1
|
Padhi D, Kashyap S, Mohapatra RK, Dineshkumar R, Nayak M. Microalgae-based flue gas CO 2 sequestration for cleaner environment and biofuel feedstock production: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35958-8. [PMID: 39888525 DOI: 10.1007/s11356-025-35958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Anthropogenic CO2 emissions are the prime cause of global warming and climate change, promoting researchers to develop suitable technologies to reduce carbon footprints. Among various CO2 sequestration technologies, microalgal-based methods are found to be promising due to their easier operation, environmental benefits, and simpler equipment requirements. Microalgae-based carbon capture and storage (CCS) technology is essential for addressing challenges related to the use of industrial-emitted flue gases. This review focuses on the literature concerning the microalgal application for CO2 sequestration. It highlights the primary physiochemical parameters that affect microalgal-based CO2 biofixation, including light exposure, microalgal strain, temperature, inoculum size, pH levels, mass transfer, CO2 concentration, flow rate, cultivation system, and mixing mechanisms. Moreover, the inhibition effect of different flue gas components including NOx, SOx, and Hg on growth kinetics is discussed to enhance the capacity of microalgal-based CO2 biofixation, along with deliberated challenges and prospects for future development. Overall, the review indicated microalgal-based flue gas CO2 fixation rates range from 80 mg L-1 day-1 to over 578 mg L-1 day-1, primarily influenced by physiochemical parameters and flue gas composition. This article summarizes the mechanisms and stages of microalgal-based CO2 sequestration and provides a comprehensive review based on international interest in this green technology.
Collapse
Affiliation(s)
- Diptymayee Padhi
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Shatakshi Kashyap
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India
| | - Ranjan Kumar Mohapatra
- Department of Environmental and IT Convergence Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ramalingam Dineshkumar
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Manoranjan Nayak
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
2
|
Scapini T, Woiciechowski AL, Manzoki MC, Molina-Aulestia DT, Martinez-Burgos WJ, Fanka LS, Duda LJ, Vale ADS, de Carvalho JC, Soccol CR. Microalgae-mediated biofixation as an innovative technology for flue gases towards carbon neutrality: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121329. [PMID: 38852420 DOI: 10.1016/j.jenvman.2024.121329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Microalgae-mediated industrial flue gas biofixation has been widely discussed as a clean alternative for greenhouse gas mitigation. Through photosynthetic processes, microalgae can fix carbon dioxide (CO2) and other compounds and can also be exploited to obtain high value-added products in a circular economy. One of the major limitations of this bioprocess is the high concentrations of CO2, sulfur oxides (SOx), and nitrogen oxides (NOx) in flue gases, according to the origin of the fuel, that can inhibit photosynthesis and reduce the process efficiency. To overcome these limitations, researchers have recently developed new technologies and enhanced process configurations, thereby increased productivity and CO2 removal rates. Overall, CO2 biofixation rates from flue gases by microalgae ranged from 72 mg L-1 d -1 to over 435 mg L-1 d-1, which were directly influenced by different factors, mainly the microalgae species and photobioreactor. Additionally, mixotrophic culture have shown potential in improving microalgae productivity. Progress in developing new reactor configurations, with pilot-scale implementations was observed, resulting in an increase in patents related to the subject and in the implementation of companies using combustion gases in microalgae culture. Advancements in microalgae-based green technologies for environmental impact mitigation have led to more efficient biotechnological processes and opened large-scale possibilities.
Collapse
Affiliation(s)
- Thamarys Scapini
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Adenise Lorenci Woiciechowski
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil.
| | - Maria Clara Manzoki
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Denisse Tatiana Molina-Aulestia
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Walter Jose Martinez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Letícia Schneider Fanka
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Leonardo José Duda
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Alexander da Silva Vale
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Julio Cesar de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| |
Collapse
|
3
|
Lin MW, Lin CS, Chen YT, Huang SQ, Yang YC, Zhang WX, Chiu WH, Lin CH, Kuo CM. Continuous microalgal culture module and method of culturing microalgae containing macular pigment. BIORESOURCE TECHNOLOGY 2024; 401:130714. [PMID: 38641299 DOI: 10.1016/j.biortech.2024.130714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
This study established and investigated continuous macular pigment (MP) production with a lutein (L):zeaxanthin (Z) ratio of 4-5:1 by an MP-rich Chlorella sp. CN6 mutant strain in a continuous microalgal culture module. Chlorella sp. CN6 was cultured in a four-stage module for 10 days. The microalgal culture volume increased to 200 L in the first stage (6 days). Biomass productivity increased to 0.931 g/L/day with continuous indoor white light irradiation during the second stage (3 days). MP content effectively increased to 8.29 mg/g upon continuous, indoor white light and blue light-emitting diode irradiation in the third stage (1 day), and the microalgal biomass and MP concentrations were 8.88 g/L and 73.6 mg/L in the fourth stage, respectively. Using a two-step MP extraction process, 80 % of the MP was recovered with a high purity of 93 %, and its L:Z ratio was 4-5:1.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Center for Intelligent Drug Systems and Smart Bio-systems (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Tso Chen
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City 320, Taiwan
| | - Shao-Qian Huang
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City 320, Taiwan
| | - Yi-Chun Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Xin Zhang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wei-Hong Chiu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chiu-Mei Kuo
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City 320, Taiwan.
| |
Collapse
|
4
|
Udaypal, Goswami RK, Mehariya S, Verma P. Advances in microalgae-based carbon sequestration: Current status and future perspectives. ENVIRONMENTAL RESEARCH 2024; 249:118397. [PMID: 38309563 DOI: 10.1016/j.envres.2024.118397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
The advancement in carbon dioxide (CO2) sequestration technology has received significant attention due to the adverse effects of CO2 on climate. The mitigation of the adverse effects of CO2 can be accomplished through its conversion into useful products or renewable fuels. In this regard, microalgae is a promising candidate due to its high photosynthesis efficiency, sustainability, and eco-friendly nature. Microalgae utilizes CO2 in the process of photosynthesis and generates biomass that can be utilized to produce various valuable products such as supplements, chemicals, cosmetics, biofuels, and other value-added products. However, at present microalgae cultivation is still restricted to producing value-added products due to high cultivation costs and lower CO2 sequestration efficiency of algal strains. Therefore, it is very crucial to develop novel techniques that can be cost-effective and enhance microalgal carbon sequestration efficiency. The main aim of the present manuscript is to explain how to optimize microalgal CO2 sequestration, integrate valuable product generation, and explore novel techniques like genetic manipulations, phytohormones, quantum dots, and AI tools to enhance the efficiency of CO2 sequestration. Additionally, this review provides an overview of the mass flow of different microalgae and their biorefinery, life cycle assessment (LCA) for achieving net-zero CO2 emissions, and the advantages, challenges, and future perspectives of current technologies. All of the reviewed approaches efficiently enhance microalgal CO2 sequestration and integrate value-added compound production, creating a green and economically profitable process.
Collapse
Affiliation(s)
- Udaypal
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
5
|
Trujillo E, Monreal-Escalante E, Angulo C. Microalgae-made human vaccines and therapeutics: A decade of advances. Biotechnol J 2024; 19:e2400091. [PMID: 38719615 DOI: 10.1002/biot.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
Microalgal emergence is a promising platform with two-decade historical background for producing vaccines and biopharmaceuticals. During that period, microalgal-based vaccines have reported successful production for various diseases. Thus, species selection is important for genetic transformation and delivery methods that have been developed. Although many vaccine prototypes have been produced for infectious and non-infectious diseases, fewer studies have reached immunological and immunoprotective evaluations. Microalgae-made vaccines for Staphylococcus aureus, malaria, influenza, human papilloma, and Zika viruses have been explored in their capacity to induce humoral or cellular immune responses and protective efficacies against experimental challenges. Therefore, specific pathogen antigens and immune system role are important and addressed in controlling these infections. Regarding non-communicable diseases, these vaccines have been investigated for breast cancer; microalgal-produced therapeutic molecules and microalgal-made interferon-α have been explored for hypertension and potential applications in treating viral infections and cancer, respectively. Thus, conducting immunological trials is emphasized, discussing the promising results observed in terms of immunogenicity, desired immune response for controlling affections, and challenges for achieving the desired protection levels. The potential advantages and hurdles associated with this innovative approach are highlighted, underlining the relevance of assessing immune responses in preclinical and clinical trials to validate the efficacy of these biopharmaceuticals. The promising future of this healthcare technology is also envisaged.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
- CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| |
Collapse
|
6
|
Kong W, Kong J, Feng S, Yang T, Xu L, Shen B, Bi Y, Lyu H. Cultivation of microalgae-bacteria consortium by waste gas-waste water to achieve CO 2 fixation, wastewater purification and bioproducts production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:26. [PMID: 38360745 PMCID: PMC10870688 DOI: 10.1186/s13068-023-02409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/10/2023] [Indexed: 02/17/2024]
Abstract
The cultivation of microalgae and microalgae-bacteria consortia provide a potential efficient strategy to fix CO2 from waste gas, treat wastewater and produce value-added products subsequently. This paper reviews recent developments in CO2 fixation and wastewater treatment by single microalgae, mixed microalgae and microalgae-bacteria consortia, as well as compares and summarizes the differences in utilizing different microorganisms from different aspects. Compared to monoculture of microalgae, a mixed microalgae and microalgae-bacteria consortium may mitigate environmental risk, obtain high biomass, and improve the efficiency of nutrient removal. The applied microalgae include Chlorella sp., Scenedesmus sp., Pediastrum sp., and Phormidium sp. among others, and most strains belong to Chlorophyta and Cyanophyta. The bacteria in microalgae-bacteria consortia are mainly from activated sludge and specific sewage sources. Bioengineer in CBB cycle in microalgae cells provide effective strategy to achieve improvement of CO2 fixation or a high yield of high-value products. The mechanisms of CO2 fixation and nutrient removal by different microbial systems are also explored and concluded, the importance of microalgae in the technology is proven. After cultivation, microalgae biomass can be harvested through physical, chemical, biological and magnetic separation methods and used to produce high-value by-products, such as biofuel, feed, food, biochar, fertilizer, and pharmaceutical bio-compounds. Although this technology has brought many benefits, some challenging obstacles and limitation remain for industrialization and commercializing.
