1
|
Salgado-Ramos M, José Huertas-Alonso A, Lorente A, Prado Sánchez-Verdú M, Moreno A, Cabañas B. One-pot, microwave (MW)-assisted production of furfural from almond-, oil-, and wine-derived co-products through biorefinery-based approaches. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:280-292. [PMID: 38954920 DOI: 10.1016/j.wasman.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
This work outlines the first microwave (MW)-assisted protocol for the production of biofuel precursor furfural (FF) from the raw agricultural waste almond hull (AH), olive stone (OS), and the winemaking-derived grape stalk (GS), grape marc (GM) and exhausted grape marc (EGM) through a one-pot synthesis process. To enhance the overall yield, a catalytic process was firstly developed from xylose, major constituent of hemicellulose present in lignocellulosic biomass. This method afforded FF with 100 % selectivity, yielding over 85 % in isolated product when using H2SO4, as opposed to a 37 % yield with AlCl3·6H2O, at 150 °C in only 10 min. For both catalysts, the developed methodology was further validated, proving adaptable and efficient in producing the targeted FF from the aforementioned lignocellulosic raw materials. More specifically, the employment of AlCl3·6H2O resulted in the highest selectivity (up to 89 % from GM) and FF yield (42 % and 39 % molar from OS and AH, respectively), maintaining notable selectivity for the latter (61 and 48 % from AH and OS). At this regard, and considering the environmental factor of sustainability, it is important to point out the role of AlCl3·6H2O in contrast to H2SO4, thus mitigating detrimental substances. This study provides an important management of agricultural waste through sustainable practises for the development of potential bio-based chemicals, aligning with Green Chemistry and process intensification principles.
Collapse
Affiliation(s)
- Manuel Salgado-Ramos
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Alberto José Huertas-Alonso
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Almudena Lorente
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - María Prado Sánchez-Verdú
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - Andrés Moreno
- Universidad de Castilla La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain.
| | - Beatriz Cabañas
- Universidad de Castilla La Mancha, Departamento de Química Física, Instituto de Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
2
|
Doan VTC, Dao TM, Huynh TA, Nguyen TT, Tran PH. A simple and efficient synthesis of 5-hydroxymethylfurfural from carbohydrates using acidic ionic liquid grafted on silica gel. RSC Adv 2024; 14:17480-17490. [PMID: 38818357 PMCID: PMC11137499 DOI: 10.1039/d4ra02487g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
The catalytic application of 3-(4-sulfobutyl)-1H-imidazole-3-ium chloride immobilized on activated silica gel (SiO2-Imi-SO3H) for the production of 5-hydroxymethylfurfural is described here for the first time. This material was synthesized using a three-step method involving the grafting of chloropropyl groups onto activated silica gel, the substitution of zwitterions, and the acidification of zwitterions to form silica-supported ionic liquid. The successful immobilization of the IL on silica gel was confirmed through energy-dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and elemental mapping. SiO2-Imi-SO3H-2 demonstrated good catalytic activity and recycling ability in fructose dehydration to 5-HMF. Several conditions for reaction were investigated, and an excellent 5-HMF yield (94.1%) was obtained after 4 h at 160 °C in dimethyl sulfoxide (DMSO) from fructose. Furthermore, a mechanism was proposed, the catalyst's reusability was investigated, and the catalyst was applied for the conversion of glucose to 5-HMF with other metal salts.
Collapse
Affiliation(s)
- Vinh Thanh Chau Doan
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam
- Faculty of Interdisciplinary Science, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Thong Minh Dao
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Thu Anh Huynh
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - The Thai Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
3
|
Wang Y, Yuan X, Liu J, Jia X. Recent Advances in Zeolites-Catalyzed Biomass Conversion to Hydroxymethylfurfural: The Role of Porosity and Acidity. Chempluschem 2024; 89:e202300399. [PMID: 37889167 DOI: 10.1002/cplu.202300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Biomass is an attractive raw material for the production of fuel oil and chemical intermediates due to its abundant reserves, low price, easy biodegradability, and renewable use. Hydroxymethylfurfural (5-HMF) is a valuable platform chemically derived from biomass that has gained significant research interest owing to its economic and environmental benefits. In this review, recent advances in biomass catalytic conversion systems for 5-HMF production were examined with a focus on the catalysts selection and feedstocks' impact on the 5-HMF selectivity and yield. Specifically, the potential of zeolite-based catalysts for efficient biomass catalysis was evaluated given their unique pore structure and tunable (Lewis and Brønsted) acidity. The benefits of hierarchical modifications and the interactions between porosity and acidity in zeolites, which are critical factors for the development of green catalytic systems to convert biomass to 5-HMF efficiently, were summarized and assessed. This Review suggests that zeolite-based catalysts hold significant promise in facilitating the sustainable utilization of biomass resources.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Chemical Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 83400, P.R. China
| | - Xiaoxian Yuan
- Department of Chemical Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 83400, P.R. China
| | - Jianxin Liu
- Department of Chemical Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 83400, P.R. China
- Department of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing, 102249, P.R. China
| | - Xicheng Jia
- Department of Chemical Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 83400, P.R. China
| |
Collapse
|
4
|
Srivastava V, Lappalainen K, Rusanen A, Morales G, Lassi U. Current Status and Challenges for Metal-Organic-Framework-Assisted Conversion of Biomass into Value-Added Chemicals. Chempluschem 2023; 88:e202300309. [PMID: 37779099 DOI: 10.1002/cplu.202300309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Owing to the abundance of availability, low cost, and environmental-friendliness, biomass waste could serve as a prospective renewable source for value-added chemicals. Nevertheless, biomass conversion into chemicals is quite challenging due to the heterogeneous nature of biomass waste. Biomass-derived chemicals are appealing sustainable solutions that can reduce the dependency on existing petroleum-based production. Metal-organic frameworks (MOFs)-based catalysts and their composite materials have attracted considerable amounts of interest in biomass conversion applications recently because of their interesting physical and chemical characteristics. Due to their tunability, the catalytic activity and selectivity of MOF-based catalyst/composite materials can be tailored by functionalizing them with a variety of functional groups to enhance biomass conversion efficiency. This review focuses on the catalytic transformation of lignocellulosic biomass into value-added chemicals by employing MOF-based catalyst/composite materials. The main focus is given to the production of the platform chemicals HMF and Furfural from the corresponding (hemi)cellulosic biomass, due to their versatility as intermediates for the production of various biobased chemicals and fuels. The effects of different experimental parameters on the conversion of biomass by MOF-based catalysts are also included. Finally, current challenges and perspectives of biomass conversion into chemicals by MOF-based catalysts are highlighted.
