1
|
Nayak A, Klüber P. The hidden drivers: Unraveling the impact of density, moisture, and scale on Hermetia illucens rearing. PLoS One 2025; 20:e0317049. [PMID: 39775753 PMCID: PMC11709243 DOI: 10.1371/journal.pone.0317049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The black soldier fly (Hermetia illucens) is a saprophagous insect known for bioconverting organic waste, potentially offering environmental benefits, such as contributing to waste reduction and nutrient cycling. The performance of larvae varies significantly with factors substrate moisture, larval density, and scale of production. Three experiments were conducted using a mix of spent mushroom substrate (SMS) and chicken feed (CF). In the first experiment, 250 larvae were reared on 100 g dry matter (DM) feed at moisture levels of 65-75%. Results showed that the average individual larval weight, total biomass, and feed conversion ratio (FCR) improved with increased moisture. In the second experiment, 300 and 350 larvae/box were tested at 70% and 75% moisture. The highest average individual larval fresh weight (158.6 mg) was observed at 70% moisture with 250 larvae, while the highest biomass was achieved at 75% moisture with 300 larvae. Finally, different scales (10-2,500 g feed with 25-6,500 larvae) were tested with a similar feeding rate. The highest individual larval weight was recorded at the 100 g scale, with no clear correlation between weight and scale. However, the 50 g scale achieved the highest substrate reduction (33.2%). Overall, this study underscores the need to adjust moisture, density, and scale to nutrient conversion efficiency when using SMS, CF or other diets. The optimal results for the SMS feed mix were observed at 75% substrate moisture, 250 larvae per 100 g DM, and at approximately 2 larvae per cm2.
Collapse
Affiliation(s)
- Anjani Nayak
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Patrick Klüber
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| |
Collapse
|
2
|
Nayak A, Rühl M, Klüber P. Bioconversion efficiency and chemical composition of Hermetia illucens larvae fed spent mushroom substrates. AMB Express 2024; 14:133. [PMID: 39673033 PMCID: PMC11645357 DOI: 10.1186/s13568-024-01802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/28/2024] [Indexed: 12/15/2024] Open
Abstract
Spent mushroom substrate (SMS) is a by-product remaining after harvesting mushrooms. We evaluated the effect of substituting chicken feed with 0-100% of Pleurotus eryngii and Lentinula edodes SMS at different stocking densities (200-1000 larvae/box) on development, composition, and substrate reduction of black soldier fly (Hermetia illucens) larvae. Although the survival rate was not significantly different, feeding pure SMS led to a low growth rate. The substitution level of SMS negatively correlated with individual larval weight, total harvested biomass, larval growth rate (LGR), feed conversion ratio (FCR), substrate reduction, and waste reduction index (WRI) except for the 20% substitution. Feeding 40% SMS resulted in the highest number of prepupae. In the density experiment, the heaviest larvae (220-239 mg fresh weight) were obtained at 200 larvae/box in the 0% SMS group. The frass residue and FCR decreased with increased density. Remarkably, when feeding 20% SMS at 250 larvae/box, the harvested biomass, LGR, and FCR did not differ significantly from the 0% SMS control, whereas some of the higher densities led to a deterioration. In fact, the frass residue, substrate reduction, and WRI were even improved at 250 larvae/box in the 20% SMS group. The chemical analyses of larvae reared on 20% SMS at 250 larvae/box showed comparable ash and fat contents and a higher protein content compared to the 0% SMS group. Accordingly, up to 20% of a standard diet such as chicken feed can be replaced by low-cost SMS without disadvantages for breeding.
Collapse
Affiliation(s)
- Anjani Nayak
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Patrick Klüber
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany.
| |
Collapse
|
3
|
Tognocchi M, Abenaim L, Adamaki-Sotiraki C, Athanassiou GC, Rumbos IC, Mele M, Conti B, Conte G. Effect of different diet composition on the fat profile of two different black soldier fly larvae populations. Animal 2024; 18:101205. [PMID: 38905779 DOI: 10.1016/j.animal.2024.101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/23/2024] Open
Abstract
Black soldier fly larvae (Hermetia illucens; BSFL) can transform organic wastes into nutritional biomass useful in animal feeding. The aim of this work was to study the effect of five diets (meat, fruit, vegetable substrates, a mix of them and control) on the profile of fatty acids (FAs) and sterols of BSFL. For a more exhaustive characterization of the nutritional properties, the profile of esterified FAs in the sn-2 position of the triglycerides, the most absorbed lipid component during animal digestion was evaluated. The dietary effect was estimated on two different Hermetia illucens populations (Greek - UTH and Italian - UNIPI). The diet affected all the lipid fractions examined. Regardless of diet, the fat was characterized mainly of lauric acid and other saturated FAs, which were found to be synthesized by the larvae, as it was not present in any of the five substrates. In general, UTH larvae contained a higher level of lipids (7.38 vs 2.48 g/100 g of larvae; P < 0.001) and saturated FAs (49.71 vs 36.10 g/100 g of Total Lipids; P < 0.001) and a lower percentage of monounsaturated FAs (14.74 vs 26.70 g/100 g of Total Lipids), C18:3n-3 (0.67 vs 1.13 g/100 g of Total Lipids; P < 0.001), and C18:2c9t11 (2.02 vs 2.80 g/100 g of Total Lipids; P < 0.001). Irrespective of the populations, BSFL reared on control and fruit substrates showed higher level of lipids (8.06 and 5.61 g/100 g of larvae, respectively), and saturated FA (38.99 and 71.19 g/100 g of Total Lipids, respectively), while the presence of meat increased the level of C20:4n-6, C20:5n-3 and C22:5n-3 (0.70, 0.13 and 0.45 g/100 g of Total Lipids, respectively). The results confirmed that BSFL accumulate phytosterols in their lipid fraction. The sterol profile was strongly influenced by the substrate on which the larvae were reared, with higher levels of cholesterol in the larvae of the meat group (38.55 mg/100 g of Total Lipids) and of stigmasterol and campesterol (9.04 and 15.23 mg/100 g of Total Lipids, respectively) in those of the vegetable group. The sterol content between the two populations was significantly different, with a higher percentage in UTH larvae (113.28 vs 34.03 mg/100 g of Total Lipids; P < 0.001). Finally, BSFLs showed a high plasticity of the lipid profile depending on both the substrate and the metabolism linked to the different populations. This variability allows the nutritional characteristics of the BSFL to be shaped by modifying the substrate, to adapt it to the technological and feeding needs to which the larvae are destined.
Collapse
Affiliation(s)
- M Tognocchi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - L Abenaim
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy
| | - C Adamaki-Sotiraki
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str., 38446 Volos, Greece
| | - G C Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str., 38446 Volos, Greece
| | - I C Rumbos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str., 38446 Volos, Greece
| | - M Mele
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy; Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - B Conti
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy; Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - G Conte
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto, 80, 56124 Pisa, Italy; Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy.
| |
Collapse
|
4
|
Lomonaco G, Franco A, De Smet J, Scieuzo C, Salvia R, Falabella P. Larval Frass of Hermetia illucens as Organic Fertilizer: Composition and Beneficial Effects on Different Crops. INSECTS 2024; 15:293. [PMID: 38667423 PMCID: PMC11050032 DOI: 10.3390/insects15040293] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Hermetia illucens has received a lot of attention as its larval stage can grow on organic substrates, even those that are decomposing. Black soldier fly breeding provides a variety of valuable products, including frass, a mixture of larval excrements, larval exuviae, and leftover feedstock, that can be used as a fertilizer in agriculture. Organic fertilizers, such as frass, bringing beneficial bacteria and organic materials into the soil, improves its health and fertility. This comprehensive review delves into a comparative analysis of frass derived from larvae fed on different substrates. The composition of micro- and macro-nutrients, pH levels, organic matter content, electrical conductivity, moisture levels, and the proportion of dry matter are under consideration. The effect of different feeding substrates on the presence of potentially beneficial bacteria for plant growth within the frass is also reported. A critical feature examined in this review is the post-application beneficial impacts of frass on crops, highlighting the agricultural benefits and drawbacks of introducing Hermetia illucens frass into cultivation operations. One notable feature of this review is the categorization of the crops studied into distinct groups, which is useful to simplify comparisons in future research.
Collapse
Affiliation(s)
- Giovanni Lomonaco
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.L.); (A.F.); (C.S.)
| | - Antonio Franco
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.L.); (A.F.); (C.S.)
- Spinoff Xflies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Jeroen De Smet
- Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems, KU Leuven, 2440 Geel, Belgium;
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.L.); (A.F.); (C.S.)
- Spinoff Xflies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.L.); (A.F.); (C.S.)
- Spinoff Xflies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (G.L.); (A.F.); (C.S.)
- Spinoff Xflies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
5
|
Zhang J, Luo Z, Li N, Yu Y, Cai M, Zheng L, Zhu F, Huang F, K Tomberlin J, Rehman KU, Yu Z, Zhang J. Cellulose-degrading bacteria improve conversion efficiency in the co-digestion of dairy and chicken manure by black soldier fly larvae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119156. [PMID: 37837764 DOI: 10.1016/j.jenvman.2023.119156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
Black soldier fly larvae (BSFL) have potential utility in converting livestock manure into larval biomass as a protein source for livestock feed. However, BSFL have limited ability to convert dairy manure (DM) rich in lignocellulose. Our previous research demonstrated that feeding BSFL with mixtures of 40% dairy manure and 60% chicken manure (DM40) provides a novel strategy for significantly improving their efficiency in converting DM. However, the mechanisms underlying the efficient conversion of DM40 by BSFL are unclear. In this study, we conducted a holistic study on the taxonomic stucture and potential functions of microbiota in the larval gut and manure during the DM and DM40 conversion by BSFL, as well as the effects of BSFL on cellulosic biodegradation and biomass production. Results showed that BSFL can consume cellulose and other nutrients more effectively and harvest more biomass in a shorter conversion cycle in the DM40 system. The larval gut in the DM40 system yielded a higher microbiota complexity. Bacillus and Amphibacillus in the BSFL gut were strongly correlated with the larval cellulose degradation capacity. Furthermore, in vitro screening results for culturable cellulolytic microbes from the larval guts showed that the DM40 system isolated more cellulolytic microbes. A key bacterial strain (DM40L-LB110; Bacillus subtilis) with high cellulase activity from the larval gut of DM40 was validated for potential industrial applications. Therefore, mixing an appropriate proportion of chicken manure into DM increased the abundance of intestinal bacteria (Bacillus and Amphibacillus) producing cellulase and improved the digestion ability (particularly cellulose degradation) of BSFL to cellulose-rich manure through changes in microbial communities composition in intestine. This study reveals the microecological mechanisms underlying the high-efficiency conversion of cellulose-rich manure by BSFL and provide potential applications for the large-scale cellulose-rich wastes conversion by intestinal microbes combined with BSFL.
