic ammonia oxidation denitrification technology, as well as advanced treatment technologies composed of physical and chemical treatment technologies, biological treatment technology and combined treatment technology. Discussion and critical analysis based on the current data and national policies were provided and employed to develop the future development trend of municipal WWTPs in China from the construction of sustainable and "Zero carbon" WWTPs.
Collapse
Affiliation(s)
- Chunhui Zhang
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China.
| | - Guifeng Zhao
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Yanan Jiao
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Bingxu Quan
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Wenjing Lu
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Peidong Su
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China.
| | - Yuanhui Tang
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Jianbing Wang
- College of Chemistry and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
| | - Mengmeng Wu
- Zhongguancun Summit Enviro-Protection Co., Ltd., Beijing 100081, China
| | - Nan Xiao
- Zhongguancun Summit Enviro-Protection Co., Ltd., Beijing 100081, China
| | - Yizhen Zhang
- Zhongguancun Summit Enviro-Protection Co., Ltd., Beijing 100081, China
| | - Jinghua Tong
- Zhongguancun Summit Enviro-Protection Co., Ltd., Beijing 100081, China
| |
Collapse
|
6
|
Zhang X, Chen D, Hou X, Jiang N, Li Y, Ge S, Mu Y, Shen J. Nitrification-denitrification co-metabolism in an algal-bacterial aggregates system for simultaneous pyridine and nitrogen removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132390. [PMID: 37659235 DOI: 10.1016/j.jhazmat.2023.132390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Photosynthetic oxygenation in algal-bacterial symbiotic (ABS) system was mainly concerned to enhance contaminant biodegradation by developing an aerobic environment, while the role of nitrification-denitrification involved is often neglected. In this study, an algal-bacterial aggregates (ABA) system was developed with algae and activated sludge (PBR-1) to achieve simultaneous pyridine and nitrogen removal. In PBR-1, as high as 150 mg·L-1 pyridine could be completely removed at hydraulic residence time of 48 h. Besides, total nitrogen (TN) removal efficiency could be maintained above 80%. Nitrification-denitrification was verified as the crucial process for nitrogen removal, accounting for 79.3% of TN removal at 180 μmol·m-2·s-1. Moreover, simultaneous pyridine and nitrogen removal was enhanced through nitrification-denitrification co-metabolism in the ABA system. Integrated bioprocesses in PBR-1 including photosynthesis, pyridine biodegradation, carbon and nitrogen assimilation, and nitrification-denitrification, were revealed at metabolic and transcriptional levels. Fluorescence in situ hybridization analysis indicated that algae and aerobic species were located in the surface layer, while denitrifiers were situated in the inner layer. Microelectrode analysis confirmed the microenvironment of ABA with dissolved oxygen and pH gradients, which was beneficial for simultaneous pyridine and nitrogen removal. Mechanism of nitrification-denitrification involved in pyridine and nitrogen removal was finally elucidated under the scale of ABA.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xinying Hou
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Na Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shijian Ge
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
7
|
Correa CZ, de Tavares Machado Bolonhesi IB, Lopes DD, Prates KVMC, Panagio LA, Ratuchne A, Damianovic MHRZ. Removal of organic matter and nitrogen from dairy effluents in a structured bed reactor operated with intermittent aeration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91060-91073. [PMID: 37464210 DOI: 10.1007/s11356-023-28581-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/29/2023] [Indexed: 07/20/2023]
Abstract
The objective of this research was to evaluate the performance of a structured bed reactor (SBRIA), carried out with intermittent aeration (IA), in the removal of organic matter and nitrogen from dairy effluent, when run with different organic loading rates (OLR). The SBRIA was operated for 227 days, with 2:1 AI cycles (2 h with aeration on and 1 h off) and Hydraulic Retention Time (HRT) of 16 h. Three phases, with different OLR, were evaluated: phases A (1000 gCOD m-3 day-1 - 63 days), B (1400 gCOD m-3 day-1 - 94 days), and C (1800 gCOD m-3 day-1 - 70 days). The percentage of COD, NH4+-N removal, and nitrogen removal, respectively, were above 85 ± 7%, 73 ± 27%, and 83 ± 5, in all phases. There was no accumulation of the oxidized forms of nitrogen in the reactor. The kinetic test, performed to evaluate the nitrification and denitrification in the system, indicated that even in dissolved oxygen concentrations of 4.5 mg L-1, it was possible to obtain the denitrification process in the system. The results demonstrate that the reactor under study has positive characteristics to be used as an alternative for removing the removal of organic material and nitrogen in the biological treatment of dairy effluents.
Collapse
Affiliation(s)
- Camila Zoe Correa
- Department of Civil Construction, State University of Londrina, Rodovia Celso Garcia Cid, Km 380, Campus Universitario, CEP, Londrina, Parana, 86057-970, Brazil.
| | | | - Deize Dias Lopes
- Department of Civil Construction, State University of Londrina, Rodovia Celso Garcia Cid, Km 380, Campus Universitario, CEP, Londrina, Parana, 86057-970, Brazil
| | - Kátia Valéria Marques Cardoso Prates
- Department of Environmental Engineering, Federal Technological University of Paraná, Av. Dos Pioneiros 3131, Londrina, Parana, CEP 86036-370, Brazil
| | - Luciano Aparecido Panagio
- Department of Microbiology, State University of Londrina, Rodovia Celso Garcia Cid, Km 380, Campus Universitario, Londrina, Parana, CEP 86057-970, Brazil
| | - Aline Ratuchne
- Department of Microbiology, State University of Londrina, Rodovia Celso Garcia Cid, Km 380, Campus Universitario, Londrina, Parana, CEP 86057-970, Brazil
| | - Márcia Helena Rissato Zamariolli Damianovic
- Laboratory of Biological Processes, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, Sao Carlos, São Paulo, 13563-120, Brazil
| |
Collapse
|
8
|
Domańska M, Kuśnierz M, Mackiewicz K. Seasonal prevalence of bacteria in the outflow of two full-scale municipal wastewater treatment plants. Sci Rep 2023; 13:10608. [PMID: 37391517 PMCID: PMC10313732 DOI: 10.1038/s41598-023-37744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
Despite many modern wastewater treatment solutions, the most common is still the use of activated sludge (AS). Studies indicate that the microbial composition of AS is most often influenced by the raw sewage composition (especially influent ammonia), biological oxygen demand, the level of dissolved oxygen, technological solutions, as well as the temperature of wastewater related to seasonality. The available literature mainly refers to the relationship between AS parameters or the technology used and the composition of microorganisms in AS. However, there is a lack of data on the groups of microorganisms leaching into water bodies whose presence is a signal for possible changes in treatment technology. Moreover, sludge flocs in the outflow contain less extracellular substance (EPS) which interferes microbial identification. The novelty of this article concerns the identification and quantification of microorganisms in the AS and in the outflow by fluorescence in situ hybridization (FISH) method from two full-scale wastewater treatment plants (WWTPs) in terms of 4 key groups of microorganisms involved in the wastewater treatment process in the context of their potential technological usefulness. The results of the study showed that Nitrospirae, Chloroflexi and Ca. Accumulibacter phosphatis in treated wastewater reflect the trend in abundance of these bacteria in activated sludge. Increased abundance of betaproteobacterial ammonia-oxidizing bacteria and Nitrospirae in the outflow were observed in winter. Principal component analysis (PCA) showed that loadings obtained from abundance of bacteria in the outflow made larger contributions to the variance in the PC1 factorial axis, than loadings obtained from abundance of bacteria from activated sludge. PCA confirmed the reasonableness of conducting studies not only in the activated sludge, but also in the outflow to find correlations between technological problems and qualitative and quantitative changes in the outflow microorganisms.
