1
|
Mahieux M, Braga Nan L, Zbair M, Aemig Q, Richard C, Delgenès JP, Juge M, Bennici S, Limousy L, Trably E, Escudié R. Physicochemical properties of carbon-based materials enhance in situ biomethanation performances under organic overload. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 203:114869. [PMID: 40344975 DOI: 10.1016/j.wasman.2025.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Carbon-based materials gained attention for their potential to improve anaerobic digestion (AD) performance. Meanwhile, in situ biomethanation, where external H2 is injected into the AD process to enhance the CH4 content in biogas, is more subjected to process inhibition than AD while facing sudden changes in operational parameters. This study explored the effects of carbon-based materials on a semi-continuous in situ biomethanation process performance and stability. Two biochars and one granular activated carbon were tested at a concentration of 10 g·L-1. The experiment was conducted in three phases: a one-week start-up phase in AD conditions, an 8-week phase of in situ biomethanation, reaching a steady state, and a 2-week overload phase performed to create instability during the in situ biomethanation process. All additives significantly mitigated process failure under overload conditions, with CH4 production reaching 117 ± 16 vs 160 ± 16 NmL CH4·d-1 on the first week of organic overload (control vs average of all supplemented conditions). Specifically, the use of GAC-BC, with the highest surface area, pore volume, and diameter, led to a tenfold increase in CH4 production compared to the control in the overload phase. This improvement was associated with higher archaeal diversity and dominance of the Bacteroidales class. Conversely, the biochars, with lower surface properties, did not enhance microbial growth or improve final VFA consumption, resulting in final VFA concentrations similar to the control (11gCOD·L-1). These findings highlight the importance of surface properties in additives for mitigating VFA accumulation under stressed conditions during in situ biomethanation.
Collapse
Affiliation(s)
- M Mahieux
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France; ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - L Braga Nan
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France
| | - M Zbair
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; Université de Haute Alsace (UHA), 68093 Mulhouse, France
| | - Q Aemig
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - C Richard
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - J-P Delgenès
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France
| | - M Juge
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France
| | - S Bennici
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
| | - L Limousy
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France; Université de Haute Alsace (UHA), 68093 Mulhouse, France
| | - E Trably
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France
| | - R Escudié
- INRAE, Univ. Montpellier, LBE, 102 Avenue des étangs, F-11100 Narbonne, France.
| |
Collapse
|
2
|
Liang Z, Ding W, Zhang X, Chen Y, Shen N. Magnetite-mediating direct interspecies electron transfer is not pivotal role in directing electrons toward methane production from sulfate containing wastewater. BIORESOURCE TECHNOLOGY 2025; 416:131809. [PMID: 39542058 DOI: 10.1016/j.biortech.2024.131809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Sulfate reduction can compete for electrons with methane production, thereby reducing methane production. Several factors, such as magnetite addition, carbon sources, and the chemical oxygen demand (COD)/SO42- ratio, can influence the direction of electron flow toward methanogenesis. However, their contributions to methane production remain unclear. In this study, the addition of magnetite significantly enhanced the maximum methane production rate (Rmax). The enrichment of Methanothrix and Methanobacterium in the conductive material groups indicated the establishment of a methanogenesis process through direct interspecies electron transfer (DIET). Although the DIET pathway enhanced Rmax in the conductive material groups, this increase did not translate into a higher methane yield in this study. The contribution of DIET pathway to methane yield was negligible compared with the effect of COD/SO42- ratio and carbon sources. The relative contribution of COD/SO42- ratio exceeded 40 % in directing electron flow.
Collapse
Affiliation(s)
- Zhu Liang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Wei Ding
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Xinhou Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yun Chen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Nan Shen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China.
| |
Collapse
|
3
|
Li J, Sun D, Wu S, Yang W, Xiong L, Zhang W, Hua M, Pan B. Long-term and multiscale assessment of methanogenesis enhancement mechanisms in magnetite nanoparticle-mediated anaerobic digestion reactor. ENVIRONMENTAL RESEARCH 2024; 262:119958. [PMID: 39276839 DOI: 10.1016/j.envres.2024.119958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Magnetite nanoparticles (Fe3O4-NPs) have been demonstrated to be involved in direct interspecies electron transfer between syntrophic bacteria, yet a comprehensive assessment of the ability of Fe3O4-NPs to cope with process instability and volatile fatty acids (VFAs) accumulation in scaled-up anaerobic reactors is still lacking. Here, we investigated the start-up characteristics of an expanded granular sludge bed (EGSB) with Fe3O4-NPs as an adjuvant at high organic loading rate (OLR). The results showed that the methane production rate of R1 (with Fe3O4-NPs) was approximately 1.65 folds of R0 (control), and effluent COD removal efficiency was maintained at approximately 98.32% upon 20 kg COD/(m3·d) OLR. The components of volatile fatty acids are acetate and propionate, and the rapid scavenging of propionate accumulation was the difference between R1 and the control. The INT-ETS activity of R1 was consistently higher than that of R0 and R2, and the electron transfer efficiencies increased by 68.78% and 131.44%, respectively. Meanwhile, the CV curve analysis showed that the current of R1 was 40% higher than R3 (temporary addition of Fe3O4-NPs), indicating that multiple electron transfer modes might coexist. High-throughput analysis further revealed that it was difficult to reverse the progressive deterioration of system performance with increasing OLR by simply reconfiguring bacterial community structure and abundance, demonstrating that the Fe3O4-NPs-mediated DIET pathway is a prerequisite for establishing multiple electron transfer systems. This study provides a long-term and multi-scale assessment of the gaining effect of Fe3O4-NPs in anaerobic digestion scale-up devices, and provides technical support for their practical engineering applications.
Collapse
Affiliation(s)
- Jibin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Desheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Siqi Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Wenlan Yang
- School of the Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, PR China
| | - Lei Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| | - Ming Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
4
|
Xu P, Liu H, Liu C, Zhu G. Syntrophic methane production from volatile fatty acids: Focus on interspecies electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174410. [PMID: 38960157 DOI: 10.1016/j.scitotenv.2024.174410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Methane is a renewable biomass energy source produced via anaerobic digestion (AD). Interspecies electron transfer (IET) between methanogens and syntrophic bacteria is crucial for mitigating energy barriers in this process. Understanding IET is essential for enhancing the efficiency of syntrophic methanogenesis in anaerobic digestion. Interspecies electron transfer mechanisms include interspecies H2/formate transfer, direct interspecies electron transfer (DIET), and electron-shuttle-mediated transfer. This review summarizes the mechanisms, developments, and research gaps in IET pathways. Interspecies H2/formate transfer requires strict control of low H2 partial pressure and involves complex enzymatic reactions. In contrast, DIET enhances the electron transfer efficiency and process stability. Conductive materials and key microorganisms can be modulated to stimulate the DIET. Electron shuttles (ES) allow microorganisms to interact with extracellular electron acceptors without direct contact; however, their efficiency depends on various factors. Future studies should elucidate the key functional groups, metabolic pathways, and regulatory mechanisms of IET to guide the optimization of AD processes for efficient renewable energy production.
Collapse
Affiliation(s)
- Panhui Xu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| | - Haichen Liu
- Shanghai Investigation, Design & Research Institute Co., Ltd., 200080, China
| | - Chong Liu
- The 101 Research Institute, Ministry of Civil Affairs of the People's Republic of China, Beijing 100070, China.
| | - Gefu Zhu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
5
|
Zbair M, Limousy L, Drané M, Richard C, Juge M, Aemig Q, Trably E, Escudié R, Peyrelasse C, Bennici S. Integration of Digestate-Derived Biochar into the Anaerobic Digestion Process through Circular Economic and Environmental Approaches-A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3527. [PMID: 39063819 PMCID: PMC11278828 DOI: 10.3390/ma17143527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
The growing energy consumption and the need for a circular economy have driven considerable interest in the anaerobic digestion (AD) of organic waste, offering potential solutions through biogas and digestate production. AD processes not only have the capability to reduce greenhouse gas emissions but also contribute to the production of renewable methane. This comprehensive review aims to consolidate prior research on AD involving different feedstocks. The principles of AD are explored and discussed, including both chemical and biological pathways and the microorganisms involved at each stage. Additionally, key variables influencing system performance, such as temperature, pH, and C/N ratio are also discussed. Various pretreatment strategies applied to enhance biogas generation from organic waste in AD are also reviewed. Furthermore, this review examines the conversion of generated digestate into biochar through pyrolysis and its utilization to improve AD performance. The addition of biochar has demonstrated its efficacy in enhancing metabolic processes, microorganisms (activity and community), and buffering capacity, facilitating Direct Interspecies Electron Transfer (DIET), and boosting CH4 production. Biochar also exhibits the ability to capture undesirable components, including CO2, H2S, NH3, and siloxanes. The integration of digestate-derived biochar into the circular economy framework emerges as a vital role in closing the material flow loop. Additionally, the review discusses the environmental benefits derived from coupling AD with pyrolysis processes, drawing on life cycle assessment investigations. Techno-economic assessment (TEA) studies of the integrated processes are also discussed, with an acknowledgment of the need for further TEA to validate the viability of integrating the biochar industry. Furthermore, this survey examines the techno-economic and environmental impacts of biochar production itself and its potential application in AD for biogas generation, aiming to establish a more cost-effective and sustainable integrated system.
Collapse
Affiliation(s)
- Mohamed Zbair
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, IS2M UMR 7361, 68100 Mulhouse, France; (M.Z.); (M.D.); (S.B.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Lionel Limousy
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, IS2M UMR 7361, 68100 Mulhouse, France; (M.Z.); (M.D.); (S.B.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Méghane Drané
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, IS2M UMR 7361, 68100 Mulhouse, France; (M.Z.); (M.D.); (S.B.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Charlotte Richard
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France; (C.R.); (M.J.); (Q.A.)
| | - Marine Juge
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France; (C.R.); (M.J.); (Q.A.)
| | - Quentin Aemig
- ENGIE, Lab CRIGEN, 4 Rue Joséphine Baker, 93240 Stains, France; (C.R.); (M.J.); (Q.A.)
| | - Eric Trably
- INRAE, University of Montpellier, LBE, 102 Av. des Etangs, 11100 Narbonne, France; (E.T.); (R.E.)
| | - Renaud Escudié
- INRAE, University of Montpellier, LBE, 102 Av. des Etangs, 11100 Narbonne, France; (E.T.); (R.E.)
| | | | - Simona Bennici
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, IS2M UMR 7361, 68100 Mulhouse, France; (M.Z.); (M.D.); (S.B.)
- Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
6
|
Deng Y, Zhang Y, Zhao Z. A data-driven approach for revealing the linkages between differences in electrochemical properties of biochar during anaerobic digestion using automated machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172291. [PMID: 38588748 DOI: 10.1016/j.scitotenv.2024.172291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Biochar is commonly used to enhance the anaerobic digestion of organic waste solids and wastewater, due to its electrochemical properties, which intensify the electron transfer of microorganisms attached to its large surface area. However, it is difficult to create biochar with both high conductivity and high capacitance, which makes selecting the right biochar for engineering applications challenging. To address this issue, two Auto algorithms (TPOT and H2O) were applied to model the effects of different biochar properties on anaerobic digestion processes. The results showed that the gradient boosting machine had the highest predictive accuracy (R2 = 0.96). Feature importance analysis showed that feedstock concentration, digestion time, capacitance, and conductivity of biochar were the main factors affecting methane yield. According to the two-dimensional (2D) partial dependence plots, high-capacitance biochar (0.27-0.29 V·mA) is favorable for substrates with low-solid content (< 19.6 TS%), while the high-conductivity biochar (80.82-170.58 mS/cm) is suitable for high-solids substrates (> 20.1 TS%). The software, based on the optimal model, can be used to obtain the ideal range of biochar for AD trials, aiding researchers in practical applications prior to implementation.
Collapse
Affiliation(s)
- Ying Deng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yifan Zhang
- Olin Business School, Washington University in St. Louis, St. Louis 63130, United States
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
7
|
Li Y, Huang Y, Li H, Gou M, Xu H, Wu H, Sun D, Qiu B, Dang Y. Riboflavin modified carbon cloth enhances anaerobic digestion treating food waste in a pilot-scale system. Front Bioeng Biotechnol 2024; 12:1395810. [PMID: 38863495 PMCID: PMC11166200 DOI: 10.3389/fbioe.2024.1395810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Previous laboratory-scale studies have consistently shown that carbon-based conductive materials can notably improve the anaerobic digestion of food waste, typically employing reactors with regular capacity of 1-20 L. Furthermore, incorporating riboflavin-loaded conductive materials can further address the imbalance between fermentation and methanogenesis in anaerobic systems. However, there have been few reports on pilot-scale investigation. In this study, a 10 m2 of riboflavin modified carbon cloth was incorporated into a pilot-scale (2 m3) food waste anaerobic reactor to improve its treatment efficiency. The study found that the addition of riboflavin-loaded carbon cloth can increase the maximum organic loading rate (OLR) by 40% of the pilot-scale reactor, compared to the system using carbon cloth without riboflavin loading, while ensuring efficient operation of the reaction system, effectively alleviating system acidification, sustaining methanogen activity, and increasing daily methane production by 25%. Analysis of the microbial community structure revealed that riboflavin-loaded carbon cloth enriched the methanogenic archaea in the genera of Methanothrix and Methanobacterium, which are capable of extracellular direct interspecies electron transfer (DIET). And metabolic pathway analysis identified the methane production pathway, highly enriched on the reduction of acetic acid and CO2 at riboflavin-loaded carbon cloth sample. The expression levels of genes related to methane production via DIET pathway were also significantly upregulated. These results can provide important guidance for the practical application of food waste anaerobic digestion engineering.
Collapse
Affiliation(s)
- Yiqun Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yinhui Huang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Haoyong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Mingyu Gou
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyu Xu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Hongbin Wu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd., Shanghai, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Paritosh K, Kesharwani N. Biochar mediated high-rate anaerobic bioreactors: A critical review on high-strength wastewater treatment and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120348. [PMID: 38457889 DOI: 10.1016/j.jenvman.2024.120348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 03/10/2024]
Abstract
Treatment of high-strength wastewater is critical for the aquatic environment and receiving water bodies around the globe. Untreated or partially treated high-strength wastewater may cause severe damage to the existing water bodies. Various high-rate anaerobic bioreactors have been developed in the last decades for treating high-strength wastewater. High-rate anaerobic bioreactors are effective in treating industrial wastewater and provide energy in the form of methane as well. However, the physical or chemical properties of high-strength industrial wastewater, sometimes, disrupt the functioning of a high-rate anaerobic bioreactor. For example, the disintegration of granular sludge in up flow anaerobic sludge blanket reactor or membrane blocking in an anaerobic membrane bioreactor are the results of a high-strength wastewater treatment which hamper the proper functioning and may harm the wastewater treatment plant economically. Biochar, if added to these bioreactors, may help to alleviate the ill-functioning of high-rate anaerobic bioreactors. The primary mechanisms by biochar work in these bioreactors are direct interspecies electron transfer, microbial immobilization, or gene level alternations in microbial structure. The present article explores and reviews the recent application of biochar in a high-rate anaerobic bioreactor treating high-strength industrial wastewater.
Collapse
Affiliation(s)
- Kunwar Paritosh
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland.
| | - Nupur Kesharwani
- Department of Civil Engineering, Government Engineering College, Bilaspur, Chhattisgarh, India
| |
Collapse
|
9
|
Liu QH, Sun HY, Yang ZM. Role of KOH-activated biochar on promoting anaerobic digestion of biomass from Pennisetumgianteum. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120165. [PMID: 38278119 DOI: 10.1016/j.jenvman.2024.120165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/30/2023] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Pennisetum giganteum is a promising non-food crop feedstock for biogas production due to its high productivity and bio-methane potential. However, the accumulation of volatile fatty acids (VFA) usually restricts the conversion efficiency of P. giganteum biomass (PGB) during anaerobic digestion (AD). Here, the role of KOH-activated biochar (KB) in improving the AD efficiency of PGB and the related mechanisms were investigated in detail. The results revealed that KB exhibited excellent electrical conductivity, electron transfer capacity and specific capacitance, which might be related to the decrease in the electron transfer resistance after adding KB to the AD process. In addition, the KB addition not only reinforced metabolisms of energy and VFAs but also promoted the conversion of VFAs to methane, leading to a 52% increase in the methane production rate. Bioinformatics analysis showed that Smithella and Methanosaeta were key players in the KB-mediated AD process of PGB. The stimulatory effect of methanogenesis probably resulted from the establishment of direct interspecies electron transfer (DIET) between VFA-oxidizing acetogens (e.g., Smithella) and Methanosaeta. These findings provided a key step to improve the PGB-based AD process.
Collapse
Affiliation(s)
- Qing-Hua Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong-Ying Sun
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Man Yang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Science, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
10
|
Zeng Y, Liu H, Chen W, Li H, Dong H, Wu H, Xu H, Sun D, Liu X, Li P, Qiu B, Dang Y. Riboflavin-loaded carbon cloth aids the anaerobic digestion of cow dung by promoting direct interspecies electron transfer. ENVIRONMENTAL RESEARCH 2024; 241:117660. [PMID: 37979928 DOI: 10.1016/j.envres.2023.117660] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/29/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Cow dung generates globally due to increased beef and milk consumption, but its treatment efficiency remains low. Previous studies have shown that riboflavin-loaded conductive materials can improve anaerobic digestion through enhance direct interspecies electron transfer (DIET). However, its effect on the practical anaerobic digestion of cow dung remained unclear. In this study, carbon cloth loaded with riboflavin (carbon cloth-riboflavin) was added into an anaerobic digester treating cow dung. The carbon cloth-riboflavin reactor showed a better performance than other two reactors. The metagenomic analysis revealed that Methanothrix on the surface of the carbon cloth predominantly utilized the CO2 reduction for methane production, further enhanced after riboflavin addition, while Methanothrix in bulk sludge were using the acetate decarboxylation pathway. Furthermore, the carbon cloth-riboflavin enriched various major methanogenic pathways and activated a large number of enzymes associated with DIET. Riboflavin's presence altered the microbial communities and the abundance of functional genes relate to DIET, ultimately leading to a better performance of anaerobic digestion for cow dung.
Collapse
Affiliation(s)
- Yiwei Zeng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Huanying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wenwen Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Haoyong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - He Dong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongbin Wu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd, Shanghai, 201800, China
| | - Haiyu Xu
- Qinglin Chuangneng (Shanghai) Technology Co., Ltd, Shanghai, 201800, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Pengsong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
11
|
Mumtaz S, Abbas Y, Ahmad I, Hassan A, Saeed MF, Yun S, Almarhoon ZM, Shelkh M, Hassan AM, Rosaiah P, Suneetha M, Ahmad A. Sugarcane-bagasse-ash in enhanced mesophilic Co-digestion for biogas and nutrient recovery: A concept of developing rural circular bioeconomy. ENVIRONMENTAL RESEARCH 2023; 237:116691. [PMID: 37574097 DOI: 10.1016/j.envres.2023.116691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023]
Abstract
Conductive agro-industrial wastes as accelerants in the anaerobic digestion (AD) of organic waste is a good technique for developing a rural circular economy, such as producing bioenergy and biofertilizer. This study disclosed the a role of sugar cane bagasse ash (SCBA) in enhancing the bioenergy (biogas) yield and digestate fertility via anaerobic co-digestion (AcoD) of buffalo dung (BD) and vegetable residue (VR) under mesophilic conditions (37 ᴼC). Firstly, an optimal BD/VR ratio (1:3) was determined based on biogas yield by introducing five different BD/VR ratios (1:0, 3:1, 1:1, 1:3, and 0:1) into AcoD systems. Secondly, the biogas yield was increased further by adding SCBA at five different concentrations (0, 0.5, 1, 1.5, and 2 wt%). Experimental results disclosed that the 1.5 wt% of SCBA gave the highest cumulative biogas yield (153.67 mL/g VS), COD removal rate (31.18%), and fertility (5.08%). Moreover, a framework is suggested to understand the role of SCBA in the enhanced DIET mechanism. This work documents an environmentally friendly and economical technique for developing a rural circular bioeconomy via the AD of organic agro-waste.
Collapse
Affiliation(s)
- Shahid Mumtaz
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Punjab, 61100, Pakistan
| | - Yasir Abbas
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Punjab, 61100, Pakistan.
| | - Ahmed Hassan
- Department of Architectural Engineering, College of Engineering, UAE University, United Arab Emirates
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Punjab, 61100, Pakistan
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Shelkh
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed M Hassan
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - P Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, India
| | - Maduru Suneetha
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, South Korea.
| | - Awais Ahmad
- Department of Organic Chemistry, University of Cordoba, Spain
| |
Collapse
|
12
|
Li D, Ping Q, Guo W, Chen Y, Wang L, Li Y. Evaluating effects of biochar on anaerobic digestion of dewatered waste activated sludge: Digester performance, microbial co-metabolism and underlying mechanism. CHEMOSPHERE 2023; 341:140139. [PMID: 37690547 DOI: 10.1016/j.chemosphere.2023.140139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Biochar has been proven to be capable of improving the performance of anaerobic digestion (AD). However, the effect of biochar on microbial communities remains ambiguous. In this study, the influence of pH was excluded in a semi-continuous anaerobic digestor for the treatment of dewatered waste activated sludge (WAS) to determine the effect of biochar on microbes. Compared with the control group, the average methane production increased by 24.5% and 23.2% at the organic loading rates (OLRs) of 1.56 and 3.00 gTS/L/d, respectively, in the presence of biochar. This study innovatively found biochar accelerated the enrichment of Methanofastidiosaceae, which competed with Methanobacteriaceae for H2, and its abundance increased from 0.99% at the OLR of 1.56 g TS/L/d to 16.57% and 38.11% at the OLR of 3.00 and 5.60 gTS/L/d, respectively. The efficient metabolic network of f__norank_o__Aminicenantales, syntrophic bacteria, Methanofastidiosaceae and Methanosaetaceae promoted the conversion of WAS to CH4 in the biochar group. In addition, metagenome analysis revealed that biochar optimized the metabolites related to energy conservation and electron transfer, particularly for hydrogenase (frhABG, mbhLHK and hndA-D), confirming that biochar changed the way H2 was involved in methanogenesis. These findings provide novel insights into the direct effect of biochar on microbial evolution and facilitate the reduction of WAS to achieve higher economic benefits in biogas production.