Collapse
Affiliation(s)
- Wenwen Kong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
- Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Jia Kong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
- Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Shuo Feng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
- Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - TianTian Yang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
- Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Lianfei Xu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
- Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China.
- Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, People's Republic of China.
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China.
- Hebei Engineering Research Center of Pollution Control in Power System, Hebei University of Technology, Tianjin, 300401, People's Republic of China.
| |
Collapse
|
7
|
Asiri F. Polyhydroxyalkanoates for Sustainable Aquaculture: A Review of Recent Advancements, Challenges, and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2034-2058. [PMID: 38227436 DOI: 10.1021/acs.jafc.3c06488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable biopolymers produced by prokaryotic microbes, which, at the same time, can be applied as single-cell proteins (SCPs), growing on renewable waste-derived substrates. These PHA polymers have gained increasing attention as a sustainable alternative to conventional plastics. One promising application of PHA and PHA-rich SCPs lies within the aquaculture food industry, where they hold potential as feed additives, biocontrol agents against diseases, and immunostimulants. Nevertheless, the cost of PHA production and application remains high, partly due to expensive substrates for cultivating PHA-accumulating SCPs, costly sterilization, energy-intensive SCPs harvesting techniques, and toxic PHA extraction and purification processes. This review summarizes the current state of PHA production and its application in aquaculture. The structure and classification of PHA, microbial sources, cultivation substrates, biosynthesis pathways, and the production challenges and solutions are discussed. Next, the potential of PHA application in aquaculture is explored, focusing on aquaculture challenges, common and innovative PHA-integrated farming practices, and PHA mechanisms in inhibiting pathogens, enhancing the immune system, and improving growth and gut health of various aquatic species. Finally, challenges and future research needs for PHA production and application in aquaculture are identified. Overall, this review paper provides a comprehensive overview of the potential of PHA in aquaculture and highlights the need for further research in this area.
Collapse
Affiliation(s)
- Fahad Asiri
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| |
Collapse
|
8
|
Wang Y, Yang S, Liu J, Wang J, Xiao M, Liang Q, Ren X, Wang Y, Mou H, Sun H. Realization process of microalgal biorefinery: The optional approach toward carbon net-zero emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165546. [PMID: 37454852 DOI: 10.1016/j.scitotenv.2023.165546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Increasing carbon dioxide (CO2) emission has already become a dire threat to the human race and Earth's ecology. Microalgae are recommended to be engineered as CO2 fixers in biorefinery, which play crucial roles in responding climate change and accelerating the transition to a sustainable future. This review sorted through each segment of microalgal biorefinery to explore the potential for its practical implementation and commercialization, offering valuable insights into research trends and identifies challenges that needed to be addressed in the development process. Firstly, the known mechanisms of microalgal photosynthetic CO2 fixation and the approaches for strain improvement were summarized. The significance of process regulation for strengthening fixation efficiency and augmenting competitiveness was emphasized, with a specific focus on CO2 and light optimization strategies. Thereafter, the massive potential of microalgal refineries for various bioresource production was discussed in detail, and the integration with contaminant reclamation was mentioned for economic and ecological benefits. Subsequently, economic and environmental impacts of microalgal biorefinery were evaluated via life cycle assessment (LCA) and techno-economic analysis (TEA) to lit up commercial feasibility. Finally, the current obstacles and future perspectives were discussed objectively to offer an impartial reference for future researchers and investors.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ying Wang
- Marine Science research Institute of Shandong Province, Qingdao 266003, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
9
|
Costa JAV, Zaparoli M, Cassuriaga APA, Cardias BB, Vaz BDS, Morais MGD, Moreira JB. Biochar production from microalgae: a new sustainable approach to wastewater treatment based on a circular economy. Enzyme Microb Technol 2023; 169:110281. [PMID: 37390584 DOI: 10.1016/j.enzmictec.2023.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/31/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
The generation of wastewater due to human activities are the main responsible for environmental problems. These problems are caused by the large amount of organic and inorganic pollutants related to the presence of pesticides, metals, pathogens, drugs and dyes. The photosynthetic treatment of effluents emerges as a sustainable and low-cost alternative for developing wastewater treatment systems based on a circular economy. Chemical compounds present in wastewater can be recovered and reused as a source of nutrients in microalgae cultivation to produce value-added bioproducts. The microalgal biomass produced in the cultivation with effluents has the potential to produce biochar. Biochar is carbon-rich charcoal that can be obtained by converting microalgae biomass through thermal decomposition of organic raw material under limited oxygen supply conditions. Pyrolysis, torrefaction, and hydrothermal carbonization are processes used for biochar synthesis. The application of microalgal biochar as an adsorbent material to remove several compounds present in effluents is an effective and fast treatment. This effectiveness is usually related to the unique physicochemical characteristics of the biochar, such as the presence of functional groups, ion exchange capacity, thermal stability, and high surface area, volume, and pore area. In addition, biochar can be reused in the adsorption process or applied in agriculture for soil correction. In this context, this review article describes the production, characterization, and use of microalgae biochar through a sustainable approach to wastewater treatment, emphasizing its potential in the circular economy. In addition, the article approaches the potential of microalgal biochar as an adsorbent material and its reuse after the adsorption of contaminants, as well as highlights the challenges and future perspectives on this topic.
Collapse
Affiliation(s)
- Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil; Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, PR, Brazil
| | - Munise Zaparoli
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, PR, Brazil
| | - Ana Paula Aguiar Cassuriaga
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil
| | - Bruna Barcelos Cardias
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, PR, Brazil
| | - Bruna da Silva Vaz
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal Uni-versity of Rio Grande, Rio Grande, RS, Brazil.
| | - Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal Uni-versity of Rio Grande, Rio Grande, RS, Brazil.
| | - Juliana Botelho Moreira
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal Uni-versity of Rio Grande, Rio Grande, RS, Brazil.
| |
Collapse
|
10
|
Kuo CM, Yang YC, Zhang WX, Wu JX, Chen YT, Lin CH, Lin MW, Lin CS. A Low-Cost Fertilizer Medium Supplemented with Urea for the Lutein Production of Chlorella sp. and the Ability of the Lutein to Protect Cells against Blue Light Irradiation. Bioengineering (Basel) 2023; 10:bioengineering10050594. [PMID: 37237664 DOI: 10.3390/bioengineering10050594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to investigate the use of organic fertilizers instead of modified f/2 medium for Chlorella sp. cultivation, and the extracted lutein of the microalga to protect mammal cells against blue-light irradiation. The biomass productivity and lutein content of Chlorella sp. cultured in 20 g/L fertilizer medium for 6 days were 1.04 g/L/d and 4.41 mg/g, respectively. These values are approximately 1.3- and 1.4-fold higher than those achieved with the modified f/2 medium, respectively. The cost of medium per gram of microalgal biomass reduced by about 97%. The microalgal lutein content was further increased to 6.03 mg/g in 20 g/L fertilizer medium when supplemented with 20 mM urea, and the cost of medium per gram lutein reduced by about 96%. When doses of ≥1 μM microalgal lutein were used to protect mammal NIH/3T3 cells, there was a significant reduction in the levels of reactive oxygen species (ROS) produced by the cells in the following blue-light irradiation treatments. The results show that microalgal lutein produced by fertilizers with urea supplements has the potential to develop anti-blue-light oxidation products and reduce the economic challenges of microalgal biomass applied to carbon biofixation and biofuel production.