Collapse
Affiliation(s)
- Varsha Srivastava
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| | - Katja Lappalainen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| | - Annu Rusanen
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| | - Gabriel Morales
- Chemical and Environmental Engineering Group, Universidad Rey Juan Carlos, Tulipán s-n, 28933, Móstoles, Madrid, Spain
| | - Ulla Lassi
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 4300, 90014, Oulu, Finland
| |
Collapse
|
5
|
Novel Challenges on the Catalytic Synthesis of 5-Hydroxymethylfurfural (HMF) from Real Feedstocks. Catalysts 2022. [DOI: 10.3390/catal12121664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The depletion of fossil resources makes the transition towards renewable ones more urgent. For this purpose, the synthesis of strategic platform-chemicals, such as 5-hydroxymethylfurfural (HMF), represents a fundamental challenge for the development of a feasible bio-refinery. HMF perfectly deals with this necessity, because it can be obtained from the hexose fraction of biomass. Thanks to its high reactivity, it can be exploited for the synthesis of renewable monomers, solvents, and bio-fuels. Sustainable HMF synthesis requires the use of waste biomasses, rather than model compounds such as monosaccharides or polysaccharides, making its production more economically advantageous from an industrial perspective. However, the production of HMF from real feedstocks generally suffers from scarce selectivity, due to their complex chemical composition and HMF instability. On this basis, different strategies have been adopted to maximize the HMF yield. Under this perspective, the properties of the catalytic system, as well as the choice of a suitable solvent and the addition of an eventual pretreatment of the biomass, represent key aspects of the optimization of HMF synthesis. On this basis, the present review summarizes and critically discusses the most recent and attractive strategies for HMF production from real feedstocks, focusing on the smartest catalytic systems and the overall sustainability of the adopted reaction conditions.
Collapse
|
6
|
Lee J, Chen WH, Park YK. Recent achievements in platform chemical production from food waste. BIORESOURCE TECHNOLOGY 2022; 366:128204. [PMID: 36326551 DOI: 10.1016/j.biortech.2022.128204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Food waste conversion/valorization to produce bio-based chemicals plays a key role toward achieving carbon neutrality by 2050. Food waste valorization to renewable chemicals is thus an attractive and eco-friendly approach to handling food waste. The production of platform chemicals from food waste is crucial for making highly value-added renewable chemicals. However, earlier reviews dealing with food waste valorization to produce value-added chemicals have emphasized the enhancement of methane, hydrogen, and ethanol production. Along these lines, the existing methods of food waste to produce platform chemicals (e.g., volatile fatty acids, glucose, hydroxymethylfurfural, levulinic acid, lactic acid, and succinic acid) through physical, chemical, and enzymatic pretreatments, hydrolysis, fermentation, and hydrothermal conversion are extensively reviewed. Finally, the challenges faced under these methods are discussed, along with suggestions for future research on platform chemical production from food waste.
Collapse
Affiliation(s)
- Jechan Lee
- School of Civil, Architectural Engineering, and Landscape Architecture & Department of Global Smart City, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, 02504 Seoul, South Korea.
| |
Collapse
|
7
|
Al Amin Leamon AKM, Venegas MP, Orsat V, Auclair K, Dumont MJ. Semisynthetic transformation of banana peel to enhance the conversion of sugars to 5-hydroxymethylfurfural. BIORESOURCE TECHNOLOGY 2022; 362:127782. [PMID: 35970500 DOI: 10.1016/j.biortech.2022.127782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to efficiently convert banana peels (BP) into 5-hydroxymethylfurfural (HMF) by using an integrated mechanoenzymatic/catalytic approach. There is no report on HMF production using mechanoenzymatic hydrolysis. Moreover, this method enables saccharification of lignocellulose without bulk solvents or pretreatment. The effects of the reaction volume, milling time, and reactive aging (RAging) on the mechanoenzymatic hydrolysis of BP were studied. The solvent-free enzymatic hydrolysis of BP under RAging conditions was found to provide higher glucose (40.5 wt%) and fructose (17.2 wt%) yields than chemical hydrolysis. Next, the conversion of the resulting monosaccharides into HMF in the presence of the AlCl3·H2O/HCl-DMSO/H2O system resulted in 71.9 mol% yield, which is so far the highest HMF yield obtained from cellulosic food wastes. Under identical reaction conditions, direct conversion of untreated BP to HMF yielded 22.7 mol% HMF, suggesting that mechanoenzymatic hydrolysis greatly promotes the release of sugars from BP to improve HMF yield.
Collapse
Affiliation(s)
- A K M Al Amin Leamon
- Bioresource Engineering Department, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Mario Perez Venegas
- Chemistry Department, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Karine Auclair
- Chemistry Department, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, 21111 Lakeshore Rd., Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; Chemical Engineering Department, Université Laval, 1065, av. de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
8
|
Dutta S, Zhang Q, Cao Y, Wu C, Moustakas K, Zhang S, Wong KH, Tsang DCW. Catalytic valorisation of various paper wastes into levulinic acid, hydroxymethylfurfural, and furfural: Influence of feedstock properties and ferric chloride. BIORESOURCE TECHNOLOGY 2022; 357:127376. [PMID: 35623603 DOI: 10.1016/j.biortech.2022.127376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic paper waste constitutes a major waste stream globally, which should be valorised for chemical production. However, paper properties (e.g., feedstock composition, cellulosic crystallinity, and thermal stability/degradability) vary with raw materials and pulping processes. This study investigated levulinic acid (LA), hydroxymethylfurfural (HMF), and furfural production by H2SO4 and FeCl3 catalysed conversion of nine types of paper wastes in a green solvent system (1:1 γ-valerolactone/water). At 160-180 °C for 1-20 min, ∼23-27 wt% LA yield was achieved from sanitary papers, tracing/parchment paper, and paper food box mainly containing crystalline cellulose, while a lower LA yield (∼10-20 wt%) was obtained from other paper wastes with high contents of ash and lignin. A higher selectivity towards HMF (∼12 mol%) was achieved in the presence of FeCl3. A furfural yield of ∼ 4-7.5 wt% was also obtained from the hemicellulose content. This study elucidates crucial factors and desirable characteristics of paper waste for catalytic valorisation.
