1
|
Ahmad M, Yousaf M. Co-conversion of CO 2 and refractory organics into bioplastics through a stable biocarrier. WATER RESEARCH 2025; 280:123519. [PMID: 40147307 DOI: 10.1016/j.watres.2025.123519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
An attractive solution to traditional plastics is scaling up the microbial system to produce bioplastics like polyhydroxyalkanoates (PHAs). Herein, we developed a dynamic microbial ecosystem on porous biocarrier for conversion of refractory organics to bioplastics. biocarriers of 25 mm sized were packed in a 5 L bioreactor and operated for 200 days, to achieve stable performance for commercial applications. Reaching to bioreactor stability, microbial ecosystem utilized quinoline (5.2 kg/m3/day) for carbon & nitrogen metabolism, phenol (4.5 kg/m3/day) to trigger synthesis of PHAs, pyridines (4.2 kg/m3/day) to manufacture hydroxy fatty acid polyesters, NH4+(7.2 kg/m3/day) to regulate symbiosis, NO3/NO2 (1.2 kg/m3/day) to serve as mediators and electron acceptors. On 200th day, bioplastic production reached to 76.8 (kg/m3/day) with stable pollutants degradation of 70.3 (kg/m3/day). Purity of the bioplastics remained quite high (average 90 %) after 100 days of bioreactor operation. Interestingly, PHAs synthesis was triggered (31-581 g/day) with increased CO2 fixation from 45 to 594 (mol/h/g protein), due to the growth of CO2 assimilators. The developed biocarriers could be directly poured into the secondary tank of the existing wastewater treatment plants (WWTPs), which will not only produce bioplastics but also boost treatment efficiency and resource recovery potential of WWTPs.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Abera GB, Trømborg E, Solli L, Walter JM, Wahid R, Govasmark E, Horn SJ, Aryal N, Feng L. Biofilm application for anaerobic digestion: a systematic review and an industrial scale case. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:145. [PMID: 39695822 DOI: 10.1186/s13068-024-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Biofilm is a syntrophic community of microorganisms enveloped by extracellular polymeric substances and displays remarkable adaptability to dynamic environments. Implementing biofilm in anaerobic digestion has been widely investigated and applied as it promotes microbial retention time and enhances the efficiency. Previous studies on anaerobic biofilm primarily focused on application in wastewater treatment, while its role has been significantly extended to accelerate the degradation of lignocellulosic biomass, improve gas-liquid mass transfer for biogas upgrading, or enhance resistance to inhibitors or toxic pollutants. This work comprehensively reviewed the current applications of biofilm in anaerobic digestion and focused on impacting factors, optimization strategies, reactor set-up, and microbial communities. Moreover, a full-scale biofilm reactor case from Norway is also reported. This review provides a state of-the- art insight on the role of biofilm in anaerobic digestion.
Collapse
Affiliation(s)
- Getachew Birhanu Abera
- Faculty of Environmental Science and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, Postbox 128, Shashemene, Ethiopia
| | - Erik Trømborg
- Faculty of Environmental Science and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
| | - Linn Solli
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway
| | | | - Radziah Wahid
- Antec Biogas As, Olaf Helsets Vei 5, 0694, Oslo, Norway
| | | | - Svein Jarle Horn
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences (NMBU), Postbox 5003, 1432, Ås, Norway
| | - Nabin Aryal
- Department of Process, Energy and Environmental Technology, University of South-Eastern Norway (USN), Campus Porsgrunn, Kjølnes Ring 56, 3918, Porsgrunn, Norway
| | - Lu Feng
- Norwegian Institute of Bioeconomy Research (NIBIO), Postbox 115, NO-1431, Ås, Norway.
| |
Collapse
|
3
|
Huang Z, Yi G, Wang Q, Wang S, Xu Q, Huan C, Wang Y, Zhang W, Wang A, Liu W. Improving microbial activity in high-salt wastewater: A review of innovative approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176278. [PMID: 39278494 DOI: 10.1016/j.scitotenv.2024.176278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The Zero discharge technology has become an important pathroute for sustainable development of high salt wastewater treatment. However, the cohabitation of organic and inorganic debris can cause serious problems such membrane clogging and the formation of hazardous impurity salts that further restrict the recovery of all salt varieties by evaporating and crystallizing. In highly salinized wastewater, biological treatments offer advantages in terms of cost and sustainability when used as a pre-treatment step to eliminate organic debris. On the other hand, high salinity is always a major obstacle to microbial diversity, abundance, and activity, which can result in low organic matter removal effectiveness or the failure of the microbial treatment system. Biofortification techniques can attenuate the negative effects of salt stress and other unfavourable conditions on microorganisms, while the regulation mechanisms of microbial and community collaboration by fortification methods have been an open question. Therefore, a comprehensive summary of the types, mechanisms, and effects of the major biofortification techniques is proposed. This review dialyzes the characteristics and sources of hypersaline wastewater and the main treatment methods. Then, the mechanisms of microbial salt tolerance are summarized and discussed based on microbial characteristics and the protective effects provided by the processes. Finally, the research and application of the main bioaugmentation methods are developed in detail, describing the characteristics, advantages and disadvantages of the different enhancement methods in their implementation. This review provides a more comprehensive perspective on the future engineering applications of bioaugmentation technology, and explores in depth the possibilities of applying biological methods to high-salinity wastewater treatment.
