1
|
Subudhi S, Saha K, Mudgil D, Sarangi PK, Srivastava RK, Sarma MK. Biomethanol production from renewable resources: a sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7432-7448. [PMID: 37667122 DOI: 10.1007/s11356-023-29616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
The abundant availability of various kinds of biomass and their use as feedstock for the production of gaseous and liquid biofuels has been considered a viable, eco-friendly, and sustainable mode of energy generation. Gaseous fuels like biogas and liquid fuels, e.g., bioethanol, biodiesel, and biomethanol derived from biological sources, have been theorized to produce numerous industrially relevant organic compounds replacing the traditional practice of employing fossil fuels as a raw material. Among the biofuels explored, biomethanol has shown promising potential to be a future product addressing multifactorial issues concerning sustainable energy and associated process developments. The presented mini-review has explored the importance and application of biomethanol as a value-added product. The biomethanol production process was well reviewed by focusing on different thermochemical and biochemical conversion processes. Syngas and biogas have been acknowledged as potential resources for biomethanol synthesis. The emphasis on biochemical processes is laid on the principal metabolic pathways and enzymatic machinery involved or used by microbial physiology to convert feedstock into biomethanol under normal temperature and pressure conditions. The advantage of minimizing the cost of production by utilizing suggested modifications to the overall process of biomethanol production that involves metabolic and genetic engineering in microbial strains used in the production process has been delineated. The challenges that exist in our current knowledge domain, impeding large-scale commercial production potential of biomethanol at a cost-effective rate, and strategies to overcome them along with its future scenarios have also been pointed out.
Collapse
Affiliation(s)
- Sanjukta Subudhi
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India.
| | - Koel Saha
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| | - Divya Mudgil
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, 795004, Manipur, India
| | - Rajesh K Srivastava
- Department of Biotechnology, Gitam School of Technology, GITAM (Deemed to Be University), Visakhapatnam, 530045, India
| | - Mrinal Kumar Sarma
- Advanced Biofuels Program, The Energy and Resources Institute, Darbari Seth Block, Habitat Place, Lodhi Road, New Delhi, 110 003, India
| |
Collapse
|
2
|
Hu Y, Li Q, Li C. Effects of nitrogen phosphorus ratio and light on phosphorus removal by microalgae in high-phosphorus wastewater. ENVIRONMENTAL TECHNOLOGY 2025:1-13. [PMID: 39956159 DOI: 10.1080/09593330.2025.2464981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/02/2025] [Indexed: 02/18/2025]
Abstract
The removal of phosphorus from wastewater has consistently posed a major focus in the field of wastewater treatment. Microalgae-based phosphorus removal is widely acknowledged as an effective biological approach. However, ensuring the microalgae-mediated high phosphorus concentration removal remains a persistent challenge. In this study, a kind of multicellular microalgae, Klebsormidium sp., was used to explore its ability to remove phosphorus in high-phosphorus wastewater. The phosphorus removal rate by Klebsormidium sp. in highly concentrated (>20 mgP/L) wastewater can exceed 90%. To investigate the phosphorus absorption process, various nitrogen and phosphorus concentrations along with light conditions were employed. The results showed that 50% to 80% of the total phosphorus absorbed by microalgae entered the intracellular polymer. The phosphorus concentration and light intensity did not exert any significant effects on the absorption of phosphorus by microalgae. However, the nitrogen concentration and the light-to-dark ratio significantly influenced the storage of phosphorus by microalgae. At a nitrogen concentration over 300 mgN/L, phosphorus absorption by microalgae was inhibited. A higher light-to-dark ratio increased phosphorus transfer by microalgae, while the light duration exceeds 16 h inhibited it. Microalgae have emerged as promising materials for phosphorus removal in high-phosphorus sewage, the study offering potential solutions for a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Yupeng Hu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, People's Republic of China
- Engineering Laboratory of Environmental & Hydraulic Engineering, Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, People's Republic of China
| | - Qi Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, People's Republic of China
| | - Cong Li
- Engineering Laboratory of Environmental & Hydraulic Engineering, Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Xin Y, Wu S, Miao C, Xu T, Lu Y. Towards Lipid from Microalgae: Products, Biosynthesis, and Genetic Engineering. Life (Basel) 2024; 14:447. [PMID: 38672718 PMCID: PMC11051065 DOI: 10.3390/life14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae can convert carbon dioxide into organic matter through photosynthesis. Thus, they are considered as an environment-friendly and efficient cell chassis for biologically active metabolites. Microalgal lipids are a class of organic compounds that can be used as raw materials for food, feed, cosmetics, healthcare products, bioenergy, etc., with tremendous potential for commercialization. In this review, we summarized the commercial lipid products from eukaryotic microalgae, and updated the mechanisms of lipid synthesis in microalgae. Moreover, we reviewed the enhancement of lipids, triglycerides, polyunsaturated fatty acids, pigments, and terpenes in microalgae via environmental induction and/or metabolic engineering in the past five years. Collectively, we provided a comprehensive overview of the products, biosynthesis, induced strategies and genetic engineering in microalgal lipids. Meanwhile, the outlook has been presented for the development of microalgal lipids industries, emphasizing the significance of the accurate analysis of lipid bioactivity, as well as the high-throughput screening of microalgae with specific lipids.
Collapse
Affiliation(s)
- Yi Xin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
| | - Shan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Congcong Miao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Tao Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Ansari FA, Hassan H, Ramanna L, Gani KM, Singh K, Rawat I, Gupta SK, Kumari S, Bux F. Recycling air conditioner-generated condensate water for microalgal biomass production and carbon dioxide sequestration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119917. [PMID: 38183950 DOI: 10.1016/j.jenvman.2023.119917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/08/2024]
Abstract
Air conditioners alleviate the discomfort of human beings from heat waves that are consequences of climate change caused by anthropogenic activities. With each passing year, the effects of global warming worsen, increasing the growth of air conditioning industry. Air conditioning units produce substantial amounts of non-nutritive and (generally) neglected condensate water and greenhouse gases. Considering this, the study explored the potential of using air conditioner condensate water (ACW) to cultivate Chlorella sorokiniana, producing biomass, and sequestering carbon dioxide (CO2). The maximum biomass production was obtained in the BG11 medium (1.45 g L-1), followed by ACW-50 (1.3 g L-1). Similarly, the highest chlorophyll-a content was observed in the BG11 medium (11 μg mL-1), followed by ACW-50 (9.11 μg mL-1). The ACW-50 cultures proved to be better adapted to physiological stress (Fv/Fm > 0.5) and can be suitable for achieving maximum biomass with adequate lipid, protein, and carbohydrate production. Moreover, C. sorokiniana demonstrated higher lipid and carbohydrate yields in the ACW-50 medium, while biomass production and protein yields were comparable to the BG11 medium. The lipid, protein, and carbohydrate productivity were 23.43, 32.9, and 23.19 mg L-1 d-1, respectively for ACW-50. Estimation of carbon capture potential through this approach equals to 9.5% of the total emissions which is an added advantage The results indicated that ACW could be effectively utilized for microalgae cultivation, reducing the reliance on freshwater for large-scale microalgal biomass production and reduce the carbon footprints of the air conditioning industry.