Collapse
Affiliation(s)
- Chiu-Mei Kuo
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Yi-Chun Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan
| | - Wen-Xin Zhang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan
| | - Jia-Xun Wu
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Yu-Tso Chen
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
| | - Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan
| |
Collapse
|
11
|
Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy. FERMENTATION 2022. [DOI: 10.3390/fermentation8120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recycling bioresources is the only way to sustainably meet a growing world population’s food and energy needs. One of the ways to do so is by using agro-industry wastewater to cultivate microalgae. While the industrial production of microalgae requires large volumes of water, existing agro-industry processes generate large volumes of wastewater with eutrophicating nutrients and organic carbon that must be removed before recycling the water back into the environment. Coupling these two processes can benefit the flourishing microalgal industry, which requires water, and the agro-industry, which could gain extra revenue by converting a waste stream into a bioproduct. Microalgal biomass can be used to produce energy, nutritional biomass, and specialty products. However, there are challenges to establishing stable and circular processes, from microalgae selection and adaptation to pretreating and reclaiming energy from residues. This review discusses the potential of agro-industry residues for microalgal production, with a particular interest in the composition and the use of important primary (raw) and secondary (digestate) effluents generated in large volumes: sugarcane vinasse, palm oil mill effluent, cassava processing waster, abattoir wastewater, dairy processing wastewater, and aquaculture wastewater. It also overviews recent examples of microalgae production in residues and aspects of process integration and possible products, avoiding xenobiotics and heavy metal recycling. As virtually all agro-industries have boilers emitting CO2 that microalgae can use, and many industries could benefit from anaerobic digestion to reclaim energy from the effluents before microalgal cultivation, the use of gaseous effluents is also discussed in the text.
Collapse
|
12
|
Kundu D, Dutta D, Samanta P, Dey S, Sherpa KC, Kumar S, Dubey BK. Valorization of wastewater: A paradigm shift towards circular bioeconomy and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157709. [PMID: 35908693 DOI: 10.1016/j.scitotenv.2022.157709] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Limitation in the availability of natural resources like water is the main drive for focussing on resource recovery from wastewater. Rapid urbanization with increased consumption of natural resources has severely affected its management and security. The application of biotechnological processes offers a feasible approach to concentrating and transforming wastewater for resource recovery and a step towards a circular economy. Wastewater generally contains high organic materials, nutrients, metals and chemicals, which have economic value. Hence, its management can be a valuable resource through the implementation of a paradigm transformation for value-added product recovery. This review focuses on the circular economy of "close loop" process by wastewater reuse and energy recovery identifying the emerging technologies for recovering resources across the wastewater treatment phase. Conventional wastewater treatment technologies have been discussed along with the advanced treatment technologies such as algal treatment, anammox technology, microbial fuel cells (MFC). Apart from recovering energy in the form of biogas and biohydrogen, second and third-generation biofuels as well as biohythane and electricity generation have been deliberated. Other options for resource recovery are single-cell protein (SCP), biopolymers as well as recovery of metals and nutrients. The paper also highlights the applications of treated wastewater in agriculture, aquaponics, fisheries and algal cultivation. The concept of Partitions-release-recover (PRR) has been discussed for a better understanding of the filtration treatment coupled with anaerobic digestion. The review provides a critical evaluation on the importance of adopting a circular economy and their role in achieving sustainable development goals (SDGs). Thus, it is imperative that such initiatives towards resource recovery from wastewater through integration of concepts can aid in providing wastewater treatment system with resource efficiency.
Collapse
Affiliation(s)
- Debajyoti Kundu
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Deblina Dutta
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, West Bengal 735210, India
| | - Sukhendu Dey
- Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal 713 104, India
| | - Knawang Chhunji Sherpa
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Sunil Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India.
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302, India
| |
Collapse
|
13
|
Chen JH, Nagarajan D, Huang Y, Zhu X, Liao Q, Chang JS. A novel and effective two-stage cultivation strategy for enhanced lutein production with Chlorella sorokiniana. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Li S, Li X, Ho SH. How to enhance carbon capture by evolution of microalgal photosynthesis? Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Li N, Chen C, Zhong F, Zhang S, Xia A, Huang Y, Liao Q, Zhu X. A novel magnet-driven rotary mixing aerator for carbon dioxide fixation and microalgae cultivation: focusing on bubble behavior and cultivation performance. J Biotechnol 2022; 352:26-35. [DOI: 10.1016/j.jbiotec.2022.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/11/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022]
|
16
|
Singh V, Mishra V. Evaluation of the effects of input variables on the growth of two microalgae classes during wastewater treatment. WATER RESEARCH 2022; 213:118165. [PMID: 35183015 DOI: 10.1016/j.watres.2022.118165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment carried out by microalgae is usually affected by the type of algal strain and the combination of cultivation parameters provided during the process. Every microalga strain has a different tolerance level towards cultivation parameters, including temperature, pH, light intensity, CO2 content, initial inoculum level, pretreatment method, reactor type and nutrient concentration in wastewater. Therefore, it is vital to supply the right combination of cultivation parameters to increase the wastewater treatment efficiency and biomass productivity of different microalgae classes. In the current investigation, the decision tree was used to analyse the dataset of class Trebouxiophyceae and Chlorophyceae. Various combinations of cultivation parameters were determined to enhance their performance in wastewater treatment. Nine combinations of cultivation parameters leading to high biomass production and eleven combinations each for high nitrogen removal efficiency and high phosphorus removal efficiency for class Trebouxiophyceae were detected by decision tree models. Similarly, eleven combinations for high biomass production, nine for high nitrogen removal efficiency, and eight for high phosphorus removal efficiency were detected for class Chlorophyceae. The results obtained through decision tree analysis can provide the optimum conditions of cultivation parameters, saving time in designing new experiments for treating wastewater at a large scale.
Collapse
Affiliation(s)
- Vishal Singh
- School of Biochemical Engineering, IIT(BHU), Varanasi, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT(BHU), Varanasi, India.
| |
Collapse
|
17
|
Zhao Y, Li J, Ma X, Fang X, Zhu B, Pan K. Screening and application of Chlorella strains on biosequestration of the power plant exhaust gas evolutions of biomass growth and accumulation of toxic agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6744-6754. [PMID: 34462853 DOI: 10.1007/s11356-021-15950-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
To use microalgae for the biosequestration of carbon dioxide (CO2) emitted from the coal-fired power plants, the screening of high CO2 tolerant microalgae and their accumulation of toxic agents have attracted significant research attention. This study evaluated 10 Chlorella strains for high CO2 tolerance using combined growth rates and growth periods subjected to logistic parameters. We selected LAMB 31 with high r (0.89 ± 0.10 day-1), high k (6.51 ± 0.19), and medium Tp (5.17 ± 0.15 day) as a candidate for CO2 biosequestration. Correspondingly, six genes involving carbon fixation and metabolism processes were upregulated in LAMB 31 under high CO2 conditions, verifying its high CO2 tolerant ability. LAMB 31 cultures exposed to exhaust gas of power plant under different flow rates grew well, but the high flow rate (0.6 L/h) showed inhibition effects compared with low flow rates (0.2 and 0.3 L/h) at the end of the culturing period. The toxic agents in the exhaust gas including sulfur, arsenic, and mercury accumulated in LAMB 31 biomass but were deemed safe for use in the production of both human food and animal feed based on the National Food Safety Standard in China. This study showed a complete process involving high CO2 tolerant microalgae screening, high CO2 tolerant verification, and in situ application in a power plant. Data results provide valuable information as the basis for future research studies in microalgae application on CO2 mitigation at emission sources.
Collapse
Affiliation(s)
- Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jun Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Xuebin Ma
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, No. 5 12 Yu Shan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Xingyu Fang
- Department of Radiology, PLA 305 Hospital, Beijing, 100017, China
| | - Baohua Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, No. 5 12 Yu Shan Road, Qingdao, 266003, Shandong, People's Republic of China
| | - Kehou Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, No. 5 12 Yu Shan Road, Qingdao, 266003, Shandong, People's Republic of China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China.
| |
Collapse
|
18
|
Cultivation and Biorefinery of Microalgae (Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su132313480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microalgae-based carbon dioxide (CO2) biofixation and biorefinery are the most efficient methods of biological CO2 reduction and reutilization. The diversification and high-value byproducts of microalgal biomass, known as microalgae-based biorefinery, are considered the most promising platforms for the sustainable development of energy and the environment, in addition to the improvement and integration of microalgal cultivation, scale-up, harvest, and extraction technologies. In this review, the factors influencing CO2 biofixation by microalgae, including microalgal strains, flue gas, wastewater, light, pH, temperature, and microalgae cultivation systems are summarized. Moreover, the biorefinery of Chlorella biomass for producing biofuels and its byproducts, such as fine chemicals, feed additives, and high-value products, are also discussed. The technical and economic assessments (TEAs) and life cycle assessments (LCAs) are introduced to evaluate the sustainability of microalgae CO2 fixation technology. This review provides detailed insights on the adjusted factors of microalgal cultivation to establish sustainable biological CO2 fixation technology, and the diversified applications of microalgal biomass in biorefinery. The economic and environmental sustainability, and the limitations and needs of microalgal CO2 fixation, are discussed. Finally, future research directions are provided for CO2 reduction by microalgae.
