1
|
François M, Lin KS, Rachmadona N. Microalgae-based membrane bioreactor for wastewater treatment, biogas production, and sustainable energy: A review. ENVIRONMENTAL RESEARCH 2025; 268:120802. [PMID: 39798663 DOI: 10.1016/j.envres.2025.120802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Managing wastewater and using renewable energy sources are challenges in achieving sustainable development goals. This study provides an overview of the factors influencing the performance of algae-based membrane bioreactors (AMBRs) for contaminant removal from wastewater and biogas production. This review highlights that the performance of AMBRs in removing total phosphorus (TP) and nitrogen (N) from wastewater can reach up to 93% and 97%, respectively, depending on parameters such as pH, hydraulic retention time (HRT), and algae concentration. Moreover, the removal of H2S from biogas substantially depends on the type of bioreactor used. Furthermore, algal biomass has proven to be a viable option for biogas production and CO2 sequestration, contributing to carbon neutrality. This review also underscores that microalgae are a valuable feedstock, either alone or in combination with other raw materials, for biogas production. In conclusion, this review outlines that maximizing the performance of bioreactors and the efficiency of microalgae used for biogas production and wastewater treatment requires careful control of parameters, such as HRT, solid retention time, pH, and temperature. Additionally, pH and the carbon-to-nitrogen ratio (C:N) are factors influencing CH4 yield during microalgae anaerobic digestion (AD). Further research is needed to evaluate the operational costs of AMBRs used for wastewater treatment and to compare the biogas yield from different types of bioreactors under similar conditions, including the use of the same feedstock.
Collapse
Affiliation(s)
- Mathurin François
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan.
| | - Nova Rachmadona
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery Between BRIN and Universitas Padjadjaran, Jatinangor, West Java, 45363, Indonesia
| |
Collapse
|
2
|
Kishore S, Malik S, Shah MP, Bora J, Chaudhary V, Kumar L, Sayyed RZ, Ranjan A. A comprehensive review on removal of pollutants from wastewater through microbial nanobiotechnology -based solutions. Biotechnol Genet Eng Rev 2024; 40:3087-3112. [PMID: 35923085 DOI: 10.1080/02648725.2022.2106014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
Increasing wastewater pollution owing to the briskly rising human population, rapid industrialization, and fast urbanization has necessitated highly efficient wastewater treatment technologies. Although several methods of wastewater treatments are in practice, expensiveness, use of noxious chemicals, generation of unsafe by-products, and longer time consumption restrain their use to a great extent. Over the last few decades, nanotechnological wastewater treatment approaches have received widespread recognition globally. Microbially fabricated nanoparticles reduce the utilization of reducing, capping, and stabilizing agents, and exhibit higher adsorptive and catalytic efficiency than chemically synthesized nanomaterials. The present review comprehensively summarizes the applications of microbial nanotechnology in the removal of a wide range of noxious wastewater pollutants. Moreover, prospects and challenges associated with the integration of nanotechnology with other biological treatment technologies including algal-membrane bioreactor, aerobic digestion, microbial fuel cells, and microbial nanofiber webs have also been briefly discussed.
Collapse
Affiliation(s)
- Shristi Kishore
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | | | - Jutishna Bora
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| | - Riyaz Z Sayyed
- Department of Microbiology, PSGVP Mandal's Arts, Science and Commerce College, Shahada, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
3
|
Vatanpour V, Salimi Khaligh S, Sertgumec S, Ceylan-Perver G, Yuksekdag A, Yavuzturk Gul B, Altinbas M, Koyuncu I. A review on algal biomass dewatering and recovery of microalgal-based valuable products with different membrane technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123182. [PMID: 39504662 DOI: 10.1016/j.jenvman.2024.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/07/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Efficient microalgae harvesting and dewatering are critical processes for a range of applications, including the production of raw materials, nutritional supplements, pharmaceuticals, sustainable biofuels, and wastewater treatment. The optimization of these processes poses significant challenges due to the need for high efficiency and sustainability while managing costs and energy consumption. This review comprehensively addresses these challenges by focusing on the development and application of various membrane filtration technologies specifically designed for the effective harvesting and dewatering of algal biomass. Membrane filtration has emerged as a predominant method due to its ability to handle large volumes of microalgae with relatively low energy requirements. This review systematically examines the different membrane-based technologies and their effectiveness in recovering valuable components from algal biomass, such as lipids, proteins, and carbohydrates. The discussion begins with an overview of the physical characteristics of microalgae and their cultivation conditions, which are critical for understanding how these factors influence the performance of membrane filtration processes. Key aspects such as the features of algal cells, the presence of algal organic matter, and transparent exopolymer particles are explored in detail. The review also delves into various strategies for improving membrane antifouling properties, which are essential for maintaining the efficiency and longevity of the filtration systems. In addition, the advantages and disadvantages of different membrane techniques are reviewed, highlighting their respective performance in separating microalgae and dewatering. Finally, the review offers insights into future research directions and technological advancements that could further enhance the efficiency and sustainability of microalgae processing. This comprehensive evaluation aims to provide a thorough understanding of current membrane technologies, their applications, and the ongoing developments necessary to overcome existing limitations and improve overall process performance.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Soodeh Salimi Khaligh
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Simge Sertgumec
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Gamze Ceylan-Perver
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ayse Yuksekdag
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Bahar Yavuzturk Gul
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mahmut Altinbas
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
4
|
Tahmasebi Sefiddashti F, Homayoonfal M. Nanostructure-manipulated filtration performance in nanocomposite membranes: A comprehensive investigation for water and wastewater treatment. Heliyon 2024; 10:e36874. [PMID: 39319140 PMCID: PMC11419920 DOI: 10.1016/j.heliyon.2024.e36874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
The main objective of this article is to examine one of the most important challenges facing researchers in the field of nanocomposite membranes: what is the most suitable arrangement (unmodified, functionalized, coated, or composite) and the most suitable loading site for the nanostructure? In the review articles published on nanocomposite membranes in recent years, the focus has been either on a specific application area (such as nanofiltration or desalination), or on a specific type of polymeric materials (such as polyamide), or on a specific feature of the membrane (such as antibacterial, antimicrobial, or antifouling). However, none of them have targeted the aforementioned objectives on the efficacy of improving filtration performance (IFP). Through IFP calculation, the results will be repeatable and generalizable in this field. The novelty of the current research lies in examining and assessing the impact of the loading site and the type of nanostructure modification on enhancing IFP. Based on the performed review results, for the researchers who tend to use nanocomposite membranes for treatment of organic, textile, brine and pharmaceutical wastewaters as well as membrane bioreactors, thePES NH 2 - PDA - Fe 3 O 4 M ,PAN Fe 3 O 4 / ZrO 2 M ,PVDF CMC - ZnO M ,AA AA - CuS PSf M andPVDF OCMCS / Fe 3 O 4 M with IFP equal to 132.27, 15, 423.6, 16.025 and 5, were proposed, respectively.