Collapse
Affiliation(s)
- Zongyi Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Genping Yi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiandi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sihui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiongying Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Changan Huan
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yuqi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenzhe Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; China Testing & Certification International Group Co.,Ltd., Beijng 100024, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
4
|
Zhang X, Wang Y, Lee S, Liang K, Zhao K, McCarty GW, Alfieri JG, Moglen GE, Hively WD, Myers DT, Oviedo-Vargas D, Nguyen TV, Hinson AL, Du L, Romeiko XX. Synergistic water quality and soil organic carbon sequestration benefits of winter cover crops. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123104. [PMID: 39486296 DOI: 10.1016/j.jenvman.2024.123104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/06/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Winter cover crops (WCCs) are promising best management practices for reducing nitrogen and sediment pollution and increasing soil organic carbon (SOC) sequestration in agricultural fields. Although previous watershed studies assessed water quality benefits of growing WCCs in the Chesapeake Bay watershed, the SOC sequestration impacts remain largely unknown. Here, we designed six WCC scenarios in the Tuckahoe Watershed (TW) to understand potential synergies or tradeoffs between multiple impacts of WCCs. Besides corroborating the nitrate reduction benefits of WCCs that have been reported in previous studies, our results also demonstrated comparable reduction in sediment. We also found that the six WCC scenarios can sequester 0.45-0.92 MgC ha-1 yr-1, with early-planted WCCs having more than 70% SOC sequestration benefits compared with their late-planted counterparts. With a linear extrapolation to all the cropland in Maryland, WCCs hold potential to contribute 2.1-4.4% toward Maryland's 2030 Greenhouse Gases reduction goal. Additionally, we showed that WCCs can noticeably increase evapotranspiration and decrease water yield and streamflow, potentially impacting aquatic ecosystem health and water supply. Overall, this study highlights the synergistic water quality and SOC sequestration benefits of WCCs in the Chesapeake Bay watershed. Meanwhile, sustainable adoption of WCCs into existing crop rotations will also require careful assessment of their impact on water availability.
Collapse
Affiliation(s)
- Xuesong Zhang
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705-2350, United States.
| | - Yiming Wang
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705-2350, United States
| | - Sangchul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kang Liang
- Earth System Science Interdisciplinary Center, College Park, MD, 20740, United States
| | - Kaiguang Zhao
- School of Environment and Natural Resources, Ohio Agricultural and Research Development Center, The Ohio State University, Wooster, OH, 44691, United States
| | - Gregory W McCarty
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705-2350, United States
| | - Joseph G Alfieri
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705-2350, United States
| | - Glenn E Moglen
- Department of Civil and Environmental Engineering, The University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - W Dean Hively
- Lower Mississippi-Gulf Water Science Center, 12201 Sunrise Valley Dr., Reston, VA, 20192, United States
| | - Daniel T Myers
- Stroud Water Research Center, 970 Spencer Road, Avondale, PA, 19311, United States
| | - Diana Oviedo-Vargas
- Stroud Water Research Center, 970 Spencer Road, Avondale, PA, 19311, United States
| | - Tam V Nguyen
- Department Hydrogeologie (HDG), Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Audra L Hinson
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705-2350, United States
| | - Ling Du
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705-2350, United States; Department of Environmental Science & Technology, University of Maryland, College Park, MD 20742, USA
| | - Xiaobo Xue Romeiko
- Department of Environmental Health Sciences, University at Albany, State University of New York, United States
| |
Collapse
|
5
|