Collapse
Affiliation(s)
- Jia Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Zhijun Luo
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Nan Li
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Yongqiang Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Fengling Zhu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China.
| | | | - Kashif Ur Rehman
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Ziniu Yu
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
6
|
Jones AK, Nur-Aliah NA, Ivorra T, Heo CC. Black soldier fly (Diptera: Stratiomyidae) reduction of different sludges, subsequent safety, and research gaps. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119394. [PMID: 39491940 DOI: 10.1016/j.jenvman.2023.119394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
One of the many waste components that end up in landfills is sludge, an organic waste that Black Soldier Flies (BSF) may be capable of reducing or removing along with potential pathogens from the environment. Throughout this review, knowledge gaps were evaluated as well as indications that BSF can positively impact the environment and economy when it comes to reducing sludge. This review first aimed to establish consistency across assessed papers (n = 41). Second, previous research on the efficiency and capability of sludge to be reduced by BSF both in isolation and with other substrates (co-digestion) was assessed. Subsequently, this review also evaluated the resulting safety of both the BSF and remaining sludge after consumption. Through this review, reduction difficulties and gaps in research and industry were evaluated. Unfortunately, complications come from the lack of policy for industry status as well as the need for further research. Therefore, further research is required on the consumption of different sludges. In particular, sludge should be tested with co-substrates to decrease waste removal problems. Sludge lacks crucial nutrients and contains extracellular polymeric substances preventing BSFL consumption. This review could potentially be helpful in future research to formulate a methodology for better BSFL consumption and production of insect biomass by sludge pre-treatment. This could lead to the implementation of the new policy in sludge management.
Collapse
Affiliation(s)
- Abby K Jones
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia.
| | - Natasha Azmi Nur-Aliah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia.
| | - Tania Ivorra
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia.
| | - Chong Chin Heo
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia; Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
7
|
Eke M, Tougeron K, Hamidovic A, Tinkeu LSN, Hance T, Renoz F. Deciphering the functional diversity of the gut microbiota of the black soldier fly (Hermetia illucens): recent advances and future challenges. Anim Microbiome 2023; 5:40. [PMID: 37653468 PMCID: PMC10472620 DOI: 10.1186/s42523-023-00261-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Bioconversion using insects is a promising strategy to convert organic waste (catering leftovers, harvest waste, food processing byproducts, etc.) into biomass that can be used for multiple applications, turned into high added-value products, and address environmental, societal and economic concerns. Due to its ability to feed on a tremendous variety of organic wastes, the black soldier fly (Hermetia illucens) has recently emerged as a promising insect for bioconversion of organic wastes on an industrial scale. A growing number of studies have highlighted the pivotal role of the gut microbiota in the performance and health of this insect species. This review aims to provide a critical overview of current knowledge regarding the functional diversity of the gut microbiota of H. illucens, highlighting its importance for bioconversion, food safety and the development of new biotechnological tools. After providing an overview of the different strategies that have been used to outline the microbial communities of H. illucens, we discuss the diversity of these gut microbes and the beneficial services they can provide to their insect host. Emphasis is placed on technical strategies and aspects of host biology that require special attention in the near future of research. We also argue that the singular digestive capabilities and complex gut microbiota of H. illucens make this insect species a valuable model for addressing fundamental questions regarding the interactions that insects have evolved with microorganisms. By proposing new avenues of research, this review aims to stimulate research on the microbiota of a promising insect to address the challenges of bioconversion, but also fundamental questions regarding bacterial symbiosis in insects.
Collapse
Affiliation(s)
- Maurielle Eke
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Kévin Tougeron
- UMR CNRS 7058 EDYSAN (Ecologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, 80039 France
- Research Institute in Bioscience, Université de Mons, Mons, 7000 Belgium
| | - Alisa Hamidovic
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - Leonard S. Ngamo Tinkeu
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - François Renoz
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634 Japan
| |
Collapse
|
8
|
Hu C, Yang L, Wang H, Xiao X, Wang Z, Gong X, Liu X, Li W. Analysis of heavy metals in the conversion of lake sediment and restaurant waste by black soldier fly (Hermetia illucens). Front Bioeng Biotechnol 2023; 11:1163057. [PMID: 37064243 PMCID: PMC10102990 DOI: 10.3389/fbioe.2023.1163057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
The risk posed by heavy metals makes it difficult to dispose of sediment contaminants from dredging lakes in China. Black soldier fly (Hermetia illucens) can convert organic waste, such as restaurant waste and lake sediment, to high-value-added protein feed and fertilizer. Experimental groups were formed in this study to explore the conversion of heavy metals present in the mixture of restaurant waste and lake sediment by black soldier fly larvae (BSFL). The results demonstrated that BSFL could survive in pure sediment with an 84.76% survival rate. Relative to the substrate, BSFL could accumulate 70-90% zinc (Zn), chromium (Cr), copper (Cu), and 20-40% cadmium (Cd) and lead (Pb). The experimental group 2:3, with 40% lake sediment and 60% restaurant waste, was the best group after conversion for 15 days, which showed a 95.24% survival rate of BFSL, 82.20 mg average weight of BFSL, 8.92 mm average length of BFSL, with varying content of heavy metals such as Cu (43.22 mg/kg), Zn (193.31 mg/kg), Cd (1.58 mg/kg), Cr (25.30 mg/kg) Cr, and Pb (38.59 mg/kg) in BSFL. Furthermore, the conversion residue conforms to the relevant standards of organic fertilizer in China and can be used as organic fertilizer. Overall, the present study shows that black soldier flies can improve the resource utilization of lake sediment, especially by reducing the effect of heavy metals.
Collapse
Affiliation(s)
- Caixi Hu
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Longyuan Yang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, China
| | - Hanlin Wang
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, China
| | - Xiaopeng Xiao
- Changsha Zoomlion Environmental Industry Co., Ltd., Changsha, China
| | - Zhongwen Wang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Chizhengtang Pharmaceutical Co., Ltd., Huangshi, China
| | - Xiangyi Gong
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Xianli Liu
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, China
- *Correspondence: Xianli Liu, ; Wu Li,
| | - Wu Li
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, China
- *Correspondence: Xianli Liu, ; Wu Li,
| |
Collapse
|
9
|
Karimi M, Shirzad M, Silva JAC, Rodrigues AE. Carbon dioxide separation and capture by adsorption: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-44. [PMID: 37362013 PMCID: PMC10018639 DOI: 10.1007/s10311-023-01589-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/28/2023] [Indexed: 06/02/2023]
Abstract
Rising adverse impact of climate change caused by anthropogenic activities is calling for advanced methods to reduce carbon dioxide emissions. Here, we review adsorption technologies for carbon dioxide capture with focus on materials, techniques, and processes, additive manufacturing, direct air capture, machine learning, life cycle assessment, commercialization and scale-up.
Collapse
Affiliation(s)
- Mohsen Karimi
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mohammad Shirzad
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José A. C. Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Kee PE, Cheng YS, Chang JS, Yim HS, Tan JCY, Lam SS, Lan JCW, Ng HS, Khoo KS. Insect biorefinery: A circular economy concept for biowaste conversion to value-added products. ENVIRONMENTAL RESEARCH 2023; 221:115284. [PMID: 36640934 DOI: 10.1016/j.envres.2023.115284] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
With rapid growing world population and increasing demand for natural resources, the production of sufficient food, feed for protein and fat sources and sustainable energy presents a food insecurity challenge globally. Insect biorefinery is a concept of using insect as a tool to convert biomass waste into energy and other beneficial products with concomitant remediation of the organic components. The exploitation of insects and its bioproducts have becoming more popular in recent years. This review article presents a summary of the current trend of insect-based industry and the potential organic wastes for insect bioconversion and biorefinery. Numerous biotechnological products obtained from insect biorefinery such as biofertilizer, animal feeds, edible foods, biopolymer, bioenzymes and biodiesel are discussed in the subsequent sections. Insect biorefinery serves as a promising sustainable approach for waste management while producing valuable bioproducts feasible to achieve circular bioeconomy.