Collapse
Affiliation(s)
- Fateme Tahmasebi Sefiddashti
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| |
Collapse
|
5
|
Nasser T, Emamshoushtari MM, Helchi S, Saeidi A, Pajoum Shariati F. Mitigating membrane fouling in an internal loop airlift membrane photobioreactor containing Spirulina platensis: effects of riser cross-sectional area and hydrophilic baffles. Prep Biochem Biotechnol 2024; 54:779-787. [PMID: 38010621 DOI: 10.1080/10826068.2023.2283765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Membrane photobioreactors (MPBRs) have gained significant attention due to their ability to support microalgae activities such as cultivation, harvesting, and production of beneficial products. Despite various efforts to mitigate membrane fouling, a fundamental issue in membrane processes, in these systems, a cost-effective and less energy-consuming method is still needed. This study examines the impact of the cross-sectional area of the riser and the baffle material on membrane fouling in an internal loop airlift MPBR. The use of hydrophilic polyester-polypropylene (PES-PP) baffles proves to be more effective than plexiglass baffles. Specifically, in configurations with d = 0.7 cm and d = 1.4 cm, RC/RT decreased by approximately 20% and 13%, respectively, compared to plexiglass baffles. As for the values of RP/RT at a distance of d = 0.7, nearly a 5% increase was observed, and at a distance of d = 1.4, an increase of approximately 11% was observed. This is due to the development of the cake layer on the matrix structure of the PES-PP baffles instead of the membrane itself. The most optimal outcomes were reached while working with PES-PP at a distance of 0.7 cm, as it prolonged the membrane fouling time to 46 h.
Collapse
Affiliation(s)
- Tarlan Nasser
- Department of Chemical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Salar Helchi
- Department of Chemical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ardeshir Saeidi
- Department of Polymer Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Pajoum Shariati
- Department of Chemical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| |
Collapse
|
6
|
Li L, Chai W, Sun C, Huang L, Sheng T, Song Z, Ma F. Role of microalgae-bacterial consortium in wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121226. [PMID: 38795468 DOI: 10.1016/j.jenvman.2024.121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
In the global effort to reduce CO2 emissions, the concurrent enhancement of pollutant degradation and reductions in fossil fuel consumption are pivotal aspects of microalgae-mediated wastewater treatment. Clarifying the degradation mechanisms of bacteria and microalgae during pollutant treatment, as well as regulatory biolipid production, could enhance process sustainability. The synergistic and inhibitory relationships between microalgae and bacteria are introduced in this paper. The different stimulators that can regulate microalgal biolipid accumulation are also reviewed. Wastewater treatment technologies that utilize microalgae and bacteria in laboratories and open ponds are described to outline their application in treating heavy metal-containing wastewater, animal husbandry wastewater, pharmaceutical wastewater, and textile dye wastewater. Finally, the major requirements to scale up the cascade utilization of biomass and energy recovery are summarized to improve the development of biological wastewater treatment.
Collapse
Affiliation(s)
- Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China.
| | - Wei Chai
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Caiyu Sun
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Linlin Huang
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Tao Sheng
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Zhiwei Song
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
7
|
Shahi Khalaf Ansar B, Kavusi E, Dehghanian Z, Pandey J, Asgari Lajayer B, Price GW, Astatkie T. Removal of organic and inorganic contaminants from the air, soil, and water by algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116538-116566. [PMID: 35680750 DOI: 10.1007/s11356-022-21283-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Rapid increases in human populations and development has led to a significant exploitation of natural resources around the world. On the other hand, humans have come to terms with the consequences of their past mistakes and started to address current and future resource utilization challenges. Today's primary challenge is figuring out and implementing eco-friendly, inexpensive, and innovative solutions for conservation issues such as environmental pollution, carbon neutrality, and manufacturing effluent/wastewater treatment, along with xenobiotic contamination of the natural ecosystem. One of the most promising approaches to reduce the environmental contamination load is the utilization of algae for bioremediation. Owing to their significant biosorption capacity to deactivate hazardous chemicals, macro-/microalgae are among the primary microorganisms that can be utilized for phytoremediation as a safe method for curtailing environmental pollution. In recent years, the use of algae to overcome environmental problems has advanced technologically, such as through synthetic biology and high-throughput phenomics, which is increasing the likelihood of attaining sustainability. As the research progresses, there is a promise for a greener future and the preservation of healthy ecosystems by using algae. They might act as a valuable tool in creating new products.
Collapse
Affiliation(s)
- Behnaz Shahi Khalaf Ansar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Elaheh Kavusi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Janhvi Pandey
- Division of Agronomy and Soil Science, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Gordon W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
8
|
Zahmatkesh S, Karimian M, Pourhanasa R, Ghodrati I, Hajiaghaei-Keshteli M, Ismail MA. Wastewater treatment with algal based membrane bioreactor for the future: Removing emerging containments. CHEMOSPHERE 2023:139134. [PMID: 37295683 DOI: 10.1016/j.chemosphere.2023.139134] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
The difficulty of developing pollutants in aquatic ecosystems and their potential effects on animals and plants have been raised. Sewage effluent can seriously harm a river's plant and animal life by reducing the water's oxygen content. Due to their increasing use and poor elimination in traditional municipal wastewater treatment plants (WWTPs), pharmaceuticals are one of the developing pollutants that have the potential to penetrate aquatic ecosystems. Due to undigested pharmaceuticals and their metabolites, which constitute a significant class of potentially hazardous aquatic pollutants. Using an algae-based membrane bioreactor (AMBR), the primary objective of this research was to eliminate emerging contaminants (ECs) identified in municipal wastewater. The first part of this research covers the basics of growing algae, an explanation of how they work, and how they remove ECs. Second, it develops the membrane in the wastewater, explains its workings, and uses the membrane to remove ECs. Finally, an algae-based membrane bioreactor for removing ECs is examined. As a result, daily algal production using AMBR technology might range from 50 to 100 mg/Liter. These kinds of machines are capable of nitrogen and phosphorus removal efficiencies of 30-97% and 46-93%, respectively.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| | - Melika Karimian
- Faculty of Civil Engineering, Architecture and Urban Planning, University of Eyvanekey, Eyvanki, Iran
| | - Ramin Pourhanasa
- Department of Civil Engineering, College of Engineering, Shahrekord University, Shahrekord, Iran
| | - Iman Ghodrati
- Department of Computer Engineering, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | | | - Mohamed A Ismail
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411 Kingdom of Saudi Arabia; Institute of Engineering Research and Materials Technology, National Center for Research, Khartoum 2424, Sudan
| |
Collapse
|
9
|
Cosme JRA, Castro‐Muñoz R, Vatanpour V. Recent Advances in Nanocomposite Membranes for Organic Compound Remediation from Potable Waters. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jose R. Aguilar Cosme
- University of Maryland Baltimore Department of Surgery 670 W Baltimore St 21201 Baltimore USA
| | - Roberto Castro‐Muñoz
- Gdansk University of Technology Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering 11/12 Narutowicza St. 80-233 Gdansk Poland
- Tecnologico de Monterrey, Campus Toluca Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista 50110 Toluca de Lerdo Mexico
| | - Vahid Vatanpour
- Kharazmi University Department of Applied Chemistry, Faculty of Chemistry 15719-14911 Tehran Iran
- Istanbul Technical University, Maslak National Research Center on Membrane Technologies 34469 Istanbul Turkey
| |
Collapse
|
10
|
Sharma J, Joshi M, Bhatnagar A, Chaurasia AK, Nigam S. Pharmaceutical residues: One of the significant problems in achieving 'clean water for all' and its solution. ENVIRONMENTAL RESEARCH 2022; 215:114219. [PMID: 36057333 DOI: 10.1016/j.envres.2022.114219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
With the rapid emergence of various metabolic and multiple-drug-resistant infectious diseases, new pharmaceuticals are continuously being introduced in the market. The excess production and use of pharmaceuticals and their untreated/unmetabolized release in the environment cause the contamination of aquatic ecosystem, and thus, compromise the environment and human-health. The present review provides insights into the classification, sources, occurrence, harmful impacts, and existing technologies to curb these problems. A comprehensive detail of various biological and nanotechnological strategies for the removal of pharmaceutical residues from water is critically discussed focusing on their efficiencies, and current limitations to design improved-technologies for their lab-to-field applications. Furthermore, the review highlights and suggests the scope of integrated bionanotechnological methods for enhanced removal of pharmaceutical residues from water to fulfill the United Nations Sustainable Development Goal (UN-SDG) for providing clean potable water for all.
