1
|
Deng Z, Sun C, Ma G, Zhang X, Guo H, Zhang T, Zhang Y, Hu Y, Li D, Li YY, Kong Z. Anaerobic treatment of nitrogenous industrial organic wastewater by carbon-neutral processes integrated with anaerobic digestion and partial nitritation/anammox: Critical review of current advances and future directions. BIORESOURCE TECHNOLOGY 2025; 415:131648. [PMID: 39447922 DOI: 10.1016/j.biortech.2024.131648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Anaerobic digestion combined with partial nitritation/anammox technology holds promising potential for the carbon-neutral treatment of nitrogenous industrial organic wastewater, boasting remarkable advantages in effective removal of both organic matters and nitrogen, bio-energy recovery and carbon emission reduction. This study provides a concise overview of the development and advantages of anaerobic digestion combined with partial nitritation/anammox technology for treating nitrogenous industrial organic wastewater. The process excels in removing organic matter and nitrogen, recovering bio-energy, and reducing carbon emissions, compared to traditional physicochemical and biological methods. Case studies highlight its energy-saving and efficient attributes, especially for carbon-neutral nitrogen removal. Challenges for achieving stable operation in the future are discussed, and the study offers insights into the broader application of this integrated process in industrial wastewater treatment.
Collapse
Affiliation(s)
- Zixuan Deng
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chengde Sun
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Guangyi Ma
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xinzheng Zhang
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Hongbo Guo
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Tao Zhang
- College of Design and Innovation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yalei Zhang
- College of Design and Innovation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Dapeng Li
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zhe Kong
- Suzhou National Joint Laboratory of Green and Low-carbon Wastewater Treatment and Resource Utilization, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
Yu Y, Qiao Z, Ding C. Built-In Electric Field Boost Photocatalytic Degradation of Pollutants in Wastewater. CHEM REC 2024; 24:e202400106. [PMID: 39321420 DOI: 10.1002/tcr.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Indexed: 09/27/2024]
Abstract
The photocatalysis technique shows significant potential for wastewater degradation; however, the rapid recombination of photogenerated holes and electrons severely limits its photocatalytic efficiency. This situation necessitates the development of effective strategies to tackle these challenges. One well-documented approach is built-in electric field engineering in heterojunctions or composites, which has been shown to enhance electron transfer and thereby reduce the recombination of electrons and holes. This strategy has proven highly effective in significantly improving photocatalytic activity for the degradation of pollutants in wastewater. In this context, we summarize recent advancements in built-in electric field engineering in photocatalysts, highlighting the fundamentals and modifications of this approach, as well as its positive impact on photocatalytic performance in the degradation of wastewater pollutants.
Collapse
Affiliation(s)
- Yang Yu
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, China
- School of Chemistry and Chemical Engineering, Jiangsu University, 212013, Zhenjiang, China
| | - Zhiyong Qiao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, China
- Jiangsu Ruilante New Materials Co., Ltd., Yangzhou, 211400, China
- Institute of Mechanics and Advanced Materials, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Changming Ding
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, China
- Jiangsu Ruilante New Materials Co., Ltd., Yangzhou, 211400, China
| |
Collapse
|
3
|
Nouhou Moussa AW, Sawadogo B, Konate Y, Thianhoun B, Sidibe SDS, Heran M. Influence of Solid Retention Time on Membrane Fouling and Biogas Recovery in Anerobic Membrane Bioreactor Treating Sugarcane Industry Wastewater in Sahelian Climate. MEMBRANES 2023; 13:710. [PMID: 37623771 PMCID: PMC10456350 DOI: 10.3390/membranes13080710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 08/26/2023]
Abstract
Sugarcane industries produce wastewater loaded with various pollutants. For reuse of treated wastewater and valorization of biogas in a Sahelian climatic context, the performance of an anaerobic membrane bioreactor was studied for two solid retention times (40 days and infinity). The pilot was fed with real wastewater from a sugarcane operation with an organic load ranging from 15 to 22 gCOD/L/d for 353 days. The temperature in the reactor was maintained at 35 °C. Acclimatization was the first stage during which suspended solids (SS) and volatile suspended solids (VSS) evolved from 9 to 13 g/L and from 5 to 10 g/L respectively, with a VSS/SS ratio of about 80%. While operating the pilot at a solid retention time (SRT) of 40 days, the chemical oxygen demand (COD) removal efficiency reached 85%, and the (VSS)/(TSS) ratio was 94% in the reactor. At infinity solid retention time, these values were 96% and 80%, respectively. The 40-day solid retention time resulted in a change in transmembrane pressure (TMP) from 0.0812 to 2.18 bar, with a maximum methane production of 0.21 L/gCOD removed. These values are lower than those observed at an infinite solid retention time, at which the maximum methane production of 0.29 L/gCOD was achieved, with a corresponding transmembrane pressure variation of up to 3.1 bar. At a shorter solid retention time, the fouling seemed to decrease with biogas production. However, we note interesting retention rates of over 95% for turbidity.
Collapse
Affiliation(s)
- Abdoul Wahab Nouhou Moussa
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.); (B.T.)
| | - Boukary Sawadogo
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.); (B.T.)
| | - Yacouba Konate
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.); (B.T.)
| | - Brony Thianhoun
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.); (B.T.)
| | - Sayon dit Sadio Sidibe
- Laboratoire Energies Renouvelable et Efficacité Energétique (LaBEREE), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la science, Ouagadougou 01 BP 194, Burkina Faso;
| | - Marc Heran
- Institut Européen des Membranes (IEM), UMR-5635, Université de Montpellier, CNRS, Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France;
| |
Collapse
|
4
|
Aydin S, Can K, Çalışkan M, Balcazar JL. Bacteriophage cocktail as a promising bio-enhancer for methanogenic activities in anaerobic membrane bioreactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154716. [PMID: 35337865 DOI: 10.1016/j.scitotenv.2022.154716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to explore the effect of a bacteriophage cocktail, pyophage, on the treatment of wastewater containing antibiotics in an anaerobic membrane bioreactor (AnMBR). During the operational period, performance of the AnMBR was monitored through the changes in chemical oxygen demand (COD), antibiotic removal, transmembrane pressure, and biogas production. Microbial community structure and composition, as well as the occurrence of antibiotic resistance genes were analyzed through shotgun metagenomics analysis. When exposed to pyophage, COD removal efficiency was enhanced up to 96%, whereas membrane fouling was delayed by 25%. Average biogas production was doubled from 224.2 mL/d in control with antibiotics to 447.3 mL/d when exposed to pyophage cocktail with considerable alterations to the archaeal and bacterial community structures. Most notably, the methanogenic community shifted from dominance of Methanothermobacter to Methanoculleus, along with syntrophic bacteria. The results provide insight into the synergistic effects of phage-bacteria and methanogenic communities and illustrate the potential of bacteriophages as bio-enhancers.