Collapse
Affiliation(s)
- Phei Er Kee
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hip Seng Yim
- Booya Holdings, Northpoint Mid Valley City, No. 1 Medan Syed Putra Utara, 59200 Kuala Lumpur, Malaysia
| | - John Choon Yee Tan
- Zelcos Biotech Sdn Bhd, No. 1 Lorong Nagasari 11, Taman Nagasari, 13600 Prai, Pulau Pinang, Malaysia
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia.
| | - Kuan Shiong Khoo
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Feng W, Tie X, Duan X, Yan S, Fang S, Wang T, Sun P, Gan L. Polymer functionalization of biochar-based heterogeneous catalyst with acid-base bifunctional catalytic activity for conversion of the insect lipid into biodiesel. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
12
|
Mohan K, Sathishkumar P, Rajan DK, Rajarajeswaran J, Ganesan AR. Black soldier fly (Hermetia illucens) larvae as potential feedstock for the biodiesel production: Recent advances and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160235. [PMID: 36402342 DOI: 10.1016/j.scitotenv.2022.160235] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Black soldier fly larvae (BSFL) Hermetia illucens is fastest growing and most promising insect species especially recommended to bring high-fat content as 5th generation bioenergy. The fat content can be fully optimized during the life-cycle of the BSFL through various organic dietary supplements and environmental conditions. Enriched fat can be obtained during the larval stages of the BSF. The presence of high saturated and unsaturated fatty acids in their body helps to produce 70 % of extractable oil which can be converted into biodiesel through transesterification. The first-generation biodiesel process mainly depends on catalytic transesterification, however, BSFL had 94 % of biodiesel production through non-catalytic transesterification. This increases the sustainability of producing biodiesel with less energy input in the process line. Other carbon emitting factors involved in the rearing of BSFL are less than the other biodiesel feedstocks including microalgae, cooking oil, and non-edible oil. Therefore, this review is focused on evaluating the optimum dietary source to produce fatty acid rich larvae and larval growth to accumulate C16-18 fatty acids in larger amounts from agro food waste. The process of optimization and biorefining of lipids using novel techniques have been discussed herein. The sustainability impact was evaluated from the cultivation to biodiesel conversion with greenhouse gas emissions scores in the entire life-cycle of process flow. The state-of-the-art in connecting circular bioeconomy loop in the search for bioenergy was meticulously covered.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, India.
| | - Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu 608 502, India
| | - Jayakumar Rajarajeswaran
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602 105, India
| | - Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Kudalsveien 6, NO-8027 Bodø, Norway.
| |
Collapse
|
13
|
Eraky M, Elsayed M, Qyyum MA, Ai P, Tawfik A. A new cutting-edge review on the bioremediation of anaerobic digestate for environmental applications and cleaner bioenergy. ENVIRONMENTAL RESEARCH 2022; 213:113708. [PMID: 35724728 DOI: 10.1016/j.envres.2022.113708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Circular agriculture and economy systems have recently emerged around the world. It is a long-term environmental strategy that promotes economic growth and food security while reducing negative environmental consequences. Anaerobic digestion (AD) process has a high contribution and effective biodegradation route for bio-wastes valorization and reducing greenhouse gases (GHGs) emissions. However, the remaining massive digestate by-product contains non-fermented organic fractions, macro and/or micro-nutrients, heavy metals, and metalloids. Direct application of digestate in agriculture negatively affected the properties of the soil due to the high load of nutrients as well as the residuals of GHGs are emitted to the environment. Recycling and valorizing of anaerobic digestate is the main challenge for the sustainable biogas industry and nutrients recovery. To date, there is no global standard process for the safe digestate handling. This review described the biochemical composition and separation processes of anaerobic digestate. Further, advanced physical, chemical, and biological remediation's of the diverse digestate are comprehensively discussed. Moreover, recycling technologies such as phyco-remediation, bio-floc, and entomoremediation were reviewed as promising solutions to enhance energy and nutrient recovery, making the AD technology more sustainable with additional profits. Finally, this review gives an in-depth discussion of current biorefinery technologies, key roles of process parameters, and identifies challenges of nutrient recovery from digestate and prospects for future studies at large scale.
Collapse
Affiliation(s)
- Mohamed Eraky
- College of Engineering, Huazhong Agricultural University, 430070, Wuhan, China
| | - Mahdy Elsayed
- Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Muhammad Abdul Qyyum
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Ping Ai
- College of Engineering, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, P.O. Box 12622, Giza, Egypt.
| |
Collapse
|
14
|
Eloffy MG, Elgarahy AM, Saber AN, Hammad A, El-Sherif DM, Shehata M, Mohsen A, Elwakeel KZ. Biomass-to-sustainable biohydrogen: insights into the production routes, and technical challenges. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Facchini E, Shrestha K, van den Boer E, Junes P, Sader G, Peeters K, Schmitt E. Long-Term Artificial Selection for Increased Larval Body Weight of Hermetia illucens in Industrial Settings. Front Genet 2022; 13:865490. [PMID: 35783268 PMCID: PMC9240604 DOI: 10.3389/fgene.2022.865490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Black soldier fly (Hermetia illucens) farming has exponentially increased in recent years due to the ability of its larvae to efficiently convert low-grade organic materials into high-value food, feed, and technical products. There is a need to further improve the efficiency of production, to meet the rising demands for proteins in the feed and food industries under limited resources. One means of improvement is artificial selection, which has been widely applied in plants and in other livestock species. In 2019, a genetic improvement program was started with the aim to increase larval body weight in black soldier fly larvae. In this paper, we present the outcomes of this breeding program after 10, 13, and 16 generations of selection. The performance of the selected body weight line was compared to the base population line over six experimental rounds under different environmental conditions. Under automated production settings, an average increase of +39% in larval weight, +34% in wet crate yield, +26% in dry matter crate yield, +32% in crude protein per crate, and +21% crude fat per crate was achieved in the selected line compared to the base population line. This research demonstrates the potential contribution of artificial selection to improve efficiency when farming black soldier flies in industrial settings. Further research is needed to fully unlock that potential.
Collapse
Affiliation(s)
- Elena Facchini
- Hendrix Genetics Research Technology & Services B.V., Boxmeer, Netherlands
| | | | | | | | - Gaya Sader
- Protix Biosystems B.V., Dongen, Netherlands
| | - Katrijn Peeters
- Hendrix Genetics Research Technology & Services B.V., Boxmeer, Netherlands
| | - Eric Schmitt
- Protix Biosystems B.V., Dongen, Netherlands
- *Correspondence: Eric Schmitt,
| |
Collapse
|
16
|
Khan MU, Usman M, Ashraf MA, Dutta N, Luo G, Zhang S. A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: Opportunities and Limitations. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
17
|
Luo X, Yang Q, Lin Y, Tang Z, Tomberlin JK, Liu W, Huang Y. Black soldier fly larvae effectively degrade lincomycin from pharmaceutical industry wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114539. [PMID: 35085969 DOI: 10.1016/j.jenvman.2022.114539] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Lincomycin fermentation residues (LFR) are the byproducts from the pharmaceutical industry, and contain high concentrations of antibiotics that could pose a threat to the environment. Here, we report that black soldier fly larvae (BSFL) and associated microbiota can effectively degrade LFR and accelerate the degradation of lincomycin in LFR. The degradation rate of lincomycin in LFR can reach 84.9% after 12 days of BSFL-mediated bioconversion, which is 3-fold greater than that accomplished with natural composting. The rapid degradation was partially carried out by the BSFL-associated microbiota, contributing 22.0% of the degradation in the final composts. Based on microbiome analysis, we found that the structure of microbiota from both BSFL guts and BSFL composts changed significantly during the bioconversion, and that several bacterial genera were correlated with lincomycin degradation. The roles of the associated microbiota in the degradation were further verified by the ability of two larval intestinal bacterial isolates and one bacterial isolate from BSFL composts to lincomycin degradation. The synergy between BSFL and the isolated strains resulted in a 2-fold increase in degradation compared to that achieved by microbial degradation alone. Furthermore, we determined that the degradation was correlated with the induction of several antibiotic resistant genes (ARGs) associated with lincomycin degradation in larval guts and BSFL composts. Moreover, the environmental conditions in the BSFL composts were found to be conducive to the degradation. In conclusion, these findings demonstrate that the BSFL-mediated bioconversion of LFR could effectively reduce residual lincomycin and that the associated microbiota play crucial roles in the process.
Collapse
Affiliation(s)
- Xingyu Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yueting Lin
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China; Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhijun Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 400 Bizzell St., College Station, TX, 77843, USA
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: A review and prospects for future directions. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101890] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Li X, Zhou Z, Zhang J, Zhou S, Xiong Q. Conversion of Mixtures of Soybean Curd Residue and Kitchen Waste by Black Soldier Fly Larvae ( Hermetia illucens L.). INSECTS 2021; 13:23. [PMID: 35055866 PMCID: PMC8779397 DOI: 10.3390/insects13010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022]
Abstract
The production of insect biomass from organic waste is a major challenge in terms of reducing the environmental impacts of waste and maintaining feed and food security. The feasibility of the co-conversion of soybean curd residue (SCR) and kitchen waste (KW) to breed black soldier fly (BSF, Hermetia illucens) larvae was evaluated so as to enhance biomass conversion efficiency and supply animal feed and allow it to be used in biodiesel production. Co-digestion was found to significantly increase larval yield, bioconversion rate, and bioaccumulation of lipid. Partial least squares regression showed that the conversion of 30% SCR with 70% KW is an appropriate proportion. The appropriate performance parameters of BSF were: survival rate (98.75%), prepupal rate (88.61%), larval biomass (30.32 g fresh and 11.38 g dry mass), bioconversion rate (18.45%), efficiency conversion of ingested food (ECI) (28.30%), and FCR (2.51). Our results show that conversion of mixtures (e.g., SCR with KW) by BSF larvae (BSFL) could play an important role in various organic materials management.
Collapse
Affiliation(s)
- Xinfu Li
- College of Food Science and Light Industry, Nanjing Tech University, No. 30 Puzhu Road South, Nanjing 211800, China; (X.L.); (S.Z.); (Z.Z.)
| | - Zhihao Zhou
- College of Food Science and Light Industry, Nanjing Tech University, No. 30 Puzhu Road South, Nanjing 211800, China; (X.L.); (S.Z.); (Z.Z.)
| | - Jing Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu Road South, Nanjing 211800, China;
| | - Shen Zhou
- College of Food Science and Light Industry, Nanjing Tech University, No. 30 Puzhu Road South, Nanjing 211800, China; (X.L.); (S.Z.); (Z.Z.)
| | - Qiang Xiong
- College of Food Science and Light Industry, Nanjing Tech University, No. 30 Puzhu Road South, Nanjing 211800, China; (X.L.); (S.Z.); (Z.Z.)
| |
Collapse
|
20
|
Greenwood MP, Hull KL, Brink-Hull M, Lloyd M, Rhode C. Feed and Host Genetics Drive Microbiome Diversity with Resultant Consequences for Production Traits in Mass-Reared Black Soldier Fly ( Hermetia illucens) Larvae. INSECTS 2021; 12:1082. [PMID: 34940170 PMCID: PMC8706267 DOI: 10.3390/insects12121082] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/25/2023]
Abstract
Mass rearing the black soldier fly, Hermetia illucens, for waste bioremediation and valorisation is gaining traction on a global scale. While the health and productivity of this species are underpinned by associations with microbial taxa, little is known about the factors that govern gut microbiome assembly, function, and contributions towards host phenotypic development in actively feeding larvae. In the present study, a 16S rDNA gene sequencing approach applied to a study system incorporating both feed substrate and genetic variation is used to address this knowledge gap. It is determined that the alpha diversity of larval gut bacterial communities is driven primarily by features of the larval feed substrate, including the diversity of exogenous bacterial populations. Microbiome beta diversity, however, demonstrated patterns of differentiation consistent with an influence of diet, larval genetic background, and a potential interaction between these factors. Moreover, evidence for an association between microbiome structure and the rate of larval fat accumulation was uncovered. Taxonomic enrichment analysis and clustering of putative functional gut profiles further suggested that feed-dependent turnover in microbiome communities is most likely to impact larval characteristics. Taken together, these findings indicate that host-microbiome interactions in this species are complex yet relevant to larval trait emergence.