Collapse
Affiliation(s)
- Shanta Dutta
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queens University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zographou Campus, 15780 Athens, Greece
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Ka-Hing Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
9
|
Bioprocessing of biowaste derived from food supply chain side-streams for extraction of value added bioproducts through biorefinery approach. Food Chem Toxicol 2022; 165:113184. [DOI: 10.1016/j.fct.2022.113184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022]
|
10
|
Xing L, Liu R, Jing F, Xu M, He J. Efficient Preparation of C6 Carbohydrate into 5‐Hydroxymethylfurfural with a Combination of Monoclinic FePO
4
and Carbon‐Based Solid Acid Catalyst Prepared from Papermaking Sludge. ChemistrySelect 2022. [DOI: 10.1002/slct.202200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liyan Xing
- Beijing Key Laboratory of Lignocellulosic Chemistry Engineering ResearchCenter of Forestry Biomass Materials and Bioenergy (Ministry of Education) Beijing Forestry University 35 Qinghua East Road, Haidian District Beijing 100083 China E-mail: address
| | - Rundong Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry Engineering ResearchCenter of Forestry Biomass Materials and Bioenergy (Ministry of Education) Beijing Forestry University 35 Qinghua East Road, Haidian District Beijing 100083 China E-mail: address
| | - Fanchen Jing
- Beijing Key Laboratory of Lignocellulosic Chemistry Engineering ResearchCenter of Forestry Biomass Materials and Bioenergy (Ministry of Education) Beijing Forestry University 35 Qinghua East Road, Haidian District Beijing 100083 China E-mail: address
| | - Ming Xu
- Nongyuan Technology (Beijing) Co., Ltd. Miyun Economic Development Zone Beijing No.8 South Xingsheng Road Beijing 101599 China
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry Engineering ResearchCenter of Forestry Biomass Materials and Bioenergy (Ministry of Education) Beijing Forestry University 35 Qinghua East Road, Haidian District Beijing 100083 China E-mail: address
| |
Collapse
|
11
|
Bilal M, Mehmood T, Nadeem F, Barbosa AM, de Souza RL, Pompeu GB, Meer B, Ferreira LFR, Iqbal HMN. Enzyme-Assisted Transformation of Lignin-Based Food Bio-residues into High-Value Products with a Zero-Waste Theme: A Review. WASTE AND BIOMASS VALORIZATION 2022; 13:1807-1824. [DOI: 10.1007/s12649-021-01618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
|
12
|
Levulinic Acid Production: Comparative Assessment of Al-Rich Ordered Mesoporous Silica and Microporous Zeolite. Catal Letters 2022. [DOI: 10.1007/s10562-022-03955-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Pandey S, Dumont MJ, Orsat V, Rodrigue D. Biobased 2,5-furandicarboxylic acid (FDCA) and its emerging copolyesters’ properties for packaging applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Xu Z, Xu X, Yu Y, Yao C, Tsang DCW, Cao X. Evolution of redox activity of biochar during interaction with soil minerals: Effect on the electron donating and mediating capacities for Cr(VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125483. [PMID: 33647614 DOI: 10.1016/j.jhazmat.2021.125483] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Biochar in soil is susceptible to natural aging along with soil minerals, which might alter its electrochemical properties and redox reactions with contaminants. In this study, soluble mineral salts (FeCl3, MnCl2, AlCl3, CaCl2) and clay mineral (kaolinite) were selected to investigate the impact of co-aging with soil minerals on the redox activity of peanut-shell biochar for Cr(VI) reduction. Natural aging for 3-month induced oxidation of biochar with the decrease of reducing moieties, i.e., ‒C‒OH from 26.8-43.7% to 18.4-24.1%. Co-aging with minerals except for Mn(II) further decreased the proportion of ‒C‒OH to 6.94-22.2% because of the interaction between mineral ions and biochar, resulting in the formation of mineral-biochar complex and new minerals, e.g. β-FeOOH. Due to its reductivity, Mn(II) presented the least decrease or even slight increase of ‒C‒OH while itself was oxidized to Mn(III) and Mn(IV). The decline of ‒C‒OH caused the decrease of Cr(VI) reduction rate constant from 2.18 to 2.47 × 10-2 h-1 for original biochars to 0.71-1.95 × 10-2 h-1 for aged ones, of which co-aging with Fe(III) showed the lowest reduction rate constant among all minerals. The electron mediating capacity of biochar also decreased after aging alone or co-aging with Al, Ca, and kaolinite, while co-aging with Fe(III) and Mn(II) facilitated the electron transfer process, increasing the rate constant by 219.3-1237% due to electron mediation through valence transformation of Fe(III)-Fe(II) and Mn(II)-Mn(III). Given the abundance of soil minerals, it was essential to consider this crucial factor for redox reactions when applying biochar for soil remediation.
Collapse
Affiliation(s)
- Zibo Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yulu Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengbo Yao
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, United States
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
15
|
O'Connor J, Hoang SA, Bradney L, Dutta S, Xiong X, Tsang DCW, Ramadass K, Vinu A, Kirkham MB, Bolan NS. A review on the valorisation of food waste as a nutrient source and soil amendment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115985. [PMID: 33190977 DOI: 10.1016/j.envpol.2020.115985] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 05/05/2023]
Abstract
Valorisation of food waste offers an economical and environmental opportunity, which can reduce the problems of its conventional disposal. Food waste is commonly disposed of in landfills or incinerated, causing many environmental, social, and economic issues. Large amounts of food waste are produced in the food supply chain of agriculture: production, post-harvest, distribution (transport), processing, and consumption. Food waste can be valorised into a range of products, including biofertilisers, bioplastics, biofuels, chemicals, and nutraceuticals. Conversion of food waste into these products can reduce the demand of fossil-derived products, which have historically contributed to large amounts of pollution. The variety of food chain suppliers offers a wide range of feedstocks that can be physically, chemically, or biologically altered to form an array of biofertilisers and soil amendments. Composting and anaerobic digestion are the main large-scale conversion methods used today to valorise food waste products to biofertilisers and soil amendments. However, emerging conversion methods such as dehydration, biochar production, and chemical hydrolysis have promising characteristics, which can be utilised in agriculture as well as for soil remediation. Valorising food waste into biofertilisers and soil amendments has great potential to combat land degradation in agricultural areas. Biofertilisers are rich in nutrients that can reduce the dependability of using conventional mineral fertilisers. Food waste products, unlike mineral fertilisers, can also be used as soil amendments to improve productivity. These characteristics of food wastes assist in the remediation of contaminated soils. This paper reviews the volume of food waste within the food chain and types of food waste feedstocks that can be valorised into various products, including the conversion methods. Unintended consequences of the utilisation of food waste as biofertilisers and soil-amendment products resulting from their relatively low concentrations of trace element nutrients and presence of potentially toxic elements are also evaluated.
Collapse
Affiliation(s)
- James O'Connor
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for High Performance Soil, Newcastle, Callaghan, NSW, 2308, Australia
| | - Son A Hoang
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for High Performance Soil, Newcastle, Callaghan, NSW, 2308, Australia
| | - Lauren Bradney
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for High Performance Soil, Newcastle, Callaghan, NSW, 2308, Australia
| | - Shanta Dutta
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinni Xiong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for High Performance Soil, Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
16
|
Liu J, Wang D, Yu C, Jiang J, Guo M, Hantoko D, Yan M. A two-step process for energy-efficient conversion of food waste via supercritical water gasification: Process design, products analysis, and electricity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142331. [PMID: 33207504 DOI: 10.1016/j.scitotenv.2020.142331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
The huge amount of food waste (FW), containing high organic matter content and moisture, is difficult to be well treated. Supercritical water gasification (SCWG) can efficiently convert FW to H2-rich syngas. However, it requires high energy input due to the high temperature and high pressure. This study provided an innovative "two-steps heating process" for the SCWG of FW, which firstly utilized hydrothermal (HT) pretreatment to shorter time of SCWG. The effects of different HT temperature (200 °C, 250 °C, 300 °C, 30 min) to SCWG temperature (480 °C, 30 min) and the different residence time (20 min HT - 40 min SCWG, 30 min HT - 30 min SCWG, and 40 min HT - 20 min SCWG) on total syngas yield, carbon conversion efficiency (CE), cold gas efficiency (CGE), and hydrogen conversion efficiency (HE) were studied. Moreover, the energy input by means of electricity consumption in each experiment was measured to determine the energy saving rate. The optimal condition (200 °C, 20 min HT - 40 min SCWG), obtaining the gas yield (17.22 mol/kg), CE (20.10%), CGE (22.13%), and HE (41.54%), was higher than the gas yield (16.53 mol/kg), CE (19.98%), CGE (20%), and HE (38.08%) of directly SCWG (60 min, 0 °C-480 °C). Moreover, the TOC of derived liquid and the pyrolysis characteristics of solid residues were analyzed. Additionally, it was also observed the HT pretreatment helped to reduce the electricity consumption. The highest energy saving rate was 15.58%.