Collapse
Affiliation(s)
- Jyoti Sharma
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Monika Joshi
- Amity Institute of Nanotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Akhilesh K Chaurasia
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| | - Subhasha Nigam
- Amity Institute of Biotechnology, Amity University, Noida, 201313, Uttar Pradesh, India.
| |
Collapse
|
11
|
Díaz V, Antiñolo L, Poyatos Capilla JM, Almécija MC, Muñío MDM, Martín-Pascual J. Nutrient Removal and Membrane Performance of an Algae Membrane Photobioreactor in Urban Wastewater Regeneration. MEMBRANES 2022; 12:membranes12100982. [PMID: 36295741 PMCID: PMC9610028 DOI: 10.3390/membranes12100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 05/12/2023]
Abstract
The increase in industry and population, together with the need for wastewater reuse, makes it necessary to implement new technologies in the circular economy framework. The aim of this research was to evaluate the quality of the effluent of an algae membrane photobioreactor for the treatment of the effluent of an urban wastewater treatment plant, to characterise the ultrafiltration membranes, to study the effectiveness of a proposed cleaning protocol, and to analyse the performance of the photobioreactor. The photobioreactor operated under two days of hydraulic retention times feed with the effluent from the Los Vados wastewater treatment plant (WWTP) (Granada, Spain). The microalgae community in the photobioreactor grew according to the pseudo-second-order model. The effluent obtained could be reused for different uses of diverse quality with the removal of total nitrogen and phosphorus of 56.3% and 64.27%, respectively. The fouling of the polyvinylidene difluoride ultrafiltration membrane after 80 days of operation was slight, increasing the total membrane resistance by approximately 22%. Moreover, the higher temperature of the medium was, the lower intrinsic resistance of the membrane. A total of 100% recovery of the membrane was obtained in the two-phase cleaning protocol, with 42% and 58%, respectively.
Collapse
Affiliation(s)
- Verónica Díaz
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Laura Antiñolo
- Department of Civil Engineering, University of Granada, 18071 Granada, Spain
| | | | | | - María del Mar Muñío
- Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
| | - Jaime Martín-Pascual
- Department of Civil Engineering, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-24-61-55
| |
Collapse
|
12
|
Energy-efficient Membranes for Microalgae Dewatering: Fouling Challenges and Mitigation Strategies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Li Y, Zhang C, He X, Hu Z. Solids retention time dependent, tunable diatom hierarchical micro/nanostructures and their effect on nutrient removal. WATER RESEARCH 2022; 216:118346. [PMID: 35358880 DOI: 10.1016/j.watres.2022.118346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The hierarchical three-dimensional (3D) micro/nanostructures of diatoms make them a promising biomaterial for fabricating nanomaterials, producing bioactive pharmaceuticals or nutraceuticals, and removing micropollutants. For diatom production in a continuous flow system, little is known how bioreactor operating parameters, especially solids retention time (SRT), affect the 3D structures of diatoms. This study demonstrated that tunable diatom micro/nanostructures could be produced by varying the SRT of membrane bioreactors (MBRs). A diatom strain (Stephanodiscus hantzschii) was cultivated in two identical MBRs with a fixed hydraulic retention time (HRT) of 24 h and staged SRTs from 5, to 10, and to 20 d. As SRTs increased from 5 to 20 d, important characteristics of diatom micro/nanostructures showed linear decreases: the diameters of foramina on the areola layer decreased from 170 ± 10 to 130 ± 12 nm, the numbers of nanopores per cribrum layer decreased from 20 ± 3 to 12 ± 2, and the specific surface areas of the diatoms decreased from 36.01 ± 1.27 to 12.67 ± 2.45 m2·g-1. However, the average diatom heights increased from 2.9 ± 0.3 to 3.9 ± 0.4 µm, while diatom cell diameter (5 µm) and nanopore size (20 nm) remained unchanged. The silicon content of diatoms also linearly increased with SRT. The decrease in diatom porosity and increase in silicon content were probably due to the reduced diatom growth rates (likely resulting in less pores) at increasing SRTs, which also facilitated silica deposition as the overall diatom population stayed longer in the MBRs. As the SRTs increased from 5 to 10, and to 20 d, the nitrate (NO3-) removal efficiency decreased from 75% to 70%, and to 60%, respectively, whereas phosphorus (P) removal efficiency increased from 74% to 80%, and to 90%, respectively. The opposite trends in efficiencies were because NO3--N was removed by cellular uptake and biomass waste whereas P was mainly removed through diatom-assisted chemical precipitation.
Collapse
Affiliation(s)
- Yan Li
- NingboTech University, Ningbo 315000, China; Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Chiqian Zhang
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Xiaoqing He
- Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri, 65211, USA; Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, 65211, USA
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri, 65211, USA.
| |
Collapse
|
14
|
A review of the current in-situ fouling control strategies in MBR: Biological versus physicochemical. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Novoa AF, Vrouwenvelder JS, Fortunato L. Membrane Fouling in Algal Separation Processes: A Review of Influencing Factors and Mechanisms. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.687422] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of algal biotechnologies in the production of biofuels, food, and valuable products has gained momentum in recent years, owing to its distinctive rapid growth and compatibility to be coupled to wastewater treatment in membrane photobioreactors. However, membrane fouling is considered a main drawback that offsets the benefits of algal applications by heavily impacting the operation cost. Several fouling control strategies have been proposed, addressing aspects related to characteristics in the feed water and membranes, operational conditions, and biomass properties. However, the lack of understanding of the mechanisms behind algal biofouling and control challenges the development of cost-effective strategies needed for the long-term operation of membrane photobioreactors. This paper reviews the progress on algal membrane fouling and control strategies. Herein, we summarize information in the composition and characteristics of algal foulants, namely algal organic matter, cells, and transparent exopolymer particles; and review their dynamic responses to modifications in the feedwater, membrane surface, hydrodynamics, and cleaning methods. This review comparatively analyzes (i) efficiency in fouling control or mitigation, (ii) advantages and drawbacks, (iii) technological performance, and (iv) challenges and knowledge gaps. Ultimately, the article provides a primary reference of algal biofouling in membrane-based applications.