Collapse
Affiliation(s)
- Matthew P. Greenwood
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (M.P.G.); (K.L.H.); (M.B.-H.)
| | - Kelvin L. Hull
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (M.P.G.); (K.L.H.); (M.B.-H.)
| | - Marissa Brink-Hull
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (M.P.G.); (K.L.H.); (M.B.-H.)
| | - Melissa Lloyd
- Insect Technology Group Holdings UK Ltd., 1 Farnham Road, Guildford, Surrey GU2 4RG, UK;
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; (M.P.G.); (K.L.H.); (M.B.-H.)
| |
Collapse
|
21
|
Lee KS, Yun EY, Goo TW. Optimization of Feed Components to Improve Hermetia illucens Growth and Development of Oil Extractor to Produce Biodiesel. Animals (Basel) 2021; 11:ani11092573. [PMID: 34573539 PMCID: PMC8470524 DOI: 10.3390/ani11092573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary This investigation was performed to establish an optimal feed for Hermetia illucens (black soldier fly) larvae (HIL) and to develop an oil extractor for biodiesel production. An optimal feed for HIL for biodiesel production was established using organic wastes such as dried-food waste, chicken manure, and waste cooking oil. In addition, an automatic oil extractor was developed that cost-effectively produced industrial biodiesel, livestock feed, and fertilizer from HIL. Consequently, this investigation can contribute to the establishment of industrial systems for biodiesel production using HIL. Abstract HIL are useful in agriculture because they can be used as feed for livestock or fertilizer and can bioconvert organic wastes, such as food waste and human and animal manure to usable fertilizer. In addition, HIL are being studied as a source of biodiesel because of their high-fat content. However, their use for biodiesel production has not been fully adopted. Here, the results showed that survival, weight gains, and total dried weight were significantly enhanced when HIL were fed dried-food waste (DFW)/chicken manure (CM). Furthermore, increased weight gain was observed in HIL fed DFW containing 5 mL waste cooking oil (WCO) per 100 g and 1.2% (v/w) fermented effective microorganism (F-EM). Based on these results, we prepared experimental feeds containing DFW, CM, WCO, and F-EM to establish an optimal feed for biodiesel production. We found that FT-1-2, a feed prepared with 60 g DFW, 40 g CM, 2 mL WCO, and 0.8% F-EM (v/w), significantly enhanced fat content, weight gain, and total dried weight of HIL. Our results indicate FT-1-2 is a suitable feed to breed HIL for biodiesel production. We then developed an automatic oil extractor for biodiesel production. The yield of the oil extractor was higher than that of solvent extraction. The study shows FT-1-2 is an optimal HIL feed for biodiesel production and that the developed oil extractor is useful for the extraction of crude oil from HIL and for the harvesting of defatted HIL frass for livestock feed and fertilizer. Taken together, we established an optimized low-cost feed for HIL breeding and developed an automatic oil extractor for the production of biodiesel from HIL.
Collapse
Affiliation(s)
- Kyu-Shik Lee
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju 38766, Korea;
| | - Eun-Young Yun
- Department of Integrative Bio-Industrial Engineering, Sejong University, Seoul 05006, Korea;
| | - Tae-Won Goo
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38766, Korea
- Correspondence: ; Tel.: +82-54-770-7801
| |
Collapse
|
22
|
Effect of the Rearing Substrate on Total Protein and Amino Acid Composition in Black Soldier Fly. Foods 2021; 10:foods10081773. [PMID: 34441550 PMCID: PMC8391998 DOI: 10.3390/foods10081773] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
Insects are becoming increasingly relevant as protein sources in food and feed. The Black Soldier Fly (BSF) is one of the most utilized, thanks to its ability to live on many leftovers. Vegetable processing industries produce huge amounts of by-products, and it is important to efficiently rear BSF on different substrates to assure an economical advantage in bioconversion and to overcome the seasonality of some leftovers. This work evaluated how different substrates affect the protein and amino acid content of BSF. BSF prepupae reared on different substrates showed total protein content varying between 35% and 49% on dry matter. Significant lower protein contents were detected in BSF grown on fruit by-products, while higher contents were observed when autumnal leftovers were employed. BSF protein content was mainly correlated to fibre and protein content in the diet. Among amino acids, lysine, valine and leucine were most affected by the diet. Essential amino acids satisfied the Food and Agricultural Organization (FAO) requirements for human nutrition, except for lysine in few cases. BSF could be a flexible tool to bio-convert a wide range of vegetable by-products of different seasonality in a high-quality protein-rich biomass, even if significant differences in the protein fraction were observed according to the rearing substrate.
Collapse
|
23
|
Recovery of phenolic compounds from agro-industrial by-products: Evaluating antiradical activities and immunomodulatory properties. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Ao Y, Yang C, Wang S, Hu Q, Yi L, Zhang J, Yu Z, Cai M, Yu C. Characteristics and nutrient function of intestinal bacterial communities in black soldier fly (Hermetia illucens L.) larvae in livestock manure conversion. Microb Biotechnol 2021; 14:886-896. [PMID: 32449587 PMCID: PMC8085981 DOI: 10.1111/1751-7915.13595] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/29/2022] Open
Abstract
The potential utility of black soldier fly larvae (BSFL) to convert animal waste into harvested protein or lipid sources for feeding animal or producing biodiesel provides a new strategy for agricultural waste management. In this study, the taxonomic structure and potential metabolic and nutrient functions of the intestinal bacterial communities of BSFL were investigated in chicken and swine manure conversion systems. Proteobacteria, Firmicutes and Bacteroidetes were the dominant phyla in the BSFL gut in both the swine and chicken manure systems. After the larvae were fed manure, the proportion of Proteobacteria in their gut significantly decreased, while that of Bacteroidetes remarkably increased. Compared with the original intestinal bacterial community, approximately 90 and 109 new genera were observed in the BSFL gut during chicken and swine manure conversion, and at least half of the initial intestinal genera found remained in the gut during manure conversion. This result may be due to the presence of specialized crypts or paunches that promote microbial persistence and bacteria-host interactions. Ten core genera were found in all 21 samples, and the top three phyla among all of the communities in terms of relative abundance were Proteobacteria, Firmicutes and Bacteroidetes. The nutrient elements (OM, TN, TP, TK and CF) of manure may partly affect the succession of gut bacterial communities with one another, while TN and CF are strongly positively correlated with the relative abundance of Providencia. Some bacterial taxa with the reported ability to synthesize amino acids, Rhizobiales, Burkholderia, Bacteroidales, etc., were also observed in the BSFL gut. Functional analysis based on genes showed that intestinal microbes potentially contribute to the nutrition of BSFL and the high-level amino acid metabolism may partly explain the biological mechanisms of protein accumulation in the BSFL body. These results are helpful in understanding the biological mechanisms of high-efficiency nutrient conversion in BSFL associated with intestinal microbes.
Collapse
Affiliation(s)
- Yue Ao
- State Key Laboratory of Biocatalysis and Enzyme EngineeringSchool of Life SciencesHubei Engineering Research Center for Bio‐enzyme CatalysisHubei UniversityWuhanChina
| | - Chongrui Yang
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyNational Engineering Research Centre of Microbial PesticidesHuazhong Agricultural UniversityWuhanChina
| | - Shengchen Wang
- State Key Laboratory of Biocatalysis and Enzyme EngineeringSchool of Life SciencesHubei Engineering Research Center for Bio‐enzyme CatalysisHubei UniversityWuhanChina
| | - Qingyi Hu
- State Key Laboratory of Biocatalysis and Enzyme EngineeringSchool of Life SciencesHubei Engineering Research Center for Bio‐enzyme CatalysisHubei UniversityWuhanChina
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme EngineeringSchool of Life SciencesHubei Engineering Research Center for Bio‐enzyme CatalysisHubei UniversityWuhanChina
| | - Jibin Zhang
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyNational Engineering Research Centre of Microbial PesticidesHuazhong Agricultural UniversityWuhanChina
| | - Ziniu Yu
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyNational Engineering Research Centre of Microbial PesticidesHuazhong Agricultural UniversityWuhanChina
| | - Minmin Cai
- State Key Laboratory of Agricultural MicrobiologyCollege of Life Science and TechnologyNational Engineering Research Centre of Microbial PesticidesHuazhong Agricultural UniversityWuhanChina
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme EngineeringSchool of Life SciencesHubei Engineering Research Center for Bio‐enzyme CatalysisHubei UniversityWuhanChina
| |
Collapse
|
25
|
Heuel M, Sandrock C, Leiber F, Mathys A, Gold M, Zurbrügg C, Gangnat IDM, Kreuzer M, Terranova M. Black soldier fly larvae meal and fat can completely replace soybean cake and oil in diets for laying hens. Poult Sci 2021; 100:101034. [PMID: 33662662 PMCID: PMC7937743 DOI: 10.1016/j.psj.2021.101034] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022] Open
Abstract
Currently, there is a great interest in finding alternative protein and energy sources to replace soybean-based feeds in poultry diets. The main objective of the present study was to completely replace soybean in layer diets with defatted meal and fat from black soldier fly larvae without adverse effects. For this purpose, 5 × 10 Lohmann Brown Classic hens were fed either a soybean-based diet or diets based on defatted black soldier fly larvae meal and fat from 2 producers (1 commercial, 1 small-scale) operating with different rearing substrates, temperatures, and larvae processing methods (10 hens/diet). The data obtained included nutrient composition of larvae meals and diets, amino acid digestibility (6 hens/diet), and metabolizability, performance and egg quality (all 10 hens/diet). In addition, the acceptance of the 4 larvae-based diets was tested against the soybean-based diet in a 6-day choice feeding situation (10 hens/treatment). The nutritional value of the larvae-based diets was equivalent to the soybean-based diet in hens with a laying performance of 98%. Although average feed intake was not significantly different over the 7 experimental weeks, the diets based on larvae feeds from the small-scale production appeared to be slightly less accepted in a choice situation than the soy-based diet and those with larvae from commercial origin. This was more likely the effect of the larvae fat rather than that of the larvae protein meal. In addition, the commercial larvae material was superior to that from the small-scale production concerning supply with digestible sulfur-containing amino acids (548 vs. 511 mg/day) and lysine (792 vs. 693 mg/day), egg weight (67 vs. 63 g), daily egg mass (66 vs. 61 g/day) and, in tendency, feed efficiency. The results indicate that soybean-based feeds can be replaced completely by black soldier fly meal and fat in diets of high-performing layers. However, because of nutritional differences between the larvae materials of different origin the quality of the larvae has to be closely monitored before being used.