Collapse
Affiliation(s)
- Jianyong Liu
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Defeng Wang
- Hangzhou Linjiang Environmental Energy Co. Ltd., Hangzhou 311222, China
| | - Caimeng Yu
- Zhejiang Zheneng Xingyuan Energy Saving Technology Co. Ltd, Hangzhou 310013, China
| | - Jiahao Jiang
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Meihui Guo
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Dwi Hantoko
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Mi Yan
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
17
|
Istasse T, Richel A. Mechanistic aspects of saccharide dehydration to furan derivatives for reaction media design. RSC Adv 2020; 10:23720-23742. [PMID: 35517323 PMCID: PMC9055118 DOI: 10.1039/d0ra03892j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/15/2020] [Indexed: 11/21/2022] Open
Abstract
The conversion of abundant hexoses (e.g. glucose, mannose and galactose) and pentoses (e.g. xylose and arabinose) to 5-hydroxymethylfurfural (5-HMF) and 2-furfural (2-F) is subject to intensive research in the hope of achieving competitive production of diverse materials from renewable resources. However, the abundance of literature on this topic as well as the limited number of studies systematically comparing numerous monosaccharides hinder progress tracking. Herein, we compare and rationalize reactivities of different ketoses and aldoses. Dehydration mechanisms of both monosaccharide types are reviewed regarding the existing experimental evidence. Ketose transformation to furan derivatives likely proceeds through cyclic intermediates and is hindered by side-reactions such as isomerization, retro-aldol reactions and polymerization. Different strategies can improve furan derivative synthesis from ketoses: limiting the presence of water, improving the dehydration rate, protecting 5-HMF and 2-F reactive moieties with derivatization or solvent interactions and extracting 5-HMF and 2-F from the reaction medium. In contrast to ketoses, aldose conversion to furan derivatives is not favored compared to polymerization reactions because it involves their isomerization or a ring contraction. Enhancing aldose isomerization is possible with metal catalysts (e.g. CrCl3) promoting a hydride shift mechanism or with boric/boronic acids promoting an enediol mechanism. This catalysis is however far more challenging than ketose dehydration because catalyst activity depends on numerous factors: Brønsted acidity of the medium, catalyst ligands, catalyst affinity for monosaccharides and their accessibility to several chemical species simultaneously. Those aspects are methodically addressed to support the design of new monosaccharide dehydration systems.
Collapse
Affiliation(s)
- Thibaut Istasse
- Laboratory of Biomass and Green Technologies, University of Liege - Gembloux Agro-Bio Tech Passage des Déportés 2, B-5030 Gembloux Belgium
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege - Gembloux Agro-Bio Tech Passage des Déportés 2, B-5030 Gembloux Belgium
| |
Collapse
|
18
|
Li J, Chen Y, Zhang G, Ruan W, Shan S, Lai X, Yang D, Yu Z. Integration of behavioural tests and transcriptome sequencing of C. elegans reveals how the nematode responds to peanut shell biochar amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136024. [PMID: 31972909 DOI: 10.1016/j.scitotenv.2019.136024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/05/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Biochars have drawn wide attention as adsorbents, carbon sequesters and soil re-mediators. However, these substances are ambiguous regarding their effects on the motility, phenotypic changes and potential adaptative mechanisms of soil organisms. This study investigated how peanut shell biochar (PBC) affects the C. elegans model via a one-choice selection test and RNA-seq analysis. The results showed that C. elegans were able to select either PBC or a water control, and a clear preference for PBC was observed after 48 h of exposure, with the chemotaxis index (CI) reaching approximately 1.0. The nematode preferences for PBC vs sterile PBC/graphite were not significant, which demonstrated that initial microorganisms and appearances were not the reasons for the worms' selection, but the selection behaviour was instead determined by volatile odours. The treatments also showed that biochar amendment significantly decreased the body length, brood size and superoxide dismutase (SOD) activity of C. elegans to 960.20 ± 15.23 μm, 173.22 ± 4.56, 165.81 ± 3.82 U/mL SOD, respectively. Then, a possible molecular mechanism of PBC-induced developmental and reproductive effects on C. elegans was explored. Differential gene expression analysis was performed, and 1625 genes (1425 up- and 225 downregulated genes) were regulated in response to PBC treatment. The top 20 regulated genes were col genes (col-129; col-81; col-139; col-71), bli-6, perm-4 and his-24, which indicated that cuticle collagen synthesis, eggshell formation and/or heterochromatin in postembryonic growth may be disrupted following exposure to PBC. Therefore, our study suggested that quality standards be used to test nematode preferences and responses to biochar amendment, with the aim of safe application in soils, seedling substrates or fertilizers.
Collapse
Affiliation(s)
- Jie Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| | - Yixuan Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China; College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China.
| | - Guilong Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin 30071, China.
| | - Shaojie Shan
- College of Life Sciences, Nankai University, Tianjin 30071, China.
| | - Xin Lai
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| | - Dianlin Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China.
| | - Zhiguo Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
19
|
Mak TMW, Xiong X, Tsang DCW, Yu IKM, Poon CS. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. BIORESOURCE TECHNOLOGY 2020; 297:122497. [PMID: 31818718 DOI: 10.1016/j.biortech.2019.122497] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Research attention is increasingly drawn on constructing a circular bioeconomy and enhancing the value of material flows. Circular bioeconomy aims to achieve sustainable consumption and production with reduction of greenhouse gas emission. This study identifies research gaps on how circular bioeconomy can be achieved through sustainable food waste management by comparing the similarities and differences in concepts of bioeconomy and circular economy, reviewing the benefits and limitations of the existing policies, and evaluating the global situations of food waste and its management on household and commercial basis to promote circular bioeconomy. Future development on food waste management is expected to capitalise on the multi-functionality of products, boundary and allocation in a circular system, and trade-off between food waste and resources. With future technological advances, food waste management in circular bioeconomy policy can facilitate the accomplishment of sustainable development goals.
Collapse
Affiliation(s)
- Tiffany M W Mak
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinni Xiong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Iris K M Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
20
|
Ultrasound-Ionic Liquid Pretreatment Enhanced Conversion of the Sugary Food Waste to 5-Hydroxymethylfurfural in Ionic Liquid/Solid Acid Catalyst System. Catal Letters 2019. [DOI: 10.1007/s10562-019-03059-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Zi W, Chen Y, Pan Y, Zhang Y, He Y, Wang Q. Pyrolysis, morphology and microwave absorption properties of tobacco stem materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:341-350. [PMID: 31132713 DOI: 10.1016/j.scitotenv.2019.04.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
The recent development of microwave radiation technology has increased the application possibilities of waste tobacco stems (WTSs). In this study, the morphology and microwave absorption properties of tobacco stem materials as well as the pyrolysis of the resultant biomass (BMTS) were studied via thermogravimetry-differential scanning calorimetry (TG-DSC), scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), and a vector network analysis (VNA). The results show that the BMTS pyrolysis involves four stages in air: dehydration, heat transfer, pyrolysis, and carbonisation, and it involves three stages in N2: moisture evaporation, de-volatilization, and charring. The microwave-assisted expansion of WTSs can improve the pore diameter and total porosity of the expanded tobacco stems (ETSs) and BMTS. The latter is a macroporous material with a total porosity of 78.2% and a probable pore size of 29.5 μm. Its pore size distribution ranges from 10.7 nm to 227 μm. The microwave absorption properties of the WTSs are affected by the moisture content, bulk density, and grain size; the properties can be enhanced by decreasing the grain size and increasing the moisture content and bulk density within the experimental range. The 3 dB bandwidth and amplitude vary by 0.45 MHz and - 0.406 dB per 1% increase in the moisture content of the materials, respectively. Our results demonstrate that tobacco stem materials with different moisture contents and grain sizes should be classified before the expansion or re-drying steps to ensure heating uniformity and product quality during the microwave radiation treatment.