Collapse
Affiliation(s)
- F A Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa
| | - H Hassan
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa
| | - L Ramanna
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa
| | - K M Gani
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa; Department of Civil Engineering, National Institute of Technology, Srinagar, India
| | - K Singh
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa
| | - I Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa
| | - S K Gupta
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa; Environmental Engineering, Department of Civil Engineering, Indian Institute of Technology Delhi, India
| | - S Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa
| | - F Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa.
| |
Collapse
|
5
|
Pandey A, Kant G, Chaudhary A, Amesho KTT, Reddy K, Bux F. Axenic green microalgae for the treatment of textile effluent and the production of biofuel: a promising sustainable approach. World J Microbiol Biotechnol 2024; 40:81. [PMID: 38285224 PMCID: PMC10824862 DOI: 10.1007/s11274-023-03863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
An integrated approach to nutrient recycling utilizing microalgae could provide feasible solutions for both environmental control and energy production. In this study, an axenic microalgae strain, Chlorella sorokiniana ASK25 was evaluated for its potential as a biofuel feedstock and textile wastewater (TWW) treatment. The microalgae isolate was grown on TWW supplemented with different proportions of standard BG-11 medium varying from 0 to 100% (v/v). The results showed that TWW supplemented with 20% (v/v) BG11 medium demonstrated promising results in terms of Chlorella sorokiniana ASK25 biomass (3.80 g L-1), lipid production (1.24 g L-1), nutrients (N/P, > 99%) and pollutant removal (chemical oxygen demand (COD), 99.05%). The COD level dropped by 90% after 4 days of cultivation, from 2,593.33 mg L-1 to 215 mg L-1; however, after day 6, the nitrogen (-NO3-1) and total phosphorus (TP) levels were reduced by more than 95%. The biomass-, total lipid- and carbohydrate- production, after 6 days of cultivation were 3.80 g L-1, 1.24 g L-1, and 1.09 g L-1, respectively, which were 2.15-, 2.95- and 3.30-fold higher than Chlorella sorokiniana ASK25 grown in standard BG-11 medium (control). In addition, as per the theoretical mass balances, 1 tonne biomass of Chlorella sorokiniana ASK25 might yield 294.5 kg of biodiesel and 135.7 kg of bioethanol. Palmitic acid, stearic acid, and oleic acid were the dominant fatty acids found in the Chlorella sorokiniana ASK25 lipid. This study illustrates the potential use of TWW as a microalgae feedstock with reduced nutrient supplementation (20% of TWW). Thus, it can be considered a promising feedstock for economical biofuel production.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Institute for Water and Wastewater Technology, Durban University of Technology, 19 Steve Biko Road, Durban, 4000, South Africa
- BiotechnologyBioenergy Research Laboratory, Department of Biotechnology, AKS University Satna, Satna, MP, 485001, India
| | - Gaurav Kant
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, 211004, India
| | - Ashvani Chaudhary
- Department of Biotechnology, University)IMS Engineering College (Affiliated to Dr. APJ Abdul Kalam Technical University, Lucknow), Lucknow, Ghaziabad, UP, 201015, India
- Amity Institute of Biotechnology, Amity University Noida Campus, Sec-125, Noida, 201313, UP, India
| | - Kaissan T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Centre for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Centre for Environmental Studies, The International University of Management, Main Campus, Dorado Park Ext 1, Windhoek, 10001, Namibia
| | - Karen Reddy
- Institute for Water and Wastewater Technology, Durban University of Technology, 19 Steve Biko Road, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, 19 Steve Biko Road, Durban, 4000, South Africa.
| |
Collapse
|
6
|
Nachiappan K, Chandrasekaran R. Reformation of dairy effluent-a phycoremediation approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:405. [PMID: 36792850 DOI: 10.1007/s10661-023-10995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Microalgae are a unique renewable resource utilized since ages, serving as a reservoir for the production of various metabolites. In this study, dairy waste water (DWW) is used as the nutrient media for the cultivation of microalgae. This study focuses on the phycoremediation process of converting rich nutrients in the effluent into biomass and removing contaminants using microalgae. The specific growth rate reached the maximum of 0.55 day-1 in Desmococcus olivaceous, followed by 0.39 day-1 for Scenedesmus dimorphus, 0.23 day-1 in DCS (consortia composing all three strains in equal ratio), and lastly 0.22 day-1 in Chlorella vulgaris. The biomass productivity was 1.44 g L-1 day-1, 1.06 g L-1 day-1, 0.88 g L-1 day-1, and 0.65 g L-1 day-1 in D. olivaceous, S. dimorphus, C. vulgaris, and DCS, respectively. The COD and BOD removal percentage was 82.85% and 45.40% in D. olivaceous, 81.98% and 44.25% in C. vulgaris, 80.73% and 53.45% in S. dimorphus, and 80.10% and 43.10% in DCS, respectively. These results emphasize the promising role of algae in dairy effluent treatment, highlighting the effluent as a suitable medium for microalgae cultivation. It verifies the circular bio-economy concept where the treated wastewater is converted into value-added products.