Collapse
Affiliation(s)
- M Heuel
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - C Sandrock
- Research Institute of Organic Agriculture (FiBL), Departement of Livestock Science, 5070 Frick, Switzerland
| | - F Leiber
- Research Institute of Organic Agriculture (FiBL), Departement of Livestock Science, 5070 Frick, Switzerland
| | - A Mathys
- ETH Zurich, Laboratory of Sustainable Food Processing, 8092 Zurich, Switzerland
| | - M Gold
- ETH Zurich, Laboratory of Sustainable Food Processing, 8092 Zurich, Switzerland; Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department Sanitation, Water and Solid Waste for Development (Sandec), 8600 Dübendorf, Switzerland
| | - C Zurbrügg
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department Sanitation, Water and Solid Waste for Development (Sandec), 8600 Dübendorf, Switzerland
| | - I D M Gangnat
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - M Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - M Terranova
- ETH Zurich, AgroVet-Strickhof, 8315 Lindau, Switzerland.
| |
Collapse
|
26
|
Black Soldier Fly Larval Valorization Benefitting from Ex-Situ Fungal Fermentation in Reducing Coconut Endosperm Waste. Processes (Basel) 2021. [DOI: 10.3390/pr9020275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oftentimes, the employment of entomoremediation to reduce organic wastes encounters ubiquitous shortcomings, i.e., ineffectiveness to valorize recalcitrant organics in wastes. Considering the cost-favorability, a fermentation process can be employed to facilitate the degradation of biopolymers into smaller organics, easing the subsequent entomoremediation process. However, the efficacy of in situ fermentation was found impeded by the black soldier fly larvae (BSFL) in the current study to reduce coconut endosperm waste (CEW). Indeed, by changing into ex situ fermentation, in which the fungal Rhizopus oligosporus was permitted to execute fermentation on CEW prior to the larval feeding, the reduction of CEW was significantly enhanced. In this regard, the waste reduction index of CEW by BSFL was almost doubled as opposed to in situ fermentation, even with the inoculation of merely 0.5 wt % of Rhizopus oligosporus. Moreover, with only 0.02 wt % of fungal inoculation size to execute the ex situ fermentation on CEW, it could spur BSFL growth by about 50%. Finally, from the statistical correlation study using principal component analysis, the presence of Rhizopus oligosporus in a range of 0.5–1.0 wt % was regarded as optimum to ferment CEW via ex situ mode, prior to the valorization by BSFL in reducing the CEW.
Collapse
|
27
|
Wang Q, Ren X, Sun Y, Zhao J, Awasthi MK, Liu T, Li R, Zhang Z. Improvement of the composition and humification of different animal manures by black soldier fly bioconversion. JOURNAL OF CLEANER PRODUCTION 2021; 278:123397. [DOI: 10.1016/j.jclepro.2020.123397] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
28
|
Pang W, Hou D, Nowar EE, Chen H, Zhang J, Zhang G, Li Q, Wang S. The influence on carbon, nitrogen recycling, and greenhouse gas emissions under different C/N ratios by black soldier fly. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42767-42777. [PMID: 32720023 DOI: 10.1007/s11356-020-09909-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Currently, sustainable utilization, including recycling and valorization, is becoming increasingly popular in waste management. Black soldier fly larvae (BSFL) can convert the carbon (C) and nitrogen (N) from organic waste into biomass and improve properties of the substrate to reduce greenhouse gas and NH3 emissions. In this study, the recycling of C and N and the emissions of greenhouse gas and NH3 during BSFL bio-treatment of mixtures of pig manure and corncob were investigated under different C/N ratios. The results indicated that initial C/N ratios of feedstock are a crucial parameter affecting the biomass generation of larvae. The BSFL recycled approximately 4.17-6.61% of C and 17.45-23.73% of N from raw materials under different C/N ratios. Cumulative CO2, CH4, NH3, and N2O emissions at the different C/N ratios ranging from 15 to 35 were 107.92-151.68, 0.08-0.76, 0.14-1.17, and 0.91-1.18 mg kg-1, respectively. Compared with conventional composting, BSFL treatment could reduce the total greenhouse gas emissions by over 90%. The study showed that bio-treatment of mixtures of pig manure and corncob with a proper C/N ratio by BSFL could become an avenue to achieve higher nutrient recycling, which is an eco-friendly process.
Collapse
Affiliation(s)
- Wancheng Pang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dejia Hou
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Elhosseny E Nowar
- Plant Protection Department, Faculty of Agriculture, Benha University, Moshtohor, Kaluybia, 13736, Egypt
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoping Zhang
- College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China
| | - Qing Li
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shucai Wang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
29
|
Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Sci Rep 2020; 10:19448. [PMID: 33173088 PMCID: PMC7655861 DOI: 10.1038/s41598-020-76571-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/27/2020] [Indexed: 11/09/2022] Open
Abstract
Organic waste is a rapidly increasing problem due to the growth of the agricultural production needed to meet global food demands. Development of sustainable waste management solutions is essential. Black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae) (BSF), larvae are voracious consumers of a wide range of organic materials ranging from fruits and vegetables to animal remains, and manure. Thanks to this ability and considering the larval high protein and lipid content, BSF larvae are a useful additive in animal feeds and biodiesel production. Unfortunately, the feasibility of using the black soldier fly as a tool for waste valorization and feed production has primarily been investigated at the benchtop scale. Thus, mobilization of current practices to an industrial scale is challenging because scaling up from small laboratory studies to large industrial studies is not necessarily linear. The goal of this study was to demonstrate the ability of the BSF to recycle organic waste at an industrial scale. To accomplish this goal, three organic waste streams were used (e.g., apples, bananas, and spent grain from a brewery) to test six diet treatments (1) apple, (2) banana, (3) spent grain, (4) apple and banana, (5) apple and spent grain, and (6) banana and spent grain. Working at scale of 10,000 BSF larvae life history traits, waste valorization, protein and lipid profiles were measured for each diet treatment. Differences were recorded across all variables, except substrate conversion, for larvae fed on fruit and spent grain (alone or with fruit). Growth rate significantly differed across treatments; larvae reared on spent grain grew twice as fast as those fed apples alone, but those reared on the apple and spent grain mixture produced twice as much insect biomass. However, it should be noted that larvae resulting from the apple diet contained 50% more fat than larvae fed the fruit and spent grain mixtures. Commonly-available organic wastes were successfully used at an industrial scale to produce BSF larvae that have the potential to substitute other sources of protein and lipids in different industrial applications. Industrialization efforts are encouraged to assess these impacts when integrating diverse ingredients into larval diets as a means to more precisely predict output, such as larval development time and final larval biomass.
Collapse
|
30
|
Nguyen HC, Nguyen NT, Su CH, Wang FM, Tran TN, Liao YT, Liang SH. Biodiesel Production from Insects: From Organic Waste to Renewable Energy. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190422125120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The conversion of organic wastes into biodiesel has become an attractive solution
to address waste surplus problems and energy depletion. Oleaginous insects can degrade
various organic wastes to accumulate fat-based biomass, thus serving as a potential
feedstock for biodiesel production. Therefore, the use of insects fed on organic waste for
biodiesel production has increasingly attracted considerable investigations. In recent
years, different insect species have been studied for their efficiency in converting various
organic wastes and for producing biodiesel from their fat. Several methods have been developed
for biodiesel production from insects to improve yields and reduce production
costs and environmental impacts. This review summarizes the latest findings of the use of
insects for converting organic wastes into biodiesel. The production processes and fuel
properties of biodiesel produced from insects are also discussed.