Collapse
Affiliation(s)
- Sevcan Aydin
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Turkey.
| | - Kubra Can
- Department of Medical Microbiology, Istanbul University-Cerrahpasa, Cerrahpaşa, 34320 Istanbul, Turkey
| | - Mahmut Çalışkan
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, 34134 Istanbul, Turkey
| | - Jose L Balcazar
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain; University of Girona, 17004 Girona, Spain
| |
Collapse
|
5
|
Rafaqat S, Ali N, Torres C, Rittmann B. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv 2022; 12:17104-17137. [PMID: 35755587 PMCID: PMC9178700 DOI: 10.1039/d2ra01831d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 01/24/2023] Open
Abstract
Globally, textile dyeing and manufacturing are one of the largest industrial units releasing huge amount of wastewater (WW) with refractory compounds such as dyes and pigments. Currently, wastewater treatment has been viewed as an industrial opportunity for rejuvenating fresh water resources and it is highly required in water stressed countries. This comprehensive review highlights an overall concept and in-depth knowledge on integrated, cost-effective cross-disciplinary solutions for domestic and industrial (textile dyes) WW and for harnessing renewable energy. This basic concept entails parallel or sequential modes of treating two chemically different WW i.e., domestic and industrial in the same system. In this case, contemporary advancement in MFC/MEC (METs) based systems towards Microbial-Electro-Fenton Technology (MEFT) revealed a substantial emerging scope and opportunity. Principally the said technology is based upon previously established anaerobic digestion and electro-chemical (photo/UV/Fenton) processes in the disciplines of microbial biotechnology and electro-chemistry. It holds an added advantage to all previously establish technologies in terms of treatment and energy efficiency, minimal toxicity and sludge waste, and environmental sustainable. This review typically described different dyes and their ultimate fate in environment and recently developed hierarchy of MEFS. It revealed detail mechanisms and degradation rate of dyes typically in cathodic Fenton system under batch and continuous modes of different MEF reactors. Moreover, it described cost-effectiveness of the said technology in terms of energy budget (production and consumption), and the limitations related to reactor fabrication cost and design for future upgradation to large scale application.
Collapse
Affiliation(s)
- Shumaila Rafaqat
- Department of Microbiology, Quaid-i-Azam University Islamabad Pakistan
| | - Naeem Ali
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan
| | - Cesar Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University USA
| |
Collapse
|
6
|
Treatment of Pharma Effluent using Anaerobic Packed Bed Reactor. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:4657628. [PMID: 35620734 PMCID: PMC9129986 DOI: 10.1155/2022/4657628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
The treatment of pharmaceutical effluent using an appropriate technology has become so important. Anaerobic packed bed reactor is an efficient method for pharmaceutical effluent treatment because of the high organic content present in it. In this study, a heavy-polluted pharma effluent is treated using an anaerobic packed bed reactor. The performance of the anaerobic reactor was identified with respect to chemical oxygen demand (COD) removal, methane yield, and gas production. The results showed that COD was reduced from 73% to 60% for an organic loading rate (OLR) of 0.6036–1.7487 kg COD m−3·d−1. As the OLR increases, the removal efficiency of COD decreases gradually to around 52% for an OLR of 2.34 kg COD m−3·d−1.
Collapse
|
7
|
Saya L, Malik V, Gautam D, Gambhir G, Singh WR, Hooda S. A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152529. [PMID: 34953830 DOI: 10.1016/j.scitotenv.2021.152529] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Among various classes of antibiotics, fluoroquinolones, especially Levofloxacin, are being administered on a large scale for numerous purposes. Being highly stable to be completely metabolized, residual quantities of Levofloxacin get accumulated into the food chain proving a great global threat for aquatic as well as terrestrial ecosystems. Various removal techniques including both conventional and advanced methods have been reported for this purpose. This review is a novel attempt to make a critical analysis of the recent advances made exclusively toward the sequestration of Levofloxacin from wastewater through an extensive literature survey (2015-2021). Adsorption and advanced oxidation processes especially photocatalytic degradation are the most tested techniques in which assorted nanomaterials play a significant role. Several photocatalysts exhibited up to 100% degradation of LEV which makes photocatalytic degradation the best method among other tested methods. However, the degraded products need to be further monitored in terms of their toxicity. Biological degradation may prove to be the most environment-friendly with the least toxicity, unfortunately, not much research is reported in the field. With these key findings and knowledge gaps, authors suggest the scope of hybrid techniques, which have been experimented on other antibiotics. These can potentially minimize the disadvantages of the individual techniques concurrently improving the efficiency of LEV removal. Besides, techniques like column adsorption, membrane treatment, and ozonation, being least reported, reserve good perspectives for future research. With these implications, the review will certainly serve as a breakthrough for researchers working in this field to aid their future findings.
Collapse
Affiliation(s)
- Laishram Saya
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Dhaula Kuan, New Delhi 110021, India; Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India; Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Vipin Malik
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Drashya Gautam
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - Geetu Gambhir
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India
| | - W Rameshwor Singh
- Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India.
| | - Sunita Hooda
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, New Delhi 110019, India.
| |
Collapse
|
8
|
Kudisi D, Lu X, Zheng C, Wang Y, Cai T, Li W, Hu L, Zhang R, Zhang Y, Zhen G. Long-term performance, membrane fouling behaviors and microbial community in a hollow fiber anaerobic membrane bioreactor (HF-AnMBR) treating synthetic terephthalic acid-containing wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127458. [PMID: 34653863 DOI: 10.1016/j.jhazmat.2021.127458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Purified terephthalic acid (PTA) wastewater with properties of poor biodegradation and high toxicity is produced from refining and synthesis of petrochemical products. In this study, a lab-scale hollow fiber membrane bioreactor (HF-AnMBR) fed with synthetic PTA wastewater was operated over 200 days with stepwise decreased hydraulic retention time (HRT) to investigate the long-term performance, membrane fouling mechanism and microbial community evolution. Results showed that a stable chemical oxygen demand (COD) removal rate of 65.8 ± 4.1% was achieved at organic loading rate of 3.1 ± 0.3 g-COD/L-reactor/d and HRT 24 h, under which the methane production rate reached 0.33 ± 0.02 L/L-reactor/d. Further shortening HRT, however, led to the decreased COD removal efficiency and low methane bioconversion. A mild membrane fouling occurred due to the production of colloidal biopolymers and the interaction between increased colloidal substances secreted/cracked by microorganisms and membrane interface. Further 16S rRNA analysis indicated that microbial diversity and richness had changed with the variation of HRT while Methanosaeta, and Methanolinea species were always the dominant methanogens responsible for methane production. The results verify that HF-AnMBR is an alternative technology for PTA wastewater treatment along with energy harvesting, and provide a new avenue toward sustainable petrochemical wastewater management.
Collapse
Affiliation(s)
- Dilibaierkezi Kudisi
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Chaoting Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yue Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Lingtan Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ruiliang Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yizhi Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
9
|
Liu L, Liu W, Yu L, Dong J, Han F, Hu D, Chen Z, Ge H, Jiang B, Wang H, Cui Y, Zhang W, Zou X, Zhang Y. Optimizing anaerobic technology by using electrochemistry and membrane module for treating pesticide wastewater: Chemical oxygen demand components and fractions distribution, membrane fouling, effluent toxicity and economic analysis. BIORESOURCE TECHNOLOGY 2022; 346:126608. [PMID: 34954355 DOI: 10.1016/j.biortech.2021.126608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Optimization in performance and membrane fouling of an electrochemical anaerobic membrane bioreactor (R1) for treating pesticide wastewater was investigated and compared with a conventional anaerobic membrane bioreactor (R2). The maximum COD removal efficiency of R2 was 80.1%, 80.0%, 67.4%, 61.1% with HRT of 96, 72, 48 and 24 h, which of R1 was enhanced to 84.7%, 84.3%, 82.0% and 66.3%. These results demonstrated that the optimum HRT of R1 was shortened to 48 h, which of R2 required 72 h. R1 reduced the contents of particulate and colloidal COD, and the fraction of COD converted to sludge was 5.0-8.2% lower than that of R2. The fouling rate was 0.99-1.44 kPa/d and reduced by 31.0%-38.5% compared with R2. Detoxification was enhanced by 7.8-47.7% with the assistance of bio-electrochemistry. Ultimately, ensuring similar performance, R1 achieved a 65.6% improvement in environmental benefit, a 26.3% and 38.9% reduction in unit capital and operating costs.