Collapse
Affiliation(s)
- Kanagam Nachiappan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Kancheepuram District, Tamil Nadu, 602 117, India
| | - Rajasekaran Chandrasekaran
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
7
|
Manikrao Ingle U, Pawar PR, Prakash G. Acid-assisted oil extraction directly from thraustochytrids fermentation broth and its energy assessment for docosahexaenoic acid-enriched oil production. BIORESOURCE TECHNOLOGY 2023; 367:128272. [PMID: 36347480 DOI: 10.1016/j.biortech.2022.128272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Thraustochytrids are the most prominent source of polyunsaturated fatty acids, specifically docosahexaenoic acid (DHA). Downstream processing constitutes a significant fraction of total production cost and thus needs judicious optimization. Currently, hazardous solvent-based extraction methods are used to extract oil from the dry or wet thraustochytrids cell mass. The process is also highly energy-intensive due to involvement of dewatering and drying as unit operations. Current work devised an energy-efficient acid-assisted extraction (AAE) methodology to overcome dry and wet biomass-based extraction limitations. AAE recovered 91 % of total oil with 35-40 % PUFA from the direct fermentation broth, eliminating the need for dewatering and drying of fermentation broth/cell biomass. The current work also presents an all-inclusive comparison of the energy assessment of oil extraction from dry and AAE method. AAE produced PUFA enriched oil with a total energy consumption of 210 MJ/kg, which was four times lower than that of conventional dry cell extraction methodology.
Collapse
Affiliation(s)
- Umesh Manikrao Ingle
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Pratik R Pawar
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Gunjan Prakash
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
8
|
Chenthamara D, Sivaramakrishnan M, Ramakrishnan SG, Esakkimuthu S, Kothandan R, Subramaniam S. Improved laccase production from Pleurotus floridanus using deoiled microalgal biomass: statistical and hybrid swarm-based neural networks modeling approach. 3 Biotech 2022; 12:346. [PMID: 36386567 PMCID: PMC9649576 DOI: 10.1007/s13205-022-03404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Fungal laccases are versatile biocatalyst and occupy a prominent place in various industrial applications due to its broad substrate specificity. The simplest method to enhance the laccase production is by usage of cheap substrates in the fermentation processes incorporating modeling approaches for optimization. Integrated biorefinery concept is receiving wide popularity by making use of various products from microalgal biomass. The research aimed to identify the potential of deoiled microalgal biomass (DMB), a waste product from algal biorefinery as a nutrient supplement to enhance laccase production in Pleurotus floridanus by submerged fermentation. The maximum production was obtained in the presence of DMB as an additional nutrient supplement and copper sulfate as an inducer. The predictive capabilities of the two methodologies Response Surface Methodology (RSM) and hybrid Particle swarm optimization (PSO)-based Artificial Neural Network (ANN) were compared and validated. The results showed that ANN coupled with PSO predicted with more accuracy with an R 2 value of 0.99 than the RSM model with an R 2 value of 0.97. The optimized condition as predicted by superior model hybrid PSO-based ANN was glucose (3.51%), DMB (0.545%), pH (4.9), temperature (24.68 ℃) and CuSO4 (1.35 mM). The experimental laccase activity was 80.45 ± 0.132 U/mL which was 1.3 fold higher than unoptimized condition. This study promotes the usage of DMB as a novel supplement for the improved production of Pleurotus floridanus laccase. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03404-y.
Collapse
Affiliation(s)
- Dhrisya Chenthamara
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Sankar Ganesh Ramakrishnan
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, India
| | - Sadhasivam Subramaniam
- Bioprocess and Biomaterials Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
- Department of Extension and Career Guidance, Bharathiar University, Coimbatore, India
| |
Collapse
|
9
|
Pathy A, Nageshwari K, Ramaraj R, Pragas Maniam G, Govindan N, Balasubramanian P. Biohydrogen production using algae: Potentiality, economics and challenges. BIORESOURCE TECHNOLOGY 2022; 360:127514. [PMID: 35760248 DOI: 10.1016/j.biortech.2022.127514] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The biohydrogen production from algal biomass could ensure hydrogen's sustainability as a fuel option at the industrial level. However, some bottlenecks still need to be overcome to achieve the process's economic feasibility. This review article highlights the potential of algal biomasses for producing hydrogen with a detailed explanation of various mechanisms and enzymes involved in the production processes. Further, it discusses the impact of various experimental parameters on biohydrogen production. This article also analyses the significant challenges confronted during the overall biohydrogen production process and comprehends the recent strategies adopted to enhance hydrogen productivity. Furthermore, it gives a perception of the economic sustenance of the process. Moreover, this review elucidates the future scope of this technology and delineates the approaches to ensure the viability of hydrogen production.
Collapse
Affiliation(s)
- Abhijeet Pathy
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Krishnamoorthy Nageshwari
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | | | - Gaanty Pragas Maniam
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300, Malaysia
| | | | - Paramasivan Balasubramanian
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
10
|
Behera B, Selvam S M, Paramasivan B. Research trends and market opportunities of microalgal biorefinery technologies from circular bioeconomy perspectives. BIORESOURCE TECHNOLOGY 2022; 351:127038. [PMID: 35331886 DOI: 10.1016/j.biortech.2022.127038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 05/16/2023]
Abstract
Microalgae as an alternative feedstock for sustainable bio-products have gained significant interest over years. Even though scientific productivity related to microalgae-based research has increased in recent decades, translation to industrial scale is still lacking. Therefore, it is essential to understand the current state-of-art and, identify research gaps and hotspots driving industrial scale up. The present review through scientometric analysis attempted to delineate the research evolution contributing to this emerging field. The research trends were analysed over the last decade globally highlighting the collaborative network between the countries. The comprehensive knowledge map generated confirmed microalgal biorefinery as a scientifically active field, where the present research interest is focussed on synergistically integrating the unit processes involved to make it enviro-economically feasible. Market opportunities and regulatory policy requirements along with the consensus need to adopt circular bio-economy perspectives were highlighted to facilitate real-time implementation of microalgal biorefinery.
Collapse
Affiliation(s)
- Bunushree Behera
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India.
| | - Mari Selvam S
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Balasubramanian Paramasivan
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
11
|
Coyne KJ, Wang Y, Johnson G. Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Front Microbiol 2022; 13:871177. [PMID: 35464927 PMCID: PMC9022068 DOI: 10.3389/fmicb.2022.871177] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Interactions between bacteria and phytoplankton in aqueous ecosystems are both complex and dynamic, with associations that range from mutualism to parasitism. This review focuses on algicidal interactions, in which bacteria are capable of controlling algal growth through physical association or the production of algicidal compounds. While there is some evidence for bacterial control of algal growth in the field, our understanding of these interactions is largely based on laboratory culture experiments. Here, the range of these algicidal interactions is discussed, including specificity of bacterial control, mechanisms for activity, and insights into the chemical and biochemical analysis of these interactions. The development of algicidal bacteria or compounds derived from bacteria for control of harmful algal blooms is reviewed with a focus on environmentally friendly or sustainable methods of application. Potential avenues for future research and further development and application of bacterial algicides for the control of algal blooms are presented.