Collapse
Affiliation(s)
- Magdalena Domańska
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363, Wrocław, Poland.
| | - Magdalena Kuśnierz
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363, Wrocław, Poland
| | - Katarzyna Mackiewicz
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363, Wrocław, Poland
| |
Collapse
|
9
|
Petrea ȘM, Simionov IA, Antache A, Nica A, Oprica L, Miron A, Zamfir CG, Neculiță M, Dima MF, Cristea DS. An Analytical Framework on Utilizing Various Integrated Multi-Trophic Scenarios for Basil Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:540. [PMID: 36771624 PMCID: PMC9920146 DOI: 10.3390/plants12030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Here, we aim to improve the overall sustainability of aquaponic basil (Ocimum basilicum L.)-sturgeon (Acipenser baerii) integrated recirculating systems. We implement new AI methods for operational management together with innovative solutions for plant growth bed, consisting of Rapana venosa shells (R), considered wastes in the food processing industry. To this end, the ARIMA-supervised learning method was used to develop solutions for forecasting the growth of both fish and plant biomass, while multi-linear regression (MLR), generalized additive models (GAM), and XGBoost were used for developing black-box virtual sensors for water quality. The efficiency of the new R substrate was evaluated and compared to the consecrated light expended clay aggregate-LECA aquaponics substrate (H). Considering two different technological scenarios (A-high feed input, B-low feed input, respectively), nutrient reduction rates, plant biomass growth performance and additionally plant quality are analysed. The resulting prediction models reveal a good accuracy, with the best metrics for predicting N-NO3 concentration in technological water. Furthermore, PCA analysis reveals a high correlation between water dissolved oxygen and pH. The use of innovative R growth substrate assured better basil growth performance. Indeed, this was in terms of both average fresh weight per basil plant, with 22.59% more at AR compared to AH, 16.45% more at BR compared to BH, respectively, as well as for average leaf area (LA) with 8.36% more at AR compared to AH, 9.49% more at BR compared to BH. However, the use of R substrate revealed a lower N-NH4 and N-NO3 reduction rate in technological water, compared to H-based variants (19.58% at AR and 18.95% at BR, compared to 20.75% at AH and 26.53% at BH for N-NH4; 2.02% at AR and 4.1% at BR, compared to 3.16% at AH and 5.24% at BH for N-NO3). The concentration of Ca, K, Mg and NO3 in the basil leaf area registered the following relationship between the experimental variants: AR > AH > BR > BH. In the root area however, the NO3 were higher in H variants with low feed input. The total phenolic and flavonoid contents in basil roots and aerial parts and the antioxidant activity of the methanolic extracts of experimental variants revealed that the highest total phenolic and flavonoid contents were found in the BH variant (0.348% and 0.169%, respectively in the roots, 0.512% and 0.019%, respectively in the aerial parts), while the methanolic extract obtained from the roots of the same variant showed the most potent antioxidant activity (89.15%). The results revealed that an analytical framework based on supervised learning can be successfully employed in various technological scenarios to optimize operational management in an aquaponic basil (Ocimum basilicum L.)-sturgeon (Acipenser baerii) integrated recirculating systems. Also, the R substrate represents a suitable alternative for replacing conventional aquaponic grow beds. This is because it offers better plant growth performance and plant quality, together with a comparable nitrogen compound reduction rate. Future studies should investigate the long-term efficiency of innovative R aquaponic growth bed. Thus, focusing on the application of the developed prediction and forecasting models developed here, on a wider range of technological scenarios.
Collapse
Affiliation(s)
- Ștefan-Mihai Petrea
- Food Science, Food Engineering, Biotechnology and Aquaculture Department, Faculty of Food Science and Engineering, “Dunarea de Jos” University of Galati, Domnească Street, No. 111, 800008 Galaţi, Romania
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, Nicolae Bălcescu Street, 59–61, 800001 Galati, Romania
| | - Ira Adeline Simionov
- Food Science, Food Engineering, Biotechnology and Aquaculture Department, Faculty of Food Science and Engineering, “Dunarea de Jos” University of Galati, Domnească Street, No. 111, 800008 Galaţi, Romania
- Department of Automatic Control and Electrical Engineering, “Dunărea de Jos” University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania
| | - Alina Antache
- Food Science, Food Engineering, Biotechnology and Aquaculture Department, Faculty of Food Science and Engineering, “Dunarea de Jos” University of Galati, Domnească Street, No. 111, 800008 Galaţi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 700506 Iasi, Romania
| | - Aurelia Nica
- Food Science, Food Engineering, Biotechnology and Aquaculture Department, Faculty of Food Science and Engineering, “Dunarea de Jos” University of Galati, Domnească Street, No. 111, 800008 Galaţi, Romania
| | - Lăcrămioara Oprica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 700506 Iasi, Romania
| | - Anca Miron
- Department of Pharmacognosy, School of Pharmacy, Gr. T. Popa University of Medicine and Pharmacy, Universitatii Street Number 16, 700115 Iasi, Romania
| | - Cristina Gabriela Zamfir
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, Nicolae Bălcescu Street, 59–61, 800001 Galati, Romania
| | - Mihaela Neculiță
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, Nicolae Bălcescu Street, 59–61, 800001 Galati, Romania
| | - Maricel Floricel Dima
- Institute for Research and Development in Aquatic Ecology, Fishing and Aquaculture, 54 Portului Street, 800211 Galati, Romania
- Faculty of Enginnering and Agronomy in Braila, “Dunarea de Jos” University of Galati, Domnească Street, No. 111, 800008 Galaţi, Romania
| | - Dragoș Sebastian Cristea
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, Nicolae Bălcescu Street, 59–61, 800001 Galati, Romania
| |
Collapse
|
10
|
Maturano-Carrera D, Oltehua-Lopez O, Cuervo-López FDM, Texier AC. Long-term post-storage reactivation of a nitrifying sludge in a sequential batch reactor: physiological and kinetic evaluation. 3 Biotech 2023; 13:17. [PMID: 36568497 PMCID: PMC9768056 DOI: 10.1007/s13205-022-03433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Production, preservation and recovery of sludge with stabilized nitrifying activity over long time can be difficult. Information on the ability of nitrifying sludge to regain its nitrifying activity after long-term storage is still scarce. In this work, the physiological and kinetic changes during the reactivation and stabilization of a nitrifying sludge previously exposed to ampicillin (AMP) were evaluated in a sequential batch reactor (SBR) after its long-term storage (1 year) at 4 °C. After storage, both ammonium and nitrite oxidizing processes were slow, being nitrite oxidation the most affected step. During the reactivation stage (cycles 1-6), physiological and kinetic activity of the nitrifying sludge improved through the operating cycles, in both its ammonium oxidizing and nitrite oxidizing processes. At the end of the reactivation stage, complete nitrifying activity was achieved in 10 h, reaching ammonium consumption efficiencies (ENH4 +) close to 100% and nitrate yields (YNO3 -) of 0.98 mg NO3 --N/mg NH4 +-N consumed without nitrite accumulation. During the stabilization stage (cycles 7-17), results indicated that the sludge could maintain a steady-state respiratory process with restoration percentages of 100% for nitrifying specific rates (qNH4 + and qNO3 -) with respect to their values obtained before storage. Furthermore, during the addition of 15 mg AMP/L (cycles 18-21), the sludge preserved its metabolic capacity to biodegrade 90% of AMP in 2 h. Therefore, long-term storage of nitrifying sludge could be used to preserve nitrifying inocula as bioseeds for bioremediation and bioaugmentation strategies.