Collapse
Affiliation(s)
- Dunjie Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Wenjie Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yifeng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
13
|
Yuan T, Shi X, Xu Q. Enhancing methane production from food waste with iron-carbon micro-electrolysis in a two-stage process. BIORESOURCE TECHNOLOGY 2023; 385:129474. [PMID: 37429555 DOI: 10.1016/j.biortech.2023.129474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
A two-stage process, consisting of a leach-bed reactor (LBR) and an up-flow anaerobic sludge blanket reactor (UASB), has been commonly adopted to improve food waste anaerobic digestion. However, its application is limited due to low hydrolysis and methanogenesis efficiencies. This study proposed a strategy of incorporating iron-carbon micro-electrolysis (ICME) into the UASB and recirculating its effluent to the LBR to improve the two-stage process efficiency. Results showed that the integration of the ICME with the UASB significantly increased the CH4 yield by 168.29%. The improvement of the food waste hydrolysis in the LBR mainly contributed to the enhanced CH4 yield (approximately 94.5%). The enrichment of hydrolytic-acidogenic bacterial activity, facilitated by the Fe2+ generated through ICME, might be the primary cause of the improved food waste hydrolysis. Moreover, ICME enriched the growth of hydrogenotrophic methanogens and stimulated the hydrogenotrophic methanogenesis pathway in the UASB, contributing partially to the enhanced CH4 yield.
Collapse
Affiliation(s)
- Tugui Yuan
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaoyu Shi
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
14
|
Jung H, Yu H, Lee C. Direct interspecies electron transfer enables anaerobic oxidation of sulfide to elemental sulfur coupled with CO 2-reducing methanogenesis. iScience 2023; 26:107504. [PMID: 37636045 PMCID: PMC10448109 DOI: 10.1016/j.isci.2023.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Electric syntrophy between fatty acid oxidizers and methanogens through direct interspecies electron transfer (DIET) is essential for balancing acidogenesis and methanogenesis in anaerobic digestion. Promoting DIET using electrically conductive additives proved effective in enhancing methanogenesis; however, its possibility to affect other microbial redox reactions in methanogenic systems has been little studied. This study provides the first confirmation of the electro-syntrophic coupling of sulfide oxidation to S0 with CO2-reducing methanogenesis in sulfur-rich methanogenic cultures supplemented with conductive magnetite (100-700-nm particle size). The H2S content in biogas, initially exceeding 5000 ppmv, decreased to below 1 ppmv along with an accumulation of extracellular S0 (60-70 mg/L; initially <1 mg/L) at a magnetite dose of 20 mM Fe, while there were no significant changes in methane yield. A comprehensive polyphasic approach demonstrated that the S0 formation occurs through electro-syntrophic oxidation of sulfide coupled with CO2-reducing methanogenesis, involving Methanothrix as the dominant methanogen.
Collapse
Affiliation(s)
- Heejung Jung
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hyeonjung Yu
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| |
Collapse
|
15
|
Wang C, Nakakoji S, Ng TCA, Zhu P, Tsukada R, Tatara M, Ng HY. Acclimatizing waste activated sludge in a thermophilic anaerobic fixed-bed biofilm reactor to maximize biogas production for food waste treatment at high organic loading rates. WATER RESEARCH 2023; 242:120299. [PMID: 37441869 DOI: 10.1016/j.watres.2023.120299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Thermophilic anaerobic digestion (TAD) provides a promising solution for sustainable high-strength waste treatment due to its enhanced methane-rich biogas recovery. However, high organic loading rates (OLR) exceeding 3.0 kgCOD/m3/day and short hydraulic retention times (HRT) below 10 days pose challenges in waste-to-energy conversion during TAD, stemming from volatile fatty acids (VFAs) accumulation and methanogenesis failure. In this study, we implemented a stepwise strategy for acclimatizing waste activated sludge (WAS) in a thermophilic anaerobic fixed-bed biofilm reactor (TA-FBBR) to optimize methanogen populations, thereby enhancing waste-to-energy efficiencies under elevated OLRs in food waste treatment. Results showed that following stepwise acclimatization, the TA-FBBR achieved stable methane production of approximately 5.8 L/L-reactor/day at an ultrahigh OLR of ∼20 kgCOD/m3/day and ∼15 kgVS/m3/day at 6-day HRT in food waste treatment. The average methane yield reached 0.45 m3/kgCODremoval, attaining the theoretical production in TAD. Moreover, VFA concentrations were stabilized below 1000 mg/L at the ultrahigh OLR under 6-day HRT, while maintaining an acetate/propionate ratio of > 1.8 and a VFA/TAK ratio of < 0.3 serving as effective indicators of system stability and methane yield potential. The microbial community analysis revealed that the WAS acclimatization strategy fostered the microbial diversity and abundance of Methanothermobacter and Methanosarcina. Methanosarcina in the biofilm were observed to be twice as abundant as Methanothermobacter, indicating a potential preference for biofilm existence among methanogens. The findings demonstrated an effective strategy, specifically the stepwise acclimatization of WAS in a thermophilic fixed-bed biofilm reactor, to enhance the food waste treatment performance at high OLRs, contributing valuable mechanistic and technical insights for future sustainable high-strength waste management.
Collapse
Affiliation(s)
- Chuansheng Wang
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Sumire Nakakoji
- Kajima Technical Research Institute, 2-19-1 Tobitakyu, Chofushi, Tokyo 182-0036, Japan
| | - Tze Chiang Albert Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore
| | - Peilin Zhu
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Ryohei Tsukada
- Kajima Technical Research Institute, 2-19-1 Tobitakyu, Chofushi, Tokyo 182-0036, Japan
| | - Masahiro Tatara
- Kajima Technical Research Institute, 2-19-1 Tobitakyu, Chofushi, Tokyo 182-0036, Japan
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
16
|
Xu Y, Meng X, Song Y, Lv X, Sun Y. Effects of different concentrations of butyrate on microbial community construction and metabolic pathways in anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 377:128845. [PMID: 36898564 DOI: 10.1016/j.biortech.2023.128845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Investigating the effect of butyric acid concentration on anaerobic digestion systems in complex systems is important for the efficient degradation of butyric acid and improving the efficiency of anaerobic digestion. In this study, different loadings of butyric acid with 2.8, 3.2, and 3.6 g/(L·d) were added to the anaerobic reactor. At a high organic loading rate of 3.6 g/(L·d), methane was efficiently produced with VBP (Volumetric Biogas Production) of 1.50 L/(L·d) and biogas content between 65% and 75%. VFAs concentration remained below 2000 mg/L. Metagenome sequencing revealed changes in the functional flora within different stages. Methanosarcina, Syntrophomonas, and Lentimicrobium were the main and functional microorganisms. That the relative abundance of methanogens exceeded 35% and methanogenic metabolic pathways were increased indicated the methanogenic capacity of the system significantly improved. The presence of a large number of hydrolytic acid-producing bacteria also indicated the importance of the hydrolytic acid-producing stage in the system.
Collapse
Affiliation(s)
- Yonghua Xu
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Xianghui Meng
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Yunong Song
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Xiaoyi Lv
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Yong Sun
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China.
| |
Collapse
|
17
|
Mu L, Wang Y, Xu F, Li J, Tao J, Sun Y, Song Y, Duan Z, Li S, Chen G. Emerging Strategies for Enhancing Propionate Conversion in Anaerobic Digestion: A Review. Molecules 2023; 28:3883. [PMID: 37175291 PMCID: PMC10180298 DOI: 10.3390/molecules28093883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Anaerobic digestion (AD) is a triple-benefit biotechnology for organic waste treatment, renewable production, and carbon emission reduction. In the process of anaerobic digestion, pH, temperature, organic load, ammonia nitrogen, VFAs, and other factors affect fermentation efficiency and stability. The balance between the generation and consumption of volatile fatty acids (VFAs) in the anaerobic digestion process is the key to stable AD operation. However, the accumulation of VFAs frequently occurs, especially propionate, because its oxidation has the highest Gibbs free energy when compared to other VFAs. In order to solve this problem, some strategies, including buffering addition, suspension of feeding, decreased organic loading rate, and so on, have been proposed. Emerging methods, such as bioaugmentation, supplementary trace elements, the addition of electronic receptors, conductive materials, and the degasification of dissolved hydrogen, have been recently researched, presenting promising results. But the efficacy of these methods still requires further studies and tests regarding full-scale application. The main objective of this paper is to provide a comprehensive review of the mechanisms of propionate generation, the metabolic pathways and the influencing factors during the AD process, and the recent literature regarding the experimental research related to the efficacy of various strategies for enhancing propionate biodegradation. In addition, the issues that must be addressed in the future and the focus of future research are identified, and the potential directions for future development are predicted.
Collapse
Affiliation(s)
- Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yifan Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Fenglian Xu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinhe Li
- Tianjin Capital Environmental Protection Group Co., Ltd., Tianjin 300133, China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yunan Sun
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Zhaodan Duan
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Siyi Li
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| |
Collapse
|
18
|
Ma H, Kang Y, Li M, Dong J, Wang Y, Xiao J, Guo Z. Enhancement of perfluorooctanoic acid and perfluorooctane sulphonic acid removal in constructed wetland using iron mineral: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130819. [PMID: 36680904 DOI: 10.1016/j.jhazmat.2023.130819] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Polyfluoroalkyl substance (PFAS) pose a threat to the aquatic environment due to their environmental persistence. The removal of PFAS using constructed wetlands (CWs) has received interest, but the adsorption saturation and limited removal capacity of the substrate is frequently challenging. To enhance the microbial degradation and performance of the substrate, different configurations of iron minerals were used as substrate to remove perfluorooctane sulphonic acid (PFOS) and perfluorooctanoic acid (PFOA) from CWs. The addition of iron minerals resulted in elimination of 57.2% and 63.9% of PFOS and PFOA in the effluent, respectively, which were 35.0% and 36.8% higher than that of control. Moreover, up to 85.4%, 86%, and 85.1% of NH4+, NO3-, and phosphorus, respectively, was removed using iron minerals. The enhanced electron transfer in iron mineral-based CWs was confirmed by a 61.2% increase in cytochrome C reductase content and an increased Fe(III)/Fe(II) ratio. Microbial analysis showed that the proportions of microbes with PFAS removal capacity (e.g. Burkholderiae and Pseudomonas), and the key pathways of the TCA cycle and glycolysis were increased in iron mineral-based CW. Based on these findings, we conclude that supplementation with iron mineral could enhance PFOA and PFOS removal in CWs.