Collapse
|
16
|
Spoială A, Ilie CI, Ficai D, Ficai A, Andronescu E. Chitosan-Based Nanocomposite Polymeric Membranes for Water Purification-A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2091. [PMID: 33919022 PMCID: PMC8122305 DOI: 10.3390/ma14092091] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/11/2023]
Abstract
During the past few years, researchers have focused their attention on developing innovative nanocomposite polymeric membranes with applications in water purification. Natural and synthetic polymers were considered, and it was proven that chitosan-based materials presented important features. This review presents an overview regarding diverse materials used in developing innovative chitosan-based nanocomposite polymeric membranes for water purification. The first part of the review presents a detailed introduction about chitosan, highlighting the fact that is a biocompatible, biodegradable, low-cost, nontoxic biopolymer, having unique structure and interesting properties, and also antibacterial and antioxidant activities, reasons for using it in water treatment applications. To use chitosan-based materials for developing nanocomposite polymeric membranes for wastewater purification applications must enhance their performance by using different materials. In the second part of the review, the performance's features will be presented as a consequence of adding different nanoparticles, also showing the effect that those nanoparticles could bring on other polymeric membranes. Among these features, pollutant's retention and enhancing thermo-mechanical properties will be mentioned. The focus of the third section of the review will illustrate chitosan-based nanocomposite as polymeric membranes for water purification. Over the last few years, researchers have demonstrated that adsorbent nanocomposite polymeric membranes are powerful, important, and potential instruments in separation or removal of pollutants, such as heavy metals, dyes, and other toxic compounds presented in water systems. Lastly, we conclude this review with a summary of the most important applications of chitosan-based nanocomposite polymeric membranes and their perspectives in water purification.
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
| | - Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania;
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; (A.S.); (C.-I.I.); (E.A.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| |
Collapse
|
17
|
Zhang S, Wang L, Fu X, Tsang YF, Maiti K. A continuous flow membrane bio-reactor releases the feedback inhibition of self-generated free organic carbon on cbb gene transcription of a typical chemoautotrophic bacterium to improve its CO 2 fixation efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143186. [PMID: 33131832 DOI: 10.1016/j.scitotenv.2020.143186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Since the free organic carbon (FOC) generated by chemoautotrophic bacterium self has a feedback inhibition effect on its growth and carbon fixation, a continuous flow membrane bio-reactor was designed to remove extracellular FOC (EFOC) and release its inhibition effect. The promotion effect of membrane reactor on growth and carbon fixation of typical chemoautotrophic bacterium and its mechanism were studied. The accumulated apparent carbon fixation yield in membrane reactor was 3.24 times that in the control reactor. The EFOC per unit bacteria and cbb gene transcription level in membrane reactor were about 0.41 times and 11.18 times that in control reactor in late stage, respectively. Membrane reactor separated out EFOC, especially the small molecules, which facilitated the release of intracellular FOC, thereby releasing the inhibition of FOC on cbb gene transcription, thus promoting growth and carbon fixation of the typical chemoautotrophic bacterium. This study lays a foundation for enhancing carbon fixation by chemoautotrophic bacteria and expands the application field of membrane reactor.
Collapse
Affiliation(s)
- Saiwei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China; Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA
| | - Lei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Xiaohua Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong SAR, China
| | - Kanchan Maiti
- Department of Oceanography and Coastal Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
18
|
Wu PH, Yeh HY, Chou PH, Hsiao WW, Yu CP. Algal extracellular organic matter mediated photocatalytic degradation of estrogens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111818. [PMID: 33360284 DOI: 10.1016/j.ecoenv.2020.111818] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Estrogens are among the most concerned emerging contaminants in the wastewater treatment effluent due to their sexual disruption in aquatic wildlife. The use of microalgae for secondary wastewater effluent polishing is a promising approach due to the economic benefit and value-added products. In this study, three microalgae species, including Selenastrum capricornutum, Scenedesmus quadricauda and Chlorella vulgaris were selected to conduct batch experiments to examine important mechanisms, especially the role of algal extracellular organic matter (AEOM) on two selected estrogens (17β-estradiol, E2 and 17α-ethynylestradiol, EE2) removal. Results showed that estrogens could not be significantly degraded under visible light irradiation and adsorption of estrogens by microalgae was negligible. All three living microalgae cultures have ability to remove E2 and EE2, and Selenastrum capricornutum showed the highest E2 and EE2 removal efficiency of 91% and 83%, respectively, corresponding to the reduction of predicted estrogenic activity of 86%. AEOM from three microalgae cultures could induce photodegradation of estrogens, and AEOM from Selenastrum capricornutum and Chlorella vulgaris achieved 100% of E2 and EE2 removal under visible light irradiation. Fluorescence excitation-emission matrix spectroscopy identified humic/fulvic-like substances in AEOM from three microalgae cultures, which might be responsible for inducing the indirect photolysis of E2 and EE2. Therefore, in the living microalgae cultures, the major estrogens removal mechanisms should include biotransformation as well as AEOM meditated photocatalytic degradation. Since removal rates through photodegradation could be faster than biotransformation, the AEOM mediated photocatalytic degradation can play a potential role to remove emerging contaminants when using microalgae technology for wastewater effluent treatment.
Collapse
Affiliation(s)
- Pei-Hsun Wu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hsin-Yi Yeh
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Hsin Chou
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Wei Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan; Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
19
|
Li Y, Zhang C, Hu Z. Selective removal of pharmaceuticals and personal care products from water by titanium incorporated hierarchical diatoms in the presence of natural organic matter. WATER RESEARCH 2021; 189:116628. [PMID: 33220609 DOI: 10.1016/j.watres.2020.116628] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Natural organic matter (NOM), such as humic acids, fulvic acids, and tannic acids, is ubiquitous in water bodies and hinders the photodegradation of pharmaceuticals and personal care products (PPCPs). We prepared titanium incorporated hierarchical diatoms as a novel photocatalyst to selectively remove PPCPs (triclosan, bisphenol A or BPA, and N, N-Diethyl-meta-toluamide or DEET) in the presence of NOM (humic acid). Diatom (Stephanodiscus hantzschii) grown in a titanium(IV) bis(ammonium lactato) dihydroxide solution integrated 7.2% ± 1.4% (mass fraction) of titanium in their cell wall and formed silica-titania frustules. The photodegradation of triclosan, BPA, and DEET by both silica-titania frustules and titania nanopowder (a control photocatalyst) follows pseudo-first-order kinetics. Under ultraviolent light irradiation, the titanium-content-normalized pseudo-first-order removal rate constants of triclosan, BPA, and DEET by silica-titania frustules were 3, 4, and 4-times those by titania nanopowder, respectively, at a humic acid concentration of 10 mg•L-1. Incorporation of titanium did not alter the morphology and hierarchical nano/microstructures of the diatom. The silica-titania frustules were rich in nanopores with a diameter of 20 ± 4 nm (mean ± standard deviation), allowing PPCPs with a small molecular weight (typically < 600 g•mol-1) to pass through while efficiently rejecting NOM with high molecular weights. The silica-titania frustules with hierarchical nano/microstructures served as a prefiltration unit by selectively allowing PPCPs to pass through the nanopores and are therefore promising for photodegradation and environmental remediation applications.