Collapse
Affiliation(s)
- Daniel Maturano-Carrera
- Department of Biotechnology-CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, CP 09310 Mexico City, Mexico
| | - Omar Oltehua-Lopez
- Department of Biotechnology-CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, CP 09310 Mexico City, Mexico
| | - Flor de María Cuervo-López
- Department of Biotechnology-CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, CP 09310 Mexico City, Mexico
| | - Anne-Claire Texier
- Department of Biotechnology-CBS, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, CP 09310 Mexico City, Mexico
| |
Collapse
|
11
|
Jin J, Tian X, Liu G, Huang J, Zhu H, Qiu S, Fu X, Wu Y, Bing H. Novel ecological ditch system for nutrient removal from farmland drainage in plain area: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115638. [PMID: 35949090 DOI: 10.1016/j.jenvman.2022.115638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The loading of nitrogen (N) and phosphorus (P) from agricultural drainage as the non-point sources is a worldwide environmental issue for aquatic ecosystem. However, how to remove these nutrients effectively from agricultural drainage remains a big challenge with increasing cemented ditches for better management. Here, we designed a novel ecological ditch system which integrated an earth ditch and a cemented ditch with iron-loaded biochar in the Chengdu Plain to reduce the loss of N and P from farmland. After a two-year monitoring, the removal efficiency of total N and total P reached 24.9% and 36.1% by the earth ditch and 30.7% and 57.8% by the integrated ditch system, respectively. The water quality was evidently improved after passing through the ditch system with the marked decrease in the concentrations of N and P. Dissolved organic N, nitrate, and particulate P became the dominant fractions of N and P loss. Rainfall soon after fertilization increased the concentrations of N and P in the ditch system and markedly affected their removal efficiency. The iron-loaded biochar effectively removed N and P from the drainage, especially at the high concentrations, which was mainly attributed to its high adsorption of the dissolved N and P fractions and the interception of the particulate nutrients. Our results indicate that the designed ecological ditch system has a high potential for alleviating agricultural non-point source pollution in the plain area and can be extended to other lowland agricultural ecosystems.
Collapse
Affiliation(s)
- Jiyuan Jin
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China; Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xin Tian
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanglong Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiacong Huang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 210008, China
| | - He Zhu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Shaojun Qiu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Fu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Yanhong Wu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Haijian Bing
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
12
|
Pimenov NV, Nikolaev YA, Dorofeev AG, Grachev VA, Kallistova AY, Mironov VV, Vanteeva AV, Grigor’eva NV, Berestovskaya YY, Gruzdev EV, Begmatov SA, Ravin NV, Mardanov AV. Bioaugmentation of Anammox Activated Sludge with a Nitrifying Bacterial Community as a Way to Increase the Nitrogen Removal Efficiency. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Abstract—
Bioaugmentation, i.e., increasing the abundance of certain microorganisms in the community by adding appropriate cells or establishing the conditions promoting their growth, is widely used in environmental technologies. Its application for launching of the anammox reactors is usually limited to introduction of anammox bacteria. We expected addition of nitrifiers during anammox bioreactor launching to stimulate the anammox process due to rapid production of nitrite, which anammox bacteria use for ammonium oxidation. The present work investigated the effect of introduction of a nitrifying community on the composition and activity of the microbial community in an anammox reactor. At the time of inoculation of a laboratory SBR reactor, an active nitrifying community (5 days old) (ASB) (bioaugmenting activated sludge, ASB) containing group I nitrifiers, primarily Nitrosospira, was added (1 : 100 by biomass) to anammox activated sludge (ASA) stored for 1 month at 4°C and exhibiting low metabolic activity. The use of ASB resulted in increased efficiency of nitrogen removal. While noticeable nitrogen removal in the control (7%) was observed since day 11 of incubation, nitrogen removal in the experimental reactor began on day 4 at the level of 20%. Nitrogen removal after 30 days of incubation was ~60% in the experiment and 20% in the control. The rate of ammonium oxidation in the presence of ASB increased due to activity of nitrifying bacteria (during the first 10 days of operation) and anammox bacteria of the genus Brоcadia, which were already present in ASA (throughout all period of operation). Activity of group II nitrifiers (genera Nitrobacter and Nitrococcus), which were present in ASB, prevented accumulation of nitrite, which in high concentrations is toxic to both nitrifiers and anammox bacteria. High activity of the Nitrosospira nitrifiers introduced with ASB probably provided the anammox bacteria with one of the substrates (nitrite), promoting their rapid growth. During subsequent operation of the reactor, nitrifiers of the genus Nitrosomonas from the initial ASA community were mainly responsible for growth of the anammox bacteria. Thus, ASA bioaugmentation at the loading of the anammox reactor by active nitrifiers resulted in significantly improved efficiency of ammonium removal via the anammox process and accelerated transition of the reactor to the working mode.
Collapse
|
13
|
Deng J, Huang Z, Wang J, Shan X, Shi W, Ruan W. Wild Heterotrophic Nitrifying Strain Pseudomonas BT1 Isolated from Kitchen Waste Sludge Restores Ammonia Nitrogen Removal in a Sewage Treatment Plant Shocked by Thiourea. Appl Biochem Biotechnol 2022; 194:2901-2918. [PMID: 35294734 PMCID: PMC9205789 DOI: 10.1007/s12010-022-03850-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
Thiourea is used in agriculture and industry as a metal scavenger, synthetic intermediate, and nitrification inhibitor. However, in wastewater, it can inhibit the nitrification process and induce the collapse of the nitrification system. In such a case, ammonia-oxidizing bacteria (AOB) lose their ability to remove ammonia. We investigated the nitrification system of a 60,000-t/d municipal sewage treatment plant in Nanjing, which collapsed after receiving 5–15 ppm (5–15 mg/L) thiourea. Ammonia nitrogen removal quickly recovered to more than 95% after inoculation with 10 t high-efficiency nitrification sludge, which was collected from a kitchen waste treatment plant. A heterotrophic nitrification strain was isolated from the inoculated sludge and identified as wild Pseudomonas by 16S rDNA sequencing and named “BT1.” Based on thiourea tolerance tests, BT1 can tolerate a thiourea content of more than 500 ppm. For comparison, the in situ process was imitated by the simulation system, and the wastewater shocked by 10 ppm thiourea could still meet the emission standard after adding 1% (V/V) BT1. High-throughput sequencing analysis was applied to study microbial succession during thiourea shock loading. The results showed that Hydrogenophaga and Thiobacillus grew with the growth of BT1. Pseudomonas BT1 was used for a 6,000-t/d printed circuit board (PCB) wastewater treatment system, the nitrification system returned to normal in 15 days, and the degradation rate stabilized at more than 95%.
Collapse
Affiliation(s)
- Jingxuan Deng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jinbo Wang
- JiangNing Water Group Co., Ltd, Nanjing, 211100, China
| | - Xiaohong Shan
- Wuxi MaSun Environmental Energy Technology Co., Ltd, Wuxi, 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
14
|
Paśmionka IB, Gospodarek J. Assessment of the Impact of Selected Industrial Wastewater on the Nitrification Process in Short-Term Tests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053014. [PMID: 35270705 PMCID: PMC8910604 DOI: 10.3390/ijerph19053014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023]
Abstract
Many chemical compounds can inhibit the nitrification process, especially organic compounds used in the chemical industry. This results in a decrease in the nitrification intensity or even a complete termination of this process. As the technological design of the selected municipal and industrial wastewater treatment plant (WWTP) assumed the dephosphation process, without taking into account nitrification, it was necessary to reduce the concentration of ammonium nitrogen in the treated sewage supplied to the Vistula River. Therefore, the aim of the research was to determine the inhibition of nitrification in the activated sludge method under the influence of industrial wastewater from the production of various organic compounds and to select the most toxic wastewater in relation to nitrifiers. The assessment of nitrification inhibition was carried out on the basis of the method of short-term (4-h) impact of the tested sewage on nitrifying bacteria in the activated sludge. The research covered nine different types of chemical sewage, including wastewater from the production of synthetic rubbers, styrene plastics, adhesives, solvents and emulsifiers. The nitrification process was inhibited to the highest degree by wastewater from the production of styrene-butadiene rubbers (72%). Only wastewater from the production of methacrylate (polymethyl methacrylate) had the lowest degree of inhibition: 16%. These wastewaters also have a toxic effect on the entire biocenosis and adversely affect the structure of activated sludge flocs. The attempts to filter toxic wastewater through the ash basins significantly relieved the inhibition of nitrification.