Collapse
Affiliation(s)
- Wenhua Zi
- College of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Yubao Chen
- College of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Yihong Pan
- College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Yougang Zhang
- College of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Yufeng He
- Yunnan Lian-Da Science & Technology Development Co., Ltd., Kunming 650599, China
| | - Qiang Wang
- College of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
22
|
J. Ganado RJ, Yu DEC, Franco FC. Microwave-Assisted Conversion of Simple Sugars and Waste Coffee Grounds into 5-Hydroxymethylfurfural in a Highly Aqueous DMSO Solvent System Catalyzed by a Combination of Al(NO 3) 3 and H 2SO 4. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rey Joseph J. Ganado
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | | | - Francisco C. Franco
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| |
Collapse
|
23
|
|
24
|
Morales–Leal FJ, de la Rosa JR, Lucio–Ortiz CJ, De Haro–Del Rio DA, Maldonado CS, Wi S, Casabianca LB, Garcia CD. Dehydration of fructose over thiol- and sulfonic- modified alumina in a continuous reactor for 5-HMF production: Study of catalyst stability by NMR. APPLIED CATALYSIS. B, ENVIRONMENTAL 2019; 244:250-261. [PMID: 38855624 PMCID: PMC11160941 DOI: 10.1016/j.apcatb.2018.11.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In the present study, the synthesis of an organic group-modified alumina by the sol-gel method is proposed. This material has shown to have an enhanced catalytic performance with grafted organic groups and showed an improved stability. The prepared material has shown to have several O - H groups and an enhanced surface acidity. The alumina acidity was improved by incorporating thiol groups by grafting method, which promotes the tautomerization of fructose to its furanose form. Furthermore, the grafting of sulfonic groups catalyzes its dehydration. The modified alumina was thermally treated up to 200 °C to improve the functional groups stability. After, this modified material was packed into a continuous reactor system, designed and built by this group, to obtain 5-hydroxymethylfurfural (5-HMF) from fructose dissolved in a single-phase solution of tetrahydrofuran (THF) and H2O (4:1 w/w). The catalytic activity of this material was evaluated by the reaction of fructose dehydration at different reaction temperatures (60, 70, 80 and 90 °C). Fructose conversion and selectivity toward 5-HMF were determined by high performance liquid chromatography (HPLC), obtaining 95% and 73% respectively for the highest temperature. The catalyst showed an efficient stability after 24 hours in continuous flow at 70 °C. The loss of sulfur content was 15%, but the fructose conversion yield and the selectivity to 5-HMF after 24 hours of continuous reaction did not undergo significant changes (less than 5%). The nuclear magnetic resonance (NMR) tests confirmed the presence of the thiol and sulfonic groups before and after 24 hours of reaction, as well as the conservation of the same structure, demonstrating the efficient catalytic performance of the material. The catalysts were characterized by nitrogen adsorption/desorption, X-ray diffraction and infrared (IR) spectroscopy. Also, before and after use by utilizing elemental analysis and 1 H - 13 C cross-polarization magic-angle spinning (CPMAS) and dynamic-nuclear polarization (DNP)-enhanced 1 H - 13 C and 1 H - 29 Si CPMAS as well as directly excited 29 Si magic-angle spinning (MAS) NMR methods in solid-state.
Collapse
Affiliation(s)
- Francisco Jose Morales–Leal
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, San Nicolás de los Garza, Nuevo León 64450, Mexico
| | - Javier Rivera de la Rosa
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, San Nicolás de los Garza, Nuevo León 64450, Mexico
- Universidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología (CIIDIT), Km 10 de la nueva carretera al Aeropuerto Internacional de Monterrey, PIIT Monterrey, Apodaca, Nuevo León 66600, Mexico
| | - Carlos J. Lucio–Ortiz
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, San Nicolás de los Garza, Nuevo León 64450, Mexico
| | - David A. De Haro–Del Rio
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, San Nicolás de los Garza, Nuevo León 64450, Mexico
| | - Carolina Solis Maldonado
- Universidad Veracruzana, Facultad de Ciencias Químicas, Prolongación Venustiano Carranza S/N, Poza Rica, Veracruz 93390, México
| | - Sungsool Wi
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Leah B. Casabianca
- Clemson University, Department of Chemistry, Clemson, South Caroline 29634, United States
| | - Carlos D. Garcia
- Clemson University, Department of Chemistry, Clemson, South Caroline 29634, United States
| |
Collapse
|
25
|
Nie Y, Hou Q, Li W, Bai C, Bai X, Ju M. Efficient Synthesis of Furfural from Biomass Using SnCl₄ as Catalyst in Ionic Liquid. Molecules 2019; 24:molecules24030594. [PMID: 30736429 PMCID: PMC6384620 DOI: 10.3390/molecules24030594] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/25/2019] [Accepted: 02/02/2019] [Indexed: 11/16/2022] Open
Abstract
Furfural is a versatile platform molecule for the synthesis of various chemicals and fuels, and it can be produced by acid-catalyzed dehydration of xylose derived from renewable biomass resources. A series of metal salts and ionic liquids were investigated to obtain the best combination of catalyst and solvent for the conversion of xylose into furfural. A furfural yield of 71.1% was obtained at high xylose loading (20 wt%) from the single-phasic reaction system whereby SnCl₄ was used as catalyst and ionic liquid 1-ethyl-3-methylimidazolium bromide (EMIMBr) was used as reaction medium. Moreover, the combined catalyst consisting of 5 mol% SnCl₄ and 5 mol% MgCl₂ also produced a high furfural yield (68.8%), which was comparable to the furfural yield obtained with 10 mol% SnCl₄. The water⁻organic solvent biphasic systems could improve the furfural yield compared with the single aqueous phase. Although these organic solvents could form biphasic systems with ionic liquid EMIMBr, the furfural yield decreased remarkably compared with the single EMIMBr phase. Besides, the EMIMBr/SnCl₄ system with appropriate water was also efficient to convert xylan and lignocellulosic biomass corn stalk into furfural, obtaining furfural yields as high as 57.3% and 54.5%, respectively.