Collapse
Affiliation(s)
- Kathryn J. Coyne
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, United States
| | | | | |
Collapse
|
12
|
Abd El-Malek F, Rofeal M, Zabed HM, Nizami AS, Rehan M, Qi X. Microorganism-mediated algal biomass processing for clean products manufacturing: Current status, challenges and future outlook. FUEL 2022; 311:122612. [DOI: 10.1016/j.fuel.2021.122612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Xia S, Xue Y, Xue C, Jiang X, Li J. Structural and rheological properties of meat analogues from Haematococcus pluvialis residue-pea protein by high moisture extrusion. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Maurya R, Zhu X, Valverde-Pérez B, Ravi Kiran B, General T, Sharma S, Kumar Sharma A, Thomsen M, Venkata Mohan S, Mohanty K, Angelidaki I. Advances in microalgal research for valorization of industrial wastewater. BIORESOURCE TECHNOLOGY 2022; 343:126128. [PMID: 34655786 DOI: 10.1016/j.biortech.2021.126128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
This review article focuses on recent updates on remediation of industrial wastewater (IWW) through microalgae cultivation. These include how adding additional supplements of nutrient to some specific IWWs lacking adequate nutrients improving the microalgae growth and remediation simultaneously. Various pretreatments strategy recently employed for IWWs treatment other than dealing with microalgae was discussed. Various nutrient-rich IWW could be utilized directly with additional dilution, supplement of nutrients and without any pretreatment. Recent advances in various approaches and new tools used for cultivation of microalgae on IWW such as two-step cultivation, pre-acclimatization, novel microalgal-bioelectrical systems, integrated catalytic intense pulse-light process, sequencing batch reactor, use of old stabilized algal-bacterial consortium, immobilized microalgae cells, microalgal bacterial membrane photobioreactor, low-intensity magnetic field, BIO_ALGAE simulation tool, etc. are discussed. In addition, biorefinery of microalgal biomass grown on IWW and its end-use applications are reviewed.
Collapse
Affiliation(s)
- Rahulkumar Maurya
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| | - Boda Ravi Kiran
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Thiyam General
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Suvigya Sharma
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Anil Kumar Sharma
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture & Technology, U.S. Nagar, Pantnagar, Uttarakhand 263 145, India
| | - Marianne Thomsen
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Postbox 358 Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Kaustubha Mohanty
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, DTU, Denmark
| |
Collapse
|
15
|
A cascade biorefinery for the valorization of microalgal biomass: biodiesel, biogas, fertilizers and high valuable compounds. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
|
17
|
Sarma S, Sharma S, Rudakiya D, Upadhyay J, Rathod V, Patel A, Narra M. Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery. 3 Biotech 2021; 11:378. [PMID: 34367870 DOI: 10.1007/s13205-021-02911-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022] Open
Abstract
The need for alternative source of fuel has demanded the cultivation of 3rd generation feedstock which includes microalgae, seaweed and cyanobacteria. These phototrophic organisms are unique in a sense that they utilise natural sources like sunlight, water and CO2 for their growth and metabolism thereby producing diverse products that can be processed to produce biofuel, biochemical, nutraceuticals, feed, biofertilizer and other value added products. But due to low biomass productivity and high harvesting cost, microalgae-based production have not received much attention. Therefore, this review provides the state of the art of the microalgae based biorefinery approach to define an economical and sustainable process. The three major segments that need to be considered for economic microalgae biorefinery is low cost nutrient source, efficient harvesting methods and production of by-products with high market value. This review has outlined the use of various wastewater as nutrient source for simultaneous biomass production and bioremediation. Further, it has highlighted the common harvesting methods used for microalgae and also described various products from both raw biomass and delipidified microalgae residues in order to establish a sustainable, economical microalgae biorefinery with a touch of circular bioeconomy. This review has also discussed various challenges to be considered followed by a techno-economic analysis of the microalgae based biorefinery model.
Collapse
Affiliation(s)
- Shyamali Sarma
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Shaishav Sharma
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Darshan Rudakiya
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Jinal Upadhyay
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Vinod Rathod
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Aesha Patel
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| | - Madhuri Narra
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Post Box No. 2, Anand, Gujarat 388120 India
| |
Collapse
|
18
|
Microbial lipid biosynthesis from lignocellulosic biomass pyrolysis products. Biotechnol Adv 2021; 54:107791. [PMID: 34192583 DOI: 10.1016/j.biotechadv.2021.107791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023]
Abstract
Lipids are a biorefinery platform to prepare fuel, food and health products. They are traditionally obtained from plants, but those of microbial origin allow for a better use of land and C resources, among other benefits. Several (thermo)chemical and biochemical strategies are used for the conversion of C contained in lignocellulosic biomass into lipids. In particular, pyrolysis can process virtually any biomass and is easy to scale up. Products offer cost-effective, renewable C in the form of readily fermentable molecules and other upgradable intermediates. Although the production of microbial lipids has been studied for 30 years, their incorporation into biorefineries was only described a few years ago. As pyrolysis becomes a profitable technology to depolymerize lignocellulosic biomass into assimilable C, the number of investigations on it raises significantly. This article describes the challenges and opportunities resulting from the combination of lignocellulosic biomass pyrolysis and lipid biosynthesis with oleaginous microorganisms. First, this work presents the basics of the individual processes, and then it shows state-of-the-art processes for the preparation of microbial lipids from biomass pyrolysis products. Advanced knowledge on separation techniques, structure analysis, and fermentability is detailed for each biomass pyrolysis fraction. Finally, the microbial fatty acid platform comprising biofuel, human food and animal feed products, and others, is presented. Literature shows that the microbial lipid production from anhydrosugars, like levoglucosan, and short-chain organic acids, like acetic acid, is straightforward. Indeed, processes achieving nearly theoretical yields form the latter have been described. Some authors have shown that lipid biosynthesis from different lignin sources is biochemically feasible. However, it still imposes major challenges regarding strain performance. No report on the fermentation of pyrolytic lignin is yet available. Research on the microbial uptake of pyrolytic humins remains vacant. Microorganisms that make use of methane show promising results at the proof-of-concept level. Overall, despite some issues need to be tackled, it is now possible to conceive new versatile biorefinery models by combining lignocellulosic biomass pyrolysis products and robust oleaginous microbial cell factories.