Collapse
|
15
|
Elmansour TE, Mandi L, Hejjaj A, Ouazzani N. Nutrients' behavior and removal in an activated sludge system receiving Olive Mill Wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114254. [PMID: 34972048 DOI: 10.1016/j.jenvman.2021.114254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
This work aims to monitor inorganic nutrients (phosphorus and ammonium) behavior during the injection of Olive Mill Wastewater (OMWW) in an activated sludge process. The system was fed firstly with urban wastewater (UWW) and was alimented after its stabilization with OMWW (at 0.1% (v/v) and 1%) for 100 days. Total polyphenols, chemical oxygen demand (CODT), nutrients, and biomass behavior against OMWW injection were investigated. The results showed a satisfactory biomass growth of 7.12 gMLVSS.L-1 and a high microbial activity of 21.88 mg O2.gMLVSS-1.h-1. An overall removal reached 90%, 92%, 59% and 93% respectively for, CODT, total polyphenols, PO43- and NH4+. Adding OMWW at 1% seems to improve the nutrients elimination, especially phosphorus by the biological process probably though bringing more biodegradable organics. The chemical processes (precipitation/complexation) could also be involved in phosphorus removal, due to the OMWW wealth on salts elements such as calcium.
Collapse
Affiliation(s)
- T E Elmansour
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P. O. Box 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P. O. Box 2390, 40000, Marrakech, Morocco
| | - L Mandi
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P. O. Box 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P. O. Box 2390, 40000, Marrakech, Morocco
| | - A Hejjaj
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P. O. Box 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P. O. Box 2390, 40000, Marrakech, Morocco
| | - N Ouazzani
- National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, P. O. Box 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, P. O. Box 2390, 40000, Marrakech, Morocco.
| |
Collapse
|
16
|
Ma H, Zhao Y, Yang K, Wang Y, Zhang C, Ji M. Application oriented bioaugmentation processes: Mechanism, performance improvement and scale-up. BIORESOURCE TECHNOLOGY 2022; 344:126192. [PMID: 34710609 DOI: 10.1016/j.biortech.2021.126192] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Bioaugmentation is an optimization method with great potential to improve the treatment effect by introducing specific strains into the biological treatment system. In this study, a comprehensive review of the mechanism of bioaugmentation from the aspect of microbial community structure, the optimization methods facilitating application as well as feasible approaches of scale-up application has been provided. The different contribution of indigenous and exogenous strains was critically analyzed, the relationship between microbial community variation and system performance was clarified. Operation regulation and immobilization technologies are effective methods to deal with the possible failure of bioaugmentation. The gradual expansion from lab-scale, pilot scale to full-scale, the transformation and upgrading of wastewater treatment plants through the combination of direct dosing and biofilm, and the application of side-stream reactors are feasible ways to realize the full-scale application. The future challenges and prospects in this field were also proposed.
Collapse
Affiliation(s)
- Huilin Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Kaichao Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yue Wang
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
17
|
Evaluating acute toxicity in enriched nitrifying cultures: Lessons learned. J Microbiol Methods 2021; 192:106377. [PMID: 34798174 DOI: 10.1016/j.mimet.2021.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
Toxicological batch assays are essential to assess a compound's acute effect on microorganisms. This methodology is frequently employed to evaluate the effect of contaminants in sensitive microbial communities from wastewater treatment plants (WWTPs), such as autotrophic nitrifying populations. However, despite nitrifying batch assays being commonly mentioned in the literature, their experimental design criteria are rarely reported or overlooked. Here, we found that slight deviations in culture preparations and conditions impacted bacterial community performance and could skew assay results. From pre-experimental trials and experience, we determined how mishandling and treatment of cultures could affect nitrification activity. While media and biomass preparations are needed to establish baseline conditions (e.g., biomass washing), we found extensive centrifugation selectively destabilised nitrification activities. Further, it is paramount that the air supply is adjusted to minimise nitrite build-up in the culture and maintain suitable aeration levels without sparging ammonia. DMSO and acetone up to 0.03% (v/v) were suitable organic solvents with minimal impact on nitrification activity. In the nitrification assays with allylthiourea (ATU), dilute cultures exhibited more significant inhibition than concentrated cultures. So there were biomass-related effects; however, these differences minimally impacted the EC50 values. Using different nutrient-media compositions had a minimal effect; however, switching mineral media for the toxicity test from the original cultivation media is not recommended because it reduced the original biomass nitrification capacity. Our results demonstrated that these factors substantially impact the performance of the nitrifying inoculum used in acute bioassays, and consequently, affect the response of AOB-NOB populations during the toxicant exposure. These are not highlighted in operation standards, and unfortunately, they can have significant consequential impacts on the determinations of toxicological endpoints. Moreover, the practical procedures tested here could support other authors in developing testing methodologies, adding quality checks in the experimental framework with minimal waste of time and resources.
Collapse
|
18
|
Janiak K, Zięba B, Szetela R, Muszyński-Huhajło M, Miodoński S, Jurga A, Trusz A. Approach to modeling protozoa grazing on the basis of the current state of knowledge. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Development of Strategies for AOB and NOB Competition Supported by Mathematical Modeling in Terms of Successful Deammonification Implementation for Energy-Efficient WWTPs. Processes (Basel) 2021. [DOI: 10.3390/pr9030562] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Novel technologies such as partial nitritation (PN) and partial denitritation (PDN) could be combined with the anammox-based process in order to alleviate energy input. The former combination, also noted as deammonification, has been intensively studied in a frame of lab and full-scale wastewater treatment in order to optimize operational costs and process efficiency. For the deammonification process, key functional microbes include ammonia-oxidizing bacteria (AOB) and anaerobic ammonia oxidation bacteria (AnAOB), which coexisting and interact with heterotrophs and nitrite oxidizing bacteria (NOB). The aim of the presented review was to summarize current knowledge about deammonification process principles, related to microbial interactions responsible for the process maintenance under varying operational conditions. Particular attention was paid to the factors influencing the targeted selection of AOB/AnAOB over the NOB and application of the mathematical modeling as a powerful tool enabling accelerated process optimization and characterization. Another reviewed aspect was the potential energetic and resources savings connected with deammonification application in relation to the technologies based on the conventional nitrification/denitrification processes.