Collapse
|
19
|
Role of Microalgae in Global CO2 Sequestration: Physiological Mechanism, Recent Development, Challenges, and Future Prospective. SUSTAINABILITY 2021. [DOI: 10.3390/su132313061] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rising concentration of global atmospheric carbon dioxide (CO2) has severely affected our planet’s homeostasis. Efforts are being made worldwide to curb carbon dioxide emissions, but there is still no strategy or technology available to date that is widely accepted. Two basic strategies are employed for reducing CO2 emissions, viz. (i) a decrease in fossil fuel use, and increased use of renewable energy sources; and (ii) carbon sequestration by various biological, chemical, or physical methods. This review has explored microalgae’s role in carbon sequestration, the physiological apparatus, with special emphasis on the carbon concentration mechanism (CCM). A CCM is a specialized mechanism of microalgae. In this process, a sub-cellular organelle known as pyrenoid, containing a high concentration of Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco), helps in the fixation of CO2. One type of carbon concentration mechanism in Chlamydomonas reinhardtii and the association of pyrenoid tubules with thylakoids membrane is represented through a typical graphical model. Various environmental factors influencing carbon sequestration in microalgae and associated techno-economic challenges are analyzed critically.
Collapse
|
20
|
Direct measurements of CO2 capture are essential to assess the technical and economic potential of algal-CCUS. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Singh V, Mishra V. Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Ansari FA, Guldhe A, Gupta SK, Rawat I, Bux F. Improving the feasibility of aquaculture feed by using microalgae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43234-43257. [PMID: 34173144 DOI: 10.1007/s11356-021-14989-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The aquaculture industry is an efficient edible protein producer and grows faster than any other food sector. Therefore, it requires enormous amounts of fish feed. Fish feed directly affects the quality of produced fish, potential health benefits, and cost. Fish meal (FM), fis oil (FO), and plant-based supplements, predominantly used in fish feed, face challenges of low availability, low nutritional value, and high cost. The cost associated with aquaculture feed represents 40-75% of aquaculture production cost and one of the key market drivers for the thriving aquaculture industry. Microalgae are a primary producer in aquatic food chains. Microalgae are expanding continuously in renewable energy, pharmaceutical pigment, wastewater treatment, food, and feed industries. Major components of microalgal biomass are proteins with essential amino acids, lipids with polyunsaturated fatty acids (PUFA), carbohydrates, pigments, and other bioactive compounds. Thus, microalgae can be used as an essential, viable, and alternative feed ingredient in aquaculture feed. In recent times, live algae culture, whole algae, and lipid-extracted algae (LEA) have been tested in fish feed for growth, physiological activity, and nutritional value. The present review discusses the potential application of microalgae in aquaculture feed, its mode of application, nutritional value, and possible replacement of conventional feed ingredients, and disadvantages of plant-based feed. The review also focuses on integrated processes such as algae cultivation in aquaculture wastewater, aquaponics systems, challenges, and future prospects of using microalgae in the aquafeed industry.
Collapse
Affiliation(s)
- Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa
| | - Abhishek Guldhe
- Amity Institute of Biotechnology, Amity University, Mumbai, India
| | - Sanjay Kumar Gupta
- Environmental Engineering, Department of Civil Engineering, Indian Institute of Technology, Delhi, India
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P O Box1334, Durban, 4000, South Africa.
| |
Collapse
|
23
|
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective. SUSTAINABILITY 2021. [DOI: 10.3390/su13126962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy, which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO, formic acid, and hydrogen. By contrast, a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand, biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts, which significantly governs the reactivity and selectivity of CO2R. However, in biotic CO2R, operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
Collapse
|
24
|
Viegas C, Gouveia L, Gonçalves M. Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112187. [PMID: 33609932 DOI: 10.1016/j.jenvman.2021.112187] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The use of microalgae to remediate raw effluent from brown crab aquaculture was evaluated by performing batch mode growth tests using separately the microalgae Chlorella vulgaris (Cv), Scenedesmus obliquus (Sc), Isochrysis galbana (Ig), Nannocloropsis salina (Ns), and Spirulina major (Sp). Removal efficiencies in batch growth were 100% for total nitrogen and total phosphorus for all microalgae. Chemical oxygen demand (COD) remediations were all above 72%. Biomass productivity varied from 20.9 mg L-1 day-1 (N. salina) to 146.4 mg L-1 day-1 (C. vulgaris). The two best performing algae were C. vulgaris and S. obliquus and they were tested in semi-continuous growth, reaching productivities of 879.8 mg L-1 day-1 and 811.7 mg L-1 day-1, respectively. The bioremediation of the effluent was tested with a transfer system consisting of three independent containers and compared with the use of a single container. The single container had the same capacity and received weekly the same volume of effluent as the three containers together. The remediation capacity of the 3 containers was much higher than the single one. The supplementation with NaNO3 was tested to improve the nutrient removal microalgae' capacity, with positive results. The removal efficiencies were 100% for total nitrogen and total phosphorus and higher than 96% for COD. The obtained C. vulgaris and S. obliquus biomass were composed of 31 and 35% proteins, 6 and 8% lipids, 39 and 30% carbohydrates, respectively. The composition of these biomass suggest that it can be used as novel and sustainable ingredients in aquaculture feeds. The algal biomass of Cv and Sc were used as biostimulants in the germination of wheat and watercress, and very promising results were attained, with increases in the germination index for Cv and Sc of 175% and 48% in watercress and 84% and 98% in wheat, respectively. The biomasses of Cv and Sc were also subjected to a torrefaction process with 72.5 ± 1.7% char yields. The obtained biochars were tested as biostimulants for germination seeds (wheat and watercress) and as bio-adsorbent of dye solutions.
Collapse
Affiliation(s)
- Catarina Viegas
- MEtRICs, Mechanical Engineering and Resource Sustainability Center, Department of Science and Technology of Biomass, FCT-NOVA, Campus de Caparica, 2829-516, Caparica, Portugal.
| | - Luísa Gouveia
- LNEG - Laboratório Nacional de Energia e Geologia, I.P./Bioenergy and Bioerefineries Unit, Estrada do Paço do Lumiar 22, 1649-038, Lisbon, Portugal; GreenCoLab - Green Ocean Technologies and Products Collaborative Laboratory, CCMAR, Algarve University, Portugal
| | - Margarida Gonçalves
- MEtRICs, Mechanical Engineering and Resource Sustainability Center, Department of Science and Technology of Biomass, FCT-NOVA, Campus de Caparica, 2829-516, Caparica, Portugal
| |
Collapse
|
25
|
Kong W, Kong J, Ma J, Lyu H, Feng S, Wang Z, Yuan P, Shen B. Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO 2 fixation simultaneously. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112070. [PMID: 33561760 DOI: 10.1016/j.jenvman.2021.112070] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Chlorella vulgaris (C. vulgaris) was promising microalgae to simultaneously achieve biomass production, carbon dioxide (CO2) fixation, nutrients removal and proteins production especially under different conditions of CO2 gas and wastewaters. Results presented that maximal specific growth rate of C. vulgaris was 0.21-0.35 d-1 and 0.33-0.43 d-1 at 0.038% and 10% CO2 respectively, and corresponding maximal CO2 fixation rate was attended with 4.51-14.26 and 56.26-85.72 mg CO2·L-1·d-1. C. vulgaris showed good wastewater removal efficiency of nitrogen and phosphorus at 10% CO2 with 96.12%-99.61% removal rates. Nitrogen fixation amount achieved 41.86 mg L-1 when the initial NH4Cl concentration was set at 60 mg L-1 at 10% CO2. Improved total protein (25.01-365.49 mg) and amino acids (24.56-196.44 mg) contents of C. vulgaris biomass was observed with the increasing of added CO2 and ammonium concentrations. Moreover, the developed kinetic function of C. vulgaris growth depends on both phosphorus quota and nitrogen quota with correlation coefficient (R2) ranged from 0.68 to 0.97. Computed maximal consumed nutrients concentrations (ΔCmax) based on Logistic function are positively related to initial NH4+-N concentrations, which indicated that adding ammonium could stimulate the utilization of both phosphorus and nitrogen.
Collapse
Affiliation(s)
- Wenwen Kong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Jia Kong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Jiao Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Shuo Feng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Zhuozhi Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Peng Yuan
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, PR China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, PR China.
| |
Collapse
|
26
|
Chen X, Wang S, Sun X, Lu Q. Cultivation of energy microalga Chlorella vulgaris with low-toxic sludge extract. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:818-830. [PMID: 33617489 DOI: 10.2166/wst.2021.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chlorella vulgaris was cultivated in different proportions of activated sludge extracts, which was from the treatment of synthetic wastewater containing tetrachlorophenol. The growth period of C. vulgaris could be shortened for about 10 days when sludge extract was mixed into BG11 culture substrate, and the growth of C. vulgaris was promoted during the period of adaptation and logarithmic period. In the stable and decay period, when the proportion of sludge extract increased to 50%, cell proliferation was inhibited. There was an evident positive correlation between the total and average amount of starch polysaccharide with sludge concentration. When C. vulgaris was cultivated with pure sludge extracts, the total amount of starch and polysaccharide was up to 103 and 125 mg/L. Therefore, the low-toxic sludge extracts were more beneficial to the accumulation of carbohydrates. In the 100% sludge extracts culture medium, chlorophyll-a in C. vulgaris was accumulated to 30.2 mg/L on the 25th day. Through the analysis of algal cells' ultrastructures, it was shown that the photosynthesis was strengthened greatly with low-toxic sludge extracts. The results show that the rich heterotrophic carbon source in the sludge extract can be used as an excellent medium for Chlorella. It provides new ideas for the harmless utilization of surplus sludge as a resource. At the same time, the use of nutrients in the sludge extract to cultivate Chlorella is of great significance to low-cost algae cultivation.