Collapse
Affiliation(s)
- Yan Li
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, United States
| | - Chiqian Zhang
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, United States
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
20
|
Mosayebi A, Esfahani H, Hoor M. Influence of zeta potential of
ZrO
2
and
Al
2
O
3
nanoparticles on removal of metal ions by hybrid electrospun polyamide 6 membrane: Kinetics of adsorption and fouling mechanisms. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ali Mosayebi
- Department of Materials Engineering Bu‐Ali Sina University Hamedan Iran
| | - Hamid Esfahani
- Department of Materials Engineering Bu‐Ali Sina University Hamedan Iran
| | - Mehrnoosh Hoor
- Non‐metallic Materials Research Group Niroo Research Institute (NRI) Tehran Iran
| |
Collapse
|
21
|
Feng F, Li Y, Latimer B, Zhang C, Nair SS, Hu Z. Prediction of maximum algal productivity in membrane bioreactors with a light-dependent growth model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141922. [PMID: 32896732 DOI: 10.1016/j.scitotenv.2020.141922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Algal productivity in steady-state cultivation systems depends on important factors such as biomass concentration, solids retention time (SRT), and light intensity. Current modeling of algal growth often ignores light distribution in algal cultivation systems and does not consider all these factors simultaneously. We developed a new algal growth model using a first principles approach to incorporate the effect of light intensity on algal growth while simultaneously considering biomass concentration and SRT. We first measured light attenuation (decay) with depth in an indoor algal membrane bioreactor (A-MBR) cultivating Chlorella sp. We then simulated the light decay using a multi-layer approach and correlated the decay with biomass concentration and SRT in model development. The model was calibrated by delineating specific light absorptivity and half-saturation constant to match the algal biomass concentration in the A-MBR operated at a target SRT. We finally applied the model to predict the maximum algal productivity in both indoor and outdoor A-MBRs. The predicted maximum algal productivities in indoor and outdoor A-MBRs were 6.7 g·m-2·d-1 (incident light intensity 5732 lx, SRT approximately 8 d) and 28 g·m-2·d-1 (sunlight intensity 28,660 lx, SRT approximately 4 d), respectively. The model can be extended to include other factors (e.g., water temperature and carbon dioxide bubbling) and such a modeling framework can be applied to full-scale, continuous flow outdoor systems to improve algal productivity.
Collapse
Affiliation(s)
- Feng Feng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, United States
| | - Yan Li
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, United States
| | - Benjamin Latimer
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, United States
| | - Chiqian Zhang
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, United States
| | - Satish S Nair
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, United States
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
22
|
Wang L, Wang J, Yang L, Ding Y, Xie Y, Wang F, Chen L, Li W, Yan H. A novel type of waterborne fluorescent nanofiber membranes with effectively suppressed
ACQ
phenomenon: Fabrication, properties, and applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lin Wang
- School of Material Science and EngineeringJiangsu University of Science and Technology Zhenjiang China
| | - Jun Wang
- School of Material Science and EngineeringJiangsu University of Science and Technology Zhenjiang China
- Taicang Economic Development AreaTaicang Sidike New Materials Science and Technology Co., Ltd Taicang Jiangsu Province China
| | - Lei Yang
- School of Material Science and EngineeringJiangsu University of Science and Technology Zhenjiang China
| | - Yexin Ding
- School of Material Science and EngineeringJiangsu University of Science and Technology Zhenjiang China
| | - Yixiao Xie
- School of Material Science and EngineeringJiangsu University of Science and Technology Zhenjiang China
| | - Fangming Wang
- School of Material Science and EngineeringJiangsu University of Science and Technology Zhenjiang China
| | - Lizhuang Chen
- School of Material Science and EngineeringJiangsu University of Science and Technology Zhenjiang China
| | - Weili Li
- School of Material Science and EngineeringJiangsu University of Science and Technology Zhenjiang China
| | - Hui Yan
- Department of ChemistryUniversity of Louisiana at Lafayette Lafayette Louisiana USA
| |
Collapse
|
23
|
Noormohamadi A, Homayoonfal M, Mehrnia MR, Davar F. Employing magnetism of Fe 3O 4 and hydrophilicity of ZrO 2 to mitigate biofouling in magnetic MBR by Fe 3O 4-coated ZrO 2/PAN nanocomposite membrane. ENVIRONMENTAL TECHNOLOGY 2020; 41:2683-2704. [PMID: 30741624 DOI: 10.1080/09593330.2019.1579870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
The aim of this research is benefiting from the synergistic effect of the simultaneous presence of Fe3O4 and ZrO2 in the form of Fe3O4-coated ZrO2 (Fe3O4@ZrO2) nanoparticles within the structure of PAN membrane to reduce membrane fouling. The role of Fe3O4 nanoparticles in increasing the pore size and magnetic saturation as well as the role of ZrO2 in decreasing surface roughness and hydrophobicity can mitigate membrane fouling in magnetic-assisted membrane bioreactors. For this purpose, Fe3O4, ZrO2, and Fe3O4@ZrO2 nanoparticles were embedded into PAN membrane structure and magnetic (M nM), hydrophilic (H nM), and magnetic-hydrophilic (HM nM) membranes were synthesized. H 1M (1ZrO2/PAN) membrane with a contact angle of 31 degrees, M 1N (1Fe3O4/PAN) with a pore size of 90 nm, and H 3M (3ZrO2/PAN) membrane with an RMS roughness of 13.5 nm were the most hydrophilic, porous, and smoothest membranes, respectively. High sensitivity to magnetic field along with high porosity, high hydrophilicity and low surface roughness simultaneously exist within the structure of MHMs membranes, such that MH 1M (1Fe3O4@ZrO2/PAN) indicated 116% greater flux, 121% greater flux recovery, and 85% less total filtration resistance in comparison with the blank membrane in magnetic membrane bioreactor, at a magnetic field intensity of 120 mT and MLSS = 10,000 mg/l. As an overall conclusion, the output of this research was compared with other research in term of normalized flux. Results reveal that at MLSS = 10,000 mg/l, HRT = 8 h and TMP = 0.3 bar, MH 1M membrane has normalized flux equal to 1.56 g/m2 h bar which is an acceptable value compared to normalized flux reported by other researchers.
Collapse
Affiliation(s)
- Amin Noormohamadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammad Reza Mehrnia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
24
|
Rood B, Zhang C, Inniss E, Hu Z. Forward osmosis with an algal draw solution to concentrate municipal wastewater and recover resources. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:689-697. [PMID: 31642156 DOI: 10.1002/wer.1262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to concentrate and recover resources from municipal wastewater with a novel forward osmosis (FO) system. The FO system used synthetic seawater as the draw solution (DS) to extract water from the feed solution (FS) (synthetic raw municipal wastewater). Because ammonium passed through the FO membrane from the FS to the DS, we cultivated an algal strain (Chlorella vulgaris) in the DS to remove and recover ammonium. For three consecutive FO cycles, the algal FO system removed 35.4% of the ammonium from the DS, increased the concentrations of COD and PO 4 3 - - P in the FS by 43.0%, and achieved a water flux of 11.59 ± 0.49 L m-2 hr-1 . Throughout the FO cycles, the algal biomass concentration of the DS stayed at 606 ± 29 mg COD/L due to simultaneous algal growth and DS dilution. This FO process may be feasible to implement for full-scale applications to concentrate wastewater and recover resources. PRACTITIONER POINTS: A novel forward osmosis (FO) system with an algal draw solution (DS) concentrated municipal wastewater and recovered resources (ammonium). Ammonium but not organic matter or phosphate diffused across the FO membrane from the feed solution (FS) to the DS. The algal FO system increased COD/phosphate concentration in the FS by 43.0% and removed 35.4% of ammonium from the DS. The water fluxes in the algal FO system and the control were 11.59 and 12.02 L m-2 hr-1 , respectively. The novel algal FO process has the potential to improve full-scale efficiency by concentrating municipal wastewater and recovering nutrients.