Collapse
|
20
|
Paulo AMS, Amorim CL, Costa J, Mesquita DP, Ferreira EC, Castro PML. Long-term stability of a non-adapted aerobic granular sludge process treating fish canning wastewater associated to EPS producers in the core microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144007. [PMID: 33250239 DOI: 10.1016/j.scitotenv.2020.144007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
The tolerance of aerobic granular sludge (AGS) to variable wastewater composition is perceived as one of its greatest advantages compared to other aerobic processes. However, research studies select optimal operational conditions for evaluating AGS performance, such as the use of pre-adapted biomass and the control of wastewater composition. In this study, non-adapted granular sludge was used to treat fish canning wastewater presenting highly variable organic, nutrient and salt levels over a period of ca. 8 months. Despite salt levels up to 14 g NaCl L-1, the organic loading rate (OLR) was found to be the main factor driving AGS performance. Throughout the first months of operation, the OLR was generally lower than 1.2 kg COD m-3 day-1, resulting in stable nitrification and low COD and phosphorous levels at the outlet. An increase in OLR up to 2.3 kg COD m-3 day-1 disturbed nitrification and COD and phosphate removal, but a decrease to average values between 1 and 1.6 kg COD m-3 day-1 led to resuming of those processes. Most of the bacteria present in the AGS core microbiome were associated to extracellular polymeric substances (EPS) production, such as Thauera and Paracoccus, which increased during the higher OLR period. Ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) species were detected in AGS biomass; while AOB were identified throughout the operation, NOB were no further identified after the period of increased OLR. Different polyphosphate-accumulating organisms (PAOs) were detected along the process: CandidatusAccumulibacter, Tetrasphaera and Gemmatimonas. A non-adapted granular sludge was able to treat the fish canning wastewater and to tolerate salinity fluctuations up to 14 g L-1. Overall, a high microbial diversity associated to EPS producers allowed to preserve bacterial groups responsible for nutrients removal, contributing to the adaptation and long-term stability of the AGS system.
Collapse
Affiliation(s)
- Ana M S Paulo
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Catarina L Amorim
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Joana Costa
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Daniela P Mesquita
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Eugénio C Ferreira
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
21
|
Zhou C, An Y, Zhang W, Yang D, Tang J, Ye J, Zhou Z. Inhibitory effects of Ca 2+ on ammonium exchange by zeolite in the long-term exchange and NaClO-NaCl regeneration process. CHEMOSPHERE 2021; 263:128216. [PMID: 33297173 DOI: 10.1016/j.chemosphere.2020.128216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 06/12/2023]
Abstract
The inhibitory effects of calcium ion (Ca2+) on ammonium (NH4+) exchange by zeolite were investigated in the long-term exchange and sodium hypochlorite - sodium chloride (NaClO-NaCl) regeneration process, and alleviation measure was developed and validated in this study. The batch experiments indicated that NH4+ removal efficiency, exchange kinetics and equilibrium isotherms were significantly dependent on the coexisting Ca2+. The exchange capacity decreased from 0.58 to 0.40 mg g-1 by increasing initial Ca2+ concentration from 0 to 100 mg L-1. The inhibitory effect of Ca2+ on NH4+ exchange efficiency was fitted to the competitive inhibition Monod model with half-saturation rate constant of 134.7 mg L-1. Ca2+ addition reduced the NH4+ removal rate and lengthened the exchange equilibrium time of zeolite. Periodic precipitation of Ca2+ in the form of calcium carbonate from the used regenerant maintained the removal efficiency of NH4+ commendably by alleviating inhibition effect of Ca2+ and extended the working life of zeolite. The major chemical compositions of natural and regenerated zeolite were basically unchanged. Compared to Bohart-Adams model and Thomas model, the Dose-Response model could predict the breakthrough curve well, and the fitted parameter further confirmed that NaClO-NaCl regeneration with periodic Ca2+ removal is an effective method to maintain efficient NH4+ from wastewater by zeolite.
Collapse
Affiliation(s)
- Chuanting Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Urban Construction Design and Research Institute, Shanghai, 200125, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China.
| | - Wei Zhang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianguo Tang
- Shanghai Urban Construction Design and Research Institute, Shanghai, 200125, China
| | - Jianfeng Ye
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
22
|
Zhou Z, Wang K, Qiang J, Pang H, Yuan Y, An Y, Zhou C, Ye J, Wu Z. Mainstream nitrogen separation and side-stream removal to reduce discharge and footprint of wastewater treatment plants. WATER RESEARCH 2021; 188:116527. [PMID: 33099266 DOI: 10.1016/j.watres.2020.116527] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
The activated sludge process is efficient for pollutant removal, but was criticized for its large upfront investment and land area requirements. Improving nitrogen removal to levels sufficient to reduce eutrophication is a challenge to conventional nitrification and denitrification, which is limited by process configuration (with nitrate recirculation) and environmental inhibition. To satisfy stringent discharge standards within a compact plant footprint, a sustainable strategy by moving nitrogen removal from mainstream to side-stream is designed by a cycle of ammonium exchange, regeneration and nitrogen removal (AERN), combined with biological and physiochemical technologies. Ammonium was rapidly captured by ion exchangers, then exchanged into regenerant, and converted to N2 by chlorination or Sharon-anaerobic ammonia oxidation in the side-stream. The AERN cycle can be combined with a high-rate anaerobic/aerobic process and chemical phosphorus removal to construct a HAERN process, or inserted between a coagulation-sedimentation tank and a membrane bioreactor to construct a CAERNM process. Two AERN-based systems both achieved efficient pollutants removal (especially for nitrogen removal of 86.8-93.7%) in long-term running, and didn't impair exchange capacity and properties of ion exchangers. Compared with the conventional anaerobic/anoxic/aerobic process, AERN-based processes reduce land occupancy, upfront investments, and treatment costs by 59.9-71.1%, 25.5-38.0% and 2.3-31.0%, respectively.
Collapse
Affiliation(s)
- Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Kaichong Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiaxin Qiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Hongjian Pang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yao Yuan
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Chuanting Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Urban Construction Design and Research Institute, Shanghai 200125, China
| | - Jianfeng Ye
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
23
|
Noriega-Hevia G, Mateo O, Maciá A, Lardín C, Pastor L, Serralta J, Bouzas A. Experimental sulphide inhibition calibration method in nitrification processes: A case-study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111191. [PMID: 32798849 DOI: 10.1016/j.jenvman.2020.111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Sulphide is one of the inhibitors in the nitrification process in WWTP in regions with sulphate rich soils. As little information is currently available on sulphide nitrification inhibition, the aim of this study was to develop a method based on a modification of the Successive Additions Method to calibrate the effect of sulphide on the activity of ammonia-oxidising bacteria (AOB) and nitrite-oxidising bacteria (NOB). The developed method was then applied to activated sludge samples from two WWTPs with different influent sulphide concentrations. In both cases, sulphide had a greater inhibitory effect on NOB than AOB activity. The sulphide inhibition was found to be lower in the activated sludge fed with sulphide-rich wastewater. The AOB and NOB activity measured at different sulphide concentrations could be accurately modelled with the Hill inhibition equation.