Collapse
Affiliation(s)
- Lixue Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Wenyu Liu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Liqiang Yu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Jian Dong
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Fei Han
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Zhaobo Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China.
| | - Hui Ge
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Bei Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Wanjun Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Xuejun Zou
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Ying Zhang
- School of Resources and Environmental Science, Northeast Agricultural University, 59 Mucai Street, HarBin 150030, PR China
| |
Collapse
|
10
|
Wu X, Chen Y, Li W, Chen C, Zhang J, Wang J. Heterostructured membranes with selective solvent-capture coatings and low-resistance 2D nanochannels for efficient mixed solvent separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Marathe D, Singh A, Raghunathan K, Thawale P, Kumari K. Current available treatment technologies for saline wastewater and land-based treatment as an emerging environment-friendly technology: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2461-2504. [PMID: 34453764 DOI: 10.1002/wer.1633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Different industrial activities such as agro-food processing and manufacturing, leather manufacturing, and paper and pulp production generate highly saline wastewater. Direct discharge of saline wastewater has resulted in pollution of waterbodies by very high magnitudes. Consequently, an enormous number of pollutants such as heavy metals, salts, and organic matter are also released into the environment threatening the survival of human and biota. Saline wastewater also has significant effects on survival of plants, agricultural activities, and groundwater systems. Several treatments and disposal technologies are available for saline wastewater, but the selection of the most appropriate treatment and disposal technology still remains a major challenge with respect to the economic or technical constraints. Considering the sustainable management of saline wastewater, the present review is an attempt to compile the existing and emerging technologies for the treatment of saline wastewater. Among all the individual and hybrid technologies, land-based treatment systems are proven to be the most efficient technologies considering the energy demands, economic, and treatment efficiencies. Likewise, new and sustainable technologies are the need of hour integrating both the treatment and management and the resource recovery factors along with the ultimate goal of the protection in terms of human health and environmental aspect. PRACTITIONER POINTS: Physico-chemical treatment technologies for saline wastewater. Combined/Hybrid technologies for the treatment of saline wastewater. Land-based treatments as the environment friendly and sustainable method for saline wastewater treatment and disposal. Role of phytoremediation in land-based treatment.
Collapse
Affiliation(s)
- Deepak Marathe
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 44 0020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshika Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 44 0020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Karthik Raghunathan
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 44 0020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prashant Thawale
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 44 0020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kanchan Kumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-National Environmental Engineering Research Institute, Kolkata Zonal Centre, Kolkata, West Bengal, 700 107, India
| |
Collapse
|
12
|
Wei M, Zhang R, Zhou M, Yuan Z, Yuan H, Zhu N. Treatment of fresh leachate by microaeration pretreatment combined with IC-AO 2 process: Performance and mechanistic insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147939. [PMID: 34058591 DOI: 10.1016/j.scitotenv.2021.147939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Fresh leachate is commonly featured with high concentrations of degradable organic matters, which can impede the performance of traditional biological treatment, especially the anaerobic reactor. Aiming at improving the biological treatment process of fresh leachate, this study creatively proposed a microaerobic-IC-AO2 (MAICAO2) process and compared it with traditional biological process, then optimized the operating conditions. Meanwhile, this work investigated the transformation rules and molecular compositions of dissolved organic matters (DOM) during MAICAO2 process, particularly the hazardous DOM (antibiotics). The innovative MAICAO2 process can effectively remove 99% chemical oxygen demand (COD), 91% total nitrogen (TN) and 91% ammonia (NH4+-N) during the operation time, and the removal efficiencies of COD, TN and NH4+-N in MAICAO2 process increased approximately 2%, 14% and 13% compared to ICAOAO process. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) confirmed that microaeration could ensure over 53% small molecular organic acids degrade before the subsequent anaerobic reaction so the system could resist the high concentration organic matters stress and improve the denitrification efficiency. Further analysis showed that different categories of antibiotics (including 6 sulfonamides, 4 tetracyclines, 2 macrolides, 4 quinolones and 2 chloramphenicols) could be effectively removed by MAICAO2 process with the total removal efficiency of 50%. This work proposed a new scenario for fresh leachate treatment by proposing the importance of the microaeration pretreatment during the biological treatment process.
Collapse
Affiliation(s)
- Mengqi Wei
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruina Zhang
- Shanghai Institute for Design & Research on Environmental Engineering Co., Ltd, Shanghai 200040, China; Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd, Shanghai 200001, China
| | - Mingjian Zhou
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiqiang Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, China.
| |
Collapse
|
13
|
Fakhri H, Arabacı DN, Ünlü İD, Yangin-Gomec C, Ovez S, Aydin S. Addition of Trichocladium canadense to an anaerobic membrane bioreactor: evaluation of the microbial composition and reactor performance. BIOFOULING 2021; 37:711-723. [PMID: 34378470 DOI: 10.1080/08927014.2021.1949002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Membrane bioreactors are powerful systems for wastewater treatment and the removal of toxic compounds. However, membrane biofouling stands in the way of their widespread usage. In this study, the saprophytic fungus Trichocladium canadense was used as the bioaugmentor in an anaerobic membrane bioreactor (AnMBR) and its impact on membrane biofouling, biogas production, the microbial communities of the reactor and removal of the common antibiotics erythromycin (ERY), sulfamethoxazole (SMX) and tetracycline (TET) from synthetic wastewater was investigated. The results indicated that through bioaugmentation with 20% T. canadense, membrane biofouling was slowed by 25%, the chemical oxygen demand removal increased by 16% and a higher efficiency removal of ERY and SMX was achieved. The presence of T. canadense significantly increased the abundance and diversity of the biofilm archaeal community and the bacterial phylum Firmicutes, a known bio-foulant.
Collapse
Affiliation(s)
- Hadi Fakhri
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Duygu Nur Arabacı
- Department of Genetics and Bioengineering, Nişantaşı University, Maslak, Istanbul, Turkey
| | - İlayda Dilara Ünlü
- Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Cigdem Yangin-Gomec
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Suleyman Ovez
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Sevcan Aydin
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey
| |
Collapse
|
14
|
Mainka T, Weirathmüller D, Herwig C, Pflügl S. Potential applications of halophilic microorganisms for biological treatment of industrial process brines contaminated with aromatics. J Ind Microbiol Biotechnol 2021; 48:kuab015. [PMID: 33928348 PMCID: PMC9113102 DOI: 10.1093/jimb/kuab015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022]
Abstract
Saline wastewater contaminated with aromatic compounds can be frequently found in various industrial sectors. Those compounds need to be degraded before reuse of wastewater in other process steps or release to the environment. Halophiles have been reported to efficiently degrade aromatics, but their application to treat industrial wastewater is rare. Halophilic processes for industrial wastewater treatment need to satisfy certain requirements: a continuous process mode, low operational expenditures, suitable reactor systems and a monitoring and control strategy. The aim of this review is to provide an overview of halophilic microorganisms, principles of aromatic biodegradation, and sources of saline wastewater containing aromatics and other contaminants. Finally, process examples for halophilic wastewater treatment and potential process monitoring strategies are discussed. To further illustrate the significant potential of halophiles for saline wastewater treatment and to facilitate development of ready-to-implement processes, future research should focus on scale-up and innovative process monitoring and control strategies.