Collapse
Affiliation(s)
- Haoqin Ma
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Mei Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiahao Dong
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuqi Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingqian Xiao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
19
|
Pan W, Ouyang H, Tan X, Yan S, Zhang R, Deng R, Gu L, He Q. Effects of biochar addition towards the treatment of blackwater in anaerobic dynamic membrane bioreactor (AnDMBR): Comparison among room temperature, mesophilic and thermophilic conditions. BIORESOURCE TECHNOLOGY 2023; 374:128776. [PMID: 36822557 DOI: 10.1016/j.biortech.2023.128776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Effects of biochar addition on the performance of anaerobic dynamic membrane bioreactor (AnDMBR) under different temperatures for blackwater treatment was investigated. When the organic load ratios (OLR) was 1.0 g COD/L·d, the specific methane yield for the three biochar-amended reactors were 125.7, 148.0 and 182.3 mLCH4/g CODremoved, respectively. Compare to those digesters without biochar participation, the methane production in the thermophilic reactor with biochar increased by 12% while the other two digesters increased by 6-10%. An analysis of membrane filtration resistance showed a reduction in total resistance (Rt) of 6.2 × 1011-7.3 × 1011 m-1 when biochar was added to the three reactors. The thermophilic reactors with biochar increased the relative abundance of Methanothermobacter and promoted gene expression of metabolic pathways related to hydrolysis, acid production and methane production. Overall, biochar showed great potential as an inexpensive conductive material to increase methane production with reduced membrane fouling in AnDMBR systems.
Collapse
Affiliation(s)
- Weiliang Pan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China.
| | - Honglin Ouyang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Xiuqing Tan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Shanji Yan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Ruihao Zhang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Rui Deng
- School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
20
|
Abid N, Karray F, Kallel I, Slim M, Barakat A, Mhiri N, Chamkha M, Sayadi S. Role of biochar in anaerobic microbiome enrichment and methane production enhancement during olive mill wastewater biomethanization. Front Bioeng Biotechnol 2023; 10:1100533. [PMID: 36686251 PMCID: PMC9846136 DOI: 10.3389/fbioe.2022.1100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
The current research work attempted to investigate, for the first time, the impact of biochar addition, on anaerobic digestion of olive mill wastewater with different initial chemical oxygen demand loads in batch cultures (10 g/L, 15 g/L, and 20 g/L). Methane yields were compared by applying one-way analysis of variance (ANOVA) followed by post-hoc Tukey's analysis. The results demonstrated that adding at 5 g/L biochar to olive mill wastewater with an initial chemical oxygen demand load of 20 g/L increased methane yield by 97.8% and mitigated volatile fatty acid accumulation compared to the control batch. According to the results of microbial community succession revealed by the Illumina amplicon sequencing, biochar supplementation significantly increased diversity of the microbial community and improved the abundance of potential genera involved in direct interspecies electron transfer, including Methanothrix and Methanosarcina. Consequently, biochar can be a promising alternative in terms of the recovery of metabolic activity during anaerobic digestion of olive mill wastewater at a large scale.
Collapse
Affiliation(s)
- Nozha Abid
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia,*Correspondence: Nozha Abid, ; Sami Sayadi,
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Imen Kallel
- Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Mariam Slim
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Abdellatif Barakat
- IATE, Montpellier University, INRAE, Agro Institut, Montpellier, France,Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Najla Mhiri
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar,*Correspondence: Nozha Abid, ; Sami Sayadi,
| |
Collapse
|
21
|
Huang Y, Cai B, Dong H, Li H, Yuan J, Xu H, Wu H, Xu Z, Sun D, Dang Y, Holmes DE. Enhancing anaerobic digestion of food waste with granular activated carbon immobilized with riboflavin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158172. [PMID: 35988634 DOI: 10.1016/j.scitotenv.2022.158172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Previous studies have shown that anaerobic digestion of food waste can be enhanced by addition of conductive materials that stimulate direct interspecies electron transfer (DIET) between bacteria and methanogens. However, at extremely high organic loading rates (OLRs), volatile fatty acids (VFAs) still tend to accumulate even in the presence of conductive materials because of an imbalance between the formation of fermentation products and the rate of methanogenesis. In this study, granular activated carbon (GAC) immobilized with riboflavin (GAC-riboflavin) was added to an anaerobic digester treating food waste. The GAC-riboflavin reactor operated stably at OLRs as high as 11.5 kgCOD/ (m3·d) and kept VFA concentrations below 69.4 mM, COD removal efficiencies, methane production rates, and biogas methane concentrations were much higher in the GAC-riboflavin reactor than the GAC- and non-amended reactors. Transcripts associated with genes that code for proteins involved in DIET based metabolism were somewhat more highly expressed by Methanothrix in the GAC-riboflavin reactor. However, it is unlikely that riboflavin acted as an electron shuttle to stimulate DIET. Rather, it seemed to provide nutrients that enhanced the growth of microorganisms involved in the anaerobic digestion process, including those that are capable of DIET.
Collapse
Affiliation(s)
- Yinhui Huang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Boquan Cai
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - He Dong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Haoyong Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jie Yuan
- Wukong Chuangxiang Techolology Co, Ltd, Beijing 100083, China
| | - Haiyu Xu
- Xinneng Qinglin (Beijing) Technology Co., Ltd, Beijing 100083, China
| | - Hongbin Wu
- Xinneng Qinglin (Beijing) Technology Co., Ltd, Beijing 100083, China
| | - Ziyao Xu
- Lingxi Medical Technology (Beijing) Co., Ltd, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Rd, Springfield, MA 01119, USA
| |
Collapse
|
22
|
Xie J, Xu J, Zhu J, Zhu C, He R, Wang W, Xie L. Roles of Fe-C amendment on sulfate-containing pharmaceutical wastewater anaerobic treatment: Microbial community and sulfur metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155868. [PMID: 35561916 DOI: 10.1016/j.scitotenv.2022.155868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The effects of multiple two-phase anaerobic treatment involving acidification coupling Fe-C on sulfate-containing chemical synthesis-based pharmaceutical wastewater treatment were investigated. Fe-C was added as a filler with 25% vol. to acidogenic reactors for semi-continuous operation. The results suggested that Fe-C amendment promoted sulfate removal efficiency by 47.5% and shortened the reaction time by 50% in the acidogenic phase. With mitigation of sulfate inhibition, SCOD removal efficiency and methane production were further increased by 24.6% and 398% compared to direct raw wastewater anaerobic digestion, respectively, in methanogenic phase. The results of sulfate removal kinetics confirmed a 150% increase of removal rate in acidogenic phase. However, the apparent kinetic microbial sulfate removal constant without Fe-C amendment was maintained at approximately 0.06 h-1. The Fe-C amendment not only increased the relative abundance of Methanothrix and Desulfovibrio for sulfate reduction but also enriched unclassified_p__Chloroflexi and unclassified_c__Deltaproteobacteria for acidification. Metagenomic results indicated that Fe-C enhanced dissimilatory sulfate reduction and PAPS synthesis of assimilatory step. The hydrogen sulfide production through the 3-mercaptopyruvate to pyruvate pathways was also enhanced. Butyrate-oxidizing genes were increased synchronously to convert butyrate to acetate.
Collapse
Affiliation(s)
- Jing Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Jiaxin Zhu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Chenghui Zhu
- Shanghai Honess Environmental tech Corp., 11 Guotai Road, Shanghai 200092, PR China
| | - Rong He
- Shanghai Honess Environmental tech Corp., 11 Guotai Road, Shanghai 200092, PR China
| | - Wenbiao Wang
- Shanghai Honess Environmental tech Corp., 11 Guotai Road, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
23
|
Wu N, Liu T, Li Q, Quan X. Enhancing anaerobic methane production in integrated floating-film activated sludge system filled with novel MWCNTs-modified carriers. CHEMOSPHERE 2022; 299:134483. [PMID: 35381266 DOI: 10.1016/j.chemosphere.2022.134483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Conductive materials can enhance anaerobic methane production by accelerating interspecies electron transfer between electroactive bacteria and methanogens. However, the daily loss or less specific surface area of small/big size of conductive materials always limits their application in anaerobic digestion. In this study, the conductive multi-walled carbon nanotubes (MWCNTs) (15 wt% and 20 wt%) were mixed with high-density polyethylene (HDPE) and novel conductive suspended carriers were prepared. Results showed the conductivity of the novel conductive suspended carriers increased by 1-2 orders of magnitude comparing with HDPE carriers, as well as the attached biomass improved from 3.93 g/m2 (HDPE carriers) to 5.82 g/m2 (15 wt% MWCNTs-modified carriers) and 6.67 g/m2 (20 wt% MWCNTs-modified carriers). Integrated floating-film activated sludge (IFFAS) filled with MWCNT-modified carriers showed significant advantages in chemical oxygen demand (COD) removal (removal efficiency increased by 3.6-37.2%) and methanogenic performance (cumulative methane increased by 12.28-62.91%) compared with the control reactor filled with conventional HDPE carriers when treating sodium propionate wastewater at the organic loading rates (OLR) of 11.3-26.3 kg COD/(m³∙d). SEM images and high-throughput sequencing results proved potential direct interspecies electron transfer (DIET) had been established successfully on the MWCNTs-modified carriers. The syntrophic electroactive bacteria (Geobacter, Thauera) and Methanotrix were enriched by 2.28-4.58% and 9.41-16.80% respectively owning to the addition of novel conductive carriers. This study proved IFFAS process filled with novel MWCNTs-modified suspended carriers showed great potential in establishing DIET to enhance anaerobic digestion in practical application.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tao Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Qian Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
24
|
Li Y, Liang L, Sun C, Wang Z, Yu Q, Zhao Z, Zhang Y. Glycol/glycerol-fed electrically conductive aggregates suggest a mechanism of stimulating direct interspecies electron transfer in methanogenic digesters. WATER RESEARCH 2022; 217:118448. [PMID: 35430471 DOI: 10.1016/j.watres.2022.118448] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The possibility of stimulating direct interspecies electron transfer (DIET) within aggregates of methanogenic digesters respectively with ethanol, glycol, and glycerol as a primary substrate was investigated to better understand the mechanisms of alcohol compounds stimulating DIET. Aggregates fed with ethanol, glycol, and glycerol were electrically conductive (10.4-19.4 uS/cm), with a temperature dependence of metallic-like conductivity. Close examination of transmission electron microscope images observed the potential interspecies connected networks assembled by filaments within these aggregates. Further investigations via metatranscriptomics found that, genes for electrically conductive pili (e-pili) (Log2FPKM, 9.39-10.96) and c-type cytochromes (8.90-9.64) were highly expressed within aggregates. Glycerol-fed aggregates exhibited the highest gene expression for e-pili, while glycol-fed aggregates exhibited the highest gene expression for c-type cytochromes. Methanothrix species were dominant and metabolically active within aggregates. Genes encoding the enzymes involved in carbon dioxide reduction were highly expressed in Methanothrix species, suggesting that they participated in DIET. In addition, transcript abundance of genes encoding alcohol dehydrogenase and NADH-quinone oxidoreductase in alcohol dehydrogenation closely associated with NADH/NAD+ transformation within glycol- and glycerol-fed aggregates was generally higher than that within ethanol-fed aggregates. These results, and the fact that NADH/NAD+ transformation was very linked to the ATP synthesis complex that further supported the formation of extracellular electrical connection components, e-pili and membrane-bound multi-heme c-type cytochromes (MHCs), provided a possibility that alcohol compounds comprised of hydroxy groups could stimulate DIET and more hydroxy groups comprised were better for this stimulation.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lianfu Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Cheng Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhenxin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
25
|
Nabi M, Liang H, Cheng L, Yang W, Gao D. A comprehensive review on the use of conductive materials to improve anaerobic digestion: Focusing on landfill leachate treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114540. [PMID: 35183937 DOI: 10.1016/j.jenvman.2022.114540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Globally, around 70% of waste is disposed of in open dumps or landfill sites, with the leachate generated from these sites containing high concentrations of organic and inorganic compounds, which will adversely affect aquatic environments if discharged without proper treatment. Anaerobic digestion of landfill leachate is an environmentally-friendly method that efficiently converts organic compounds into methane-rich biogas. However, the widespread application of anaerobic digestion has been hindered by poor system stability, low methanogenic activity and a high level of volatile fatty acids (VFAs) accumulation, increasing the operational costs of treatment. Conductive materials can be added to the digester to improve the performance of anaerobic digestion in landfill leachate treatment systems and studies reporting the use of conductive materials for this purpose are hereby thoroughly reviewed. The mechanism of microbial growth and enrichment by conductive materials is discussed, as well as the subsequent effect on waste metabolism, methane production, syntrophic relationships and interspecies electron transfer. The porous structure, specific surface area and conductivity of conductive materials play vital roles in the facilitation of syntrophic relationships between fermentative bacteria and methanogenic archaea. In addition, the mediation of direct interspecies electron transfer (DIET) by conductive materials increases the methane content of biogas from 16% to 60% as compared to indirect interspecies electron transfer (IIET) in conventional anaerobic digestion systems. This review identifies research gaps in the field of material-amended anaerobic systems, suggesting future research directions including investigations into combined chemical-biological treatments for landfill leachate, microbial management using conductive materials for efficient pollutant removal and the capacity for material reuse. Moreover, findings of this review provide a reference for the efficient and large-scale treatment of landfill leachate by anaerobic digestion with conductive materials.