Collapse
Affiliation(s)
- Brent Rood
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri
| | - Chiqian Zhang
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri
| | - Enos Inniss
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
25
|
Hua L, Cao H, Ma Q, Shi X, Zhang X, Zhang W. Microalgae Filtration Using an Electrochemically Reactive Ceramic Membrane: Filtration Performances, Fouling Kinetics, and Foulant Layer Characteristics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2012-2021. [PMID: 31916753 DOI: 10.1021/acs.est.9b07022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemical membrane filtration has proven to be successful for microbial removal and separation from water. In addition, membrane fouling could be mitigated by electrochemical reactions and electrostatic repulsion on a reactive membrane surface. This study assessed the filtration performances and fouling characteristics of electrochemically reactive ceramic membranes (a Magneli phase suboxide of TiO2) when filtering algal suspension under different dc currents to achieve anodic or cathodic polarization. The critical flux results indicate that when applying positive or negative dc currents (e.g., 1.25-2.5 mA·cm-2) to the membrane, both significantly mitigated membrane fouling and thus maintained higher critical fluxes (up to 14.6 × 10-5·m3·m-2·s-1 or 526 LMH) compared to the critical flux without dc currents. Moreover, applying dc currents also enhanced membrane defouling processes and recovered high permeate flux better than hydraulic and chemical backwash methods. Moreover, fouling kinetics and the cake layer formation were further analyzed with a resistance-in-series model that revealed many important but underexamined parameters (e.g., cake layer resistance and cake layer thickness). The cake layer structures (e.g., compressibility) were shown to vary with the electrochemical activity, which provide new insight into the biofouling mechanisms. Finally, the algogenic odor, geosmin, was shown to be effectively removed by this reactive membrane under positive dc currents (2.5 mA·cm-2), which highlights the multifunctional capabilities of electrochemically reactive membrane filtration in biomass separation, fouling prevention, and pollutant degradation.
Collapse
Affiliation(s)
- Likun Hua
- John A. Reif, Jr. Department of Civil and Environmental Engineering , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Han Cao
- John A. Reif, Jr. Department of Civil and Environmental Engineering , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Qingquan Ma
- John A. Reif, Jr. Department of Civil and Environmental Engineering , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Xiaonan Shi
- John A. Reif, Jr. Department of Civil and Environmental Engineering , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Xuezhi Zhang
- Center for Algal Biology and Applied Research, Institute of Hydrobiology , Chinese Academy of Sciences , South Donghu Road , Wuchang District, Wuhan , Hubei 430072 , China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| |
Collapse
|
26
|
Xu B, Albert Ng TC, Huang S, Shi X, Ng HY. Feasibility of isolated novel facultative quorum quenching consortiums for fouling control in an AnMBR. WATER RESEARCH 2020; 114:151-180. [PMID: 31706123 DOI: 10.1016/j.watres.2017.02.006] [Citation(s) in RCA: 509] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 05/06/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) technology is being recognized as an appealing strategy for wastewater treatment, however, severity of membrane fouling inhibits its widespread implementations. This study engineered novel facultative quorum quenching consortiums (FQQs) coping with membrane fouling in AnMBRs with preliminary analysis for their quorum quenching (QQ) performances. Herein, Acyl-homoserine lactones (AHLs)-based quorum sensing (QS) in a lab-scale AnMBR initially revealed that N-Hexanoyl-dl-homoserine lactone (C6-HSL), N-Octanoyl-dl-homoserine lactone (C8-HSL) and N-Decanoyl-dl-homoserine lactone (C10-HSL) were the dominant AHLs in AnMBRs in this study. Three FQQs, namely, FQQ-C6, FQQ-C8 and FQQ-C10, were harvested after anaerobic screening of aerobic QQ consortiums (AeQQs) which were isolated by enrichment culture, aiming to degrade C6-HSL, C8-HSL and C10-HSL, respectively. Growth of FQQ-C6 and FQQ-C10 using AHLs as carbon source under anaerobic condition was significantly faster than those using acetate, congruously suggesting that their QQ performance will not be compromised in AnMBRs. All FQQs degraded a wide range of AHLs pinpointing their extensive QQ ability. FQQ-C6, FQQ-C8 and FQQ-C10 remarkably alleviated extracellular polymeric substances (EPS) production in a lab-scale AnMBR by 72.46%, 35.89% and 65.88%, respectively, and FQQ-C6 retarded membrane fouling of the AnMBR by 2 times. Bioinformatics analysis indicated that there was a major shift in dominant species from AeQQs to FQQs where Comamonas sp., Klebsiella sp., Stenotrophomonas sp. and Ochrobactrum sp. survived after anaerobic screening and were the majority in FQQs. High growth rate utilizing AHLs under anaerobic condition and enormous EPS retardation efficiency in FQQ-C6 and FQQ-C10 could be attributed to Comamonas sp.. These findings demonstrated that FQQs could be leveraged for QQ under anaerobic systems. We believe that this was the first work proposing a bacterial pool of facultative QQ candidates holding biotechnological promises for membrane fouling control in AnMBRs.
Collapse
Affiliation(s)
- Boyan Xu
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Tze Chiang Albert Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Shujuan Huang
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao, 266033, PR China
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
27
|
Beygmohammdi F, Nourizadeh Kazerouni H, Jafarzadeh Y, Hazrati H, Yegani R. Preparation and characterization of PVDF/PVP-GO membranes to be used in MBR system. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
|
29
|
Liu X, Wang K, Wang J, Zuo J, Peng F, Wu J, San E. Carbon dioxide fixation coupled with ammonium uptake by immobilized Scenedesmus obliquus and its potential for protein production. BIORESOURCE TECHNOLOGY 2019; 289:121685. [PMID: 31323715 DOI: 10.1016/j.biortech.2019.121685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
In this study, immobilized Scenedesmus obliquus (S. obliquus) was proposed to simultaneously alleviate the carbon dioxide (CO2) and ammonium (NH4+-N). Two trophic modes of autotrophy and mixotrophy were conducted by batch experiments with a period of 5 days. The results shown that NH4+-N could be removed more efficiently if algal cells were immobilized, and the trophic mode change had no significant effect on immobilized S. obliquus to NH4+-N removal under 5% CO2 sparging. Specifically, immobilized S. obliquus could remove NH4+-N completely at initial concentrations of 30 and 50 mg/L and reached about 80% removal rate of NH4+-N at the concentration of 70 mg/L under both trophic modes. The protein synthesis was its main removal mechanism and the dominant amino acid components including glutamic acid (Glu), cystine (Cys), arginine (Arg), methionine (Met) and lysine (Lys) were sensitive to NH4+-N assimilation.
Collapse
Affiliation(s)
- Xiang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Jingyao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Fei Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Erfu San
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
30
|
Jabbari B, Jalilnejad E, Ghasemzadeh K, Iulianelli A. Recent Progresses in Application of Membrane Bioreactors in Production of Biohydrogen. MEMBRANES 2019; 9:membranes9080100. [PMID: 31405178 PMCID: PMC6723787 DOI: 10.3390/membranes9080100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
Abstract
Biohydrogen is a clean and viable energy carrier generated through various green and renewable energy sources such as biomass. This review focused on the application of membrane bioreactors (MBRs), emphasizing the combination of these devices with biological processes, for bio-derived hydrogen production. Direct biophotolysis, indirect biophotolysis, photo-fermentation, dark fermentation, and conventional techniques are discussed as the common methods of biohydrogen production. The anaerobic process membrane bioreactors (AnMBRs) technology is presented and discussed as a preferable choice for producing biohydrogen due to its low cost and the ability of overcoming problems posed by carbon emissions. General features of AnMBRs and operational parameters are comprehensively overviewed. Although MBRs are being used as a well-established and mature technology with many full-scale plants around the world, membrane fouling still remains a serious obstacle and a future challenge. Therefore, this review highlights the main benefits and drawbacks of MBRs application, also discussing the comparison between organic and inorganic membranes utilization to determine which may constitute the best solution for providing pure hydrogen. Nevertheless, research is still needed to overcome remaining barriers to practical applications such as low yields and production rates, and to identify biohydrogen as one of the most appealing renewable energies in the future.