Collapse
Affiliation(s)
- G Noriega-Hevia
- CALAGUA, Unidad Mixta UV-UPV, Institut Universitari D'Investigació D'Enginyeria de L'Aigua I Medi Ambient, IIAMA, Universitat Politècnica de València, Camí de Vera S/n, 46022, València, Spain.
| | - O Mateo
- CALAGUA, Unidad Mixta UV-UPV, Institut Universitari D'Investigació D'Enginyeria de L'Aigua I Medi Ambient, IIAMA, Universitat Politècnica de València, Camí de Vera S/n, 46022, València, Spain
| | - A Maciá
- Depuración de Aguas Del Mediterráneo (DAM), Avenida Benjamín Franklin, 21. 46980 Parque Tecnológico, Paterna, Valencia, Spain
| | - C Lardín
- Entidad Regional de Saneamiento y Depuración de Aguas Residuales de La Región de Murcia (ESAMUR), C/Santiago Navarro, 4. Complejo Espinardo. 30.100, Espinardo, Murcia, Spain
| | - L Pastor
- Depuración de Aguas Del Mediterráneo (DAM), Avenida Benjamín Franklin, 21. 46980 Parque Tecnológico, Paterna, Valencia, Spain
| | - J Serralta
- CALAGUA, Unidad Mixta UV-UPV, Institut Universitari D'Investigació D'Enginyeria de L'Aigua I Medi Ambient, IIAMA, Universitat Politècnica de València, Camí de Vera S/n, 46022, València, Spain
| | - A Bouzas
- CALAGUA, Unidad Mixta UV-UPV, Departament D'Enginyeria Química, Universitat de València, Avinguda de La Universitat S/n, 46100, Burjassot, València, Spain
| |
Collapse
|
24
|
Tsuchiya Y, Nakagawa T, Takahashi R. Quantification and Phylogenetic Analysis of Ammonia Oxidizers on Biofilm Carriers in a Full-Scale Wastewater Treatment Plant. Microbes Environ 2020; 35. [PMID: 32249239 PMCID: PMC7308565 DOI: 10.1264/jsme2.me19140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biofilm carriers have been used to remove ammonia in several wastewater treatment plants (WWTPs) in Japan. However, the abundance and species of ammonia oxidizers in the biofilms formed on the surface of carriers in full-scale operational WWTP tanks remain unclear. In the present study, we conducted quantitative PCR and PCR cloning of the amoA genes of ammonia-oxidizing bacteria and archaea (AOB and AOA) and a complete ammonia oxidizer (comammox) in the biofilm formed on the carriers in a full-scale WWTP. The quantification of amoA genes showed that the abundance of AOB and comammox was markedly greater in the biofilm than in the activated sludge suspended in a tank solution of the WWTP, while AOA was not detected in the biofilm or the activated sludge. A phylogenetic analysis of amoA genes revealed that as-yet-uncultivated comammox Nitrospira and uncultured AOB Nitrosomonas were predominant in the biofilm. The present results suggest that the biofilm formed on the surface of carriers enable comammox Nitrospira and AOB Nitrosomonas to co-exist and remain in the full-scale WWTP tank surveyed in this study.
Collapse
|
25
|
Qiang J, Zhou Z, Wang K, Qiu Z, Zhi H, Yuan Y, Zhang Y, Jiang Y, Zhao X, Wang Z, Wang Q. Coupling ammonia nitrogen adsorption and regeneration unit with a high-load anoxic/aerobic process to achieve rapid and efficient pollutants removal for wastewater treatment. WATER RESEARCH 2020; 170:115280. [PMID: 31759237 DOI: 10.1016/j.watres.2019.115280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
In this study, an ammonium nitrogen (NH4+-N) adsorption and regeneration (AAR) was constructed by a zeolite-packed column and NaClO-NaCl regeneration unit, and coupled with an anoxic/aerobic (AO) system to achieve efficient removal of carbon, nitrogen and phosphorus under short hydraulic retention time (HRT) and sludge retention time (SRT). Compared to conventional anaerobic/anoxic/aerobic (AAO) process, the proposed AO-AAR process achieved more efficient and stable nitrogen removal with greatly shorter HRT (5.6 h) and SRT (8 d) at 10.4 °C, with NH4+-N and total nitrogen in the effluent below 1.5 and 8.0 mg/L, respectively. The AO-AAR also obtained efficient phosphorus removal (<0.5 mg/L) by dosing aluminum in aerobic tank. High load and short SRT deteriorated sludge settleability and dewaterability, but enhanced methane production by improving sludge biodegradability. Dosing aluminum made the AO operating module more stable with improved settleability and dewaterability, and further enhanced methane production. Short HRT and SRT also resulted in the thriving of filamentous bacteria (Thiothrix) and heterotrophic nitrifiers (Acinetobacter, Pseudomonas and Rhodobacter) in the AO module, which helped in enhancing denitrification potential and nitrification efficiency under low temperature. Long-term operation showed that exchange capacity and physicochemical properties of zeolite were unchanged under NaClO-NaCl regeneration by introducing the tail gas from aerobic tank into the used regenerant to remove Ca2+ and Mg2+ exchanged from effluent of the AO module. Techno-economic analysis showed that the AO-AAR process is attractive and sustainable for municipal wastewater treatment by significantly improving nitrogen removal, greatly reducing land occupancy, enhancing methane production and achieving efficient reduction of carbon dioxide emission.
Collapse
Affiliation(s)
- Jiaxin Qiang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Kaichong Wang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhan Qiu
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai, 201203, China
| | - Hui Zhi
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yao Yuan
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yubin Zhang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yuexi Jiang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Xiaodan Zhao
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qiaoying Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
26
|
Kalniņš M, Bērziņš A, Gudrā D, Megnis K, Fridmanis D, Danilko P, Muter O. Selective enrichment of heterotrophic nitrifiers Alcaligenaceae and Alcanivorax spp. from industrial wastewaters. AIMS Microbiol 2020; 6:32-42. [PMID: 32226913 PMCID: PMC7099200 DOI: 10.3934/microbiol.2020002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/06/2020] [Indexed: 02/01/2023] Open
Abstract
Removal of nitrogen from wastewaters (WW) represents a global problem. The low nitrification rate during WW treatment is often caused by ecotoxicity. This problem is attributed mostly to the industrial WW. Our study was focused on the testing of industrial WW and activated sludge (AS) with the aim to reveal the abundance of nitrifiers and increase their biomass, thus, providing the additional step, i.e., bioaugmentation, within the technological process of WW treatment. Plating of AS on the selective solidified media designated for the 1st and 2nd nitrification stages, resulted in the shift in bacterial community structure with dominated Alcaligenaceae and Alcanivorax for the 1st stage, and Alcanivorax-for the 2nd stage of nitrification, respectively. Incubation of AS in the presence of real WW and selective nitrification broth resulted in a considerable increase (one or two magnitudes in the presence of the 1st and 2nd stage nitrification broth, respectively) of culturable nitrifiers after 5 days incubation under aerated conditions. The obtained data provide with evidence about a possibility to strengthen the role of heterotrophic nitrifiers in the treatment of industrial WW, where toxicity obstacles inhibited nitrification under conventional conditions.
Collapse
Affiliation(s)
- Mārtiņš Kalniņš
- Institute of Microbiology & Biotechnology, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| | - Andrejs Bērziņš
- Institute of Microbiology & Biotechnology, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| | - Dita Gudrā
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str, Riga LV-1067, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str, Riga LV-1067, Latvia
| | - Dāvids Fridmanis
- Latvian Biomedical Research and Study Centre, 1 Ratsupites Str, Riga LV-1067, Latvia
| | - Pavel Danilko
- JSC Olaine chemical plant BIOLAR, 3 Rupnicu Str., Olaine, LV-2114, Latvia
| | - Olga Muter
- Institute of Microbiology & Biotechnology, University of Latvia, 1 Jelgavas Str., Riga LV-1004, Latvia
| |
Collapse
|
27
|
Diversity and assembly patterns of activated sludge microbial communities: A review. Biotechnol Adv 2018; 36:1038-1047. [DOI: 10.1016/j.biotechadv.2018.03.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/11/2018] [Accepted: 03/11/2018] [Indexed: 11/22/2022]
|
28
|
Collivignarelli MC, Abbà A, Bertanza G, Setti M, Barbieri G, Frattarola A. Integrating novel (thermophilic aerobic membrane reactor-TAMR) and conventional (conventional activated sludge-CAS) biological processes for the treatment of high strength aqueous wastes. BIORESOURCE TECHNOLOGY 2018; 255:213-219. [PMID: 29427872 DOI: 10.1016/j.biortech.2018.01.112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
A combination of thermophilic aerobic membrane reactor (TAMR) and conventional activated sludge (CAS) was studied by means of two pilot plants at semi-industrial scale in order to simulate the new configuration adopted in a full-scale facility for the treatment of high strength aqueous wastes. Aqueous wastes with high contents of organic pollutants were treated by means of the TAMR technology, progressively increasing the organic load (3-12 kgCOD m-3 d-1). A mixture of municipal wastewater and thermophilic permeate was fed to the CAS plant. The main results are the following: achievement of a high COD removal yield by both the TAMR (78%) and the CAS (85%) plants; ammonification of the organic nitrogen under thermophilic conditions and subsequent mesophilic nitrification; capacity of the downstream mesophilic process to complete the degradation of the organic matter partially obtained by the TAMR process and precipitation of phosphorus as vivianite and carbonatehydroxylapatite in the TAMR plant.