Collapse
Affiliation(s)
- Yifan Nie
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Qidong Hou
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Weizun Li
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Chuanyunlong Bai
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Xinyu Bai
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Meiting Ju
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
26
|
|
27
|
Leng E, Mao M, Peng Y, Li X, Gong X, Zhang Y. The Direct Conversion of Cellulose into 5-Hydroxymethylfurfural with CrCl3
Composite Catalyst in Ionic Liquid under Mild Conditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201803130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Erwei Leng
- State Key Laboratory of Coal Combustion; School of Energy and Power Engineering; Huazhong University of Science and Technology; 1037 Luoyu Road Wuhan 430074 PR China
| | - Ming Mao
- State Key Laboratory of Coal Combustion; School of Energy and Power Engineering; Huazhong University of Science and Technology; 1037 Luoyu Road Wuhan 430074 PR China
| | - Yang Peng
- State Key Laboratory of Coal Combustion; School of Energy and Power Engineering; Huazhong University of Science and Technology; 1037 Luoyu Road Wuhan 430074 PR China
| | - Xiaomin Li
- State Key Laboratory of Coal Combustion; School of Energy and Power Engineering; Huazhong University of Science and Technology; 1037 Luoyu Road Wuhan 430074 PR China
| | - Xun Gong
- State Key Laboratory of Coal Combustion; School of Energy and Power Engineering; Huazhong University of Science and Technology; 1037 Luoyu Road Wuhan 430074 PR China
| | - Yang Zhang
- State Key Laboratory of Coal Combustion; School of Energy and Power Engineering; Huazhong University of Science and Technology; 1037 Luoyu Road Wuhan 430074 PR China
| |
Collapse
|
28
|
Cao L, Yu IKM, Tsang DCW, Zhang S, Ok YS, Kwon EE, Song H, Poon CS. Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural. BIORESOURCE TECHNOLOGY 2018; 267:242-248. [PMID: 30025320 DOI: 10.1016/j.biortech.2018.07.048] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
The catalytic activity of engineered biochar was scrutinized for generation of glucose and hydroxymethylfurfural (HMF) from starch-rich food waste (bread, rice, and spaghetti). The biochar catalysts were synthesized by chemical activation of pinewood sawdust with phosphoric acid at 400-600 °C. Higher activation temperatures enhanced the development of porosity and acidity (characterized by COPO3 and CPO3 surface groups), which imparted higher catalytic activity of H3PO4-activated biochar towards starch hydrolysis and fructose dehydration. Positive correlations were observed between HMF selectivity and ratio of mesopore to micropore volume, and between fructose conversion and total acid density. High yields of glucose (86.5 Cmol% at 150 °C, 20 min) and HMF (30.2 Cmol% at 180 °C, 20 min) were produced from rice starch and bread waste, respectively, over H3PO4-activated biochar. These results highlighted the potential of biochar catalyst in biorefinery as an emerging application of engineered biochar.
Collapse
Affiliation(s)
- Leichang Cao
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Iris K M Yu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
29
|
Chemical transformation of food and beverage waste-derived fructose to hydroxymethylfurfural as a value-added product. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Xiong X, Yu IK, Chen SS, Tsang DC, Cao L, Song H, Kwon EE, Ok YS, Zhang S, Poon CS. Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.02.034] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
5-Hydroxymethylfurfural (HMF) Production from Real Biomasses. Molecules 2018; 23:molecules23092201. [PMID: 30200287 PMCID: PMC6225331 DOI: 10.3390/molecules23092201] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022] Open
Abstract
The present paper reviews recent advances on the direct synthesis of 5-hydroxymethylfurfural (HMF) from different kinds of raw biomasses. In particular, in the paper HMF production from: (i) edible biomasses; (ii) non-edible lignocellulosic biomasses; (iii) food wastes (FW) have been reviewed. The different processes and catalytic systems have been reviewed and their merits, demerits and requirements for commercialisation outlined.
Collapse
|
32
|
Recent progress in homogeneous Lewis acid catalysts for the transformation of hemicellulose and cellulose into valuable chemicals, fuels, and nanocellulose. REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
The evolution from petroleum-based products to the bio-based era by using renewable resources is one of the main research challenges in the coming years. Lignocellulosic biomass, consisting of inedible plant material, has emerged as a potential alternative for the production of biofuels, biochemicals, and nanocellulose-based advanced materials. The lignocellulosic biomass, which consists mainly of carbohydrate-based polysaccharides (hemicellulose and cellulose), is a green intermediate for the synthesis of bio-based products. In recent years, the re-engineering of biomass into a variety of commodity chemicals and liquid fuels by using Lewis acid catalysts has attracted much attention. Much research has been focused on developing new chemical strategies for the valorization of different biomass components. Homogeneous Lewis acid catalysts seem to be one of the most promising catalysts due to their astonishing features such as being less corrosive to equipment and being friendlier to the environment, as well as having the ability to disrupt the bonding system effectively and having high selectivity. Thus, these catalysts have emerged as important tools for the highly selective transformation of biomass components into valuable chemicals and fuels. This review provides an insightful overview of the most important recent developments in homogeneous Lewis acid catalysis toward the production and upgrading of biomass. The chemical valorization of the main components of lignocellulosic biomass (hemicellulose and cellulose), the reaction conditions, and process mechanisms are reviewed.
Collapse
|
33
|
Cao L, Yu IKM, Chen SS, Tsang DCW, Wang L, Xiong X, Zhang S, Ok YS, Kwon EE, Song H, Poon CS. Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. BIORESOURCE TECHNOLOGY 2018; 252:76-82. [PMID: 29306134 DOI: 10.1016/j.biortech.2017.12.098] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Sulfonated biochar derived from forestry wood waste was employed for the catalytic conversion of starch-rich food waste (e.g., bread) into 5-hydroxymethylfurfural (HMF). Chemical and physical properties of catalyst were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area, and elemental analysis. The conversion of HMF was investigated via controlling the reaction parameters such as catalyst loading, temperature, and reaction time. Under the optimum reaction conditions the HMF yield of 30.4 Cmol% (i.e., 22 wt% of bread waste) was achieved in the mixture of dimethylsulfoxide (DMSO)/deionized-water (DIW) at 180 °C in 20 min. The effectiveness of sulfonated biochar catalyst was positively correlated to the density of strong/weak Brønsted acidity (SO3H, COOH, and OH groups) and inversely correlated to humins content on the surface. With regeneration process, sulfonated biochar catalyst displayed excellent recyclability for comparable HMF yield from bread waste over five cycles.
Collapse
Affiliation(s)
- Leichang Cao
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Iris K M Yu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Season S Chen
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Lei Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xinni Xiong
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yong Sik Ok
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
34
|
Bodachivskyi I, Kuzhiumparambil U, Williams DBG. Acid-Catalyzed Conversion of Carbohydrates into Value-Added Small Molecules in Aqueous Media and Ionic Liquids. CHEMSUSCHEM 2018; 11:642-660. [PMID: 29250912 DOI: 10.1002/cssc.201702016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Biomass is the only realistic major alternative source (to crude oil) of hydrocarbon substrates for the commercial synthesis of bulk and fine chemicals. Within biomass, terrestrial sources are the most accessible, and therein lignocellulosic materials are most abundant. Although lignin shows promise for the delivery of certain types of organic molecules, cellulose is a biopolymer with significant potential for conversion into high-volume and high-value chemicals. This review covers the acid-catalyzed conversion of lower value (poly)carbohydrates into valorized organic building-block chemicals (platform molecules). It focuses on those conversions performed in aqueous media or ionic liquids to provide the reader with a perspective on what can be considered a best case scenario, that is, that the overall process is as sustainable as possible.