Collapse
|
19
|
Toward the Enhancement of Microalgal Metabolite Production through Microalgae-Bacteria Consortia. BIOLOGY 2021; 10:biology10040282. [PMID: 33915681 PMCID: PMC8065533 DOI: 10.3390/biology10040282] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae-bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae-bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae-bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.
Collapse
|
20
|
Yun JH, Cho DH, Lee B, Lee YJ, Choi DY, Kim HS, Chang YK. Utilization of the acid hydrolysate of defatted Chlorella biomass as a sole fermentation substrate for the production of biosurfactant from Bacillus subtilis C9. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Usami R, Fujii K, Fushimi C. Improvement of Bio-Oil and Nitrogen Recovery from Microalgae Using Two-Stage Hydrothermal Liquefaction with Solid Carbon and HCl Acid Catalysis. ACS OMEGA 2020; 5:6684-6696. [PMID: 32258904 PMCID: PMC7114750 DOI: 10.1021/acsomega.9b04468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Bio-oil production from microalgae by using hydrothermal liquefaction (HTL) has been conducted extensively in the last decade. In this work, we conducted two-stage HTL of a microalga (Fistulifera solaris, JPCC DA0580) in the presence of 5.0 g/L carbon solid acid or a 0.02-0.50 M HCl catalyst to increase bio-oil yield and nitrogen recovery into the aqueous phase (AP). The first stage (HTL 1), to hydrolyze proteins, carbohydrates, and lipids and elute nitrogen components into the AP, was conducted at 100-250 °C for 30-120 min. The second stage (HTL 2), to produce the bio-oil, was conducted at 280-320 °C for 0-30 min. The best conditions to obtain a high bio-oil yield and NH4 + recovery in the AP were 200 °C and 30 min of residence time for HTL 1 and 320 °C and 0 min residence time for HTL 2. We found that 0.50 M HCl decreased the bio-oil yield while greatly increasing NH4 + in the AP and decreasing the nitrogen content in the bio-oil. This was probably due to the catalytic effect of HCl promoting hydrolysis of protein and deamination of amino acids during HTL 1. The fractions of water-soluble products were greatly increased by performing HTL 2 in neutral conditions while this maintained low nitrogen content in the bio-oil. From GC-MS analyses of the bio-oil, it was observed that, by using 0.50 M HCl, peak intensities of all the GC peaks decreased and MS spectra of amines decreased. The carbon solid acid had an insignificant influence on bio-oil and NH4 + yields.
Collapse
|
22
|
Nham Tran TL, Miranda AF, Gupta A, Puri M, Ball AS, Adhikari B, Mouradov A. The Nutritional and Pharmacological Potential of New Australian Thraustochytrids Isolated from Mangrove Sediments. Mar Drugs 2020; 18:E151. [PMID: 32155832 PMCID: PMC7142457 DOI: 10.3390/md18030151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023] Open
Abstract
Mangrove sediments represent unique microbial ecosystems that act as a buffer zone, biogeochemically recycling marine waste into nutrient-rich depositions for marine and terrestrial species. Marine unicellular protists, thraustochytrids, colonizing mangrove sediments have received attention due to their ability to produce large amounts of long-chain ω3-polyunsaturated fatty acids. This paper represents a comprehensive study of two new thraustochytrids for their production of valuable biomolecules in biomass, de-oiled cakes, supernatants, extracellular polysaccharide matrixes, and recovered oil bodies. Extracted lipids (up to 40% of DW) rich in polyunsaturated fatty acids (up to 80% of total fatty acids) were mainly represented by docosahexaenoic acid (75% of polyunsaturated fatty acids). Cells also showed accumulation of squalene (up to 13 mg/g DW) and carotenoids (up to 72 µg/g DW represented by astaxanthin, canthaxanthin, echinenone, and β-carotene). Both strains showed a high concentration of protein in biomass (29% DW) and supernatants (2.7 g/L) as part of extracellular polysaccharide matrixes. Alkalinization of collected biomass represents a new and easy way to recover lipid-rich oil bodies in the form of an aqueous emulsion. The ability to produce added-value molecules makes thraustochytrids an important alternative to microalgae and plants dominating in the food, pharmacological, nutraceutical, and cosmetics industries.
Collapse
Affiliation(s)
- Thi Linh Nham Tran
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Ana F. Miranda
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Adarsha Gupta
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, 5042 Adelaide, Australia; (A.G.); (M.P.)
| | - Munish Puri
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, 5042 Adelaide, Australia; (A.G.); (M.P.)
| | - Andrew S. Ball
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Benu Adhikari
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| | - Aidyn Mouradov
- School of Sciences, Royal Melbourne Institute of Technology University, 3083 Bundoora, Australia; (T.L.N.T.); (A.F.M.); (A.S.B.); (B.A.)
| |
Collapse
|
23
|
The Dark Side of Microalgae Biotechnology: A Heterotrophic Biorefinery Platform Directed to ω-3 Rich Lipid Production. Microorganisms 2019; 7:microorganisms7120670. [PMID: 31835511 PMCID: PMC6956277 DOI: 10.3390/microorganisms7120670] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
Microbial oils have been considered a renewable feedstock for bioenergy not competing with food crops for arable land, freshwater and biodiverse natural landscapes. Microalgal oils may also have other purposes (niche markets) besides biofuels production such as pharmaceutical, nutraceutical, cosmetic and food industries. The polyunsaturated fatty acids (PUFAs) obtained from oleaginous microalgae show benefits over other PUFAs sources such as fish oils, being odorless, and non-dependent on fish stocks. Heterotrophic microalgae can use low-cost substrates such as organic wastes/residues containing carbon, simultaneously producing PUFAs together with other lipids that can be further converted into bioenergy, for combined heat and power (CHP), or liquid biofuels, to be integrated in the transportation system. This review analyses the different strategies that have been recently used to cultivate and further process heterotrophic microalgae for lipids, with emphasis on omega-3 rich compounds. It also highlights the importance of studying an integrated process approach based on the use of low-cost substrates associated to the microalgal biomass biorefinery, identifying the best sustainability methodology to be applied to the whole integrated system.