Collapse
Affiliation(s)
- Xiurong Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Shanshan Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Xiaoli Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Quanling Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, China E-mail:
| |
Collapse
|
27
|
Sustainable Production of Monoraphidium Microalgae Biomass as a Source of Bioenergy. ENERGIES 2020. [DOI: 10.3390/en13225975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microalgae are a renewable source of unconventional biomass with potential application in the production of various biofuels. The production of carbon-neutral fuels is necessary for protecting the environment. This work determined the possibility of producing biomass of microalgae belonging to Monoraphidium genus using saline wastewater resulting from proecological salmon farming in the recirculating aquaculture system. The tests were carried out in tubular photobioreactors using LED light. As a part of the analyses, the growth and productivity of microalgal biomass, cell density in culture, and lipid concentration and ash content in biomass were determined. In addition, the concentration of selected phosphorus and nitrogen forms present in wastewater corresponding to the degree of their use by microalgae as a nutrient substrate was determined. The biomass concentration estimated in the tests was 3.79 g·L−1, while the maximum biomass productivity was 0.46 g·L−1·d−1. The cells’ optical density in culture measured at 680 nm was 0.648. The lipid content in biomass was 18.53% (dry basis), and the ash content was 32.34%. It was found that microalgae of the genus Monoraphidium effectively used the nitrogen as well as phosphorus forms present in the wastewater for their growth. The total nitrogen content in the sewage decreased by 82.62%, and total phosphorus content by over 99%. The analysis of the individual forms of nitrogen showed that N-NO3 was reduced by 85.37% and N-NO2 by 78.43%, while orthophosphate (V) dissolved in water was reduced by 99%. However, the content of N-NH4 in wastewater from the beginning till the end of the experiment remained <0.05 mg·L−1.
Collapse
|
28
|
Tejido-Nuñez Y, Aymerich E, Sancho L, Refardt D. Co-cultivation of microalgae in aquaculture water: Interactions, growth and nutrient removal efficiency at laboratory- and pilot-scale. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Al-Enazi NM. Salinization and wastewater effects on the growth and some cell contents of Scenedesmus bijugatus. Saudi J Biol Sci 2020; 27:1773-1780. [PMID: 32565695 PMCID: PMC7296495 DOI: 10.1016/j.sjbs.2020.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 11/24/2022] Open
Abstract
The aim of this study is to determine the effect of salinization and wastewater stresses on the growth, some cellular contents (total soluble proteins, total soluble carbohydrates, nucleic acids, and amino acids composition) and ultrastructure using TEM of unicellular green alga Scenedesmus bijugatus. Treatment of S. bijugatus by NaCl at 10 and 50 mg L-1 significantly increased the growth of this alga and its cellular macro-molecules. While, treatment above this concentration with NaCl significantly inhibited the growth and cellular macro-molecules. On the other hand, treatment by NaCl at the pre-lethal concentration (300 mg L-1) had different effects on its detected amino acids. Whereas, Asp. Acid, Pro, Cys, Val, Iso-leu, leu, Phe.ala and Lys were slightly stimulated with salinization treatment. On contrast the levels of amino acids: Thr, Ser, Glu.acid, Gly, Ala, Mth, His and Arg were markedly inhibited. Ultrastructure examination of treated S. bijugatus by 300 mg L-1 of NaCl for 8 days showed increase of starch granules, shrinkage of cell contents and thickening of cell wall. The recorded data indicated also that treatment by wastewater with all concentrations led to stimulatory effects on their growth and cellular macro-molecules except at 100% wastewater which had inhibitory effects on Asp., Gly., Thr., Ser., Pro., Glu., Ala., Meth., and Cyst., of S. bijugatus. Also, wastewater induced a slight change in the treated S. bijugatus as elevation in starch granules and presence of thylakoid membranes although not clear as in the control.
Collapse
Affiliation(s)
- Nouf Mohammed Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
30
|
Dineshbabu G, Uma VS, Mathimani T, Prabaharan D, Uma L. Elevated CO2 impact on growth and lipid of marine cyanobacterium Phormidium valderianum BDU 20041– towards microalgal carbon sequestration. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Nagarajan D, Lee DJ, Chen CY, Chang JS. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. BIORESOURCE TECHNOLOGY 2020; 302:122817. [PMID: 32007309 DOI: 10.1016/j.biortech.2020.122817] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 05/28/2023]
Abstract
The basic concepts of circular bioeconomy are reduce, reuse and recycle. Recovery of recyclable nutrients from secondary sources could play a key role in meeting the increased demands of the growing population. Wastewaters of different origin are rich in energy and nutrients sources that can be recovered and reused in a circular bioeconomy perspective. Microalgae can effectively utilize wastewater nutrients for growth and biomass production. Integration of wastewater treatment and microalgal cultivation improves the environmental impacts of the currently used wastewater treatment methods. This review provides comprehensive information on the potential of using microalgae for the recovery of carbon, nitrogen, phosphorus and other micronutrients from wastewaters. Major factors influencing large scale microalgal wastewater treatment are discussed and future research perspectives are proposed to foster the future development in this area.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan; Center for Nanotechnology, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
32
|
Chu HM, Narindri B, Hsueh HT, Chu H. Improvement of Thermosynechococcus sp. CL-1 performance on biomass productivity and CO 2 fixation via growth factors arrangement. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111822. [PMID: 32135470 DOI: 10.1016/j.jphotobiol.2020.111822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 10/25/2022]
Abstract
The enormous attraction on CO2 biofixation using photosynthetic microorganisms such as cyanobacteria has been risen due to its promising efficiency and valuable by-products production. In this study, an isolated cyanobacterium from hot spring in Taiwan, Thermosynechococcus sp. CL-1 (TCL-1) was evaluated for its growth factors arrangement effect on the biomass productivity and CO2 biofixation. The initial biomass concentration, and nutrient supply level variation influenced TCL-1 biomass productivity and CO2 biofixation rate while the adjusted and controlled pH value gave an insignificant difference on its performance. The initial biomass concentration of 3 g L-1 gave the best result on biomass productivity and CO2 fixation which reached 143.4 mg L-1 h-1 and 224 mg L-1 h-1 respectively. Regarding to the result of this study, controlled pH value by the CO2 supply inside the reactor, produced an insignificant difference in TCL-1 performance compared to those with the uncontrolled pH value. The variation of nutrient supply level was achieved by the variation of macronutrient and micronutrient supply inside the medium. The G-solution contains metals and other micronutrient elements which are necessary for the growth of TCL-1. The combination between 5-folds MF medium as the macronutrient, and 3-folds G-solution as the micronutrient supply, present the best TCL-1 performance on biomass productivity and CO2 fixation rate.
Collapse
Affiliation(s)
- Hsuan Man Chu
- Department of Environmental Engineering National Cheng Kung University, Tainan 701, Taiwan
| | - Birgitta Narindri
- Department of Environmental Engineering National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Ta Hsueh
- Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
33
|
De Bhowmick G, Sen R, Sarmah AK. Consolidated bioprocessing of wastewater cocktail in an algal biorefinery for enhanced biomass, lipid and lutein production coupled with efficient CO 2 capture: An advanced optimization approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 252:109696. [PMID: 31629179 DOI: 10.1016/j.jenvman.2019.109696] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
We present a holistic approach in establishing a successful green integrated bio-refinery system with improved biomass, lipid and lutein productivity, while remediating wastewater and sequestering CO2 with potential biodiesel and healthcare applications. To achieve this we evaluated the effect of four process parameters: CO2% supply; acetate concentration; poultry litter waste (PLW) concentration; and light intensity on cultivation of Chlorella minutissma following the Taguchi's design of experimental technique. A four factors, three levels orthogonal array was adopted to cultivate Chlorella minutissma in specially developed waste water medium. Effect of the process parameters on biomass productivity, CO2 fixation rate, lipid content, lutein productivity and bioremediation capacity were determined. Results obtained from individual parametric combinations and Signal/Noise (S/N) ratio responses indicated S3 (5% CO2, 100 mg L-1 of acetate, 10 g L-1 of poultry litter, and 15, 000 lux of light intensity) combination as the optimum cultivation condition. Following the S3 combination a significant enhancement in biomass productivity (292 mg L-1 d-1) with exceedingly high CO2 fixation rate and photosynthetic efficiency (51.51 g L-1 d-1 of CO2; P.E: 15.81%) was achieved. A maximum of 169.29 mg L-1 d-1 of lipid with a balanced distribution of saturated and unsaturated fatty acids conformed to the international standard for biodiesel was achieved. Additionally, 7.21 mg L-1 d-1 of lutein productivity was also accomplished within 7 day of cultivation, while remediating up to 93-90% of nitrogenous and phosphate substrates. Statistically, the results reinforced our findings with the S/N responses and experimental observations for a particular property.