Collapse
Affiliation(s)
- Thomas Mainka
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - David Weirathmüller
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| | - Christoph Herwig
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
- Competence Center CHASE GmbH,
Altenbergerstraße 69, 4040 Linz, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience
Engineering, TU Wien, Gumpendorfer Straße 1a, 1060
Vienna, Austria
| |
Collapse
|
15
|
González-Hernández Y, Jáuregui-Haza UJ. Improved integrated dynamic model for the simulation of submerged membrane bioreactors for urban and hospital wastewater treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Gao T, Zhang H, Xu X, Teng J. Integrating microbial electrolysis cell based on electrochemical carbon dioxide reduction into anaerobic osmosis membrane reactor for biogas upgrading. WATER RESEARCH 2021; 190:116679. [PMID: 33279741 DOI: 10.1016/j.watres.2020.116679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
It has been reported that anaerobic osmosis membrane bioreactors have the potential for energy recovery since dissolved methane was almost rejected by commercial forward osmosis membranes. Notwithstanding, upgraded biogas has to be achieved by removing as much carbon dioxide as possible. In this study, a novel anaerobic osmotic membrane bioreactor-microbial electrolysis cell (AnOMBR-MEC) system was developed for simultaneous biogas upgrading and wastewater treatment. The AnOMBR-MEC elicited an excellent and stable soluble chemical oxygen demand and phosphorus removal. As the experiment progressed, unwanted carbon dioxide produced from biogas was reduced to formate using a SnO2 nanoparticles electrocatalytic cathode in an electrocatalytic-assisted MEC, with the highest faradic efficiency of formate being 85% at 1.2V. Compared to AnOMBR, the methane content increased from 55% to 90% at the end of operation and methane yield experienced a1.6-fold increment in the AnOMBR-MEC. Microbial community analysis revealed that hydrogenotrophic methanogens (e.g. Methanobacterium and Methanobrevibacter) converted the produced H2 and formate to methane at saline conditions. These results have demonstrated an efficient strategy based on the integration of an electrocatalytic-assisted MEC into AnOMBR for upgrading biogas, enhancing methane yield and wastewater treatment.
Collapse
Affiliation(s)
- Tianyu Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, P. R. China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, P. R. China.
| | - Xiaotong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, P. R. China
| | - Jiaheng Teng
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
17
|
Ribera-Pi J, Campitelli A, Badia-Fabregat M, Jubany I, Martínez-Lladó X, McAdam E, Jefferson B, Soares A. Hydrolysis and Methanogenesis in UASB-AnMBR Treating Municipal Wastewater Under Psychrophilic Conditions: Importance of Reactor Configuration and Inoculum. Front Bioeng Biotechnol 2020; 8:567695. [PMID: 33224930 PMCID: PMC7667289 DOI: 10.3389/fbioe.2020.567695] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Three upflow anaerobic sludge blanket (UASB) pilot scale reactors with different configurations and inocula: flocculent biomass (F-UASB), flocculent biomass and membrane solids separation (F-AnMBR) and granular biomass and membrane solids separation (G-AnMBR) were operated to compare start-up, solids hydrolysis and effluent quality. The parallel operation of UASBs with these different configurations at low temperatures (9.7 ± 2.4°C) and the low COD content (sCOD 54.1 ± 10.3 mg/L and pCOD 84.1 ± 48.5 mg/L), was novel and not previously reported. A quick start-up was observed for the three reactors and could be attributed to the previous acclimation of the seed sludge to the settled wastewater and to low temperatures. The results obtained for the first 45 days of operation showed that solids management was critical to reach a high effluent quality. Overall, the F-AnMBR showed higher rates of hydrolysis per solid removed (38%) among the three different UASB configurations tested. Flocculent biomass promoted slightly higher hydrolysis than granular biomass. The effluent quality obtained in the F-AnMBR was 38.0 ± 5.9 mg pCOD/L, 0.4 ± 0.9 mg sCOD/L, 9.9 ± 1.3 mg BOD5/L and <1 mg TSS/L. The microbial diversity of the biomass was also assessed. Bacteroidales and Clostridiales were the major bacterial fermenter orders detected and a relative high abundance of syntrophic bacteria was also detected. Additionally, an elevated abundance of sulfate reducing bacteria (SRB) was also identified and was attributed to the low COD/SO4 2- ratio of the wastewater (0.5). Also, the coexistence of acetoclastic and hydrogenotrophic methanogenesis was suggested. Overall this study demonstrates the suitability of UASB reactors coupled with membrane can achieve a high effluent quality when treating municipal wastewater under psychrophilic temperatures with F-AnMBR promoting slightly higher hydrolysis rates.
Collapse
Affiliation(s)
- Judit Ribera-Pi
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, Manresa, Spain
| | - Antonio Campitelli
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Cranfield, United Kingdom
| | | | - Irene Jubany
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, Manresa, Spain
| | | | - Ewan McAdam
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Cranfield, United Kingdom
| | - Bruce Jefferson
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Cranfield, United Kingdom
| | - Ana Soares
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Cranfield, United Kingdom
| |
Collapse
|
18
|
Enhanced Treatment of Pharmaceutical Wastewater by an Improved A2/O Process with Ozone Mixed Municipal Wastewater. WATER 2020. [DOI: 10.3390/w12102771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A pilot-scale experiment is carried out for treating mixed wastewater containing pharmaceutical wastewater (PW) and domestic wastewater (DW), by a process that is a combination of hydrolysis acidification-ozone-modified anaerobic–anoxic–aerobic-ozone (A2/O) (pre-ozone) or hydrolysis acidification-modified A2/O-ozone (post-ozone). The effects of different mixing ratios of PW and DW and pre-ozone treatment or post-ozone treatment on the removal of nitrogen and phosphorus and chemical oxygen demand (COD) are compared and studied. The optimal ratio of PW in mixing wastewater is 30%, which has the optimal COD removal efficiency and minimum biotoxicity to biological treatment. The pre-ozone treatment shows more advantages in removing nitrogen and phosphate but the post-ozone treatment shows more advantages in COD removal. Analysis of dissolved organic matter (DOM) demonstrates that post-ozone treatment has a more significant effect on the removal of fulvic acid and humic acid than the effect from the pre-ozone treatment, so the COD removal is better. Overall DOM degradation efficiency by post-ozone treatment is 55%, which is much higher than the pre-ozone treatment efficiency of 38%. Microbial community analysis reveals that the genus Thauera and the genus Parasegetibacter take great responsibility for the degradation of phenolics in this process. All the results show that the post-ozone treatment is more efficient for the mixed wastewater treatment in refractory organics removal.