Collapse
Affiliation(s)
- Bahman Jabbari
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia 57166-17165, Iran
| | - Elham Jalilnejad
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia 57166-17165, Iran.
| | - Kamran Ghasemzadeh
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia 57166-17165, Iran
| | - Adolfo Iulianelli
- Institute on Membrane Technology of the Italian National Research Council (CNR-ITM), via P. Bucci Cubo 17/C, 87036 Rende (CS), Italy.
| |
Collapse
|
31
|
Sahu JN, Karri RR, Zabed HM, Shams S, Qi X. Current Perspectives and Future Prospects of Nano-Biotechnology in Wastewater Treatment. SEPARATION AND PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1630430] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J. N. Sahu
- Institute of Chemical Technology, Faculty of Chemistry, University of Stuttgart, Stuttgart, Germany
- , South Ural State University, Chelyabinsk, Russia
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, Brunei Darussalam
| | - Hossain M. Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shahriar Shams
- Civil Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, Brunei, Darussalam
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
32
|
Kamali M, Persson KM, Costa ME, Capela I. Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment: Current status and future outlook. ENVIRONMENT INTERNATIONAL 2019; 125:261-276. [PMID: 30731376 DOI: 10.1016/j.envint.2019.01.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Application of engineered nanomaterials for the treatment of industrial effluents and to deal with recalcitrant pollutants has been noticeably promoted in recent years. Laboratory, pilot and full-scale studies emphasize the potential of this technology to offer promising treatment options to meet the future needs for clean water resources and to comply with stringent environmental regulations. The technology is now in the stage of being transferred to the real applications. Therefore, the assessment of its performance according to sustainability criteria and their incorporation into the decision-making process is a key task to ensure that long term benefits are achieved from the nano-treatment technologies. In this study, the importance of sustainability criteria for the conventional and novel technologies for the treatment of industrial effluents was determined in a general approach assisted by a fuzzy-Delphi method. The criteria were categorized in technical, economic, environmental and social branches and the current situation of the nanotechnology regarding the criteria was critically discussed. The results indicate that the efficiency and safety are the most important parameters to make sustainable choices for the treatment of industrial effluents. Also, in addition to the need for scaling-up the nanotechnology in various stages, the study on their environmental footprint must continue in deeper scales under expected environmental conditions, in particular the synthesis of engineered nanomaterials and the development of reactors with the ability of recovery and reuse the nanomaterials. This paper will aid to select the most sustainable types of nanomaterials for the real applications and to guide the future studies in this field.
Collapse
Affiliation(s)
- Mohammadreza Kamali
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kenneth M Persson
- Department of Building and Environmental Technology/Water Resources Engineering, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Maria Elisabete Costa
- Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Isabel Capela
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
33
|
Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Liao Y, Bokhary A, Maleki E, Liao B. A review of membrane fouling and its control in algal-related membrane processes. BIORESOURCE TECHNOLOGY 2018; 264:343-358. [PMID: 29983228 DOI: 10.1016/j.biortech.2018.06.102] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Membrane technologies have received much attention in microalgae biorefinery for nutrients removal from wastewater, carbon dioxide abatement from the air as well as the production of value-added products and biofuel in recent years. This paper provides a state-of-the-art review on membrane fouling issues and its control in membrane photobioreactors (MPBRs) and other algal-related membrane processes (harvesting, dewatering, and biofuel production). The mechanisms of membrane fouling and factors affecting membrane fouling in algal-related membrane processes are systematically reviewed. Also, strategies to control membrane fouling in algal-related membrane processes are summarized and discussed. Finally, the gaps, challenges, and opportunities in membrane fouling control in algal-related membrane technologies are identified and discussed.
Collapse
Affiliation(s)
- Yichen Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Alnour Bokhary
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Esmat Maleki
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
35
|
Tang T, Wan P, Hu Z. CO₂ Bubbling to Improve Algal Growth, Nutrient Removal, and Membrane Performance in an Algal Membrane Bioreactor. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2018; 90:650-658. [PMID: 30188281 DOI: 10.2175/106143017x15131012153121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Algae generally prefer CO2 through passive gas diffusion to HCO-3 or CO2-3, as uptake of carbonate species relies on active transport. In this study, the effects of CO2 bubbling on algal growth, nutrient uptake, lipid accumulation, and membrane fouling control were investigated in an algal membrane bioreactor (A-MBR). Bubbling with 10% CO2 in the A-MBR system increased algal specific oxygen production rate by 43 ± 5% and algal productivity by 39 ± 1%, even though there was abundant dissolved inorganic carbon available in the secondary wastewater effluent (about 3.6 mM). Meanwhile, nitrogen removal capacity increased from originally 2.6 ± 0.4 g/m3•d to 3.6 ± 0.4 g/m3•d through continuous CO2 bubbling. Furthermore, membrane fouling was significantly reduced in the A-MBR system with CO2 addition, likely because of reduced mineral precipitation on the membrane at lower pHs.
Collapse
Affiliation(s)
- Tianyu Tang
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
36
|
Kim T, Ren X, Chae KJ. High-rate algal pond coupled with a matrix of Spirogyra sp. for treatment of rural streams with nutrient pollution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 213:297-308. [PMID: 29502015 DOI: 10.1016/j.jenvman.2018.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 12/14/2017] [Accepted: 01/10/2018] [Indexed: 06/08/2023]
Abstract
This study evaluated the unique features of a filamentous algae matrix (FAM) that can be applied to high rate algal ponds (HRAPs) as a promising way to remove nutrient from polluted rural streams. The results show that the HRAPs, coupled with the FAM, effectively removed nitrogen and phosphorus (79.8% and 81.2%, respectively), and achieved high production of DO, with a maximum of 11.0 g O2 g FAM-1 d-1. The FAM functioned wells as a screen to prevent excessive algae loss from the system and obtained relatively high biomass growth rate (0.032 mg L-1 d-1 for nitrogen and 0.344 mg L-1 d-1 for phosphorus). The harvested FAM was a useful fertilizer and the rate of addition of FAM were 1.52 kg d-1 ha-1 of nitrogen and 0.44 kg d-1 ha-1 of phosphorus. Thus, combining the HRAP with the FAM was an effective nutrient removal and resource utilization system for rural streams.
Collapse
Affiliation(s)
- Taeeung Kim
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture(BUCEA), Beijing 100044, China
| | - Xianghao Ren
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture(BUCEA), Beijing 100044, China.
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 606-791, South Korea.
| |
Collapse
|
37
|
Vo Hoang Nhat P, Ngo HH, Guo WS, Chang SW, Nguyen DD, Nguyen PD, Bui XT, Zhang XB, Guo JB. Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation? BIORESOURCE TECHNOLOGY 2018; 256:491-501. [PMID: 29472123 DOI: 10.1016/j.biortech.2018.02.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Algae is a well-known organism that its characteristic is prominent for biofuel production and wastewater remediation. This critical review aims to present the applicability of algae with in-depth discussion regarding three key aspects: (i) characterization of algae for its applications; (ii) the technical approaches and their strengths and drawbacks; and (iii) future perspectives of algae-based technologies. The process optimization and combinations with other chemical and biological processes have generated efficiency, in which bio-oil yield is up to 41.1%. Through life cycle assessment, algae bio-energy achieves high energy return than fossil fuel. Thus, the algae-based technologies can reasonably be considered as green approaches. Although selling price of algae bio-oil is still high (about $2 L-1) compared to fossil fuel's price of $1 L-1, it is expected that the algae bio-oil's price will become acceptable in the next coming decades and potentially dominate 75% of the market.