Collapse
Affiliation(s)
- Goldy De Bhowmick
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
34
|
Cheng J, Zhu Y, Zhang Z, Yang W. Modification and improvement of microalgae strains for strengthening CO 2 fixation from coal-fired flue gas in power plants. BIORESOURCE TECHNOLOGY 2019; 291:121850. [PMID: 31358426 DOI: 10.1016/j.biortech.2019.121850] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 05/20/2023]
Abstract
Biological CO2 capture using microalgae is a promising new method for reducing CO2 emission of coal-fired flue gas. The strain of microalgae used in this process plays a vital role in determining the rate of CO2 fixation and characteristics of biomass production. High requirements are put forward for algae strains due to high CO2 concentration and diverse pollutants in flue gas. CO2 can directly diffuse into the cytoplasm of cells by extra- and intracellular CO2 osmotic pressure under high CO2 concentrations. The flue gas pollutants, such as SOx, NOx and fly ashes, have negative effects on the growth of microalgae. This work reviewed the state-of-the-art advances on microalgae strains used for CO2 fixation, focusing on the modification and improvement of strains that are used for coal-fired flue gas. Methods such as genetic engineering, random mutagenesis, and adaptive evolution have the potential to facilitate photosynthesis, improve growth rate and reduce CO2 emission.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Yanxia Zhu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
35
|
Amenorfenyo DK, Huang X, Zhang Y, Zeng Q, Zhang N, Ren J, Huang Q. Microalgae Brewery Wastewater Treatment: Potentials, Benefits and the Challenges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1910. [PMID: 31151156 PMCID: PMC6603649 DOI: 10.3390/ijerph16111910] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 11/16/2022]
Abstract
Concerns about environmental safety have led to strict regulations on the discharge of final brewery effluents into water bodies. Brewery wastewater contains huge amounts of organic compounds that can cause environmental pollution. The microalgae wastewater treatment method is an emerging environmentally friendly biotechnological process. Microalgae grow well in nutrient-rich wastewater by absorbing organic nutrients and converting them into useful biomass. The harvested biomass can be used as animal feed, as an alternative energy source for biodiesel production and as biofertilizer. This review discusses conventional and current brewery wastewater treatment methods, and the application and potential of microalgae in brewery wastewater treatment. This study also discusses the benefits as well as challenges associated with microalgae brewery and other industrial wastewater treatments.
Collapse
Affiliation(s)
- David Kwame Amenorfenyo
- Department of Aquaculture, Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
- Guangdong Engineering Technology Research Center for Algae Breeding and Application, Zhanjiang 524088, China.
| | - Xianghu Huang
- Department of Aquaculture, Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
- Guangdong Engineering Technology Research Center for Algae Breeding and Application, Zhanjiang 524088, China.
| | - Yulei Zhang
- Department of Aquaculture, Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
- Guangdong Engineering Technology Research Center for Algae Breeding and Application, Zhanjiang 524088, China.
| | - Qitao Zeng
- Department of Aquaculture, Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
- Guangdong Engineering Technology Research Center for Algae Breeding and Application, Zhanjiang 524088, China.
| | - Ning Zhang
- Department of Aquaculture, Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
- Guangdong Engineering Technology Research Center for Algae Breeding and Application, Zhanjiang 524088, China.
| | - Jiajia Ren
- Department of Aquaculture, Fishery College, Guangdong Ocean University, Zhanjiang 524088, China.
- Guangdong Engineering Technology Research Center for Algae Breeding and Application, Zhanjiang 524088, China.
| | - Qiang Huang
- SDIC Guangdong Bio-Energy Co., Ltd., Zhanjiang 524025, China.
| |
Collapse
|
36
|
Krasaesueb N, Incharoensakdi A, Khetkorn W. Utilization of shrimp wastewater for poly-β-hydroxybutyrate production by Synechocystis sp. PCC 6803 strain ΔSphU cultivated in photobioreactor. ACTA ACUST UNITED AC 2019; 23:e00345. [PMID: 31193428 PMCID: PMC6529710 DOI: 10.1016/j.btre.2019.e00345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/12/2019] [Accepted: 05/12/2019] [Indexed: 12/01/2022]
Abstract
Shrimp wastewater is a rich source of P- and N-compounds suitable for cyanobacterial growth. Phosphate in shrimp wastewater can be efficiently removed by Synechocystis ΔSphU. ΔSphU accumulates high PHB with commercial value when shrimp wastewater contains low nitrate level. Shrimp wastewater can be used for biodegradable plastic production by cyanobacterial cell.
The wastewater discharge from the intensive shrimp aquaculture contains high concentration of nutrients, which can lead to eutrophication. This study aimed to reuse the shrimp wastewater for low cost cyanobacterial cultivation to produce biodegradable plastic poly-β-hydroxybutyrate (PHB). The Synechocystis sp. PCC 6803 (ΔSphU) lacking phosphate regulator (SphU) could utilize nutrients in shrimp wastewater for promoting biomass yield of 500 mg L−1 after 14 days. The ΔSphU showed the highest phosphate uptake rate of 20.16 mggDw−1d−1 at the first day of photobioreactor running. In addition, the nutrient removal efficiencies were 96.99% for phosphate, 80.10% for nitrate, 67.90% for nitrite and 98.07% for ammonium. The reduction of nitrate in shrimp wastewater due to nitrogen assimilation could induce PHB accumulation in ΔSphU. The highest PHB content was 32.48% (w/w) DW, with the maximum PHB productivity of 12.73 mg L−1d−1. The produced PHB of ΔSphU had material properties similar to those of the commercial PHB.
Collapse
Affiliation(s)
- Nattawut Krasaesueb
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathumthani, 12110, Thailand
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Wanthanee Khetkorn
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathumthani, 12110, Thailand
| |
Collapse
|
37
|
Molazadeh M, Ahmadzadeh H, Pourianfar HR, Lyon S, Rampelotto PH. The Use of Microalgae for Coupling Wastewater Treatment With CO 2 Biofixation. Front Bioeng Biotechnol 2019; 7:42. [PMID: 30941348 PMCID: PMC6433782 DOI: 10.3389/fbioe.2019.00042] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/20/2019] [Indexed: 11/13/2022] Open
Abstract
Production and emission of CO2 from different sources have caused significant changes in the climate, which is the major concern related to global warming. Among other CO2 removal approaches, microalgae can efficiently remove CO2 through the rapid production of algal biomass. In addition, microalgae have the potential to be used in wastewater treatment. Although, wastewater treatment and CO2 removal by microalgae have been studied separately for a long time, there is no detailed information available on combining both processes. In this review article, microalgae-based CO2 biofixation, various microalgae cultivation systems,¯ and microalgae-derived wastewater treatment are separately discussed, followed by the concept of integration of CO2 biofixation process and wastewater treatment. In each section, details of energy efficiency and differences across microalgae species are also given.
Collapse
Affiliation(s)
- Marziyeh Molazadeh
- Faculty of Engineering, Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Ahmadzadeh
- Faculty of Science, Department of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid R. Pourianfar
- Culture and Research (ACECR)-Khorasan Razavi Branch, Industrial Fungi Biotechnology Research Department, Academic Center for Education, Mashhad, Iran
| | - Stephen Lyon
- SRL-Environmental, LLC, Racine, WI, United States
| | | |
Collapse
|
38
|
Srimongkol P, Thongchul N, Phunpruch S, Karnchanatat A. Optimization of Synechococcus sp. VDW Cultivation with Artificially Prepared Shrimp Wastewater for Ammonium Removal and Its Potential for Use As a Biofuel Feedstock. J Oleo Sci 2019; 68:233-243. [PMID: 30760668 DOI: 10.5650/jos.ess18203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the potential of application of marine cyanobacterium for concurrent biomass production and ammonium removal, Synechococcus sp. VDW was cultured under different conditions in medium containing varying concentrations of NH4Cl. Response surface methodology (RSM) was then used to build a predictive model of the combined effects of independent variables (pH, inoculum size, ammonium concentration). At the optimum conditions of initial pH 7.4, inoculum size 0.17 (OD730) and ammonium concentration 10.5 mg L-1, the maximum ammonium removal and biomass productivity were about 95% and 34 mg L-1d-1, respectively, after seven days of cultivation. The result of fatty acid methyl ester (FAME) analysis showed that the major fatty acids were palmitic acid (C16:0), linoleic acid (C18:2 n6 cis), palmitoleic acid (C16:1) and oleic acid (C18:1 n9 cis), which accounted for more than 80% weight of total fatty acids. Further, analysis of neutral lipid accumulation using flow cytometry revealed that the mean of the fluorescence intensity increased under optimal conditions. These results indicate that Synechococcus sp. VDW has the potential for use for concurrent water treatment and production of biomass that can be applied as biofuel feedstock.