Collapse
Affiliation(s)
| | - Alessandro Abbà
- Department of Civil and Architectural Engineering, University of Pavia, via Ferrata 1, 27100 Pavia, Italy.
| | - Giorgio Bertanza
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, via Branze 43, 25123 Brescia, Italy
| | - Massimo Setti
- Department of Earth and Environment Sciences, University of Pavia, via Ferrata 1, 27100 Pavia, Italy
| | - Giacomo Barbieri
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, via Branze 43, 25123 Brescia, Italy
| | - Andrea Frattarola
- Department of Civil and Architectural Engineering, University of Pavia, via Ferrata 1, 27100 Pavia, Italy
| |
Collapse
|
29
|
Yuan J, Dong W, Sun F, Zhao K. Low temperature effects on nitrification and nitrifier community structure in V-ASP for decentralized wastewater treatment and its improvement by bio-augmentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6584-6595. [PMID: 29255983 DOI: 10.1007/s11356-017-0927-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
The vegetation-activated sludge process (V-ASP) has been proved to be an environment-friendly decentralized wastewater treatment system with extra esthetic function and less footprint. However, the effects of low temperature on the treatment performance of V-ASP and related improvement methods are rarely investigated, up to now. In this work, the effect of low temperature on nitrification in V-ASP was comprehensively investigated from overall nitrification performance, substrate utilization kinetics, functional enzymatic activities, and microbial community structure shift by comparison with conventional ASP. Bio-augmentation methods in terms of single-time nitrifier-enriched biomass dosage were employed to improve nitrification efficiency in bench- and full-scale systems. The experiment results demonstrated that the NH4+-N removal efficiency in V-ASP system decreased when the operational temperature decreased from 30 to 15 °C, and the decreasing extent was rather smaller compared to ASP, as well as ammonium and nitrite oxidation rates and enzymatic activities, which indicated the V-ASP system possesses high resistance to low temperature. With direct dosage of 1.6 mg nitrifier/gSS sludge, the nitrification efficiency in V-ASP was enhanced dramatically from below 50% to above 90%, implying that bio-augmentation was effective for V-ASP whose enzymatic activities and microbial communities were both also improved. The feasibility and effectiveness of bio-augmentation was further confirmed in a full-scale V-ASP system after a long-term experiment which is instructive for the practical application.
Collapse
Affiliation(s)
- Jiajia Yuan
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenyi Dong
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| | - Feiyun Sun
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Ke Zhao
- Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
30
|
Liu F, Hu X, Zhao X, Guo H, Zhao Y, Jiang B. Rapid nitrification process upgrade coupled with succession of the microbial community in a full-scale municipal wastewater treatment plant (WWTP). BIORESOURCE TECHNOLOGY 2018; 249:1062-1065. [PMID: 29100680 DOI: 10.1016/j.biortech.2017.10.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
Bioaugmentation was used to upgrade the nitrification process in a full-scale municipal WWTP with an A2/O system. A mixture of nitrifying bacteria was inoculated into the bioreactor for a final concentration of 1% (v/v). The upgrade process took 25 days, and the NH4+-N removals reached 94.6% (increased at least by 75%). The effluent concentrations of COD and NH4+-N stabilized at <30 mg/L and <4 mg/L even when the corresponding influent concentrations were over 300 mg/L and 60 mg/L, which met the first-class requirement of the National Municipal Wastewater Discharge Standards of China (COD ≤ 50 mg/L, NH4+-N ≤ 5 mg/L). The succession of the microbial community showed the enhanced NH4+-N removal efficiency mainly resulted from the persistence of introduced ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), which increased from 0% to 0.4% and from 0.01% to 2.1%, respectively. This bioaugmentation was shown as an effective technology for upgrading or retrofitting conventional systems to tertiary-level.
Collapse
Affiliation(s)
- Fang Liu
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xiaomin Hu
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Xin Zhao
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Huixuan Guo
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yan Zhao
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Binhui Jiang
- Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
31
|
Sheng X, Liu R, Chen L, Yin Z, Zhu J. Enrichment and application of nitrifying activated sludge in membrane bioreactors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:2888-2894. [PMID: 29210676 DOI: 10.2166/wst.2017.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, nitrifying bacteria were enriched in a membrane bioreactor (MBR, R1) and their bioaugmentation effectiveness was evaluated in another two MBRs (R2 and R3). Nitrifying activated sludge (NAS) with high nitrification activity of up to 3,000 mg-N/(L·d)-1 was successfully enriched in R1. The results showed that chemical oxygen demand concentration of 100-200 mg/L had no negative effect on NAS enrichment but reduced the ratio of bacterial nitrifiers. Moreover, the cell concentration of nitrifying bacteria in NAS, which was 3.1 × 1011 cells/L, was similar to that of the commercial bacterium agent. For the bioaugmentation test, the reactor inoculated with 14% NAS achieved a 23% higher NH4+-N removal efficiency than that of the uninoculated reactor. Along with the improvement of nitrification performance, the bacterial nitrifiers abundance and microbial richness remarkably increased after bioaugmentation. These results suggested that the MBR system could efficiently enrich nitrifying bacteria using organic carbon containing culture medium, and potentially act as a side-stream reactor to enhance the nitrification function of the wastewater treatment plant.
Collapse
Affiliation(s)
- Xiaolin Sheng
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China E-mail:
| | - Rui Liu
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China E-mail:
| | - Lujun Chen
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environment, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China E-mail: ; School of Environment, Tsinghua University, Beijing, China
| | - Zihua Yin
- College of Life and Environment Science, Shanghai Normal University, Shanghai, China
| | - Jianfeng Zhu
- Zhejiang Zheneng Jiaxing Power Generation Co., Ltd, Jiaxing, China
| |
Collapse
|
32
|
Zhao X, Yang J, Zhang X, Wang L, Ma F. Evaluation of bioaugmentation using multiple life cycle assessment approaches: A case study of constructed wetland. BIORESOURCE TECHNOLOGY 2017; 244:407-415. [PMID: 28783568 DOI: 10.1016/j.biortech.2017.07.170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Bioaugmentation is a promising technology to enhance the removal of specific pollutants; however, environmental impacts of implementing bioaugmentation have not been considered in most studies. Appropriate methodology is required for the evaluation from both in-depth and comprehensive perspectives, which leads to this study initiating the application of life cycle assessment (LCA) of bioaugmentation. Two LCA methods (CML and e-Balance) were applied to a bioaugmentation case with the aim of illustrating how to evaluate the environmental impacts of bioaugmentation from different perspectives based on the selection of different LCA methods. The results of the case study demonstrated that the LCA methods with different methodology emphasis produced different outcomes, which could lead to differentiated optimization strategies depending on the associated perspectives. Furthermore, three important aspects are discussed, including coverage of impact categories, the selection of characterization modeling for specific pollutants, and the requirement of including economic indicators for future investigation.