Collapse
Affiliation(s)
- P Vo Hoang Nhat
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China
| | - H H Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China.
| | - W S Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China
| | - S W Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - D D Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - P D Nguyen
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University-Ho Chi Minh, District 10, Ho Chi Minh City, Viet Nam
| | - X T Bui
- Faculty of Environment and Natural Resources, University of Technology, Vietnam National University-Ho Chi Minh, District 10, Ho Chi Minh City, Viet Nam
| | - X B Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China
| | - J B Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia and Department of Environmental and Municipal Engineering, TianjinChengjian University, Tianjin 300384, China
| |
Collapse
|
38
|
Ursino C, Castro-Muñoz R, Drioli E, Gzara L, Albeirutty MH, Figoli A. Progress of Nanocomposite Membranes for Water Treatment. MEMBRANES 2018; 8:E18. [PMID: 29614045 PMCID: PMC6027241 DOI: 10.3390/membranes8020018] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/20/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Abstract
The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.
Collapse
Affiliation(s)
- Claudia Ursino
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
| | - Roberto Castro-Muñoz
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
- Department of Inorganic Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Enrico Drioli
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia;
| | - Mohammad H. Albeirutty
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia;
- Mechanical Engineering Department, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Alberto Figoli
- Institute on Membrane Technology National Research Council, ITM-CNR, Via P. Bucci 17/C, 87036 Rende (CS), Italy; (C.U.); (R.C.-M.); (E.D.)
| |
Collapse
|
39
|
Wang YN, Tsang YF, Wang L, Fu X, Hu J, Li H, Le Y. Inhibitory effect of self-generated extracellular dissolved organic carbon on carbon dioxide fixation in sulfur-oxidizing bacteria during a chemoautotrophic cultivation process and its elimination. BIORESOURCE TECHNOLOGY 2018; 252:44-51. [PMID: 29306128 DOI: 10.1016/j.biortech.2017.12.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
The features of extracellular dissolved organic carbon (EDOC) generation in two typical aerobic sulfur-oxidizing bacteria (Thiobacillus thioparus DSM 505 and Halothiobacillus neapolitanus DSM 15147) and its impact on CO2 fixation during chemoautotrophic cultivation process were investigated. The results showed that EDOC accumulated in both strains during CO2 fixation process. Large molecular weight (MW) EDOC derived from cell lysis and decay was dominant during the entire process in DSM 505, whereas small MW EDOC accounted for a large proportion during initial and middle stages of DSM 15147 as its cytoskeleton synthesis rate did not keep up with CO2 assimilation rate. The self-generated EDOC feedback repressed cbb gene transcription and thus decreased total bacterial cell number and CO2 fixation yield in both strains, but DSM 505 was more sensitive to this inhibition effect. Moreover, the membrane bioreactor effectively decreased the EDOC/TOC ratio and improved carbon fixation yield of DSM 505.
Collapse
Affiliation(s)
- Ya-Nan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong Special Administrative Region, China
| | - Lei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, 200092, China.
| | - Xiaohua Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, 200092, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huan Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, 200092, China
| | - Yiquan Le
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, 200092, China
| |
Collapse
|
40
|
Lu Q, Chen P, Addy M, Zhang R, Deng X, Ma Y, Cheng Y, Hussain F, Chen C, Liu Y, Ruan R. Carbon-dependent alleviation of ammonia toxicity for algae cultivation and associated mechanisms exploration. BIORESOURCE TECHNOLOGY 2018; 249:99-107. [PMID: 29040866 DOI: 10.1016/j.biortech.2017.09.175] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Ammonia toxicity in wastewater is one of the factors that limit the application of algae technology in wastewater treatment. This work explored the correlation between carbon sources and ammonia assimilation and applied a glucose-assisted nitrogen starvation method to alleviate ammonia toxicity. In this study, ammonia toxicity to Chlorella sp. was observed when NH3-N concentration reached 28.03mM in artificial wastewater. Addition of alpha-ketoglutarate in wastewater promoted ammonia assimilation, but low utilization efficiency and high cost of alpha-ketoglutarate limits its application in wastewater treatment. Comparison of three common carbon sources, glucose, citric acid, and sodium bicarbonate, indicates that in terms of ammonia assimilation, glucose is the best carbon source. Experimental results suggest that organic carbon with good ability of generating energy and hydride donor may be critical to ammonia assimilation. Nitrogen starvation treatment assisted by glucose increased ammonia removal efficiencies and algal viabilities.
Collapse
Affiliation(s)
- Qian Lu
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Paul Chen
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Min Addy
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Renchuan Zhang
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Xiangyuan Deng
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yiwei Ma
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yanling Cheng
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Fida Hussain
- Faculty of Science and Technology, Qurtuba University of Science and Technology, Peshawar, KP, Pakistan
| | - Chi Chen
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yuhuan Liu
- MOE Biomass Energy Research Center and State Key Laboratory of Food Science, Nanchang University, Nanchang 330000, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN 55108, USA; Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA; MOE Biomass Energy Research Center and State Key Laboratory of Food Science, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
41
|
Wu X, Xie Z, Wang H, Zhao C, Ng D, Zhang K. Improved filtration performance and antifouling properties of polyethersulfone ultrafiltration membranes by blending with carboxylic acid functionalized polysulfone. RSC Adv 2018; 8:7774-7784. [PMID: 35539120 PMCID: PMC9078463 DOI: 10.1039/c7ra12447c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/13/2018] [Indexed: 11/21/2022] Open
Abstract
Ultrafiltration membranes with improved filtration performance and antifouling properties have been synthesized through blending polyethersulfone with carboxylic acid functionalized polysulfone.
Collapse
Affiliation(s)
- Xing Wu
- Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen
- China
| | - Zongli Xie
- CSIRO Manufacturing
- Clayton South
- Australia
| | - Huanting Wang
- Department of Chemical Engineering
- Monash University
- Clayton
- Australia
| | - Chen Zhao
- Department of Chemical Engineering
- Monash University
- Clayton
- Australia
| | - Derrick Ng
- CSIRO Manufacturing
- Clayton South
- Australia
| | - Kaisong Zhang
- Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen
- China
| |
Collapse
|
42
|
Membrane Bioreactors for Wastewater Treatment. FUNDAMENTALS OF QUORUM SENSING, ANALYTICAL METHODS AND APPLICATIONS IN MEMBRANE BIOREACTORS 2018. [DOI: 10.1016/bs.coac.2018.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Chong WC, Mahmoudi E, Chung YT, Koo CH, Mohammad AW, Kamarudin KF. Improving performance in algal organic matter filtration using polyvinylidene fluoride–graphene oxide nanohybrid membranes. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.08.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Luo Y, Le-Clech P, Henderson RK. Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.10.026] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Preparation and Characterization of Polymeric-Hybrid PES/TiO2 Hollow Fiber Membranes for Potential Applications in Water Treatment. FIBERS 2017. [DOI: 10.3390/fib5020014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|