Collapse
Affiliation(s)
- Mohammad Nabi
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lang Cheng
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wenbo Yang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
26
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Deng L, Chen Z, Ye Y, Bui XT, Hoang NB. Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment. BIORESOURCE TECHNOLOGY 2022; 351:127045. [PMID: 35331884 DOI: 10.1016/j.biortech.2022.127045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
As a clean energy carrier, hydrogen is a promising alternative to fossil fuel so as the global growing energy demand can be met. Currently, producing hydrogen from biowastes through fermentation has attracted much attention due to its multiple advantages of biowastes management and valuable energy generation. Nevertheless, conventional dark fermentation (DF) processes are still hindered by the low biohydrogen yields and challenges of biohydrogen purification, which limit their commercialization. In recent years, researchers have focused on various advanced strategies for enhancing biohydrogen yields, such as screening of super hydrogen-producing bacteria, genetic engineering, cell immobilization, nanomaterials utilization, bioreactors modification, and combination of different processes. This paper critically reviews by discussing the above stated technologies employed in DF, respectively, to improve biohydrogen generation and stating challenges and future perspectives on biowaste-based biohydrogen production.
Collapse
Affiliation(s)
- Dongle Cheng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University 442-760, Republic of Korea
| | - Lijuan Deng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 700000, Vietnam
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
27
|
Chen L, Fang W, Chang J, Liang J, Zhang P, Zhang G. Improvement of Direct Interspecies Electron Transfer via Adding Conductive Materials in Anaerobic Digestion: Mechanisms, Performances, and Challenges. Front Microbiol 2022; 13:860749. [PMID: 35432222 PMCID: PMC9005980 DOI: 10.3389/fmicb.2022.860749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anaerobic digestion is an effective and sustainable technology for resource utilization of organic wastes. Recently, adding conductive materials in anaerobic digestion to promote direct interspecies electron transfer (DIET) has become a hot topic, which enhances the syntrophic conversion of various organics to methane. This review comprehensively summarizes the recent findings of DIET mechanisms with different mediating ways. Meanwhile, the influence of DIET on anaerobic digestion performance and the underlying mechanisms of how DIET mediated by conductive materials influences the lag phase, methane production, and system stability are systematically explored. Furthermore, current challenges such as the unclear biological mechanisms, influences of non-DIET mechanisms, limitations of organic matters syntrophically oxidized by way of DIET, and problems in practical application of DIET mediated by conductive materials are discussed in detail. Finally, the future research directions for practical application of DIET are outlined.
Collapse
Affiliation(s)
- Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China.,Engineering Research Center for Water Pollution Source Control and Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
28
|
Zhao Y, Mu H, Su Y, Zhang Y, Qiao X, Zhao C. Promotion of granular activated carbon on methanogenesis of readily acidogenic carbohydrate-rich waste at low inoculation ratio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152642. [PMID: 34968585 DOI: 10.1016/j.scitotenv.2021.152642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Although granular activated carbon (GAC) supplementation into food waste anaerobic digestion system is an efficient means to enhance methane production. As yet, little is known whether GAC supplementation is suitable for the extreme condition of pH below 4.5, which occurs in the use of readily acidogenic carbohydrate-rich waste (RACW) as methanogenic substrate when at low inoculation/substrate (I/S) ratio. This study investigated the effects of GAC on RACW anaerobic digestion under different inoculation/substrate (I/S) ratios. It was found that the addition of GAC was a preferred alternative method to enhancing I/S ratio for promoting methane production from RACW. The additive dose of 20 g/L was recommended for the methanogenesis of RACW at low I/S of 1:2, and the methane yield was enhanced by 12 times (505 mL/g-VS) compared with that (42 mL/g-VS) from the control. This promotion resulted from the apparently solving the over-acidogenesis problem and the adjustment of pH to the desired range. Further investigation revealed that the added GAC enhanced the activities of acetate kinase and coenzyme F420, that engaged in the acidogenic and methanogenic reactions. Meanwhile, the decrease of hydrogenase and increase of c-Cyts implied that the metabolism of direct interspecies electron transfer (DIET) was probably stimulated by GAC. Microbial investigation inferred that the enriched hydrogenotrophic methanogens and DIET-mediated syntrophic partners of Geobacter/Syntrophomonas with Methanosarcina were responsible for the enhanced methane yield.
Collapse
Affiliation(s)
- Yue Zhao
- School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Hui Mu
- School of Resources and Environment, University of Jinan, Jinan 250022, China.
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, China
| | - Yongfang Zhang
- School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Xiaowei Qiao
- School of Resources and Environment, University of Jinan, Jinan 250022, China
| | - Chunhui Zhao
- School of Resources and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
29
|
Awasthi MK. Engineered biochar: A multifunctional material for energy and environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118831. [PMID: 35032603 DOI: 10.1016/j.envpol.2022.118831] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Biochar is a stable carbon-rich product loaded with upgraded properties obtained by thermal cracking of biomasses in an oxygen-free atmosphere. The pristine biochar is further modified to produce engineered biochar via various physical, mechanical, and chemical methods. The hasty advancement in engineered biochar synthesis via different technologies and their application in the field of energy and environment is a topical issue that required an up-to-date review. Therefore, this review deals with comprehensive and recent mechanistic approaches of engineered biochar synthesis and its further application in the field of energy and the environment. Synthesis and activation of engineered biochar via various methods has been deliberated in brief. Furthermore, this review systematically covered the impacts of engineered biochar amendment in the composting process, anaerobic digestion (AD), soil microbial community encouragement, and their enzymatic activities. Finally, this review provided a glimpse of the knowledge gaps and challenges associated with application of engineered biochar in various fields, which needs urgent attention in future research.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
30
|
Westerholm M, Calusinska M, Dolfing J. Syntrophic propionate-oxidizing bacteria in methanogenic systems. FEMS Microbiol Rev 2022; 46:fuab057. [PMID: 34875063 PMCID: PMC8892533 DOI: 10.1093/femsre/fuab057] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022] Open
Abstract
The mutual nutritional cooperation underpinning syntrophic propionate degradation provides a scant amount of energy for the microorganisms involved, so propionate degradation often acts as a bottleneck in methanogenic systems. Understanding the ecology, physiology and metabolic capacities of syntrophic propionate-oxidizing bacteria (SPOB) is of interest in both engineered and natural ecosystems, as it offers prospects to guide further development of technologies for biogas production and biomass-derived chemicals, and is important in forecasting contributions by biogenic methane emissions to climate change. SPOB are distributed across different phyla. They can exhibit broad metabolic capabilities in addition to syntrophy (e.g. fermentative, sulfidogenic and acetogenic metabolism) and demonstrate variations in interplay with cooperating partners, indicating nuances in their syntrophic lifestyle. In this review, we discuss distinctions in gene repertoire and organization for the methylmalonyl-CoA pathway, hydrogenases and formate dehydrogenases, and emerging facets of (formate/hydrogen/direct) electron transfer mechanisms. We also use information from cultivations, thermodynamic calculations and omic analyses as the basis for identifying environmental conditions governing propionate oxidation in various ecosystems. Overall, this review improves basic and applied understanding of SPOB and highlights knowledge gaps, hopefully encouraging future research and engineering on propionate metabolism in biotechnological processes.