Collapse
|
19
|
Zeng L, Liu Q, Van der Bruggen B, Tang K, Yi X, Wang G. An integrated separation process for recovery and enantioseparation of amlodipine from wastewater: Supported liquid membrane-aqueous/organic phase crystallization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Zhang Q, Peng Y, Deng F, Wang M, Chen D. Porous Z-scheme MnO2/Mn-modified alkalinized g-C3N4 heterojunction with excellent Fenton-like photocatalytic activity for efficient degradation of pharmaceutical pollutants. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116890] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Zaied BK, Rashid M, Nasrullah M, Zularisam AW, Pant D, Singh L. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138095. [PMID: 32481207 DOI: 10.1016/j.scitotenv.2020.138095] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 05/28/2023]
Abstract
The pharmaceuticals are emergent contaminants, which can create potential threats for human health and the environment. All the pharmaceutical contaminants are becoming enormous in the environment as conventional wastewater treatment cannot be effectively implemented due to toxic and intractable action of pharmaceuticals. For this reason, the existence of pharmaceutical contaminants has brought great awareness, causing significant concern on their transformation, occurrence, risk, and fate in the environments. Electrocoagulation (EC) treatment process is effectively applied for the removal of contaminants, radionuclides, pesticides, and also harmful microorganisms. During the EC process, an electric current is employed directly, and both electrodes are dissoluted partially in the reactor under the special conditions. This electrode dissolution produces the increased concentration of cation, which is finally precipitated as hydroxides and oxides. Different anode materials usage like aluminum, stainless steel, iron, etc. are found more effective in EC operation for efficient removal of pharmaceutical contaminants. Due to the simple procedure and less costly material, EC method is extensively recognized for pharmaceutical wastewater treatment over further conventional treatment methods. The EC process has more usefulness to destabilize the pharmaceutical contaminants with the neutralization of charge and after that coagulating those contaminants to produce flocs. Thus, the review places particular emphasis on the application of EC process to remove pharmaceutical contaminants. First, the operational parameters influencing EC efficiency with the electroanalysis techniques are described. Second, in this review emerging challenges, current developments and techno-economic concerns of EC are highlighted. Finally, future recommendations and prospective on EC are envisioned.
Collapse
Affiliation(s)
- B K Zaied
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Pahang, Malaysia
| | - Mamunur Rashid
- Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang (UMP), 26600 Pekan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Pahang, Malaysia; Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300, Kuantan, Pahang, Malaysia
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Pahang, Malaysia
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Lakhveer Singh
- Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh - 522502, India.
| |
Collapse
|
22
|
Chen L, Cheng P, Ye L, Chen H, Xu X, Zhu L. Biological performance and fouling mitigation in the biochar-amended anaerobic membrane bioreactor (AnMBR) treating pharmaceutical wastewater. BIORESOURCE TECHNOLOGY 2020; 302:122805. [PMID: 32007847 DOI: 10.1016/j.biortech.2020.122805] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) is an advanced technology in treating pharmaceutical wastewater, but the membrane fouling limits its development. In this study, the biochar with adsorption capacity of biopolymers was added in AnMBR to investigate its potential in treating pharmaceutical wastewater and alleviating membrane fouling. In the biochar-amended AnMBR, adsorbable organic halogen (AOX) was removed effectively, and more COD was biotransformed into CH4. Membrane fouling mitigation was achieved in the third stage with a 56% decrease of average transmembrane pressure difference (TMP) rising rate. The predominant culprit, proteins of extracellular polymeric substance (EPS-proteins) in sludge mixture and cake layer, was reduced significantly. Particularly, the proportion of micromolecular (0.1-0.15 kDa) EPS-proteins in cake layer was 1.5-folds that of the control group. The important bio-foulant genus Arcobacter aggregating on the membrane had less and almost half the relative abundance (16.5%) than that of the control group (30.7%).
Collapse
Affiliation(s)
- Linlin Chen
- Institution of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Peijin Cheng
- Institution of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lu Ye
- Institution of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hui Chen
- Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Xiangyang Xu
- Institution of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Liang Zhu
- Institution of Environment Pollution Control and Treatment, Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
23
|
Aragão MS, Menezes DB, Ramos LC, Oliveira HS, Bharagava RN, Romanholo Ferreira LF, Teixeira JA, Ruzene DS, Silva DP. Mycoremediation of vinasse by surface response methodology and preliminary studies in air-lift bioreactors. CHEMOSPHERE 2020; 244:125432. [PMID: 31812763 DOI: 10.1016/j.chemosphere.2019.125432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/11/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
This work evaluated the degradation of sugarcane vinasse with the production of biomass by Pleurotus sajor-caju CCB020, considering the combination of temperature and pH effects, using surface response methodology (RSM). A 22 complete central factorial composite experiment was used to analyze the results. The optimum temperature and pH values were respectively 27 °C and 5.6 for maximum decolorization yield and 20 °C and 6.8 for maximum biomass production. In parallel, scale-up experiments under conditions of 30 °C and initial pH 5.0 were evaluated in two different air-lift bioreactors of 7.0 L. Under these conditions, reductions of 53% and 58% in chemical oxygen demand (COD) and 71% and 58% in biological oxygen demand (BOD) were obtained respectively with the concentric tube type air-lift bioreactor with an increased degassing zone and without an increased degassing zone. Under these conditions, this study concluded that the systematic combination of P. sajor-caju and vinasse can be applied in the biodegradation process of refractory compounds contained in vinasse, concomitant to obtaining biomass and laccase and manganese peroxidase enzymes. Due to the good performance of the air-lift bioreactors, they can be used in scale studies in future industrial vinasse applications, besides it is possible to emphasize that different configurations in the bioreactor can affect the efficiency of the process.
Collapse
Affiliation(s)
- Moniky S Aragão
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Diego B Menezes
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Larissa C Ramos
- Northeastern Biotechnology Network - RENORBIO, Federal University of Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Helon S Oliveira
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Microbiology (DM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Luiz Fernando Romanholo Ferreira
- Institute of Technology and Research, Murilo Dantas Avenue 300, Campus Farolândia, 49032-490, Aracaju, SE, Brazil; Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil.
| | - José A Teixeira
- Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal
| | - Denise S Ruzene
- Northeastern Biotechnology Network - RENORBIO, Federal University of Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Daniel P Silva
- Northeastern Biotechnology Network - RENORBIO, Federal University of Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| |
Collapse
|
24
|
Silva A, Ricci B, Koch K, Weißbach M, Amaral M. Dissolved hydrogen sulfide removal from anaerobic bioreactor permeate by modified direct contact membrane distillation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Khan NA, Khan SU, Ahmed S, Farooqi IH, Yousefi M, Mohammadi AA, Changani F. Recent trends in disposal and treatment technologies of emerging-pollutants- A critical review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115744] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Bakraoui M, Hazzi M, Karouach F, Ouhammou B, El Bari H. Experimental biogas production from recycled pulp and paper wastewater by biofilm technology. Biotechnol Lett 2019; 41:1299-1307. [PMID: 31599377 DOI: 10.1007/s10529-019-02735-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The main objective of this study is the evaluation of RPPW anaerobic digestion feasibility at laboratory scale under Mesophilic condition. The experiment is conducted using a two-stage biofilm digester of 5 L capacity with mobile support material. RESULTS Anaerobic treatment of wastewater from recycled pulp and paper industry in Morocco was tested using a laboratory-scale anaerobic biofilm digester that operated under mesophilic conditions over a 70-day. Chemical oxygen demand (COD) efficiency, volatile and total solid (VS, TS) elimination of the substrate during the process were: 78%, 52% and 48% respectively. The system was stable throughout its operating cycle with an optimum pH (7.24), alkalinity (1750 mg CaCO3/L) and a volatile fatty acid value (760 mg/L). The experimental daily biogas production measured reaches a value of 5 L/day with a composition of 71% methane, 27.6% carbon dioxide, 0.2 oxygen and 7713 ppm of the H2S. The study results show that the anaerobic biofilm reactor is a suitable technique for recycled pulp and paper wastewater (RPPW) treatment. The reactor shows high performances in terms of process stability, removal efficiency (> 70%) and biogas production. CONCLUSION Anaerobic digestion is an efficient waste treatment technology that uses natural anaerobic decomposition to reduce the volume of waste while producing biogas. However, research is needed to strengthen microbial metabolism, biochemistry and the functioning of the rector to improve biogas production. The RPPW AD experiment with biofilm digester technology was stable throughout the operation period. The digester knows an overloaded in the last phase of the experiment which leads to an inhibition of biogas production.