Collapse
|
24
|
Mishra S, Roy M, Mohanty K. Microalgal bioenergy production under zero-waste biorefinery approach: Recent advances and future perspectives. BIORESOURCE TECHNOLOGY 2019; 292:122008. [PMID: 31466819 DOI: 10.1016/j.biortech.2019.122008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 05/08/2023]
Abstract
In view of the globalization and energy consumption, an economic and sustainable biorefinery model is essential to address the energy security and climate change. From this perspective, renewable biofuel production from microalgae along with a wide range of value-added co-products define its potential as a biorefinery feedstock. However, economic viability of microalgal biorefinery at its current state is not considered sustainable. Reduce, recycle, and reuse of waste derived from algal bioenergy conversion process will lead to an energy efficient and sustainable zero-waste microalgal biorefinery. This review focuses on three major aspects of zero-waste microalgal biorefinery approach; (1) recent advances on microalgal bioenergy conversion processes (chemical, biochemical and thermochemical); (2) mitigation and transformation of liquid and solid waste and (3) techno-economic analysis (TEA) and lifecycle assessment (LCA). In addition, the study also focuses on the challenges and future perspectives for an advanced microalgal biorefinery model.
Collapse
Affiliation(s)
- Sanjeev Mishra
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Madonna Roy
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubha Mohanty
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
25
|
Amin M, Chetpattananondh P. Biochar from extracted marine Chlorella sp. residue for high efficiency adsorption with ultrasonication to remove Cr(VI), Zn(II) and Ni(II). BIORESOURCE TECHNOLOGY 2019; 289:121578. [PMID: 31195297 DOI: 10.1016/j.biortech.2019.121578] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 05/27/2023]
Abstract
The biochar BC-450 derived from the extracted marine Chlorella sp. residue (EMCR) had high surface area (266 m2/g) and was rich in ash and O-functional groups. Its characteristics are suitable for heavy metal adsorption. The adsorption parameters were investigated to optimize the removal efficiency of Cr(VI), Zn(II) and Ni(II) from aqueous solution by conventional adsorption (CA) and by ultrasonication adsorption (UA). The adsorption was fit by Langmuir isotherm and by pseudo-second-order model. The equilibrium times were 10, 8, 15 min and 40, 60, 80 min for removal of Cr(VI), Zn(II) and Ni(II) with UA and CA, respectively. The maximum adsorption capacities of Cr(VI), Zn(II) and Ni(II) for CA and UA were 15.94, 17.62 and 24.76 mg/g and 18.86, 21.31 and 27.45 mg/g, respectively. UA presented 1.1-1.3 times greater removal efficiencies than CA in much shorter time. The EMCR is a promising feedstock for producing low cost and high efficiency adsorbents.
Collapse
Affiliation(s)
- Muhammad Amin
- Department of Chemical Engineering Faculty of Engineering, Prince of Songkla University, 90110 Hat Yai, Songkhla, Thailand
| | - Pakamas Chetpattananondh
- Department of Chemical Engineering Faculty of Engineering, Prince of Songkla University, 90110 Hat Yai, Songkhla, Thailand.
| |
Collapse
|
26
|
|
27
|
Prusov A, Prusova S, Zakharov A, Bazanov A, Ivanov V. Potential of Jerusalem Artichoke Stem for Cellulose Production. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2019. [DOI: 10.18321/ectj828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
There is a potential opportunity to convert almost any type of biomass into biofuel and bio- nanomaterials, if the appropriate biotechnological and chemical processing methods are used. The preference for this or that bioresource is due to the stability of the raw material base and the prospect of its use. Jerusalem artichoke stem (Helianthus tuberosus L.) (JA) is widely known as a potential non-food raw material for biofuels due to high biomass extraction (36–49 t/ha (tons per hectare)) and limited cultivation requirements. But little attention is given to study the possibility of using the stems to produce various kinds of cellulose. This article presents samples of cellulose that were obtained from the Jerusalem artichoke stem using mechanical and chemical methods. Cellulose yield from the stem was: cortex 51.1%, pith 65.2% with the α-cellulose content 96–98%. Methods of electron microscopy, atomic absorption, IR spectroscopy, X-ray diffraction, BET for nitrogen adsorption, thermogravimetry were used to study the cortex and the pith of the Jerusalem artichoke stem. Analysis of the cellulose samples confirmed the possibility of obtaining high-quality cellulose.
Collapse
|
28
|
Anandraj A, White S, Mutanda T. Photosystem I fluorescence as a physiological indicator of hydrogen production in Chlamydomonas reinhardtii. BIORESOURCE TECHNOLOGY 2019; 273:313-319. [PMID: 30448683 DOI: 10.1016/j.biortech.2018.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the interrelations between hydrogen synthesis and Photosystem I electron transport rate in Chlamydomonas reinhardtii. The fluorescence of both photosystems (PS I and PS II) was monitored using a Dual Pulse Amplitude Modulated (PAM) Fluorometer. Hydrogen synthesis was induced by eliminating sulphur from the growth media (TAP-S). Multiple physiological parameters [rETR, Y (I), Y (II), NPQ, α, Fv/Fm and YI:YII] were recorded using the Dual PAM and correlated to hydrogen produced. There was a 66% increase in Photosystem I rETRmax during hydrogen production. A significant direct correlation existed between PS 1 rETRmax and hydrogen evolution values over the ten-day period (r = 0.895, p < 0.01) indicating that PS I can be considered as a driver of H2 production. Significant correlations between rETRmax of PS I and H2 evolution suggest a novel physiological indicator to monitor H2 production during the three critical phases identified in this study.
Collapse
Affiliation(s)
- Akash Anandraj
- Centre for Algal Biotechnology, Mangosuthu University of Technology, P.O. Box 12363, Jacobs, 4026 Durban, South Africa.
| | - Sarah White
- Centre for Algal Biotechnology, Mangosuthu University of Technology, P.O. Box 12363, Jacobs, 4026 Durban, South Africa
| | - Taurai Mutanda
- Centre for Algal Biotechnology, Mangosuthu University of Technology, P.O. Box 12363, Jacobs, 4026 Durban, South Africa
| |
Collapse
|
29
|
Santos FM, Pires JCM. Nutrient recovery from wastewaters by microalgae and its potential application as bio-char. BIORESOURCE TECHNOLOGY 2018; 267:725-731. [PMID: 30082133 DOI: 10.1016/j.biortech.2018.07.119] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
The intensive agricultural practices are increasing the demand for chemical fertilizers, being currently produced from a non-environmental friendly way. Besides the environmental impacts, the nutrient uptake efficiency by the crops is very low, representing huge losses into the fields. Therefore, it is crucial to study alternatives for the current chemical fertilizers, which simultaneous improve nutrient efficiency and minimize environmental impacts. A sustainable solution is to recover nutrients from wastewater streams with microalgal cultures and the biomass conversion into bio-char for soil amendment. Wastewaters are loaded with nitrogen and phosphorus and can be used as culture medium for microalgae. Thus, nutrients can be recycled, reducing the requirement of chemical fertilizers. This paper aims to review nutrient recovery from wastewater using microalgae and the biomass conversion into bio-char. This process promotes nutrient recycling and the bio-char (when added to soil) improves the nutrient uptake efficiency by crops.