Collapse
Affiliation(s)
- Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCentre, Almas allé 5, SE-75007 Uppsala, Sweden
| | - Magdalena Calusinska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, rue du Brill 41, L-4422 Belvaux, Luxembourg
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Wynne Jones 2.11, Ellison Place, Newcastle-upon-Tyne NE1 8QH, UK
| |
Collapse
|
31
|
Dong Y, Chong S, Lin H. Enhanced effect of biochar on leaching vanadium and copper from stone coal tailings by Thiobacillus ferrooxidans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20398-20408. [PMID: 34738215 DOI: 10.1007/s11356-021-17259-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Among the many extraction technologies for recovering metal resources from tailings, bioleaching technology is gradually showing its momentum. In our research, the enhanced effect of biochar on the bioleaching of stone coal tailings by Thiobacillus ferrooxidans (T. ferrooxidans) has been explored. In the static bioleaching experiment for 10 days, the leaching rate of vanadium (V) and copper (Cu) increased by 26.8% and 21.0% respectively after adding 5 g/L biochar. The dynamic bioleaching experiment further verified that under the promotion of biochar, the 44 day cumulative leaching rate of V and Cu increased by 15.3% and 14.5%, respectively. The promoting effect of biochar on T. ferrooxidans was mainly reflected in two aspects. The unique porous structure of biochar created a microenvironment for free microorganisms for inhabitation, while storing abundant nutrients. Biochar can also act as an excellent electronic medium to promote electron transfer, improving the oxidation ability of T. ferrooxidans on Fe2+. Furthermore, the presence of biochar may effectively inhibit the formation of jarosite precipitation on tailings in bioleaching, thereby improving the dissolution of tailings and the release of metal elements. This study demonstrates that biochar-enhanced bioleaching may be an efficient and environmentally friendly method for recovering metal resources from tailings.
Collapse
Affiliation(s)
- Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Shijia Chong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory On Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
32
|
Ke T, Yun S, Wang K, An J, Liu L, Liu J. Enhanced anaerobic co-digestion performance by using surface-annealed titanium spheres at different atmospheres. BIORESOURCE TECHNOLOGY 2022; 347:126341. [PMID: 34785328 DOI: 10.1016/j.biortech.2021.126341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
A series of surface-annealed titanium spheres (Ti-A, Ti-B, and Ti-C) in different atmospheres were used as accelerants in anaerobic co-digestion (AcoD) systems under magnetic field (MF). Surface-annealed titanium spheres and MF exhibit remarkable coupling and promoting effects on the AcoD performance. The cumulative biogas yield (435.84-552.60 mL/g VS) and total chemical oxygen demand (COD) degradation efficiency (59.76%-71.28%) of the AcoD systems with TiMF, Ti-AMF, Ti-BMF, and Ti-CMF were significantly higher than control (357.66 mL/g VS and 51.5%). The digestates of the AcoD system with surface-annealed Ti spheres delivered excellent stability (49.83%-59.90%) and fertilizer (4.21%-4.56%). This work clarifies the possible role of surface-annealed Ti spheres in enhancing methanogenesis.
Collapse
Affiliation(s)
- Teng Ke
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China; Qinghai Building and Materials Research Academy Co., Ltd, The Key Lab of Plateau Building and Eco-community in Qinghai, Xining, Qinghai 810000, China.
| | - Kaijun Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jinhang An
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Lijianan Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jiayu Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
33
|
Kutlar FE, Tunca B, Yilmazel YD. Carbon-based conductive materials enhance biomethane recovery from organic wastes: A review of the impacts on anaerobic treatment. CHEMOSPHERE 2022; 290:133247. [PMID: 34914946 DOI: 10.1016/j.chemosphere.2021.133247] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Amongst the most important sustainable waste management strategies, anaerobic biotechnology has had a central role over the past century in the management of high-pollution load sources, such as food, agricultural and municipal wastes. During anaerobic digestion (AD), valuable by-products such as digestate and biogas are produced. Biogas (mainly composed of methane) is generated through a series of reactions between bacteria and archaea. Enhancement of AD process with higher methane yield, accelerated methane production rate, and shorter start-up time is possible via tapping into a novel methanogenic pathway discovered a decade ago. This fundamentally new concept that is a substitute to interspecies hydrogen transfer is called direct interspecies electron transfer (DIET). DIET, a thermodynamically more feasible way of electron transfer, has been proven to occur between bacteria and methanogens. It is well-documented that amendment of carbon-based conductive materials (CCMs) can stimulate DIET via serving as an electrical conduit between microorganisms. Therefore, different types of CCMs such as biochar and activated carbon have been amended to a variety of AD reactors and enhancement of process performance was reported. In this review, a comparative analysis is presented for enhancement of AD performance in relation to major CCM related factors; electrical conductivity, redox properties, particle size and dosage. Additionally, the impacts of AD operational conditions such as organic loading rate and temperature on CCM amended reactors were discussed. Further, the changes in microbial communities of CCM amended reactors were reviewed and future perspectives along with challenges for CCM application in AD have been provided.
Collapse
Affiliation(s)
- Feride Ece Kutlar
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey
| | - Berivan Tunca
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey
| | - Yasemin Dilsad Yilmazel
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
34
|
Guo Q, Yin Q, Du J, Zuo J, Wu G. New insights into the r/K selection theory achieved in methanogenic systems through continuous-flow and sequencing batch operational modes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150732. [PMID: 34606861 DOI: 10.1016/j.scitotenv.2021.150732] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion is achieved through cooperation among various types of microorganisms, and the regulation of microbial communities is key to achieving stable system operation. In this study, the r/K selection theory was adopted to examine the system performance and microbial characteristics in anaerobic reactors with different operating modes (continuous-flow reactors, CFRs; sequencing batch reactors, SBRs) and sludge retention times (25 and 10 days). Four lab-scale reactors (CFR25d, CFR10d, SBR25d, and SBR10d) were operated. In the cycle reaction, CFR25d achieved the highest methane yield (678.0 mL/L) and methane production rate (140.8 mL/(L·h)); while those in CFR10d were the lowest, which could have been due to an accumulation of volatile fatty acids. CFR could wash out r-strategists efficiently, such as Methanosarcina. CFR25d and CFR10d significantly enriched the K-strategist Geobacter, with the relative abundances of 34.0% and 72.6%, respectively. In addition, the hydrogenotrophic methanogens of Methanolinea and Methanospirillum (K-strategists) dominated in CFR25d and CFR10d. Methanobacterium adapted to the diverse operational conditions, but the slow grower Methanosaeta only accounted for 0.9% in CFR10d. Failure to enrich propionate oxidizers resulted in a functional absence of propionate degradation in the CFRs.
Collapse
Affiliation(s)
- Qiannan Guo
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Qidong Yin
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Jin Du
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Jiane Zuo
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway H91 TK33, Ireland.
| |
Collapse
|
35
|
Nano-Biochar as a Sustainable Catalyst for Anaerobic Digestion: A Synergetic Closed-Loop Approach. Catalysts 2022. [DOI: 10.3390/catal12020186] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nowadays, the valorization of organic wastes using various carbon-capturing technologies is a prime research area. The anaerobic digestion (AD) technology is gaining much consideration in this regard that simultaneously deals with waste valorization and bioenergy production sustainably. Biochar, a well-recognized carbonaceous pyrogenic material and possessing a broad range of inherent physical and chemical properties, has diverse applications in the fields of agriculture, health-care, sensing, catalysis, carbon capture, the environment and energy. The nano-biochar-amended anaerobic digestion approach has intensively been explored for the past few years. However, an inclusive study of multi-functional roles of biochar and the mechanism involved for enhancing the biogas production via the AD process still need to be evaluated. The present review inspects the significant role of biochar addition and the kinetics involved, further focusing on the limitations, perspectives, and challenges of the technology. Additionally, the techno-economic analysis and life-cycle assessment of biochar-aided AD process for the closed-loop integration of biochar and AD and possible improvement practices are discussed.
Collapse
|
36
|
Wang G, Chu Y, Zhu J, Sheng L, Liu G, Xing Y, Fu P, Li Q, Chen R. Multi-faceted influences of biochar addition on swine manure digestion under tetracycline antibiotic pressure. BIORESOURCE TECHNOLOGY 2022; 346:126352. [PMID: 34798251 DOI: 10.1016/j.biortech.2021.126352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
This study explored the influence of biochar (BC) on anaerobic digestion (AD) of swine manure under various tetracycline (TC) pressures. It was found that both low (0.5 mg/L) and high (50 mg/L) TC pressures inhibited AD performance, while BC mitigated it in multi-facets. Under high TC pressure, BC accelerated syntrophic methanogenesis by boosting direct interspecies electron transfer pathway. The TC removal efficiencies were enhanced by 24.3-158.2% with BC assistance, which was attributed to the enhanced biological degradation rather than BC's physiochemical adsorption. Moreover, BC possibly acted as a protective role to alleviate intensive extracellular polymeric substances secretion under TC pressures. Integrated microbial community, metabolic function predicting, and antibiotic resistance genes (ARG) analysis revealed that BC addition not only enriched Anaerolineceae, which likely responsible for the 24.2-41.9% higher level expression of organics metabolic pathways and xenobiotics biodegradation, but also reduced ARG abundance by controlling the potential ARG host (Firmicutes) proliferation.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yuxi Chu
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Jinglin Zhu
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; XAUAT UniSA An De College, Xi'an University of Architecture and Technology, Caosi East Road, Xi'an 710311, PR China
| | - Li Sheng
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; XAUAT UniSA An De College, Xi'an University of Architecture and Technology, Caosi East Road, Xi'an 710311, PR China
| | - Guohao Liu
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yao Xing
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Peng Fu
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering (Shaanxi province), School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
37
|
Zhu TT, Lai WX, Zhang YB, Liu YW. Feammox process driven anaerobic ammonium removal of wastewater treatment under supplementing Fe(III) compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149965. [PMID: 34508937 DOI: 10.1016/j.scitotenv.2021.149965] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Ammonium removal in wastewater treatment plants demands large quantities energy input, such as aeration for wastewater and the addition of organics for nitrate reduction. Anaerobic ammonium oxidation coupled to Fe(III) reduction, called Feammox process play a crucial role in natural nitrogen cycle, which has been rarely investigated in the field of wastewater treatment. Besides, Iron-reducing bacteria (FeRB) as function bacteria of Feammox could transfer electrons to iron oxide by oxidizing organics. The possibility of anaerobic ammonium removal coupled with organics should be investigated to assess the potential of Feammox process for conventional wastewater treatment. In this study, five Fe(III) compounds, Fe2O3, Fe3O4, Fe(OH)3, Citrate-Fe and pyrite were supplemented to investigate the effect of iron oxides on ammonium removal in serum bottles with working volume of 100 mL. It was found that ammonium removal efficiency of the Fe2O3 group was the highest. To simulate wastewater treatment process in sewage treatment plant, three Up-flow anaerobic sludge blanket reactors with volume of 250 mL adding Fe2O3 were applied with influent of ammonium and carbon sources. It was found that the organics significantly inhibited the ammonium removal by Feammox process. This was attributed to that carbon sources and ammonium could be used as electron donors for Fe(III) reduction. In addition, this nitrogen removal was also likely related with the iron cycle, i.e., Fe(III) reduction with ammonium oxidation and Fe(II) oxidation with nitrate/nitrite reduction. This study provides a promising alternative technology for anaerobic ammonium removal in wastewater treatment. Optimizing nitrogen removal and carbon sources applied in conventional wastewater plants are required in future.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wen-Xia Lai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yao-Bin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yi-Wen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
38
|
Yan Y, Yan M, Ravenni G, Angelidaki I, Fu D, Fotidis IA. Novel bioaugmentation strategy boosted with biochar to alleviate ammonia toxicity in continuous biomethanation. BIORESOURCE TECHNOLOGY 2022; 343:126146. [PMID: 34673199 DOI: 10.1016/j.biortech.2021.126146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
This study investigated for the first time if ammonia tolerant methanogenic consortia can be stored in gel (biogel) and used in a later time on-demand as bioaugmentation inocula, to efficiently relieve ammonia inhibition in continuous biomethanation systems. Moreover, wood biochar was assessed as a potential enhancer of the novel biogel bioaugmentation process. Three thermophilic (55 °C), continuous stirred-tank reactors (RBgel, RChar and RMix), operated at 4.5 g NH4+-N L-1 were exposed to biogel, biochar and mixture of biogel and biochar, respectively, while a fourth reactor (RCtrl) was used as control. The results showed that the methane production yields of RMix, RChar and RBgel increased by 28.6%, 20.2% and 10.7%, respectively compared to RCtrl. The highest methane yield was achieved by the synergistic interaction between biogel and biochar. Additionally, biogel stimulated a rapid recovery of Methanoculleus thermophilus sp. and syntrophic acetate oxidising bacteria populations.