Collapse
Affiliation(s)
- Xinyue Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Section of Sanitary Engineering, Department of Water Management, Delft University of Technology, Delft 2628CN, The Netherlands.
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuedong Zhang
- Section of Sanitary Engineering, Department of Water Management, Delft University of Technology, Delft 2628CN, The Netherlands
| | - Li Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
33
|
Roohian H, Mehranbod N. Investigation of bio-augmentation of overloaded activated sludge plant operation by computer simulation. Comput Chem Eng 2017. [DOI: 10.1016/j.compchemeng.2017.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Wang Y, Jin X, He L, Zhang W. Inhibitory effect of thiourea on biological nitrification process and its eliminating method. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:2900-2907. [PMID: 28659530 DOI: 10.2166/wst.2017.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thiourea is a typical nitrification inhibitor that shows a strong inhibitory effect against the biological nitrification process. The 50% inhibitory concentration (IC50) of thiourea on nitrification was determined to be 0.088 mg g VSS-1, and nitrifiers recovered from the thiourea inhibition after it was completely degraded. The thiourea-degrading ability of the sludge system was improved to 3.06 mg gVSS-1 h-1 through cultivation of thiourea-degrading bacteria by stepwise increasing the influent thiourea concentration. The dominant thiourea-degrading bacteria strain that used thiourea as the sole carbon and nitrogen source in the sludge system was identified as Pseudomonas sp. NCIMB. The results of this study will facilitate further research of the biodegradation characteristics of thiourea and similar pollutants.
Collapse
Affiliation(s)
- Yuan Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control of Chemical Processes, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Xibiao Jin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control of Chemical Processes, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Lijun He
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control of Chemical Processes, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control of Chemical Processes, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| |
Collapse
|
35
|
Chen Y, Lan S, Wang L, Dong S, Zhou H, Tan Z, Li X. A review: Driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems. CHEMOSPHERE 2017; 174:173-182. [PMID: 28161518 DOI: 10.1016/j.chemosphere.2017.01.129] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
The performance and stabilization of biological wastewater treatment systems 1are closely related to the microbial community structure and dynamics. In this paper, the effects and mechanisms of influent composition, process configuration, operating parameters (dissolved oxygen [DO], pH, hydraulic retention time [HRT] and sludge retention time [SRT]) and environmental condition (temperature) to the change of microbial community structure and process performance (nitrification, denitrification, biological phosphorus removal, organics mineralization and utilization, etc.) are critically reviewed. Furthermore, some strategies for microbial community structure regulation, mainly bioaugmentation, process adjustment and operating parameters optimization, applied in the current wastewater treatment systems are also discussed. Although the recent studies have strengthened our understanding on the relationship between microbial community structure and wastewater treatment process performance, how to fully tap the microbial information, optimize the microbial community structure and maintain the process performance in wastewater treatment systems are still full of challenges.
Collapse
Affiliation(s)
- Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Shuhuan Lan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Longhui Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Shiyang Dong
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Houzhen Zhou
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China.
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| |
Collapse
|
36
|
Gonzalez-Martinez A, Rodriguez-Sanchez A, van Loosdrecht MCM, Gonzalez-Lopez J, Vahala R. Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25501-25511. [PMID: 27783252 DOI: 10.1007/s11356-016-7914-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/14/2016] [Indexed: 05/20/2023]
Abstract
The nitrogen cycle has been expanded with the recent discovery of Nitrospira strains that can conduct complete ammonium oxidation (commamox). Their importance in the nitrogen cycle within engineered ecosystems has not yet been analyzed. In this research, the community structure of the Bacteria domain of six full-scale activated sludge systems and three autotrophic nitrogen removal systems in the Netherlands and China has been investigated through tag-454-pyrosequencing. The phylogenetic analyses conducted in the present study showed that just a few of the Nitrospira sequences found in the bioreactors were comammox. Multivariate redundancy analysis of nitrifying genera showed an outcompetition of Nitrosomonas and non-comammox Nitrospira. Operational data from the bioreactors suggested that comammox could be favored at low temperature, low nitrogen substrate, and high dissolved oxygen. The non-ubiquity and low relative abundance of comammox in full-scale bioreactors suggested that this phylotype is not very relevant in the nitrogen cycle in wastewater treatment plants.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Martinez
- Department of Built Environment, School of engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland.
| | | | - M C M van Loosdrecht
- Department of Biotechnology, Technical University of Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071, Granada, Spain
| | - Riku Vahala
- Department of Built Environment, School of engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| |
Collapse
|
37
|
Quantitative evaluation of A2O and reversed A2O processes for biological municipal wastewater treatment using a projection pursuit method. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.04.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Zou Y, Hu Z, Zhang J, Xie H, Guimbaud C, Fang Y. Effects of pH on nitrogen transformations in media-based aquaponics. BIORESOURCE TECHNOLOGY 2016; 210:81-87. [PMID: 26783143 DOI: 10.1016/j.biortech.2015.12.079] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
To investigate the effects of pH on performance and nitrogen transformations in aquaponics, media-based aquaponics operated at pH 6.0, 7.5 and 9.0 were systematically examined and compared in this study. Results showed that nitrogen utilization efficiency (NUE) reached its maximum of 50.9% at pH 6.0, followed by 47.3% at pH 7.5 and 44.7% at pH 9.0. Concentrations of nitrogen compounds (i.e., TAN, NO2(-)-N and NO3(-)-N) in three pH systems were all under tolerable levels. pH had significant effect on N2O emission and N2O conversion ratio decreased from 2.0% to 0.6% when pH increased from 6.0 to 9.0, mainly because acid environment would inhibit denitrifiers and lead to higher N2O emission. 75.2-78.5% of N2O emission from aquaponics was attributed to denitrification. In general, aquaponics was suggested to maintain pH at 6.0 for high NUE, and further investigations on N2O mitigation strategy are needed.
Collapse
Affiliation(s)
- Yina Zou
- School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Zhen Hu
- School of Environmental Science and Engineering, Shandong University, Jinan, China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Jinan, China
| | - Christophe Guimbaud
- Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace, Université d'Orléans, Orléans, France
| | - Yingke Fang
- School of Environmental Science and Engineering, Shandong University, Jinan, China
| |
Collapse
|
39
|
Metabolic Degradation of 1,4-dichloronaphthalene by Pseudomonas sp. HY. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:10300-13. [PMID: 26308037 PMCID: PMC4586612 DOI: 10.3390/ijerph120910300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/04/2015] [Accepted: 08/20/2015] [Indexed: 11/17/2022]
Abstract
There is increasing concern regarding the adverse health effects of polychlorinated naphthalenes (PCNs). The metabolic degradation of 1,4-dichloronaphthalene (1,4-DCN) as a model PCN, was studied using a strain of Pseudomonas sp. HY. The metabolites were analyzed by gas chromatography-mass spectrometry (GC-MS). A series of metabolites including dihydroxy-dichloro-naphthalene, epoxy-dichlorinated naphthalene, dichlorinated naphthol, and dichlorinated salicylic acid were identified. The time-concentration plots of the degradation curves of 1,4-DCN was also obtained from the experiments, which set the initial concentration of 1,4-DCN to 10 mg/L and 20 mg/L, respectively. The results showed that 98% removal could be achieved within 48 h at an initial 1,4-DCN concentration of 10 mg/L. Nevertheless, it took 144 h to reach the same degradation efficiency at an initial concentration of 20 mg/L. The degradation of 1,4-DCN may not remove the chloride ions during the processes and the metabolites may not benefit the bacterial growth. The research suggests a metabolic pathway of 1,4-DCN, which is critical for the treatment of this compound through biological processes.
Collapse
|