Collapse
Affiliation(s)
- Francisca M Santos
- Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia (LEPABE), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - José C M Pires
- Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia (LEPABE), Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
30
|
Fushimi C, Yazaki M, Tomita R. Reactivity of solid residue from hydrothermal liquefaction of diatom in oxidizing atmosphere. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Daneshvar E, Antikainen L, Koutra E, Kornaros M, Bhatnagar A. Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: Treatment of wastewater and lipid extraction. BIORESOURCE TECHNOLOGY 2018; 255:104-110. [PMID: 29414154 DOI: 10.1016/j.biortech.2018.01.101] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 05/05/2023]
Abstract
In this study, feasibility of Chlorella vulgaris cultivation in pulp wastewater (PWW) diluted with lake water (LW) and aquaculture wastewater (AWW) was investigated. The best ratios of PWW and AWW (PAWW) viz., 80% PWW:20% AWW and 60% PWW:40% AWW were selected as microalgal culture medium. Algal growth was investigated with and without addition of macro and micronutrients to the cultivation medium. The highest dry algal weight was observed as 1.31 g/L in 60% PWW:40% AWW without adding micronutrients. Nutrients and organic compounds removal efficiencies by microalga were studied in PAWW. Protein, carbohydrate and lipid percentage of harvested microalga from wastewater and Bold's Basal Medium (BBM) solution were analyzed. Fatty acids analysis revealed that C16 and C18 are the major fatty acids in C. vulgaris cultivated in BBM and PAWW. The results of this study revealed that C. vulgaris is a potential candidate for PAWW treatment and lipid and carbohydrate accumulation.
Collapse
Affiliation(s)
- Ehsan Daneshvar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Laura Antikainen
- Environmental Technology, Savonia University of Applied Sciences, P.O. Box 6 (Microkatu 1 C), FI-70201 Kuopio, Finland
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
32
|
Waste biorefineries — integrating anaerobic digestion and microalgae cultivation for bioenergy production. Curr Opin Biotechnol 2018; 50:101-110. [DOI: 10.1016/j.copbio.2017.11.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022]
|
33
|
Gorry PL, Sánchez L, Morales M. Microalgae Biorefineries for Energy and Coproduct Production. ENERGY FROM MICROALGAE 2018. [DOI: 10.1007/978-3-319-69093-3_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Chokshi K, Pancha I, Ghosh A, Mishra S. Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. BIORESOURCE TECHNOLOGY 2017; 244:1376-1383. [PMID: 28501381 DOI: 10.1016/j.biortech.2017.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 05/13/2023]
Abstract
The main aim of the present study was to analyze salinity stress induced physiological and biochemical changes in a freshwater microalgae Acutodesmus dimorphus. During single-stage cultivation, the accumulations of lipids and carbohydrates increased with an increase in an initial salinity of the culture medium. The carbohydrate and lipid accumulations of 53.30±2.76% and 33.40±2.29%, respectively, were observed in 200mM NaCl added culture. During two-stage cultivation, salinity stress of 200mM was favorable for the growth up to 2days, as suggested by higher biomass, lower levels of oxidative stress biomarkers and no significant changes in the biochemical composition of the cells. Extending the stress to 3days significantly increased the lipid accumulation by 43% without affecting the biomass production. This study, thus, provides the strategy to improve the biofuel potential of A. dimorphus along with presenting the physiological adaptive mechanisms of a cell against salinity stress.
Collapse
Affiliation(s)
- Kaumeel Chokshi
- Division of Salt & Marine Chemicals, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India.
| | - Imran Pancha
- Division of Salt & Marine Chemicals, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India.
| | - Arup Ghosh
- Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Division of Plant Omics, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India.
| | - Sandhya Mishra
- Division of Salt & Marine Chemicals, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India.
| |
Collapse
|
35
|
Mishra P, Balachandar G, Das D. Improvement in biohythane production using organic solid waste and distillery effluent. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 66:70-78. [PMID: 28456457 DOI: 10.1016/j.wasman.2017.04.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Biohythane is a two-stage anaerobic fermentation process consisting of biohydrogen production followed by biomethanation. This serves as an environment friendly and economically sustainable approach for the improved valorization of organic wastes. The characteristics of organic wastes depend on their respective sources. The choice of an appropriate combination of complementary organic wastes can vastly improve the bioenergy generation besides achieving the significant cost reduction. The present study assess the suitability and economic viability of using the groundnut deoiled cake (GDOC), mustard deoiled cake (MDOC), distillers' dried grain with solubles (DDGS) and algal biomass (AB) as a co-substrate for the biohythane process. Results showed that maximum gaseous energy of 23.93, 16.63, 23.44 and 16.21kcal/L were produced using GDOC, MDOC, DDGS and AB in the two stage biohythane production, respectively. Both GDOC and DDGS were found to be better co-substrates as compared to MDOC and AB. The maximum cumulative hydrogen and methane production of 150 and 64mmol/L were achieved using GDOC. 98% reduction in substrate input cost (SIC) was achieved using the co-supplementation procedure.