Collapse
Affiliation(s)
- Iurii Bodachivskyi
- School of Mathematical and Physical Sciences, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | | | - D Bradley G Williams
- School of Mathematical and Physical Sciences, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| |
Collapse
|
35
|
Esteban J, Ladero M. Food waste as a source of value-added chemicals and materials: a biorefinery perspective. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13726] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jesus Esteban
- Fakultät Bio- und Chemieingenieurwesen; Technische Universität Dortmund; Emil-Figge-Straβe 66 Dortmund 44227 Germany
| | - Miguel Ladero
- Department of Chemical Engineering; College of Chemical Sciences; Complutense University of Madrid; Madrid 28040 Spain
| |
Collapse
|
36
|
Chen SS, Wang L, Yu IKM, Tsang DCW, Hunt AJ, Jérôme F, Zhang S, Ok YS, Poon CS. Valorization of lignocellulosic fibres of paper waste into levulinic acid using solid and aqueous Brønsted acid. BIORESOURCE TECHNOLOGY 2018; 247:387-394. [PMID: 28957771 DOI: 10.1016/j.biortech.2017.09.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/09/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
This study aims to produce levulinic acid (LA) from paper towel waste in environment-friendly and economically feasible conditions, and evaluate the difference using solid and aqueous Brønsted acids. Direct dehydration of glucose to LA required sufficiently strong Brønsted acidity, where Amberlyst 36 demonstrated rapid production of approximately 30Cmol% of LA in 20min. However, the maximum yield of LA was limited by mass transfer. In contrast, the yield of LA gradually increased to over 40Cmol% in 1M H2SO4 at 150°C in 60min. The SEM images revealed the conversion in dilute acids under microwave at 150°C resulting in swelling structures of cellulose, which were similar to the pre-treatment process with concentrated acids. Further increase in reaction temperature to 200°C significantly shortened the reaction time from 60 to 2.5min, which saved the energy cost as revealed in preliminary cost analysis.
Collapse
Affiliation(s)
- Season S Chen
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lei Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Iris K M Yu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Andrew J Hunt
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York YO10 5DD, UK
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS/Université de Poitiers, ENSIP, 1 rue Marcel Doré, Bat 1, TSA 41105, 86073 Poitiers Cedex 9, France
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yong Sik Ok
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
37
|
Yu IKM, Tsang DCW, Chen SS, Wang L, Hunt AJ, Sherwood J, De Oliveira Vigier K, Jérôme F, Ok YS, Poon CS. Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste. BIORESOURCE TECHNOLOGY 2017; 245:456-462. [PMID: 28898844 DOI: 10.1016/j.biortech.2017.08.170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Valorisation of bread waste for hydroxymethylfurfural (HMF) synthesis was examined in dimethyl sulfoxide (DMSO)-, tetrahydrofuran (THF)-, acetonitrile (ACN)-, and acetone-water (1:1v/v), under heating at 140°C with SnCl4 as the catalyst. The overall rate of the process was the fastest in ACN/H2O and acetone/H2O, followed by DMSO/H2O and THF/H2O due to the rate-limiting glucose isomerisation. However, the formation of levulinic acid (via rehydration) and humins (via polymerisation) was more significant in ACN/H2O and acetone/H2O. The constant HMF maxima (26-27mol%) in ACN/H2O, acetone/H2O, and DMSO/H2O indicated that the rates of desirable reactions (starch hydrolysis, glucose isomerisation, and fructose dehydration) relative to undesirable pathways (HMF rehydration and polymerisation) were comparable among these mediums. They also demonstrated higher selectivity towards HMF production over the side reactions than THF/H2O. This study differentiated the effects of polar aprotic solvent-water mediums on simultaneous pathways during biomass conversion.
Collapse
Affiliation(s)
- Iris K M Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lei Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Andrew J Hunt
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York YO10 5DD, UK
| | - James Sherwood
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York YO10 5DD, UK
| | - Karine De Oliveira Vigier
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS/Université de Poitiers, 1 rue Marcel Doré, ENSIP, TSA 41105, 86073 Poitiers Cedex 9, France
| | - François Jérôme
- Institut de Chimie des Milieux et Matériaux de Poitiers, CNRS/Université de Poitiers, 1 rue Marcel Doré, ENSIP, TSA 41105, 86073 Poitiers Cedex 9, France
| | - Yong Sik Ok
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
38
|
Xiong X, Yu IKM, Cao L, Tsang DCW, Zhang S, Ok YS. A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. BIORESOURCE TECHNOLOGY 2017; 246:254-270. [PMID: 28712780 DOI: 10.1016/j.biortech.2017.06.163] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
This review addresses the use of biochar as a green and versatile catalyst support for emerging high-end applications beyond soil remediation, including chemical synthesis and biodiesel production from biomass, and pollutant degradation in the environment. Their catalytic performances are comparable or even superior to the conventional resin-, silica-, or carbon-based catalysts, owing to the favourable intrinsic features of biochar (various functional groups, intricate network of structures, etc.). Yet, distinctive active sites are needed for different applications. It is highlighted that the active site accessibility for substrates critically determines the performance, which is associated with the biochar physicochemical characteristics (-SO3H site density, pore size distribution, surface area, etc.). They show varying significance depending on the catalytic sites on biochar, which may be controlled via novel pre-/post-synthesis modifications. This review elucidates the links among catalytic performances, physicochemical properties, and pyrolysis/modification-induced features, advising the tailored production of application-oriented biochar-based catalyst in the future.
Collapse
Affiliation(s)
- Xinni Xiong
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Iris K M Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Leichang Cao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yong Sik Ok
- O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Yu IKM, Tsang DCW, Yip ACK, Chen SS, Ok YS, Poon CS. Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis. CHEMOSPHERE 2017; 184:1099-1107. [PMID: 28672690 DOI: 10.1016/j.chemosphere.2017.06.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 05/21/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to produce a high-value platform chemical, hydroxymethylfurfural (HMF), from food waste and evaluate the catalytic performance of trivalent and tetravalent metals such as AlCl3, CrCl3, FeCl3, Zr(O)Cl2, and SnCl4 for one-pot conversion. Starchy food waste, e.g., cooked rice and penne produced 4.0-8.1 wt% HMF and 46.0-64.8 wt% glucose over SnCl4 after microwave heating at 140 °C for 20 min. This indicated that starch hydrolysis was effectively catalyzed but subsequent glucose isomerization was rate-limited during food waste valorization, which could be enhanced by 40-min reaction to achieve 22.7 wt% HMF from cooked rice. Sugary food waste, e.g., kiwifruit and watermelon, yielded up to 13 wt% HMF over Sn catalyst, which mainly resulted from naturally present fructose. Yet, organic acids in fruits may hinder Fe-catalyzed dehydration by competing for the Lewis sites. In contrast, conversion of raw mixed vegetables as cellulosic food waste was limited by marginal hydrolysis at the studied conditions (120-160 °C and 20-40 min). It is interesting to note that tetravalent metals enabled HMF production at a lower temperature and shorter time, while trivalent metals could achieve a higher HMF selectivity at an elevated temperature. Further studies on kinetics, thermodynamics, and reaction pathways of food waste valorization are recommended.