Kazmi SAD, Soomro T, Soomro R, Zeeshan Khan F, Jabeen B, Abbas T, Raza Y, Mirani ZA. Impact of Biofilms on Surface Properties of Polymethyl Methacrylate (PMMA) Resins. J Basic Microbiol 2024:e2400460. [PMID: 39462974 DOI: 10.1002/jobm.202400460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Poly(methyl methacrylate) (PMMA) resins are widely used in medical and dental applications. Their susceptibility to bacterial biofilm formation poses significant challenges related to material degradation and infection risk. This study investigated the effects of Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) biofilms on PMMA resin surface properties over a 45-day period at 35°C. The study examined various parameters including biofilm adhesion, morphology, surface roughness, hydrophobicity, solid fraction, and zeta potential. PMMA resin specimens were inoculated with bacteria and incubated for 45 days. Biofilm adhesion was visually assessed, while surface characterization was conducted using scanning electron microscopy (SEM), atomic force microscopy (AFM), roughness analysis, contact angle measurements, solid fraction determination, and zeta potential analysis. The P. aeruginosa and S. aureus isolates were selected based on their biofilm-positive characteristics, which were further confirmed using Congo red and biofilm formation assays through crystal violet staining and spectrophotometric analysis. The results demonstrated robust biofilm adhesion on PMMA surfaces. SEM and AFM imaging revealed textured surfaces with elevated structures and depressions within the biofilm matrix. Biofilm-exposed resins exhibited significantly increased roughness (Ra = 164.5 nm, Rq = 169.5 nm) and hydrophobicity (mean angle = 85.5°-90.5°) compared to control samples (Ra = 38-50 nm, angle = 55°). Solid fraction measurements indicated a denser biofilm matrix on exposed resins (0.908) compared to controls (0.65). Additionally, zeta potential values were more negative for biofilm-exposed resins (mean = -84.2 mV) than controls (-45.0 mV). These findings underscore the substantial alterations in PMMA resin surface properties induced by bacterial biofilms, emphasizing the critical need for strategies to prevent biofilm formation and mitigate associated risks in healthcare settings. Future research should focus on developing anti-biofilm coatings or treatments to preserve the integrity and functionality of PMMA materials.
Collapse
Affiliation(s)
| | - Tahira Soomro
- Department of Microbiology, University of Karachi-Pakistan, Karachi, Pakistan
| | - Rimsha Soomro
- Department of Microbiology, University of Karachi-Pakistan, Karachi, Pakistan
| | - Fouzia Zeeshan Khan
- Department of Microbiology, Dow University of Health Sciences Karachi-Pakistan, Karachi, Pakistan
| | - Bushra Jabeen
- Department of Prosthodontics, Dow International Dental Collage (DUHS), Karachi, Sindh-Pakistan
| | - Tanveer Abbas
- Department of Microbiology, University of Karachi-Pakistan, Karachi, Pakistan
| | - Yasir Raza
- Department of Microbiology, University of Karachi-Pakistan, Karachi, Pakistan
| | - Zulfiqar Ali Mirani
- Microbiology Section, PCSIR Laboratories Complex Karachi-Pakistan, Karachi, Pakistan
| |
Collapse
|
6
|
Li Z, Wang Q, Lei Z, Zheng H, Zhang H, Huang J, Ma Q, Li F. Biofilm formation and microbial interactions in moving bed-biofilm reactors treating wastewater containing pharmaceuticals and personal care products: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122166. [PMID: 39154385 DOI: 10.1016/j.jenvman.2024.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
The risk of pharmaceuticals and personal care products (PPCPs) has been paid more attention after the outbreak of COVID-19, threatening the ecology and human health resulted from the massive use of drugs and disinfectants. Wastewater treatment plants are considered the final stop to restrict PPCPs from wide spreading into the environment, but the performance of conventional treatment is limited due to their concentrations and characteristics. Previous studies have shown the unreplaceable capability of moving bed-biofilm reactor (MBBR) as a cost-effective method with layered microbial structure for treating wastewater even with toxic compounds. The biofilm community and microbial interactions are essential for the MBBR process in completely degrading or converting types of PPCPs to secondary metabolites, which still need further investigation. This review starts with discussing the initiation of MBBR formation and its influencing parameters according to the research on MBBRs in the recent years. Then the efficiency of MBBRs and the response of biofilm after exposure to PPCPs are further addressed, followed by the bottlenecks proposed in this field. Some critical approaches are also recommended for mitigating the deficiencies of MBBRs based on the recently published publications to reduce the environmental risk of PPCPs. Finally, this review provides fundamental information on PPCPs removal by MBBRs with the main focus on microbial interactions, promoting the MBBRs to practical application in the real world of wastewater treatment.