Collapse
Affiliation(s)
- Preeti Mishra
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - G Balachandar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Debabrata Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India.
| |
Collapse
|
36
|
Ansari FA, Wahal S, Gupta SK, Rawat I, Bux F. A comparative study on biochemical methane potential of algal substrates: Implications of biomass pre-treatment and product extraction. BIORESOURCE TECHNOLOGY 2017; 234:320-326. [PMID: 28340436 DOI: 10.1016/j.biortech.2017.03.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/12/2017] [Accepted: 03/09/2017] [Indexed: 05/11/2023]
Abstract
Dried powdered algae (SDPA), heat treated algae (MHTA), lipid extracted algae (LEA) and protein extracted algae (PEA) were digested to determine biomethane potential. The average CH4 production rate was ∼2.5-times higher for protein and lipid extracted algae than for whole algae (SDPA and MHTA) whilst the cumulative CH4 production was higher for pre-treated algae. Highest cumulative CH4 production (318.7mlCH4g-1VS) was observed for MHTA followed by SDPA (307.4mlCH4g-1VS). CH4/CO2 ratios of 1.5 and 0.7 were observed for MHTA and LEA respectively. Pre-treatment processes disrupted the algal cell wall, exposing intracellular material which remained intact as opposed to product extraction processes which broke down the intracellular compounds resulting in changes in elemental composition and decreases the cumulative gas yield and CH4/CO2 ratio. Comparative analysis determined that the most profitable route of biomass utilisation was protein extraction followed by biogas production giving ∼2.5-times higher return on investment.
Collapse
Affiliation(s)
- Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Shantanu Wahal
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Sanjay Kumar Gupta
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa.
| |
Collapse
|
37
|
Chokshi K, Pancha I, Ghosh A, Mishra S. Microalgal biomass generation by phycoremediation of dairy industry wastewater: An integrated approach towards sustainable biofuel production. BIORESOURCE TECHNOLOGY 2016; 221:455-460. [PMID: 27668878 DOI: 10.1016/j.biortech.2016.09.070] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 05/08/2023]
Abstract
Dairy wastewater collected from local dairy industry was used as a growth media (without any pre-treatment) for the cultivation of microalgae Acutodesmus dimorphus. The level of COD reduced over 90% (from 2593.33±277.37 to 215±7.07mg/L) after 4days of cultivation; whereas, ammoniacal nitrogen was consumed completely (277.4±10.75mg/L) after 6days of cultivation. Dry biomass of 840 and 790mg/L was observed after 4 and 8days of cultivation, respectively, which is about 5-6 times more than that of BG-11 grown culture (149mg/L after 8days). This biomass contains around 25% lipid and 30% carbohydrate, which can be further converted into biodiesel and bioethanol, respectively. Theoretical calculations based on the recently reported conversion yield suggest that 1kg biomass of A. dimorphus might produce around 195g of biodiesel and 78g of bioethanol, which sums up to 273g of biofuels.
Collapse
Affiliation(s)
- Kaumeel Chokshi
- Division of Salt & Marine Chemicals, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| | - Imran Pancha
- Division of Salt & Marine Chemicals, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| | - Arup Ghosh
- Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Division of Plant Omics, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| | - Sandhya Mishra
- Division of Salt & Marine Chemicals, CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India.
| |
Collapse
|
38
|
Maurya R, Ghosh T, Saravaia H, Paliwal C, Ghosh A, Mishra S. Non-isothermal pyrolysis of de-oiled microalgal biomass: Kinetics and evolved gas analysis. BIORESOURCE TECHNOLOGY 2016; 221:251-261. [PMID: 27643733 DOI: 10.1016/j.biortech.2016.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/03/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Non-isothermal (β=5, 10, 20, 35°C/min) pyrolysis of de-oiled microalgal biomass (DMB) of Chlorella variabilis was investigated by TGA-MS (30-900°C, Argon atmosphere) to understand thermal decomposition and evolved gas analysis (EGA). The results showed that three-stage thermal decomposition and three volatilization zone (100-400°C, 400-550°C and 600-750°C) of organic matters during pyrolysis. The highest rate of weight-loss is 8.91%/min at 302°C for 35°C/min heating-rate. Kinetics of pyrolysis were investigated by iso-conversional (KAS, FWO) and model-fitting (Coats-Redfern) method. For Zone-1and3, similar activation energy (Ea) is found in between KAS (α=0.4), FWO (α=0.4) and Avrami-Erofe'ev (n=4) model. Using the best-fitted kinetic model Avrami-Erofe'ev (n=4), Ea values (R2=>0.96) are 171.12 (Zone-1), 404.65 (Zone-2) and 691.42kJ/mol (Zone-3). EGA indicate the abundance of most gases observed consequently between 200-300°C and 400-500°C. The pyrolysis of DMB involved multi-step reaction mechanisms for solid-state reactions having different Ea values.
Collapse
Affiliation(s)
- Rahulkumar Maurya
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Tonmoy Ghosh
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Hitesh Saravaia
- Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Analytical Division and Centralized Instrument Facility, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Chetan Paliwal
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Arup Ghosh
- Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Division of Plant Omics, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India
| | - Sandhya Mishra
- Division of Salt & Marine Chemicals, CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific & Innovative Research (AcSIR), CSIR - Central Salt & Marine Chemicals Research Institute, G B Marg, Bhavnagar 364002, Gujarat, India.
| |
Collapse
|
39
|
Chokshi K, Pancha I, Ghosh T, Paliwal C, Maurya R, Ghosh A, Mishra S. Green synthesis, characterization and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae Acutodesmus dimorphus. RSC Adv 2016. [DOI: 10.1039/c6ra15322d] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Antioxidant activity of silver nanoparticles biosynthesized from de-oiled biomass of microalgae A. dimorphus.
Collapse
Affiliation(s)
- Kaumeel Chokshi
- Division of Salt & Marine Chemicals
- CSIR - Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364002
- India
- Academy of Scientific & Innovative Research (AcSIR)
| | - Imran Pancha
- Division of Salt & Marine Chemicals
- CSIR - Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364002
- India
| | - Tonmoy Ghosh
- Division of Salt & Marine Chemicals
- CSIR - Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364002
- India
- Academy of Scientific & Innovative Research (AcSIR)
| | - Chetan Paliwal
- Division of Salt & Marine Chemicals
- CSIR - Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364002
- India
- Academy of Scientific & Innovative Research (AcSIR)
| | - Rahulkumar Maurya
- Division of Salt & Marine Chemicals
- CSIR - Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364002
- India
- Academy of Scientific & Innovative Research (AcSIR)
| | - Arup Ghosh
- Academy of Scientific & Innovative Research (AcSIR)
- CSIR - Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364002
- India
- Division of Plant Omics
| | - Sandhya Mishra
- Division of Salt & Marine Chemicals
- CSIR - Central Salt and Marine Chemicals Research Institute
- Bhavnagar - 364002
- India
- Academy of Scientific & Innovative Research (AcSIR)
| |
Collapse
|