Collapse
Affiliation(s)
- Hoang Chinh Nguyen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Ngoc Tuan Nguyen
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Chia-Hung Su
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Fu-Ming Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Tuyet Nhung Tran
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Ying-Tzu Liao
- Graduate School of Biochemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Shih-Hsiang Liang
- Hsinchu Branch, Livestock Research Institute, Council of Agriculture, Miaoli County 36841, Taiwan
| |
Collapse
|
31
|
Ermolaev E, Lalander C, Vinnerås B. Greenhouse gas emissions from small-scale fly larvae composting with Hermetia illucens. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 96:65-74. [PMID: 31376971 DOI: 10.1016/j.wasman.2019.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Fly larvae composting is an emerging waste treatment alternative with great potential to increase revenue from food waste management. For wider implementation, fly larvae composting has to be evaluated in comparison with conventional systems, based on direct greenhouse gas (GHG) emission data for the treatment process, which are currently limited. This study evaluated direct emissions of CO2, CH4, N2O and NH3 from composting of food waste using black soldier fly (BSF) larvae (Hermetia illucens). Use of BSF larvae-associated bacteria in 7-day pre-treatment and seeding at larvae treatment start were evaluated and compared to larvae treatment without bacteria addition. The treatments were performed in a set of 14-day laboratory-scale experiments. Mean substrate reduction was 49 ± 8% and bioconversion ratio was 24 ± 8% (both dry matter basis). Direct GHG emissions from the fly larvae treatment process were generally very small, with emissions of CH4 and N2O equivalent to 0.38 kg CO2-equivalents per ton food waste treated assuming global warming potential over 100 years, while mean total CO2 emissions were 96 g CO2 per kg food waste treated. Additional emissions could be expected to occur in the pre-treatment process, which did not provide any significant improvement in bioconversion ratio or reduction in total GHG emissions during treatment. Similarly, use of BSF larvae-associated bacteria did not significantly improve process efficiency. No NH3 emissions were detected, as reflected in total N mass balance over the treatment cycle. The results show that total direct GHG emissions from food waste treatment by fly larvae composting are lower than those from conventional food waste treatment, and that pre-treatment and seeding of food waste with BSF larvae-associated bacteria do not further reduce total GHG emissions.
Collapse
Affiliation(s)
- E Ermolaev
- Swedish University of Agricultural Sciences (SLU), Department of Energy and Technology, Box 7032, 75007 Uppsala, Sweden.
| | - C Lalander
- Swedish University of Agricultural Sciences (SLU), Department of Energy and Technology, Box 7032, 75007 Uppsala, Sweden
| | - B Vinnerås
- Swedish University of Agricultural Sciences (SLU), Department of Energy and Technology, Box 7032, 75007 Uppsala, Sweden
| |
Collapse
|
32
|
Wang J, Yang Y, Jia Q, Shi Y, Guan Q, Yang N, Ning P, Wang Q. Solid-Waste-Derived Carbon Dioxide-Capturing Materials. CHEMSUSCHEM 2019; 12:2055-2082. [PMID: 30664329 DOI: 10.1002/cssc.201802655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Solid sorbents are considered to be promising materials for carbon dioxide capture. In recent years, many studies have focused on the use of solid waste as carbon dioxide sorbents. The use of waste resources as carbon dioxide sorbents not only leads to the development of relatively low-cost materials, but also eliminates waste simultaneously. Different types of waste materials from biomass, industrial waste, household waste, and so forth were used as carbon dioxide sorbents with sufficient carbon dioxide capture capacities. Herein, progress on the development of carbon dioxide sorbents produced from waste materials is reviewed and covers key factors, such as the type of waste, preparation method, further modification method, carbon dioxide sorption performance, and kinetics studies. In addition, a new research direction for further study is proposed. It is hoped that this critical review will not merely sum up the major research directions in this field, but also provide significant suggestions for future work.
Collapse
Affiliation(s)
- Junya Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Ying Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Qingming Jia
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Yuzhen Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Qingqing Guan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Na Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Qiang Wang
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083, PR China
| |
Collapse
|
33
|
Gao Q, Deng W, Gao Z, Li M, Liu W, Wang X, Zhu F. Effect of sulfonamide pollution on the growth of manure management candidate Hermetia illucens. PLoS One 2019; 14:e0216086. [PMID: 31067258 PMCID: PMC6505776 DOI: 10.1371/journal.pone.0216086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/12/2019] [Indexed: 11/28/2022] Open
Abstract
Antibiotics are commonly used in livestock and poultry farming. Residual antibiotics in manure may lead to antibiotic pollution of soil, surface water, and groundwater through land application and run-off rainfall. The black soldier fly (BSF) Hermetia illucens is a good candidate for manure management. We evaluated the effect of sulfonamide pollution on the growth of H. illucens. Four treatments were considered with a sulfonamide content in the feed of 0 (control group), 0.1, 1, and 10 mg/kg. The control larvae were fed without sulfonamide. Survival and development status of the individuals were recorded daily. The weights of the fifth instar larvae, prepupae, and pupae were checked. Antioxidant enzyme activity was determined with the fifth instar larvae. The results showed that a low (0.1 and 1 mg/kg) concentration of sulfonamides had no effects on larval survival, pupation, and eclosion of BSFs. A high sulfonamide concentration of 10 mg/kg had a significant effect on the survival of larvae and pupae and on the body weight of larvae, prepupae and pupae. Peak of the cumulated pupation rate and eclosion rate in the sulfonamide treatment of 10 mg/kg was very low. Pupation and eclosion in this group peaked later than that of the control and low sulfonamide concentration treatment groups (0.1 mg/kg and 1 mg/kg). Larvae from the sulfonamides group showed lower antioxidase activities than that of the control. In sulfonamide groups, the activity of peroxidase and superoxide dismutase was reduced in a concentration-dependent manner. Sulfamonomethoxine, sulfamethoxazole, and sulfamethazine were not detected in the harvested prepupae. Only sulfadiazine was discovered in the sulfonamide treatments of 1 and 10 mg/kg. In conclusion, BSFs can tolerate certain concentrations of sulfonamide contamination.
Collapse
Affiliation(s)
- Qiao Gao
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, China
| | - Wenhui Deng
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, China
| | - Zhenghui Gao
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, China
| | - Mengya Li
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, China
| | - Xiaoping Wang
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, China
| | - Fen Zhu
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
34
|
Biofuel Produced from Solid-State Anaerobic Digestion of Dairy Cattle Manure in Coordination with Black Soldier Fly Larvae Decomposition. ENERGIES 2019. [DOI: 10.3390/en12050911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was conducted to evaluate the feasibility of applying a two-step biological treatment process, solid-state anaerobic digestion (SSAD) and black soldier fly larvae (BSFL) composting, for the treatment of dairy cattle manure. Biogas from the SSAD of dairy cattle manure, and the digestate of SSAD was fed to BSFL. In turn, BSFL can be fed to animals as a protein supplement. Adjustment of the pH and 30% inoculation ratio (IR30) during SSAD produced the highest theoretical methane yield, 626.1 ± 28.7 L CH4/kg VSdes, with an ultimate methane yield of 96.81 ± 2.0 L CH4/kg VSload. For BSFL composting, the groups with a feeding rate of 75 and 100 mg/day/larvae had the highest body weight change, which was 969.6 ± 28.4% and 984.1 ± 177.6%, respectively. The combination process of SSAD and BSFL composting increases the incentive for dairy cattle manure treatment instead of conventional composting and produced more valuable products.
Collapse
|
35
|
Somroo AA, Ur Rehman K, Zheng L, Cai M, Xiao X, Hu S, Mathys A, Gold M, Yu Z, Zhang J. Influence of Lactobacillus buchneri on soybean curd residue co-conversion by black soldier fly larvae (Hermetia illucens) for food and feedstock production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 86:114-122. [PMID: 30902235 DOI: 10.1016/j.wasman.2019.01.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/07/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Black soldier fly larvae (BSFL), Hermetia illucens (Diptera: Stratiomyidae) can reduce environmental pollution and convert organic wastes into biomass that is rich in protein and fat. The influence of the nutritional characteristics of organic waste on BSFL characteristics relevant for food and feed safety remains poorly understood. To evaluate the conversion of soybean curd residues (SCR) into high-quality animal-derived proteins and fats for human and livestock consumption, this study assessed the co-conversion efficacy, nutrient composition, safety, and anti-nutritional factor concentrations in BSFL after the development on SCR with Lactobacillus buchneri (L3-9). SCR was pretreated with L. buchneri (108 cfu/ml), and then BSFL was employed for conversion. BSFL fed with SCR and L. buchneri had a significantly higher dry mass reduction (55.7 ± 0.9%), bioconversion rate (6.9 ± 0.3%), crude protein content (55.3 ± 0.6%), and fat content (30.0 ± 0.6%) than SCR (49.0 ± 0.7%, 5.0 ± 0.3%, 52.8 ± 0.3%, and 26.1 ± 0.8%, respectively) and artificial feed (43.9 ± 0.8%, 3.9 ± 0.1%, 50.3 ± 0.4%, and 24.3 ± 0.4%, respectively). However, the feed conversion ratio (8.0 ± 0.3), of BSFL fed with SCR and L. buchneri was lower than that of the BSFL fed with SCR (9.8 ± 0.1) and artificial feed (11.1 ± 0.5). In addition, BSFL had satisfactory concentrations of all essential amino acids and fatty acids required for human consumption as recommended by WHO/FAO/UNU. The heavy metals and anti-nutritional factor concentrations were within the safety intake levels for food and feedstock. Therefore, the addition of L. buchneri with BSFL on SCR did not only increase co-conversion performance but also enhanced the nutritional value of BSFL.