Collapse
Affiliation(s)
- Mohammed Bakraoui
- Renewable Energy and Environment Laboratory, Faculty of Sciences, IbnTofail University, University campus, B.P: 133, Kenitra, Morocco.
| | - Mohammed Hazzi
- Renewable Energy and Environment Laboratory, Faculty of Sciences, IbnTofail University, University campus, B.P: 133, Kenitra, Morocco
| | - Fadoua Karouach
- Renewable Energy and Environment Laboratory, Faculty of Sciences, IbnTofail University, University campus, B.P: 133, Kenitra, Morocco
| | - Badr Ouhammou
- Renewable Energy and Environment Laboratory, Faculty of Sciences, IbnTofail University, University campus, B.P: 133, Kenitra, Morocco
| | - Hassan El Bari
- Renewable Energy and Environment Laboratory, Faculty of Sciences, IbnTofail University, University campus, B.P: 133, Kenitra, Morocco
| |
Collapse
|
27
|
Do MT, Stuckey DC. Fate and removal of Ciprofloxacin in an anaerobic membrane bioreactor (AnMBR). BIORESOURCE TECHNOLOGY 2019; 289:121683. [PMID: 31238291 DOI: 10.1016/j.biortech.2019.121683] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
This study examined the removal of varying concentrations of the antibiotic Ciprofloxacin (CIP) over the long-term (120 days) in an anaerobic membrane bioreactor (AnMBR). The results showed that 50-76% CIP was removed with 0.5-1.5 mg CIP/L in the feed, although at 4.7 mg/L its removal efficiency decreased to <20%. It was found that biological degradation was the main mechanism for removing CIP, while adsorption onto the sludge only contributed a small fraction, and an even smaller fraction was due to the waste sludge discharged. CIP was biodegraded to some degree in the AnMBR, with some intermediate compounds detected using LC-MS/MS and GC-MS. This work showed the effectiveness of an AnMBR in removing CIP at low concentrations of <1.5 mg/L, and hence may be an effective treatment for removing other antibiotics from wastewater.
Collapse
Affiliation(s)
- Mai T Do
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore 637141, Singapore
| | - David C Stuckey
- Nanyang Environment & Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore 637141, Singapore; Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
28
|
Li Q, Kong H, Jia R, Shao J, He Y. Enhanced catalytic degradation of amoxicillin with TiO 2-Fe 3O 4 composites via a submerged magnetic separation membrane photocatalytic reactor (SMSMPR). RSC Adv 2019; 9:12538-12546. [PMID: 35515859 PMCID: PMC9063688 DOI: 10.1039/c9ra00158a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/20/2019] [Indexed: 12/02/2022] Open
Abstract
A novel photo-Fenton catalytic system for the removal of organic pollutants was presented, including the use of photo-Fenton process and a submerged magnetic separation membrane photocatalytic reactor (SMSMPR). We synthesized TiO2–Fe3O4 composites as the photocatalyst and made full use of the magnetism of the photocatalyst to realize the recollection of the catalyst from the medium, which is critical to the commercialization of photocatalytic technology for wastewater treatment. The photo-Fenton performance of TiO2–Fe3O4 is evaluated with amoxicillin trihydrate (AMX) as a target pollutant. The results indicate that the TiO2–Fe3O4/H2O2 oxidation system shows efficient degradation of AMX. Fe3O4 could not only enhance the heterogeneous Fenton degradation of organic compounds but also allow the photocatalyst to be magnetically separated from treated water. After four reaction cycles, the TiO2–Fe3O4 composites still exhibit 85.2% removal efficiency of AMX and show excellent recovery properties. Accordingly, the SMSMPR with the TiO2–Fe3O4 composite is a promising way for removing organic pollutants. With a TiO2–Fe3O4 composite as the catalyst, amoxicillin was degraded via a photo-Fenton process using a submerged magnetic separation membrane photocatalytic reactor.![]()
Collapse
Affiliation(s)
- Qilong Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China +86-021-54744008
| | - Hui Kong
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University Shanghai 200030 PR China
| | - Rongrong Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China +86-021-54744008
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China +86-021-54744008
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China +86-021-54744008
| |
Collapse
|
29
|
Qian F, He M, Wu J, Yu H, Duan L. Insight into removal of dissolved organic matter in post pharmaceutical wastewater by coagulation-UV/H 2O 2. J Environ Sci (China) 2019; 76:329-338. [PMID: 30528024 DOI: 10.1016/j.jes.2018.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 06/09/2023]
Abstract
The removal of four dissolved organic matter (DOM) fractions, non-acid hydrophobics, hydrophobic acids, hydrophilics and transphilics, was achieved by coagulation-UV/H2O2 oxidation in post-pharmaceutical wastewater (PhWW). Coagulation with Polyferric chloride (PFC), Polymeric ferric sulfate (PFS) and Polymeric aluminum ferric chloride (PAFC) was studied separately to evaluate the effects of the initial pH and coagulant dosage. The coagulation-UV/H2O2 oxidation method resulted in much higher reduction rates for dissolved organic carbon (DOC) (by 75%) and UV254 (by 92%) than coagulation or UV/H2O2 oxidation alone. The proportion of non-acid hydrophobics, hydrophobic acids, transphilics and hydrophilics removed by coagulation was 54%, 49%, 27% and 12 %, while the combined treatment removed 92%, 87%, 70% and 39%, respectively. Parallel factor analysis (PARAFAC) of fluorescence measurements revealed that the humic-like fluorescent component C4 showed the highest removal (by 44%) during the coagulation stage. After coagulation-UV/H2O2 treatment, the humic-like fluorescent component C3 had the highest removal (by 72%), whereas xenobiotic organic fluorescent components C1 and C4 remained recalcitrant to decomposition. Significant correlations (R2 > 0.8) between C1 and the hydrophobic acids and non-acid hydrophobics suggested the possibility of using fluorescence spectroscopy as an effective tool to assess variations in DOM fraction treatment efficacy in coagulation-UV/H2O2 systems. After the combined treatment, toxic inhibition of cellular activity by post PhWW decreased from 88% to 47% and biodegradability increased from 0.1 to 0.52.
Collapse
Affiliation(s)
- Feng Qian
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Jieyun Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huibing Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
30
|
Song X, Luo W, Hai FI, Price WE, Guo W, Ngo HH, Nghiem LD. Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges. BIORESOURCE TECHNOLOGY 2018; 270:669-677. [PMID: 30245196 DOI: 10.1016/j.biortech.2018.09.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
This review examines the potential of anaerobic membrane bioreactor (AnMBR) to serve as the core technology for simultaneous recovery of clean water, energy, and nutrient from wastewater. The potential is significant as AnMBR treatment can remove a board range of trace organic contaminants relevant to water reuse, convert organics in wastewater to biogas for subsequent energy production, and liberate nutrients to soluble forms (e.g. ammonia and phosphorus) for subsequent recovery for fertilizer production. Yet, there remain several significant challenges to the further development of AnMBR. These challenges evolve around the dilute nature of municipal wastewater, which entails the need for pre-concentrating wastewater prior to AnMBR, and hence, issues related to salinity build-up, accumulation of substances, membrane fouling, and membrane stability. Strategies to address these challenges are proposed and discussed. A road map for further research is also provided to guide future AnMBR development toward resource recovery.