Collapse
Affiliation(s)
- Iris K M Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Alex C K Yip
- Energy and Environmental Catalysis Group, Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Season S Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yong Sik Ok
- O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
40
|
Nguyen DD, Yeop JS, Choi J, Kim S, Chang SW, Jeon BH, Guo W, Ngo HH. A new approach for concurrently improving performance of South Korean food waste valorization and renewable energy recovery via dry anaerobic digestion under mesophilic and thermophilic conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 66:161-168. [PMID: 28404512 DOI: 10.1016/j.wasman.2017.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Dry semicontinuous anaerobic digestion (AD) of South Korean food waste (FW) under four solid loading rates (SLRs) (2.30-9.21kg total solids (TS)/m3day) and at a fixed TS content was compared between two digesters, one each under mesophilic and thermophilic conditions. Biogas production and organic matter reduction in both digesters followed similar trends, increasing with rising SLR. Inhibitor (intermediate products of the anaerobic fermentation process) effects on the digesters' performance were not observed under the studied conditions. In all cases tested, the digesters' best performance was achieved at the SLR of 9.21kg TS/m3day, with 74.02% and 80.98% reduction of volatile solids (VS), 0.87 and 0.90m3 biogas/kg VSremoved, and 0.65 (65% CH4) and 0.73 (60.02% CH4) m3 biogas/kg VSfed, under mesophilic and thermophilic conditions, respectively. Thermophilic dry AD is recommended for FW treatment in South Korea because it is more efficient and has higher energy recovery potential when compared to mesophilic dry AD.
Collapse
Affiliation(s)
- Dinh Duc Nguyen
- Department for Management of Science and Technology Development & Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Department of Environmental Energy & Engineering, Kyonggi University, Republic of Korea.
| | - Jeong Seong Yeop
- Department of Environmental Energy & Engineering, Kyonggi University, Republic of Korea
| | - Jaehoon Choi
- Department of Environmental Energy & Engineering, Kyonggi University, Republic of Korea
| | - Sungsu Kim
- Department of Environmental Energy & Engineering, Kyonggi University, Republic of Korea
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Republic of Korea.
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Broadway, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Broadway, NSW 2007, Australia.
| |
Collapse
|
41
|
Yu IKM, Tsang DCW. Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. BIORESOURCE TECHNOLOGY 2017; 238:716-732. [PMID: 28434789 DOI: 10.1016/j.biortech.2017.04.026] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
Conversion of biomass waste to hydroxymethylfurfural (HMF), a value-added platform chemical, has captured great research interests driven by the economic and environmental incentives. This review evaluates the recent development of biomass conversion systems for high HMF yield and selectivity, with a focus on the performance of emerging catalysts and solvents from a mechanistic view. We highlight that the ratio and strength of Brønsted and Lewis acid in bifunctional catalyst are critical for maximizing HMF production by selective improvement in the kinetics of desirable reactions (hydrolysis, isomerization, and dehydration) over undesirable reactions (rehydration, polymerization). The characteristics of solvent mixture such as functional groups and speciation govern the reactivity of substrate towards desirable reactions and stability of HMF and intermediates against side reactions. Research efforts to unravel the interactions among co-catalysts/co-solvents and between catalysts and solvents are encouraged, thereby engineering a synergistic conversion system for biomass valorization.
Collapse
Affiliation(s)
- Iris K M Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
42
|
Yu IKM, Tsang DCW, Yip ACK, Chen SS, Wang L, Ok YS, Poon CS. Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (HMF): Controlling relative kinetics for high productivity. BIORESOURCE TECHNOLOGY 2017; 237:222-230. [PMID: 28111030 DOI: 10.1016/j.biortech.2017.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 06/06/2023]
Abstract
This study aimed to maximize the valorization of bread waste, a typical food waste stream, into hydroxymethylfurfural (HMF) by improving our kinetic understanding. The highest HMF yield (30mol%) was achieved using SnCl4 as catalyst, which offered strong derived Brønsted acidity and moderate Lewis acidity. We evaluated the kinetic balance between these acidities to facilitate faster desirable reactions (i.e., hydrolysis, isomerization, and dehydration) relative to undesirable reactions (i.e., rehydration and polymerization). Such catalyst selectivity of SnCl4, AlCl3, and FeCl3 was critical in maximizing HMF yield. Higher temperature made marginal advancement by accelerating the undesirable reactions to a similar extent as the desirable pathways. The polymerization-induced metal-impregnated high-porosity carbon was a possible precursor of biochar-based catalyst, further driving up the economic potential. Preliminary economic analysis indicated a net gain of USD 43-236 per kilogram bread waste considering the thermochemical-conversion cost and chemical-trading revenue.
Collapse
Affiliation(s)
- Iris K M Yu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Alex C K Yip
- Energy and Environmental Catalysis Group, Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Season S Chen
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Lei Wang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yong Sik Ok
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; School of Natural Resources and Environmental Science & Korea Biochar Research Centre, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
43
|
Igalavithana AD, Lee SE, Lee YH, Tsang DCW, Rinklebe J, Kwon EE, Ok YS. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. CHEMOSPHERE 2017; 174:593-603. [PMID: 28193592 DOI: 10.1016/j.chemosphere.2017.01.148] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/13/2017] [Accepted: 01/31/2017] [Indexed: 05/20/2023]
Abstract
In order to determine the efficacy of vegetable waste and pine cone biochar for immobilization of metal/metalloid (lead and arsenic) and abundance of microbial community in different agricultural soils, we applied the biochar produced at two different temperatures to two contaminated soils. Biochar was produced by vegetable waste, pine cone, and their mixture (1:1 ww-1) at 200 °C (torrefied biomass) and 500 °C (biochar). Contaminated soils were incubated with 5% (ww-1) torrefied biomass or biochar. Sequential extraction, thermodynamic modeling, and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy were used to evaluate the metal immobilization. Microbial communities were characterized by microbial fatty acid profiles and microbial activity was assessed by dehydrogenase activity. Vegetable waste and the mixture of vegetable waste and pine cone biochar exhibited greater ability for Pb immobilization than pine cone biochar and three torrefied biomass, and vegetable waste biochar was found to be most effective. However, torrefied biomass was most effective in increasing both microbial community and dehydrogenase activity. This study confirms that vegetable waste could be a vital biomass to produce biochar to immobilize Pb, and increase the microbial communities and enzyme activity in soils. Biomass and pyrolytic temperature were not found to be effective in the immobilization of As in this study.
Collapse
Affiliation(s)
- Avanthi Deshani Igalavithana
- Korea Biochar Research Center & School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, South Korea
| | - Young Han Lee
- Division of Plant Environmental Research, Gyeongsangnam-do Agricultural Research & Extension Services, Jinju 52773, South Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Jörg Rinklebe
- Soil and Groundwater Management, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Yong Sik Ok
- Korea Biochar Research Center & School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, South Korea; Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
44
|
Hou Q, Li W, Zhen M, Liu L, Chen Y, Yang Q, Huang F, Zhang S, Ju M. An ionic liquid–organic solvent biphasic system for efficient production of 5-hydroxymethylfurfural from carbohydrates at high concentrations. RSC Adv 2017. [DOI: 10.1039/c7ra10237b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A biphasic system consisting of EMIMBr/SnCl4 and organic solvent was developed to produce HMF from carbohydrates at high concentrations.
Collapse
Affiliation(s)
- Qidong Hou
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- PR China
| | - Weizun Li
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- PR China
| | - Meinan Zhen
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- PR China
| | - Le Liu
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- PR China
| | - Yu Chen
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- PR China
| | - Qian Yang
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- PR China
| | - Fang Huang
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- PR China
| | - Shiqiu Zhang
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- PR China
| | - Meiting Ju
- Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300071
- PR China
| |
Collapse
|