Collapse
Affiliation(s)
- Abdul Aziz Somroo
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kashif Ur Rehman
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Livestock and Dairy Development Department, Poultry Research Institute, Government of Punjab, Pakistan
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaopeng Xiao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shencai Hu
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Alexander Mathys
- Laboratory of Sustainable Food Processing, Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland
| | - Moritz Gold
- Laboratory of Sustainable Food Processing, Institute of Food, Nutrition and Health, ETH Zurich, Zürich, Switzerland; Department of Sanitation, Water and Solid Waste for Development (Sandec), Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
36
|
Influence of the killing method of the black soldier fly on its lipid composition. Food Res Int 2019; 116:276-282. [DOI: 10.1016/j.foodres.2018.08.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/11/2018] [Accepted: 08/12/2018] [Indexed: 12/13/2022]
|
37
|
Gold M, Tomberlin JK, Diener S, Zurbrügg C, Mathys A. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 82:302-318. [PMID: 30509593 DOI: 10.1016/j.wasman.2018.10.022] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 06/09/2023]
Abstract
Processing of biowaste with larvae of the black soldier fly, Hermetia illucens L. (Diptera: Stratiomyidae), is an emerging waste treatment technology. Larvae grown on biowaste can be a relevant raw material for animal feed production and can therefore provide revenues for financially viable waste management systems. In addition, when produced on biowaste, insect-based feeds can be more sustainable than conventional feeds. Among others, the scalability of the technology will depend on the availability of large amounts of biowaste with a high process performance (e.g. bioconversion of organic matter to proteins and lipids) and microbial and chemical product safety. Currently, in contrast to other waste treatment technologies, such as composting or anaerobic digestion, the process performance is variable and the processes driving the decomposition of biowaste macronutrients, inactivation of microbes and fate of chemicals is poorly understood. This review presents the first summary of the most important processes involved in black soldier fly larvae (BSFL) treatment, based on the available knowledge concerning five well-studied fly species. This is a starting point to increase understanding regarding the processes of this technology, with the potential to increase its efficiency and uptake, and support the development of appropriate regulations. Based on this review, formulating different types of biowaste, e.g. to produce a diet with a similar protein content, a balanced amino acid profile and/or pre- and co-treatment of biowaste with beneficial microbes, has the potential to increase process performance. Following harvest, larvae require heat or other treatments for microbial inactivation and safety.
Collapse
Affiliation(s)
- Moritz Gold
- ETH Zurich: Swiss Federal Institute of Technology Zurich, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, 8092 Zurich, Switzerland; Eawag: Swiss Federal Institute of Aquatic Science and Technology, Sandec: Department Sanitation, Water and Solid Water for Development, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Jeffery K Tomberlin
- Texas A&M University, Department of Entomology, 370 Olsen Boulevard, College Station, TX 77843, USA
| | - Stefan Diener
- Biovision Foundation, Heinrichstrasse 147, 8005 Zurich, Switzerland
| | - Christian Zurbrügg
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Sandec: Department Sanitation, Water and Solid Water for Development, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Alexander Mathys
- ETH Zurich: Swiss Federal Institute of Technology Zurich, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| |
Collapse
|
38
|
Li W, Li Q, Wang Y, Zheng L, Zhang Y, Yu Z, Chen H, Zhang J. Efficient bioconversion of organic wastes to value-added chemicals by soaking, black soldier fly (Hermetia illucens L.) and anaerobic fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 227:267-276. [PMID: 30199722 DOI: 10.1016/j.jenvman.2018.08.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/04/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Corncob degradation is an issue that needs to be address for it to be further utilized as bioenergy. We explored a new comprehensive degradation strategy for corncob. First, restaurant wastewater was used to improve the corncob biochemical characteristics and partly degrade the lignocelluloses. After the restaurant wastewater treatment, the residue was converted using black soldier fly larvae (BSFL), and the supernatant was utilized for biogas production by anaerobic fermentation. The highest product rates of glucose, xylose, and arabinose were obtained at the optimal corncob soaking condition at 75 °C, 5 h, and 60 g/L from lignocellulose. The soaking residue was converted using BSFL for 10 days, and 24.34% grease yield was extracted. The soaking residue can be utilized by BSFL and produce grease, which is similar to other wastes such as rice straw and pig manure. The corncob soaking supernatant was utilized for biogas production by anaerobic fermentation. The degradation of cellulose, hemicellulose, and lignin reached about 27.34%, 45.14%, and 29.33%, respectively. A total of 500 mL supernatant mixed with 30% anaerobic sludge under 35 ± 2 °C produced about 7.52 L of biogas with about 3.22 L methane. In conclusion, the above comprehensive process can effectively degrade lignocellulose in corncob and obtain two bioenergy products, namely insect grease and biogas.
Collapse
Affiliation(s)
- Wu Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Qing Li
- College of Science, Huazhong Agricultural University, Wuhan, 430070 PR China
| | - YuanYuan Wang
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Yanlin Zhang
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, PR China.
| |
Collapse
|
39
|
Kumar S, Negi S, Mandpe A, Singh RV, Hussain A. Rapid composting techniques in Indian context and utilization of black soldier fly for enhanced decomposition of biodegradable wastes - A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 227:189-199. [PMID: 30193208 DOI: 10.1016/j.jenvman.2018.08.096] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
In the present scenario, solid waste management (SWM) has become one of the main concerns for urban waste managers in the developing world. This article reviews the recent trends and technologies associated with the process of composting. Utilization of black soldier fly (BSF) larvae can be one of the rapid methods for treatment of biodegradable wastes. A detailed review of the literature indicated that more importance is to be given on the pre-processing of Municipal Solid Waste (MSW) which includes segregation of biodegradables, inerts, metals for preparing the requisite substrate for application of the suitable technology. In developing countries, major emphasis should be given on curtailing the environmental and health impacts caused due to improper management of MSW and for developing some innovative as well as economically feasible systems for proper handling of MSW. BSF can transform the biodegradable wastes into biofuels and byproducts at a minimal cost. The utilization of BSF for treating various organic waste (OW) has been thoroughly studied and discussed in detail. The salient observations on the factors affecting the growth of BSF larvae as well as comprehensive analysis of patents on breeding and utilization of BSF are also presented in this paper. The present review also assesses the potential of various rapid composting techniques and advocates about the planning and development of real-scale treatment systems by the researchers, environmental planners and policy makers to eradicate the problem of solid wastes.
Collapse
Affiliation(s)
- Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India.
| | - Suraj Negi
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440 020, India; C.B.P. Government Engineering College, Jaffarpur, New Delhi, 110 073, India
| | - Ashootosh Mandpe
- Dr. B.R. Ambedkar National Research Fellow, Academy of Scientific and Innovative Research (AcSIR), CSIR-NEERI, Nehru Marg, Nagpur, 440 020, India
| | - Ran Vijay Singh
- Birla Institute of Technology, Sindri, Jharkhand, 82 8123, India
| | - Athar Hussain
- C.B.P. Government Engineering College, Jaffarpur, New Delhi, 110 073, India
| |
Collapse
|
40
|
Ishak S, Kamari A, Yusoff SNM, Halim ALA. Optimisation of biodiesel production of Black Soldier Fly larvae rearing on restaurant kitchen waste. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/1097/1/012052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Xiao X, Mazza L, Yu Y, Cai M, Zheng L, Tomberlin JK, Yu J, van Huis A, Yu Z, Fasulo S, Zhang J. Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:668-676. [PMID: 29654970 DOI: 10.1016/j.jenvman.2018.03.122] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/17/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
A chicken manure management process was carried out through co-conversion of Hermetia illucens L. larvae (BSFL) with functional bacteria for producing larvae as feed stuff and organic fertilizer. Thirteen days co-conversion of 1000 kg of chicken manure inoculated with one million 6-day-old BSFL and 109 CFU Bacillus subtilis BSF-CL produced aging larvae, followed by eleven days of aerobic fermentation inoculated with the decomposing agent to maturity. 93.2 kg of fresh larvae were harvested from the B. subtilis BSF-CL-inoculated group, while the control group only harvested 80.4 kg of fresh larvae. Chicken manure reduction rate of the B. subtilis BSF-CL-inoculated group was 40.5%, while chicken manure reduction rate of the control group was 35.8%. The weight of BSFL increased by 15.9%, BSFL conversion rate increased by 12.7%, and chicken manure reduction rate increased by 13.4% compared to the control (no B. subtilis BSF-CL). The residue inoculated with decomposing agent had higher maturity (germination index >92%), compared with the no decomposing agent group (germination index ∼86%). The activity patterns of different enzymes further indicated that its production was more mature and stable than that of the no decomposing agent group. Physical and chemical production parameters showed that the residue inoculated with the decomposing agent was more suitable for organic fertilizer than the no decomposing agent group. Both, the co-conversion of chicken manure by BSFL with its synergistic bacteria and the aerobic fermentation with the decomposing agent required only 24 days. The results demonstrate that co-conversion process could shorten the processing time of chicken manure compared to traditional compost process. Gut bacteria could enhance manure conversion and manure reduction. We established efficient manure co-conversion process by black soldier fly and bacteria and harvest high value-added larvae mass and biofertilizer.
Collapse
Affiliation(s)
- Xiaopeng Xiao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lorenzo Mazza
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Via F. Stagno D'Alcontres n.31, 98166 Messina, Italy
| | - Yongqiang Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | - Jeffrey Yu
- Texas Academy of Mathematics and Science, University of North Texas 1155 Union Circle #311070, Denton, TX 76203-5017, USA
| | - Arnold van Huis
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Salvatore Fasulo
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Via F. Stagno D'Alcontres n.31, 98166 Messina, Italy
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
42
|
Cai M, Hu R, Zhang K, Ma S, Zheng L, Yu Z, Zhang J. Resistance of black soldier fly (Diptera: Stratiomyidae) larvae to combined heavy metals and potential application in municipal sewage sludge treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1559-1567. [PMID: 29098581 DOI: 10.1007/s11356-017-0541-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Treating municipal sewage sludge (MSS) sustainably and economically in China remains a challenge because of risks associated with the heavy metals it contains. In this study, black solider fly larvae (BSFL) were used for MSS treatment. The resistance of larvae to combined heavy metals and their potential use in conversion of MSS were investigated. The results indicated that seven MSS samples contained large amounts of heavy metals, with the lead and nickel contents of several samples exceeding Chinese national discharge standards. BSFL were highly tolerant to an artificial diet spiked with combined heavy metals. Principal component analysis revealed that high concentrations of lead, nickel, boron, and mercury potentially interfered with larval weight gain, while zinc, copper, chromium, cadmium, and mercury slightly reduced larval survival. The addition of chicken manure and wheat bran as co-substrates improved the conversion process, which was influenced by the nature and amount of added co-substrate and especially the quantity of nitrogen added. With the amended substrate, the BSFL accumulated heavy metals into their bodies but not into extracted larval oil. The heavy metal content of the treatment residue was lower than that considered safe for organic-inorganic compound fertilizers standards in China and the harvested larvae could be used as a source of oil for industrial application.