Collapse
Affiliation(s)
- Xiaoye Song
- Strategic Water Infrastructure Laboratory, School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hao H Ngo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
31
|
Chen Z, Xu J, Hu D, Cui Y, Wu P, Ge H, Jia F, Xiao T, Li X, Su H, Wang H, Zhang Y. Performance and kinetic model of degradation on treating pharmaceutical solvent wastewater at psychrophilic condition by a pilot-scale anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2018; 269:319-328. [PMID: 30195224 DOI: 10.1016/j.biortech.2018.08.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
A pilot-scale anaerobic membrane bioreactor (AnMBR) was operated for 435 days in this study, aiming to treat pharmaceutical solvent wastewater containing m-Cresol (MC), isopropanol (IPA) and N,N-Dimethylformamide (DMF) pollutants at different temperatures of 35 ± 3 °C, 25 ± 3 °C, 15 ± 3 °C and 25 ± 3 °C, respectively. The reactor reached average total removal efficiencies of about 96%, 97.2% and 98% of MC, IPA and DMF at psychrophilic condition (15 ± 3 °C). Higher physical removal rate was obtained at 15 ± 3 °C due to the important contribution of membrane filtration. At this stage, the biogas production, methane content and specific methanogenic activity and extracellular polymeric substances of suspended sludge were observed with the lowest level. Moreover, the kinetic models for solvent degradation were established at different temperatures, results showed the smaller maximum specific substrate degradation rate of MC and IPA, besides, the lowest degradation rate of three solvents were obtained at 15 ± 3 °C.
Collapse
Affiliation(s)
- Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; School of Environmental and Municipal Engineering, Jilin Jianzhu University, Xincheng Street 5088, ChangChun 130118, China
| | - Jiao Xu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Dongxue Hu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China.
| | - Yubo Cui
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Pan Wu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Hui Ge
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Fuquan Jia
- School of Environmental and Municipal Engineering, Jilin Jianzhu University, Xincheng Street 5088, ChangChun 130118, China
| | - Tingting Xiao
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Xue Li
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Haiyan Su
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Haixu Wang
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Ying Zhang
- School of Resources and Environmental Science, Northeast Agricultural University, 59 Mucai Street, HarBin 150030, China
| |
Collapse
|
32
|
Pirsaheb M, Mohamadi S, Rahmatabadi S, Hossini H, Motteran F. Simultaneous wastewater treatment and biogas production using integrated anaerobic baffled reactor granular activated carbon from baker's yeast wastewater. ENVIRONMENTAL TECHNOLOGY 2018; 39:2724-2735. [PMID: 28793836 DOI: 10.1080/09593330.2017.1365939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
In this study, simultaneous degradation of organic matter and color removal from food processing industries wastewater using an integrated anaerobic baffled reactor granular activated carbon (IABRGAC) was investigated. Theretofore, effective parameters such as hydraulic retention time (HRT) and granular activated carbon (GAC) filling ratio were studied. The bioreactor was operated at 3, 4 and 5 d of HRT and GAC filling ratio of 20%, 35% and 50%. To analyze and optimize the independent operating variables, response surface methodology was applied. Operating condition was optimized for HRT (4 d) and GAC filling ratio (50%). Better COD (94.6%) and BOD (93.7%) removal efficiency occurred with loading COD of 15,000 mg/L, with diminished wastewater color around 54% and turbidity to 54 NTU. In addition, methane production, methane yielding rate (Ym) and specific methanogenic activity (SMA) test in an integrated system were investigated. The system IABRGAC was able to generate a volumetric rate about 0.31 and 0.44 L/g CODremoved d at the experimental condition. The Ym was between 0.31 and 0.44 L/g CODremoved.d and SMA was between 0.13 and 0.38 g COD/g volatile suspended solid. Based on results it can be concluded that the IABRGAC to be a successful pretreatment for highstrength wastewater before discharging the final effluent to sewerage and aerobic treating processes.
Collapse
Affiliation(s)
- Meghdad Pirsaheb
- a Department of Environmental Health Engineering, Faculty of Health , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Samira Mohamadi
- b Students Research Committee , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Sama Rahmatabadi
- b Students Research Committee , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Hooshyar Hossini
- a Department of Environmental Health Engineering, Faculty of Health , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Fabrício Motteran
- c Department of Hydraulics and Sanitation, Engineering School of São Carlos , University of São Paulo (USP) , São Paulo , Brazil
| |
Collapse
|
33
|
Martins M, Sanches S, Pereira IAC. Anaerobic biodegradation of pharmaceutical compounds: New insights into the pharmaceutical-degrading bacteria. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:289-297. [PMID: 29894929 DOI: 10.1016/j.jhazmat.2018.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Antibiotics and hormones are among the most concerning trace contaminants in the environment. Therefore, the present work aimed to identify anaerobic microorganisms with the ability to remove pharmaceutical products (PhPs) belonging to these two classes (ciprofloxacin, 17β-estradiol and sulfamethoxazole) under different anaerobic conditions, and to elucidate the bio-removal mechanisms involved. Ciprofloxacin was efficiently biodegraded under both nitrate- and sulfate-reducing conditions reaching a PhP removal superior to 80%, whereas 17β-estradiol was only biodegraded under nitrate-reducing conditions reaching a removal of 84%. No biodegradation of sulfamethoxazole was observed. In nitrate-reducing conditions the ciprofloxacin-degrading community was composed of Comamonas, Arcobacter, Dysgonomonas, Macellibacteroides and Actinomyces, genera while Comamonas and Castellaniella were the main bacteria present in the 17β-estradiol-degrading community. In sulfate-reducing conditions the community was mainly composed by bacteria affiliated to Desulfovibrio, Enterococcus and Peptostreeptococcus. Interestingly, the PhP under study were biodegraded even in the absence of additional carbon source, with 85% of ciprofloxacin removed under sulfate-reducing conditions and 62% and 83% of ciprofloxacin and estradiol removed, respectively, under nitrate-reducing conditions. This work provides new insights into anaerobic bioremediation of PhP and novel PhP-degrading bacteria.
Collapse
Affiliation(s)
- Mónica Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | - Sandra Sanches
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
34
|
Arij Y, Fatihah S, Rakmi AR. Performance of pilot scale anaerobic biofilm digester (ABD) for the treatment of leachate from a municipal waste transfer station. BIORESOURCE TECHNOLOGY 2018; 260:213-220. [PMID: 29626780 DOI: 10.1016/j.biortech.2018.03.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The anaerobic treatment of leachate from a municipal waste transfer station in Malaysia was tested using a pilot scale anaerobic biofilm digester system that was operated under HRT sequence of 30-day, 25-day, 20-day and 10-day for 163 days under mesophilic conditions. Despite the leachate's complex characteristics, the system showed great performance given its maximum COD, BOD5 and total phosphorus removal efficiencies of 98 ± 1%, 99 ± 1% and 92 ± 9% respectively. The system was stable throughout its operation and showed optimal average values for the monitored parameters such as pH (7.53 ± 0.14), total VFA (79 ± 66 mg HOAc/L), alkalinity (10,919 ± 1556 mg CaCO3/L) and a non-toxic value for accumulated ammonia (960 ± 106 mg NH3-N/L). Measurement of the average daily biogas production yielded a value of 25 ± 1 m3/day throughout the system's operation with a composition of 57 ± 12% methane and 26 ± 6% carbon dioxide.