Collapse
Affiliation(s)
- Yixin Yan
- School of Civil Engineering Southeast University, 210096, Nanjing, China; Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800, Kgs. Lyngby, Denmark
| | - Miao Yan
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800, Kgs. Lyngby, Denmark; NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Giulia Ravenni
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 313, 4000, Roskilde, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Dafang Fu
- School of Civil Engineering Southeast University, 210096, Nanjing, China
| | - Ioannis A Fotidis
- School of Civil Engineering Southeast University, 210096, Nanjing, China; Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland; Faculty of Environment, Ionian University, 29100, Zakynthos, Greece.
| |
Collapse
|
39
|
Zhou L, Chi T, Zhou Y, Chen H, Du C, Yu G, Wu H, Zhu X, Wang G. Stimulation of pyrolytic carbon materials as electron shuttles on the anaerobic transformation of recalcitrant organic pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149696. [PMID: 34418626 DOI: 10.1016/j.scitotenv.2021.149696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Pyrolytic carbon materials (PCMs) with various surface functionalities are widely used as environmentally friendly and cost-efficient adsorbents for the removal of organic and inorganic pollutants. Recent studies have illustrated that PCMs as electron shuttles (ESs) could also show excellent performances in promoting the anaerobic transformation of recalcitrant organic pollutants (ROPs). Numerous studies have demonstrated the excellent electron-shuttle capability (ESC) of PCMs to stimulate the anaerobic reductive transformation of ROPs. However, there is a lack of consistent understanding of the mechanism of ESC formation in PCMs and the stimulation mechanism for ROPs anaerobic transformation. To gain a more comprehensive understanding of the latest developments in the study of PCMs as ESs for ROPs anaerobic transformation, this review summarizes the formation mechanism, influencing factors, and stimulation mechanisms of ESC. ESC benefits from redox functional groups (quinone and phenol groups), persistent free radicals (PFRs), redox-active metal ions, conductive graphene phase, and porous nature of their surface. The factors influencing ESC include the highest treatment temperature (HTT), feedstocks, modification methods, and environmental conditions, of which, the HTT is the key factor. PCMs promote the reductive transformation of ROPs under anaerobic conditions via abiotic and biotic pathways. Eventually, the prospects for the ROPs anaerobic transformation enhanced by PCMs are proposed.
Collapse
Affiliation(s)
- Lu Zhou
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China
| | - Tianying Chi
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Hong Chen
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China
| | - Chunyan Du
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China.
| | - Guanlong Yu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China
| | - Haipeng Wu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, PR China
| | - Xiaofang Zhu
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| | - Guoliang Wang
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, PR China
| |
Collapse
|
40
|
Pan X, Lv N, Cai G, Zhou M, Wang R, Li C, Ning J, Li J, Li Y, Ye Z, Zhu G. Carbon- and metal-based mediators modulate anaerobic methanogenesis and phenol removal: Focusing on stimulatory and inhibitory mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126615. [PMID: 34329085 DOI: 10.1016/j.jhazmat.2021.126615] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In this study, anaerobic batch experiments were conducted to investigate the effect of carbon-based (biochar) and metal-based (nanoscale zero-valent iron, NZVI and zero valent iron, ZVI) mediators on the AD process treating phenolic wastewater. Fresh apricot shell- and wood-derived biochar (BiocharA, BiocharB) could remove the phenol efficiently (77.1% and 86.2%), suggesting that biodegradation cooperated with adsorption had advantage in phenol removal. BiocharB, NZVI and ZVI enhanced the methane production by 17.6%, 23.7% and 23.2%, respectively. Apart from serving as carrier for microbial growth, BiocharB might promote the direct interspecies electron transfer (DIET) since the Anaerolineaceae/Clostridium sensu stricto, which have potential for DIET, were enriched. NZVI and ZVI added systems mainly enhanced the abundance of Clostridium sensu stricto (24.5%, 37.6%) and Methanosaeta. Interestingly, BiocharA inhibited the methanogenesis completely. An inhibitory mechanism was proposed: the exposure of absorbed microbes on the BiocharA to the highly concentrated phenol in biochar' pores resulted in the inhibition of methanogens, especially for Methanosarcina. In conclusion, this study showed that suitable biochar (BiocharB) could serve as an alternative redox mediator for realizing simultaneously the efficient phenol removal and methane production.
Collapse
Affiliation(s)
- Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China
| | - Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mingdian Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ruming Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Jing Ning
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Junjie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanlin Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhilong Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
41
|
Jiang Q, Zhang C, Wu P, Ding P, Zhang Y, Cui MH, Liu H. Algae biochar enhanced methanogenesis by enriching specific methanogens at low inoculation ratio during sludge anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 338:125493. [PMID: 34273625 DOI: 10.1016/j.biortech.2021.125493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Carbon materials are promising in improving the performance of anaerobic digestion, however, interactive mechanisms between the carbon-based enhancement and operating parameters remained unclear. Using anaerobic digested sludge as inoculum, the effects of Taihu blue algae biochar (ABC) on methanogenesis at different inoculation ratios were investigated during sludge anaerobic digestion. Results showed that ABC enhanced methane productions at the lower inoculation ratios (4% and 1%, v/v), but not at the higher ratio (10%, v/v). Mechanism analysis demonstrated methanogenic improvements at the lower inoculation ratios were not owing to initial organic loading rate increments. Otherwise, ABC addition at the lower inoculation ratios were more favorable for the enrichment of Methanosarcina than the higher ratio, which might be benefit for methanogenesis through directed interspecies electron transfer. Thus, for the improvement of sludge anaerobic digestion, the microbial enrichments at different inoculation ratios would be more important than the merely biochar addition.
Collapse
Affiliation(s)
- Qian Jiang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Chao Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Ping Wu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Peng Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yan Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Min-Hua Cui
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - He Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China.
| |
Collapse
|
42
|
Kumar SS, Ghosh P, Kataria N, Kumar D, Thakur S, Pathania D, Kumar V, Nasrullah M, Singh L. The role of conductive nanoparticles in anaerobic digestion: Mechanism, current status and future perspectives. CHEMOSPHERE 2021; 280:130601. [PMID: 33945900 DOI: 10.1016/j.chemosphere.2021.130601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
In the current scenario, alternative energy sources are the need of the hour. Organic wastes having a larger fraction of biodegradable constituents present a sustainable bioenergy source. It has been reported that the calorific value of biogas generated by anaerobic digestion (AD) is 21-25 MJ/m3 with the treatment which makes it an excellent replacement of natural gas and fossil fuels and can reduce more than 80% greenhouse gas emission to the surroundings. However, there are some limitations associated with the AD process for instance ammonia build-up at the first stage reduces the rate of hydrolysis of biomass, whereas, in the last stage it interferes with methane formation. Owing to special physicochemical properties such as high activity, high reactive surface area, and high specificity, tailor-made conductive nanoparticles can improve the performance of the AD process. In the AD process, H2 is used as an electron carrier, referred as mediated interspecies electron transfer (MIET). Due to the diffusion limitation of these electron carriers, the MIET efficiency is relatively low that limits the methanogenesis. Direct interspecies electron transfer (DIET), which enables direct cell-to-cell electron transport between bacteria and methanogen, has been considered an alternative efficient approach to MIET that creates metabolically favorable conditions and results in faster conversion of organic acids and alcohols into methane. This paper discusses in detail the application of conductive nanoparticles to enhance the AD process efficiency. Interaction between microbes in anaerobic conditions for electron transfer with the help of CNPs is discussed. Application of a variety of conductive nanomaterials as an additive is discussed with their potential biogas production and treatment enhancement in the anaerobic digestion process.
Collapse
Affiliation(s)
- Smita S Kumar
- Department of Environmental Sciences, JC Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Navish Kataria
- Department of Environmental Sciences, JC Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Deepak Kumar
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Sveta Thakur
- Department of Bio Science, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh, 171005, India
| | - Deepak Pathania
- Central University of Jammu, Bagla (Rahya Suchani), Distt. Samba, J&K, 181143, India
| | - Vivek Kumar
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Lakhveer Singh
- Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh, 522502, India.
| |
Collapse
|
43
|
Baek G, Rossi R, Saikaly PE, Logan BE. The impact of different types of high surface area brush fibers with different electrical conductivity and biocompatibility on the rates of methane generation in anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147683. [PMID: 34004541 DOI: 10.1016/j.scitotenv.2021.147683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The addition of electrically conductive materials may enhance anaerobic digestion (AD) efficiency by promoting direct interspecies electron transfer (DIET) between electroactive microorganisms, but an equivalent enhancement can also be achieved using non-conductive materials. Four high surface area brush materials were added to AD reactors: non-conductive horsehair (HB) and polyester (PB), and conductive carbon fiber (CB) and stainless steel (SB) brushes. Reactors with the polyester material showed lower methane production (68 ± 5 mL/g CODfed) than the other non-conductive material (horsehair) and the conductive (graphite or stainless steel) materials (83 ± 3 mL/g CODfed) (p < 0.05). This difference was due in part to the higher biomass concentrations using horsehair or carbon (135 ± 43 mg) than polyester or stainless steel or materials (26 ± 1 mg). A microbial community analysis indicated that the relative abundance of electroactive microorganisms was not directly related to enhanced AD performance. These results show that non-conductive materials such as horsehair can produce the same AD enhancement as conductive materials (carbon or stainless steel). However, if the material, such as polyester, does not have good biomass retention, it will not enhance methane production. Thus, electrical conductivity alone was not responsible for enhancing AD performance. Polyester, which has been frequently used as a non-conductive control material in DIET studies, should not be used for this purpose due to its poor biocompatibility as shown by low biomass retention in AD tests.