Collapse
Affiliation(s)
- Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Ruiqi Hu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Ke Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Shiteng Ma
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Centre of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
43
|
Law Y, Wein L. Reversing the nutrient drain through urban insect farming—opportunities and challenges. AIMS BIOENGINEERING 2018. [DOI: 10.3934/bioeng.2018.4.226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Caligiani A, Marseglia A, Leni G, Baldassarre S, Maistrello L, Dossena A, Sforza S. Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Res Int 2017; 105:812-820. [PMID: 29433277 DOI: 10.1016/j.foodres.2017.12.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/28/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022]
Abstract
Black soldier fly (BSF, Hermetia illucens) constitutes an economic way to convert residual biomasses into a valuable source of biomolecules, such as proteins, lipids and chitin. The present investigation was undertaken to evaluate the feasibility of applying different extraction protocols, either chemical extractions or enzymatic assisted extraction, to recover pure fat, protein and chitin fractions. First, exact proximate composition, total amino acids, fatty acids profile, and N-acetylglucosamine content of the prepupae samples were determined. BSF prepupae biomass contained, expressed on dry weight, 32% proteins, 37% lipids, 19% minerals, 9% chitin. The lipid fraction was easily recovered by organic solvents, while the most challenging issue was the separation of protein from chitin. The best separation was obtained by alkali extraction of proteins (96% of protein recovered) albeit with loss in their integrity as indicated by the measurement of the degree of hydrolysis with the o-phthaldialdehyde method. To avoid protein damage in alkali media, a stepwise protein extraction adopting milder conditions was also explored based on Osborne fractionation method, allowing the recovery of >85% of BSF high purity and high quality proteins, and the obtainment of chitin-enriched fraction as well. The possibility of using an enzymatic assisted extraction of proteins was also explored, obtaining a maximum nitrogen solubilisation in the best case (with Bacillus licheniformis protease) of about 60%. In this latter case, the chitin fraction obtained also had a significant residual protein content.
Collapse
Affiliation(s)
- Augusta Caligiani
- Department of Food and Drug, University of Parma, Parma, Italy; SITEIA.PARMA, Parma, Italy
| | | | - Giulia Leni
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Lara Maistrello
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy; BIOGEST-SITEIA, Reggio Emilia, Italy
| | - Arnaldo Dossena
- Department of Food and Drug, University of Parma, Parma, Italy; SITEIA.PARMA, Parma, Italy
| | - Stefano Sforza
- Department of Food and Drug, University of Parma, Parma, Italy; SITEIA.PARMA, Parma, Italy.
| |
Collapse
|
45
|
Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS One 2017; 12:e0182601. [PMID: 28796830 PMCID: PMC5552164 DOI: 10.1371/journal.pone.0182601] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/23/2017] [Indexed: 11/28/2022] Open
Abstract
Black soldier fly (BSF) larvae, Hermetia illucens L., develops on organic wastes, reducing ecological pollution and converting waste biomass into protein and fat rich insect biomass. BSF can replace increasingly expensive protein sources used in poultry, aquaculture and livestock compound diet formulation, such as fish meal and soybean meal, which holds the potential to alleviate future food and feed insecurity. The fate of nutritional spectra in BSF during its life cycle phases is still poorly understood. This study assessed metabolic changes in nutrition composition of BSF from egg to adult. A rapid increase of crude fat content was observed since the development of 4–14 days of larvae with its maximum level reaching 28.4% in dry mass, whereas the crude protein displayed a continuous decreasing trend in the same development phases with minimum level of 38% at larval phase (12 days) and peak level of 46.2% at early pupa stage. A sharp drop in crude fat was noticed from early prepupae to late pupae (24.2%, 8.2% respectively). However crude protein shows its maximum value being 57.6% at postmortem adult stage with 21.6% fat level. In addition, fatty acids, amino acids, minerals and vitamins composition in different development stages of BSF were presented and compared. Findings from this study could provide podium to food and feed industry for framing a strategy for specific molecular nutritional component intake into the diets of humans, aquaculture and animals. It is also indicated that BSF is a possible insect which can be applied to combating the food scarcity of countries where micronutrient deficiency is prevalent. Moreover it contributes to advance exploring for developmental and metabolic biology of this edible insect.
Collapse
|
46
|
Rehman KU, Cai M, Xiao X, Zheng L, Wang H, Soomro AA, Zhou Y, Li W, Yu Z, Zhang J. Cellulose decomposition and larval biomass production from the co-digestion of dairy manure and chicken manure by mini-livestock (Hermetia illucens L.). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 196:458-465. [PMID: 28342340 DOI: 10.1016/j.jenvman.2017.03.047] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 05/06/2023]
Abstract
World trends toward the modern dairies intensification on large production units cause massive animal manure production and accumulation. Improper handling of manure produced by industrial farm operation greatly deteriorates the major environmental media including air, water and soil. The black soldier fly utilizes organic waste and converts it into larvae biomass to be used as livestock feed and into residues to be used as bio-fertilizer. However, due to the high ratio of cellulose, hemicellulose and lignin in dairy manure, this conversion is difficult. Therefore, dairy manure treated with chicken manure was digested by Hermetia illucens. In this paper, we found that the co-digestion process significantly enhanced the larval production, waste mass reduction, rate of larvae conversion, feed conversion ratio, nutrient reduction and fibers utilization. Whereas 40% dairy manure and 60% chicken manure group show better results than other manure mixtures and had a significantly increased the cellulose consumption by 61.19%, hemicellulose consumption by 53.22% and lignin consumption by 42.23% compared with 49.89%, 49.77% and 31.95%, respectively, in the dairy-only manure group. Finally, scanning electron microscopy was used to analyze the structural changes of dairy manure, chicken manure and their co-digestion mixtures. The scan electron microscopy showed the deterioration in the structure of dairy and chicken manure fibers by Hermetia illucens. Moreover, the carbon-nitrogen ratio was decreased in all end products of post vermicomposting. The results suggest that the co-digestion of 40% dairy manure with 60% chicken manure is an appropriate proportion for dairy manure management with the black soldier fly.
Collapse
Affiliation(s)
- Kashif Ur Rehman
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Livestock and Dairy Development Department, Government of Punjab, Pakistan
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaopeng Xiao
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Wang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Abdul Aziz Soomro
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yusha Zhou
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu Li
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
47
|
Wang H, Rehman KU, Liu X, Yang Q, Zheng L, Li W, Cai M, Li Q, Zhang J, Yu Z. Insect biorefinery: a green approach for conversion of crop residues into biodiesel and protein. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:304. [PMID: 29255487 PMCID: PMC5729465 DOI: 10.1186/s13068-017-0986-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/30/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND As a major lignocellulosic biomass, which represented more than half of the world's agricultural phytomass, crop residues have been considered as feedstock for biofuel production. However, large-scale application of this conventional biofuel process has been facing obstacles from cost efficiency, pretreatment procedure, and secondary pollution. To meet the growing demands for food, feed, and energy as the global population continues to grow, certain kinds of insects, many of which are voracious feeders of organic wastes that may help address environmental, economic, and health issues, have been highlighted as a source of protein and fat. RESULTS The biorefinery studied includes initial corn stover degradation by yellow mealworm (Tenebrio molitor L.), followed by a second stage that employs black soldier fly (Hermetia illucens L.), to utilize the residues produced during the first stage. These two insect-based biorefinery yielded 8.50 g of insect biomass with a waste dry mass reduction rate of 51.32%, which resulted in 1.95 g crude grease from larval biomass that produced 1.76 g biodiesel, 6.55 g protein, and 111.59 g biofertilizer. The conversion rate of free fatty acids of crude grease into biodiesel reached 90%. The components of cellulose, hemicellulose, and lignin contained in corn stover hydrolyzed harmoniously, resulting in declines of 45.69, 51.85, and 58.35%, respectively. Moreover, fluctuations in lipid, protein, and reducing sugar were also analyzed. CONCLUSION The investigation findings demonstrated that successive co-conversion of corn stover by insects possessing different feeding habits could be an attractive option for efficient utilization of lignocellulosic resources, and represents a potentially valuable solution to crop residues management, rise of global liquid energy, and animal feed demand.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Kashif ur Rehman
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Livestock and Dairy Development Department, Punjab, Pakistan
| | - Xiu Liu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Qinqin Yang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Wu Li
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Qing Li
- College of Science, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| |
Collapse
|
48
|
Li C, Ding D, Xia Q, Liu X, Wang Y. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps. CHEMSUSCHEM 2016; 9:1712-1718. [PMID: 27241180 DOI: 10.1002/cssc.201600386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/24/2016] [Indexed: 06/05/2023]
Abstract
Synthesis of branched long-chain alkanes from renewable biomass has attracted intensive interest in recent years, but the feedstock for this synthesis is restricted to platform chemicals. Here, we develop an effective and energy-efficient process to convert raw lignocellulosic biomass (e.g., corncob) into branched diesel-range alkanes through three tandem steps for the first time. Furfural and isopropyl levulinate (LA ester) were prepared from hemicellulose and cellulose fractions of corncob in toluene/water biphasic system with added isopropanol, which was followed by double aldol condensation of furfural with LA ester into C15 oxygenates and the final hydrodeoxygenation of C15 oxygenates into branched long-chain alkanes. The core point of this tandem process is the addition of isopropanol in the first step, which enables the spontaneous transfer of levulinic acid (LA) into the toluene phase in the form of LA ester through esterification, resulting in LA ester co-existing with furfural in the same phase, which is the basis for double aldol condensation in the toluene phase. Moreover, the acidic aqueous phase and toluene can be reused and the residues, including lignin and humins in aqueous phase, can be separated and carbonized to porous carbon materials.
Collapse
Affiliation(s)
- Chunrui Li
- Key Lab for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, PR China
| | - Daqian Ding
- Key Lab for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, PR China
| | - Qineng Xia
- Key Lab for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, PR China
| | - Xiaohui Liu
- Key Lab for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, PR China
| | - Yanqin Wang
- Key Lab for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, PR China.
| |
Collapse
|