Collapse
Affiliation(s)
| | - Nuttha Thongchul
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University.,Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University
| | - Saranya Phunpruch
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang.,Bioenergy Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang
| | - Aphichart Karnchanatat
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University.,Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University
| |
Collapse
|
39
|
Jain D, Ghonse SS, Trivedi T, Fernandes GL, Menezes LD, Damare SR, Mamatha SS, Kumar S, Gupta V. CO 2 fixation and production of biodiesel by Chlorella vulgaris NIOCCV under mixotrophic cultivation. BIORESOURCE TECHNOLOGY 2019; 273:672-676. [PMID: 30503579 DOI: 10.1016/j.biortech.2018.09.148] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 06/09/2023]
Abstract
In this study, Chlorella vulgaris NIOCCV was cultivated in seafood processing industry wastewater with continuous supply of 5%, 10%, and 20% CO2. The optimum CO2 fixation efficiency ( [Formula: see text] ), biomass productivity, specific growth rate (SGR), and lipid content recorded were 0.43 mg L-1 d-1, 264.58 ± 8.8 mg L-1 d-1, 0.46 d-1, and 38 ± 2.6% on dry weight basis, respectively at CO2 supply of 10%. The fatty acid methyl ester-derived biodiesel properties determined at same condition were in compliance with national and international fuel standards. The higher calorific value (HHV) of the resultant biomass was 11.14, 16.41 and 12.83 MJ Kg-1 for CO2 enrichment of 5%, 10%, and 20%, respectively. The synergistic environmental benefit of nutrients removal from wastewater is shown as an additional advantage of microalgal cultivation. Thus, integration of algae-based CO2 fixation with wastewater treatment and biodiesel production may realize microalgal CO2 capture technology as environmentally sustainable and economically more attractive.
Collapse
Affiliation(s)
- Deepti Jain
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa 403004, India
| | - Supriya S Ghonse
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa 403004, India
| | - Tanmay Trivedi
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa 403004, India
| | - Genevieve L Fernandes
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa 403004, India
| | - Larissa D Menezes
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa 403004, India
| | - Samir R Damare
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa 403004, India
| | - S S Mamatha
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa 403004, India
| | - Sanjay Kumar
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Vishal Gupta
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa 403004, India.
| |
Collapse
|
40
|
Xia A, Hu Z, Liao Q, Huang Y, Zhu X, Ye W, Sun Y. Enhancement of CO 2 transfer and microalgae growth by perforated inverted arc trough internals in a flat-plate photobioreactor. BIORESOURCE TECHNOLOGY 2018; 269:292-299. [PMID: 30193213 DOI: 10.1016/j.biortech.2018.08.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Flat-plate photobioreactor (PBR) with perforated inverted arc trough (PIAT) internals was proposed to promote CO2 bio-fixation by microalgae. The PIAT internals can enhance CO2 transfer from gas to culture medium by prolonging CO2 gas-liquid contact time and generate periodic aeration in the suspension upper side the PIAT providing suspension mixing. Experimental results showed gas-liquid contact time was prolonged from 0.448 s to 256 s and the CO2 partial pressure inside the PIAT internals was about 15.5 kPa during microalgae cultivation. Consequently, the dissolved CO2 concentration in the microalgae suspension of the proposed PBR was increased by 26.0% compared to that in the PBR without PIAT internals when 15% CO2 (v/v) was aerated at a rate of 15 mL min-1. The elevated CO2 transfer contributed to a 20.9% increment in biomass concentration (3.35 g L-1) and a 26.2% increment in CO2 fixation rate (36.6 mg L-1 h-1).
Collapse
Affiliation(s)
- Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ziming Hu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Wenfan Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yahui Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
41
|
Wu W, Lin KH, Chang JS. Economic and life-cycle greenhouse gas optimization of microalgae-to-biofuels chains. BIORESOURCE TECHNOLOGY 2018; 267:550-559. [PMID: 30053713 DOI: 10.1016/j.biortech.2018.07.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
The new microalgae-to-biofuels chains for producing diesel and ethanol simultaneously are presented. The techno-economic analysis shows that the break-even prices of diesel and ethanol are estimated about US$0.49/kg and US$2.61/kg, respectively, the internal rate of return (IRR) is close to 29.21%, and the commercial prices and yield of products dominate the profitability of this project. According to life cycle analysis (LCA) standards, the life-cycle greenhouse gas (GHG) emissions for producing diesel and ethanol are 0.039 kg CO2-eq/MJ FAME and 0.112 kg CO2-eq/MJ EtOH, respectively. It is verified that the process integration of the heat recovery scheme, the entrainer recovery tower, and CO2 recycling can effectively reduce life-cycle GHG emissions of this design. Through a specific optimization algorithm under different lipid contents and 180 scenario combinations for the cultivation and pretreatment processes, the compromise solutions between the maximum total revenue and the minimum environmental impact can be found.
Collapse
Affiliation(s)
- Wei Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Keng-Hsien Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
42
|
Kuo CM, Jian JF, Sun YL, Lin TH, Yang YC, Zhang WX, Chang HF, Lai JT, Chang JS, Lin CS. An efficient Photobioreactors/Raceway circulating system combined with alkaline-CO 2 capturing medium for microalgal cultivation. BIORESOURCE TECHNOLOGY 2018; 266:398-406. [PMID: 29982063 DOI: 10.1016/j.biortech.2018.06.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
High efficiency of microalgal growth and CO2 fixation in a Photobioreactors (PBRs)/Raceway circulating (PsRC) system combined with alkaline-CO2 capturing medium and operation was established and investigated. Compared with a pH 6 medium, the average biomass productivity of Chlorella sp. AT1 cultured in a pH 11 medium at 2 L min-1 circulation rate for 7 days increased by about 2-fold to 0.346 g L-1 d-1. The maximum amount of CO2 fixation and CO2 utilization efficiency of Chlorella sp. AT1 could be obtained at a PBRs to Raceway ratio of 1:10 in an indoor-simulated PsRC system. A similar result was also shown in an outdoor PsRC system with a 10-ton scale for microalgal cultivation. Under the appropriate circulation rate, the stable growth performance of Chlorella sp. AT1 cultured by long-term semi-continuous operation in the 10-ton outdoor PsRC system was observed, and the total amount of CO2 fixation was approximately 1.2 kg d-1 with 50% CO2 utilization efficiency.
Collapse
Affiliation(s)
- Chiu-Mei Kuo
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Jhong-Fu Jian
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Ling Sun
- Aquatic Technology Laboratories, Agricultural Technology Research Institute, Hsinchu, Taiwan
| | - Tsung-Hsien Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Chun Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Wen-Xin Zhang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hui-Fang Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Jinn-Tsyy Lai
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
43
|
High-density cultivation of microalgae continuously fed with unfiltered water from a recirculating aquaculture system. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Evaluation of Pre-Chlorinated Wastewater Effluent for Microalgal Cultivation and Biodiesel Production. WATER 2018. [DOI: 10.3390/w10080977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Microalgae are promising feedstock to produce biodiesel and other value added products. However, the water footprint for producing microalgal biodiesel is enormous and would put a strain on the water resources of water stressed countries like South Africa if freshwater is used without recycling. This study evaluates the utilization of pre-chlorinated wastewater as a cheap growth media for microalgal biomass propagation with the aim of producing biodiesel whilst simultaneously remediating the wastewater. Wastewater was collected from two wastewater treatment plants (WWTPs) in Durban, inoculated with Neochloris aquatica and Asterarcys quadricellulare and the growth kinetics monitored for a period of 8 days. The physicochemical parameters; including chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were determined before microalgal cultivation and after harvesting. Total lipids were quantified gravimetrically after extraction by hexane/isopropanol (3:2 v/v). Biodiesel was produced by transesterification and characterised by gas chromatography. The total carbohydrate was extracted by acid hydrolysis and quantified by spectrophotometric method based on aldehyde functional group derivatization. Asterarcys quadricellulare utilized the wastewater for growth and reduced the COD of the wastewater effluent from the Umbilo WWTP by 12.4%. Total nitrogen (TN) and phosphorus (TP) were reduced by 48% and 50% respectively by Asterarcys quadricellulare cultivated in sterile wastewater while, Neochloris reduced the TP by 37% and TN by 29%. Although the highest biomass yield (460 mg dry weight) was obtained for Asterarcys, the highest amount of lipid (14.85 ± 1.63 mg L−1) and carbohydrate (14.84 ± 0.1 mg L−1) content were recorded in Neochloris aquatica. The dominant fatty acids in the microalgae were palmitic acid (C16:0), stearic acid (C18:0) and oleic acid (C18:1). The biodiesel produced was determined to be of good quality with high oxidation stability and low viscosity, and conformed to the American society for testing and materials (ASTM) guidelines.