Collapse
Affiliation(s)
- Gahyun Baek
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 231Q Sackett Building, University Park, PA 16802, USA
| | - Ruggero Rossi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 231Q Sackett Building, University Park, PA 16802, USA
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 231Q Sackett Building, University Park, PA 16802, USA.
| |
Collapse
|
44
|
Liu Y, Liu S, Yang Z, Xiao L. Synergetic effects of biochars and denitrifier on nitrate removal. BIORESOURCE TECHNOLOGY 2021; 335:125245. [PMID: 33991877 DOI: 10.1016/j.biortech.2021.125245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Nitrate is one of the most common water contaminants and has caused severe environmental problems. This work aimed to investigate the effects of integration of denitrifier with biochars on nitrate removal and understand the underlying mechanisms. The results showed that physiochemical properties of biochars varied according to different feedstocks, which influenced bacteria attachment and nitrate removal through adsorption. However, bacteria could colonize on biochars no matter biochars surface were favorable for bacteria attachment or not. Immobilization of denitrifier on biochars significantly improved nitrate removal efficiencies and reduced lag time. Underlying mechanisms investigation showed that the integration of denitrifier with biochars had synergetic effects on promoting nitrate removal, which improved not only the expression and activity of nitrate reductase, but also the electron transport system activity.
Collapse
Affiliation(s)
- Yuqi Liu
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Shulei Liu
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Zongcai Yang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China.
| |
Collapse
|
45
|
Li L, Zhang X, Zhu P, Yong X, Wang Y, An W, Jia H, Zhou J. Enhancing biomethane production and pyrene biodegradation by addition of bio-nano FeS or magnetic carbon during sludge anaerobic digestion. ENVIRONMENTAL TECHNOLOGY 2021; 42:3496-3507. [PMID: 32085684 DOI: 10.1080/09593330.2020.1733674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/14/2020] [Indexed: 05/22/2023]
Abstract
Pyrene exerts toxic effects on methanogens during anaerobic digestion of sludge, thus affecting the efficiency of sludge treatment. This study evaluated the facilitated direct interspecific electron transfer (DIET) between bacteria and methanogens when bio-nano FeS or magnetic carbon is added into anaerobic reactors. Results showed that adding 200 mg/L bio-nano FeS or magnetic carbon clearly reduced the accumulation of short-chain fatty acids and avoided acidification during 25 days of anaerobic digestion. The methane productions were 98.38 L/kg total solid (TS) and 73.69 L/kg TS in the bio-nano FeS and magnetic carbon systems, respectively, which accelerated methane production by 58.1% and 33.4%, respectively, compared with the control system (40.26 L/kg TS). The pyrene removal rates reached 77.5% and 72.1% in the bio-nano FeS and magnetic carbon systems, whereas it was only 40.8% in the control system. Analysis of microbial community structure revealed that methanogens (e.g. Methanosarcina and Methanosaeta) and extracellular electron-transfer bacteria (e.g. Pseudomonas, Cloastridia, and Synergistetes) were enriched in the reactors added with bio-nano FeS or magnetic carbon. This result indicates that the addition of bio-nano FeS or magnetic carbon may promote the activity and growth of microorganisms to improve the efficiency of methane production and pyrene degradation by enhancing DIET.
Collapse
Affiliation(s)
- Lian Li
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing, People's Republic of China
- College of Environment, Nanjing TECH University, Nanjing, People's Republic of China
| | - Xueying Zhang
- College of Environment, Nanjing TECH University, Nanjing, People's Republic of China
| | - Peiru Zhu
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing, People's Republic of China
- College of Environment, Nanjing TECH University, Nanjing, People's Republic of China
| | - Xiaoyu Yong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing, People's Republic of China
| | - Yajun Wang
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, People's Republic of China
| | - Wei An
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, People's Republic of China
| | - Honghua Jia
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing, People's Republic of China
| | - Jun Zhou
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing, People's Republic of China
| |
Collapse
|
46
|
Kang HJ, Lee SH, Lim TG, Park HD. Effect of microbial community structure in inoculum on the stimulation of direct interspecies electron transfer for methanogenesis. BIORESOURCE TECHNOLOGY 2021; 332:125100. [PMID: 33838453 DOI: 10.1016/j.biortech.2021.125100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
To investigate how the seed microbial community structure affects the improvement of methanogenesis efficiency through direct interspecies electron transfer (DIET), a biomethane potential (BMP) test was conducted using sludge collected from a total of six anaerobic digesters. DIET-stimulating microbial populations were investigated by 16S rRNA gene sequence analysis. Correlations between microbial community composition and methane production performance by DIET were analyzed. The methane production rate increased under all conditions when granular activated carbon (GAC) was injected regardless of the inoculum type. However, redundancy analysis indicated a significant correlation between the inoculum microbial community and lag time. In a network analysis, Methanolinea species distributed in the inocula formed a single modularity with lag time, suggesting that the methanogens in the inocula might reduce the lag time of methanogenesis through DIET. Overall, this study revealed that the inoculum microbial community composition is an important factor affecting methane production efficiency by DIET.
Collapse
Affiliation(s)
- Hyun-Jin Kang
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Tae-Guen Lim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
47
|
Leininger A, Ren ZJ. Circular utilization of food waste to biochar enhances thermophilic co-digestion performance. BIORESOURCE TECHNOLOGY 2021; 332:125130. [PMID: 33857865 DOI: 10.1016/j.biortech.2021.125130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Codigestion is an emerging approach to improve wastewater sludge biogas production and valorize food waste (FW). This study explores FW-derived biochar as a codigestion amendment for the first time and reports a matrix experiment using four diverse biochar amendments (mixed food waste, pinewood, bonechar, unamended control) across four FW types (vegetable, rice, chicken, mixed). It demonstrated that biochar derived from mixed FW can greatly improve the performance of biogas production and yield relative to unamended control and other biochars. The mixed food waste (MFW) biochar amendment led to 34.5%, 35.6%, and 47.5% increase in methane production from mixed FW compared to biochars made of wood, bone and non-amendment control, and the maximum methane production rate of MFW biochar reactors could be up to 6.7-9.9 times of the control. These results suggest that a more circular utilization of FW by integrating biochar production with codigestion can bring great benefits to FW management.
Collapse
Affiliation(s)
- Aaron Leininger
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
48
|
Abbas Y, Yun S, Wang K, Ali Shah F, Xing T, Li B. Static-magnetic-field coupled with fly-ash accelerant: A powerful strategy to significantly enhance the mesophilic anaerobic-co-digestion. BIORESOURCE TECHNOLOGY 2021; 327:124793. [PMID: 33581377 DOI: 10.1016/j.biortech.2021.124793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The anaerobic-co-digestion (AcoD) of dairy-manure (DM) and aloe-peel-residue (ALR) waste is enhanced by combining static-magnetic-field (SMF) and fly-ash (FA). Varying SMF intensities (5-30 mT) were applied to the co-digestion digesters containing the optimum FA concentration (1.5 wt.%), which were selected from co-digestion systems with a varying FA (0-2 wt.%). All experimental groups exhibit the greater COD removal rates (51.56-64.19%) and cumulative biogas yields (604.14-671.64 mL/g VS) than reference group (37.77% and 433.19 mL/g VS). The digester with optimum FA concentration (1.5 wt.%) under 5 mT shows the highest biogas yield (671.64 mL/g VS), and exhibits superior digestate stability (45.4%) and fertility (7.01%) for fertilizer utilization. A powerful strategy for understanding the underlying mechanism of the SMF and FA accelerant in an enhanced AcoD system is proposed. This work documents an innovative technique for an enhanced AcoD system using the SMF coupled with FA accelerant.
Collapse
Affiliation(s)
- Yasir Abbas
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Kaijun Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Fayyaz Ali Shah
- Department of Environmental Sciences. Hazara University Mansehra, KPK, Pakistan
| | - Tian Xing
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Bingjie Li
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
49
|
Cai C, Li L, Hua Y, Liu H, Dai X. Ferroferric oxide promotes metabolism in Anaerolineae other than microbial syntrophy in anaerobic methanogenesis of antibiotic fermentation residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143601. [PMID: 33261864 DOI: 10.1016/j.scitotenv.2020.143601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Antibiotic fermentation residue (AFR) is a kind of protein-rich biosolids that would be utilized as valuable substrates for biogas production. However, the effectiveness of conductive material supplementation and its effect on the microbiome in anaerobic digestion of AFR have not been fully elucidated. The objective of this study is to access the impact of Fe3O4 addition on anaerobic digestion of AFR and reveal its microbial mechanism. By adding Fe3O4 at concentration of 150 mg/gTS to two typical AFRs, the methane yield was decreased while the methane production rate was significantly enhanced by 48% and 21%, respectively. Genomic analyses revealed that the Fe3O4 addition altered the microbial community by selecting the unknown genus of Anaerolineae with the metabolic capacity of carbohydrate hydrolysis and proteolysis. Meanwhile, the hydrogenotrophic methanogenesis was the dominant pathway in the AFR digestion system, which was mostly contributed by the Methanoculleus and Methanolinea. More interestingly, Methanoculleus might possess fermentative capability involved in the versatile hydrolysis pathway. Although the genes related to electrically conductive pili were detected, the induction of direct interspecies electron transfer by Fe3O4 supplementation was not confirmed in this study. In summary, except the accelerated methane production rate, Fe3O4 addition functioned as biostimulator for Anaerolineae other than electron conduit in anaerobic methanogenesis in the AFR digestion system.
Collapse
Affiliation(s)
- Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lei Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yu Hua
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huiling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
50
|
Feng D, Xia A, Liao Q, Nizami AS, Sun C, Huang Y, Zhu X, Zhu X. Carbon cloth facilitates semi-continuous anaerobic digestion of organic wastewater rich in volatile fatty acids from dark fermentation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116030. [PMID: 33257151 DOI: 10.1016/j.envpol.2020.116030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
The anaerobic digestion of wastewater rich in volatile fatty acids (VFAs) provides a sustainable approach for methane production whilst reducing environmental pollution. However, the anaerobic digestion of VFAs may not be stable during long-term operation under a short hydraulic retention time. In this study, conductive carbon cloth was supplemented to investigate the impacts on the anaerobic digestion of VFAs in wastewater sourced from dark fermentation. The results demonstrated that the failure of anaerobic digestion could be avoided when carbon cloth was supplemented. In the stable stage, the methane production rate with carbon cloth supplementation was improved by 200-260%, and the chemical oxygen demand (COD) removal efficiency was significantly enhanced compared with that in the control without carbon cloth. The relative abundance of potential exoelectrogens on the carbon cloth was increased by up to 8-fold compared with that in the suspension. Electrotrophic methanogens on the carbon cloth were enriched by 4.2-17.2% compared with those in the suspension. The genera Ercella and Petrimonas along with the methanogenic archaea Methanosaeta and Methanosarcina on the carbon cloth may facilitate direct interspecies electron transfer, thereby enhancing methane production.
Collapse
Affiliation(s)
- Dong Feng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Chihe Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|