Collapse
Affiliation(s)
- Y Arij
- Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - S Fatihah
- Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| | - A R Rakmi
- Envirosource Sdn Bhd, No. 13A, Jalan Jernang Jaya 1, Taman Jernang Jaya, 43650 Bandar Baru Bangi, Selangor, Malaysia
| |
Collapse
|
35
|
Wastewater Treatment and Biogas Recovery Using Anaerobic Membrane Bioreactors (AnMBRs): Strategies and Achievements. ENERGIES 2018. [DOI: 10.3390/en11071675] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Chen Z, Su H, Hu D, Jia F, Li Z, Cui Y, Ran C, Wang X, Xu J, Xiao T, Li X, Wang H. Effect of organic loading rate on the removal of DMF, MC and IPA by a pilot-scale AnMBR for treating chemical synthesis-based antibiotic solvent wastewater. CHEMOSPHERE 2018; 198:49-58. [PMID: 29421760 DOI: 10.1016/j.chemosphere.2018.01.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/14/2018] [Accepted: 01/20/2018] [Indexed: 06/08/2023]
Abstract
This study focuses on the effects of organic loading rate (OLR) on the removal of N,N-Dimethylformamide(DMF), m-Cresol (MC) and isopropyl alcohol (IPA) by a pilot-scale anaerobic membrane bioreactor (AnMBR) for treating chemical synthesis-based antibiotic solvent wastewater at period of improved influent COD concentration with decreased HRT. The whole process was divided into five stages in terms of the variation of OLR ranging from 3.9 to 12.7 kg COD/(m3·d). During 249 days of operating time, the average DMF, MC, IPA removal efficiency were 96.9%,98.2% and 96.4%, respectively. Cake layer was accumulated on the membrane surface acted as a dynamic secondary biofilm which lead to the increase of physical removal rate. In addition, mathematical statistical models was built on the linear regression techniques for exploring the inner relationship between EPS and the performance of the AnMBR.
Collapse
Affiliation(s)
- Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; School of Environmental and Municipal Engineering, Jilin Jianzhu University, Xincheng Street 5088, ChangChun 130118, China.
| | - Haiyan Su
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Dongxue Hu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China.
| | - Fuquan Jia
- School of Environmental and Municipal Engineering, Jilin Jianzhu University, Xincheng Street 5088, ChangChun 130118, China
| | - Zhenghai Li
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Yubo Cui
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Chunqiu Ran
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Xiaojing Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Jiao Xu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Tingting Xiao
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Xue Li
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Haixu Wang
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| |
Collapse
|
37
|
Shi X, Guo X, Zuo J, Wang Y, Zhang M. A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 75:261-269. [PMID: 29449111 DOI: 10.1016/j.wasman.2018.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/09/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Renewable energy recovery from organic solid waste via anaerobic digestion is a promising way to provide sustainable energy supply and eliminate environmental pollution. However, poor efficiency and operational problems hinder its wide application of anaerobic digestion. The effects of two key parameters, i.e. temperature and substrate characteristics on process stability and microbial community structure were studied using two lab-scale anaerobic reactors under thermophilic and mesophilic conditions. Both the reactors were fed with food waste (FW) and wheat straw (WS). The organic loading rates (OLRs) were maintained at a constant level of 3 kg VS/(m3·d). Five different FW:WS substrate ratios were utilized in different operational phases. The synergetic effects of co-digestion improved the stability and performance of the reactors. When FW was mono-digested, both reactors were unstable. The mesophilic reactor eventually failed due to volatile fatty acid accumulation. The thermophilic reactor had better performance compared to mesophilic one. The biogas production rate of the thermophilic reactor was 4.9-14.8% higher than that of mesophilic reactor throughout the experiment. The shifts in microbial community structures throughout the experiment in both thermophilic and mesophilic reactors were investigated. With increasing FW proportions, bacteria belonging to the phylum Thermotogae became predominant in the thermophilic reactor, while the phylum Bacteroidetes was predominant in the mesophilic reactor. The genus Methanosarcina was the predominant methanogen in the thermophilic reactor, while the genus Methanothrix remained predominant in the mesophilic reactor. The methanogenesis pathway shifted from acetoclastic to hydrogenotrophic when the mesophilic reactor experienced perturbations. Moreover, the population of lignocellulose-degrading microorganisms in the thermophilic reactor was higher than those in mesophilic reactor, which explained the better performance of the thermophilic reactor.
Collapse
Affiliation(s)
- Xuchuan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xianglin Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; China Construction Bank Corporation, Beijing, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yajiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengyu Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Membrane Bioreactors for Wastewater Treatment. FUNDAMENTALS OF QUORUM SENSING, ANALYTICAL METHODS AND APPLICATIONS IN MEMBRANE BIOREACTORS 2018. [DOI: 10.1016/bs.coac.2018.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Hu D, Su H, Chen Z, Cui Y, Ran C, Xu J, Xiao T, Li X, Wang H, Tian Y, Ren N. Performance evaluation and microbial community dynamics in a novel AnMBR for treating antibiotic solvent wastewater. BIORESOURCE TECHNOLOGY 2017; 243:218-227. [PMID: 28668560 DOI: 10.1016/j.biortech.2017.06.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/16/2017] [Accepted: 06/17/2017] [Indexed: 06/07/2023]
Abstract
This study aims at evaluating the performance and microbial community dynamics of anaerobic membrane bioreactor (AnMBR) treating antibiotic solvent wastewater at improved influent quality period. The whole process was divided into five phases according to the influent COD concentration with a fluctuated volume loading rate (VLR) ranging from 3.9 to 12.7kgCOD/(m3·d). After 249days of operation, the average COD and THF removal efficiency were 93.6% and 98.7%, respectively. The accumulation of VFA, relatively low pH, decline of biogas production and methane content were discovered at higher VLR (>10kgCOD/(m3·d)). Methanomicrobiales are the major population throughout the whole running period. Methanosaetaceae showed a minor relative abundance compared both of them, while Methanobacteriales remained a minimum value. Results showed that the reactor performed an excellent pollutants removal effect because of the function of membranes even at high VLR conditions.
Collapse
Affiliation(s)
- Dongxue Hu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haiyan Su
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China.
| | - Yubo Cui
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Chunqiu Ran
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Jiao Xu
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Tingting Xiao
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Xue Li
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Haixu Wang
- College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
40
|
The Performance and Fouling Control of Submerged Hollow Fiber (HF) Systems: A Review. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7080765] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review. Int J Mol Sci 2017; 18:ijms18071429. [PMID: 28677659 PMCID: PMC5535920 DOI: 10.3390/ijms18071429] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022] Open
Abstract
In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.
Collapse
|
42
|
Li Y, Hu Q, Chen CH, Wang XL, Gao DW. Performance and microbial community structure in an integrated anaerobic fluidized-bed membrane bioreactor treating synthetic benzothiazole contaminated wastewater. BIORESOURCE TECHNOLOGY 2017; 236:1-10. [PMID: 28390271 DOI: 10.1016/j.biortech.2017.03.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the impact of benzothiazole on the performance and microbial community structures in an integrated anaerobic fluidized-bed membrane bioreactor fed with synthetic benzothiazole wastewater (with gradually increasing doses of benzothiazole (1-50mg/L)). The addition of benzothiazole had an adverse effect on volatile fatty acids accumulation (from 10.86mg/L to 57.83mg/L), and membrane fouling (service period from 5.9d to 5.3d). The removal efficiency of benzothiazole was 96.0%. Biodegradation was the major benzothiazole removal route and the biodegradation efficiency obviously improved from 25.7% to 98.3% after adaptation. Sludge 1 (collected on day 58 without benzothiazole) and sludge 2 (collected on day 185 with 50mg/L benzothiazole) were analyzed using the Illumina®MiSeq platform. The most abundant genera were Trichococcus (43.1% in sludge 1) and Clostridium sensu stricto (23.9% in sludge 2). The dominant genus of archaea was Methanosaeta (90.3% in sludge 1 and 80.8% in sludge 2).
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qi Hu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun-Hong Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao-Long Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Da-Wen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|