Collapse
|
45
|
Sun Y, Huang Y, Liao Q, Xia A, Fu Q, Zhu X, Fu J. Boosting Nannochloropsis oculata growth and lipid accumulation in a lab-scale open raceway pond characterized by improved light distributions employing built-in planar waveguide modules. BIORESOURCE TECHNOLOGY 2018; 249:880-889. [PMID: 29145114 DOI: 10.1016/j.biortech.2017.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
Aiming at alleviating the adverse effect of poor light penetrability on microalgae growth, planar waveguide modules functioned as diluting and redistributing the intense incident light within microalgae culture more homogeneously were introduced into a lab-scale open raceway pond (ORP) for Nannochloropsis oculata cultivation. As compared to the conventional ORP, the illumination surface area to volume ratio and effective illuminated volume percentage in the proposed ORP were respectively improved by 5.53 times and 19.68-172.72%. Consequently, the superior light distribution characteristics in the proposed ORP contributed to 193.33% and 443.71% increase in biomass concentration and lipid yield relative to those obtained in conventional ORP, respectively. Subsequently, the maximum biomass concentration (2.31 g L-1) and lipid yield (1258.65 mg L-1) was obtained when the interval between adjacent planar waveguide modules was 18 mm. The biodiesel produced in PWM-ORPs showed better properties than conventional ORP due to higher MUFA and C18:1 components proportions.
Collapse
Affiliation(s)
- Yahui Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Jingwei Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| |
Collapse
|
46
|
Vuppaladadiyam AK, Yao JG, Florin N, George A, Wang X, Labeeuw L, Jiang Y, Davis RW, Abbas A, Ralph P, Fennell PS, Zhao M. Impact of Flue Gas Compounds on Microalgae and Mechanisms for Carbon Assimilation and Utilization. CHEMSUSCHEM 2018; 11:334-355. [PMID: 29165921 DOI: 10.1002/cssc.201701611] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/23/2017] [Indexed: 06/07/2023]
Abstract
To shift the world to a more sustainable future, it is necessary to phase out the use of fossil fuels and focus on the development of low-carbon alternatives. However, this transition has been slow, so there is still a large dependence on fossil-derived power, and therefore, carbon dioxide is released continuously. Owing to the potential for assimilating and utilizing carbon dioxide to generate carbon-neutral products, such as biodiesel, the application of microalgae technology to capture CO2 from flue gases has gained significant attention over the past decade. Microalgae offer a more sustainable source of biomass, which can be converted into energy, over conventional fuel crops because they grow more quickly and do not adversely affect the food supply. This review focuses on the technical feasibility of combined carbon fixation and microalgae cultivation for carbon reuse. A range of different carbon metabolisms and the impact of flue gas compounds on microalgae are appraised. Fixation of flue gas carbon dioxide is dependent on the selected microalgae strain and on flue gas compounds/concentrations. Additionally, current pilot-scale demonstrations of microalgae technology for carbon dioxide capture are assessed and its future prospects are discussed. Practical implementation of this technology at an industrial scale still requires significant research, which necessitates multidisciplinary research and development to demonstrate its viability for carbon dioxide capture from flue gases at the commercial level.
Collapse
Affiliation(s)
| | - Joseph G Yao
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Nicholas Florin
- Institute for Sustainable Futures, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Anthe George
- Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Xiaoxiong Wang
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Leen Labeeuw
- Climate Change Cluster, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Yuelu Jiang
- Institute of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Ryan W Davis
- Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Ali Abbas
- School of Chemical & Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Paul S Fennell
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
- Current address: Joint Bioenergy Institute, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Ming Zhao
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Solid Waste Management and Environmental Safety, Ministry of Education, Beijing, 100084, PR China
| |
Collapse
|
47
|
Addy MM, Kabir F, Zhang R, Lu Q, Deng X, Current D, Griffith R, Ma Y, Zhou W, Chen P, Ruan R. Co-cultivation of microalgae in aquaponic systems. BIORESOURCE TECHNOLOGY 2017; 245:27-34. [PMID: 28892701 DOI: 10.1016/j.biortech.2017.08.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
Aquaponics is a sustainable system for the future farming. In aquaponic systems, the nutrient-rich wastewater generated by the fish provides nutrients needed for vegetable growth. In the present study, the role of microalgae of Chlorella sp. in the floating-raft aquaponic system was evaluated for ammonia control. The yields of algal biomass, vegetable, and removal of the key nutrients from the systems were monitored during the operation of the aquaponic systems. When the systems were in full operation, the algae production was about 4.15±0.19g/m2·day (dry basis) which is considered low because the growth conditions are primarily tailored to fish and vegetable production. However, it was found that algae had a positive effect on balancing pH drop caused by nitrifying bacteria, and the ammonia could be controlled by algae since algae prefer for ammonia nitrogen over nitrate nitrogen. The algae are more efficient for overall nitrogen removal than vegetables.
Collapse
Affiliation(s)
- Min M Addy
- Distinguished Guest Professor, Nanchang University and Professor and Director, Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Faryal Kabir
- Distinguished Guest Professor, Nanchang University and Professor and Director, Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Renchuan Zhang
- Distinguished Guest Professor, Nanchang University and Professor and Director, Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Qian Lu
- Distinguished Guest Professor, Nanchang University and Professor and Director, Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Xiangyuan Deng
- Distinguished Guest Professor, Nanchang University and Professor and Director, Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Dean Current
- Distinguished Guest Professor, Nanchang University and Professor and Director, Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Richard Griffith
- Distinguished Guest Professor, Nanchang University and Professor and Director, Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Yiwei Ma
- Distinguished Guest Professor, Nanchang University and Professor and Director, Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Wenguang Zhou
- Distinguished Guest Professor, Nanchang University and Professor and Director, Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Paul Chen
- Distinguished Guest Professor, Nanchang University and Professor and Director, Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Roger Ruan
- Distinguished Guest Professor, Nanchang University and Professor and Director, Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA.
| |
Collapse
|
48
|
Autotrophic biofloc technology system (ABFT) using Chlorella vulgaris and Scenedesmus obliquus positively affects performance of Nile tilapia (Oreochromis niloticus). ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
49
|
Kuo CM, Lin TH, Yang YC, Zhang WX, Lai JT, Wu HT, Chang JS, Lin CS. Ability of an alkali-tolerant mutant strain of the microalga Chlorella sp. AT1 to capture carbon dioxide for increasing carbon dioxide utilization efficiency. BIORESOURCE TECHNOLOGY 2017; 244:243-251. [PMID: 28780257 DOI: 10.1016/j.biortech.2017.07.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
An alkali-tolerant Chlorella sp. AT1 mutant strain was screened by NTG mutagenesis. The strain grew well in pH 6-11 media, and the optimal pH for growth was 10. The CO2 utilization efficiencies of Chlorella sp. AT1 cultured with intermittent 10% CO2 aeration for 10, 20 and 30min at 3-h intervals were approximately 80, 42 and 30%, respectively. In alkaline medium (pH=11) with intermittent 10% CO2 aeration for 30min at 3-, 6- and 12-h intervals, the medium pH gradually changed to 10, and the biomass productivities of Chlorella sp. AT1 were 0.987, 0.848 and 0.710gL-1d-1, respectively. When Chlorella sp. AT1 was aerated with 10% CO2 intermittently for 30min at 3-h intervals in semi-continuous cultivation for 21days, the biomass concentration and biomass productivity were 4.35gL-1 and 0.726gL-1d-1, respectively. Our results show that CO2 utilization efficiency can be markedly increased by intermittent CO2 aeration and alkaline media as a CO2-capturing strategy for alkali-tolerant microalga cultivation.
Collapse
Affiliation(s)
- Chiu-Mei Kuo
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Tsung-Hsien Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Chun Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Wen-Xin Zhang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Jinn-Tsyy Lai
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Hsi-Tien Wu
- Department of BioAgricultural Science, National Chia Yi University, Chiayi City, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
50
|
Freitas BCB, Morais MG, Costa JAV. Chlorella minutissima cultivation with CO 2 and pentoses: Effects on kinetic and nutritional parameters. BIORESOURCE TECHNOLOGY 2017; 244:338-344. [PMID: 28780268 DOI: 10.1016/j.biortech.2017.07.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
CO2 emissions and the large quantity of lignocellulosic waste generated by industrialized nations constitute problems that may affect human health as well as the global economy. The objective of this work was to evaluate the effects of using CO2 and pentoses on the growth, protein profile, carbohydrate content and potential ethanol production by fermentation of Chlorella minutissima biomass. CO2 and pentose supplementation can induce changes in the microalgal protein profile. A biomass production of 1.84g.L-1 and a CO2 biofixation rate of 274.63mg.L-1.d-1 were obtained with the use of 20% (v.v-1) CO2. For cultures with 20% (v.v-1) CO2 and reduced nitrogen, the carbohydrate content was 52.3% (w.w-1), and theoretically, 33.9mL.100g-1 of ethanol can be produced. These results demonstrate that C. minutissima cultured with the combined use of CO2 and pentoses generates a biomass with high bioenergetic potential.
Collapse
Affiliation(s)
- B C B Freitas
- College of Chemistry and Food Engineering, Federal University of Rio Grande, Laboratory of Biochemical Engineering, Rio Grande, RS, Brazil
| | - M G Morais
- College of Chemistry and Food Engineering, Federal University of Rio Grande, Laboratory of Microbiology and Biochemistry, Rio Grande, RS, Brazil
| | - J A V Costa
- College of Chemistry and Food Engineering, Federal University of Rio Grande, Laboratory of Biochemical Engineering, Rio Grande, RS, Brazil.
| |
Collapse
|