Collapse
Affiliation(s)
- Zhichen Li
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Qian Wang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hao Zheng
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Haoshuang Zhang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Jiale Huang
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Qihao Ma
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Fengmin Li
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Qingdao, 266003, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266003, China; Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China.
| |
Collapse
|
7
|
Geng H, Xu Y, Liu R, Xu J, Li X, Yang D, Dai X. Magnetic porous microspheres altering interfacial thermodynamics of sewage sludge to drive metabolic cooperation for efficient methanogenesis. WATER RESEARCH 2024; 261:122022. [PMID: 39002417 DOI: 10.1016/j.watres.2024.122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Controllable and recyclable magnetic porous microspheres (MPMs) have been proposed as a means for enhancing the anaerobic digestion (AD) of sludge, as they do not require continuous replenishment and can serve as carriers for anaerobes. However, the effects of MPMs on the interfacial thermodynamics of sludge and the biological responses triggered by abiotic effects in AD systems remain to be clarified. Herein, the underlying mechanisms by which MPMs alter the solid-liquid interface of sludge to drive methanogenesis were investigated. A significant increase in the contents of 13C and 2H (D) in methane molecules was observed in the presence of MPMs, suggesting that MPMs might enhance the CO2-reduction methanogenesis and participation of water in methane generation. Experimental results demonstrated that the addition of MPMs did not promote the anaerobic bioconversion of soluble organics for methanogenesis, suggesting that the enhanced methanogenesis and water participation were not achieved through promotion of the bioconversion of original liquid-state organics in sludge. Analyses of the capillary force, surface adhesion force, and interfacial proton-coupled electron transfer (PCET) of MPMs revealed that MPMs can enhance mass transfer, effective contact, and electron-proton transfer with sludge. These outcomes were confirmed by the statistical analyses of variations in the interfacial thermodynamics and PCET of sludge with and without MPMs during AD. It was thus proposed that the MPMs enhanced the PCET of sludge and PCET-driven release of protons from water by promoting the interfacial Lewis acid-base interactions of sludge, thereby resulting in the enrichment of free and attached methanogenic consortia and the high energy-conserving metabolic cooperation. This proposition was further confirmed by identifying the predominant syntrophic partners, suggesting that PCET-based efficient methanogenesis was attributable to the enrichment of genomes harbouring CO2-reducing pathway and genes encoding water-mediated proton transfer. These findings offer new insights into how substrate properties can be altered by exogenous materials to enable highly efficient methanogenesis.
Collapse
Affiliation(s)
- Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jun Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
8
|
Cao J, Xu A, Gao D, Gong X, Cheng L, Zhou Q, Yang T, Gong F, Liu Z, Liang H. Enhance PD/A biofilm formation via a novel biochar/tourmaline modified-biocarriers to treat low-strength contaminated surface water: Initial adhesion and high-substrate microenvironment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121803. [PMID: 39002458 DOI: 10.1016/j.jenvman.2024.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
In this work, a novel polyurethane carrier modified with biochar and tourmaline/zeolite powder at ratio of 1:1 and 1:2 was developed to promote the formation of biofilms and the synergy of overall bacterial activity for Partial Denitrification/Anammox to treat low-nitrogen contaminated surface water. Based on the batch experiment, the modified biocarrier, BTP2 (biochar: tourmaline = 2: 1), exhibited the highest total nitrogen removal efficiency (83.63%) under influent total nitrogen of 15 mg/L and COD/NO3- of 3. The dense biofilm was formed in inner side of biocarrier owing to the increased surface roughness and various functional groups suggested by scanning electron microscopy and Fourier-transform infrared analysis. The EPS content increased from 200.15 to 220.26 mg/g VSS in BTP2 system. Besides, the rapid NH4+ capture and organics release of the modified carrier fueled the growth of anammox and denitrification bacteria, with the activity of 2.13 ± 0.52 mg N/gVSS/h and 6.70 ± 0.52 mg N/gVSS/h (BTP2). High-throughput sequencing unraveled the increased abundances of Candidatus_Competibacter (0.82%), Thauera (0.60%) and Candidatus_Brocadia (0.55%) which was responsible for the synergy of incomplete reduction of NO3- to NO2- and NH4+ oxidation. Overall, this study provided a valid and simple-control guide for biofilm formation towards rapid enrichment and great collaboration of Anammox and denitrification bacteria.
Collapse
Affiliation(s)
- Jiashuo Cao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Xiaofei Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lang Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qixiang Zhou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Tianfu Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Fugeng Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zhenkun Liu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
9
|
Samdan C, Demiral H, Simsek YE, Demiral I, Karabacakoglu B, Bozkurt T, Cin HH. Effective degradation of bentazone by two-dimensional and three-phase, three-dimensional electro-oxidation system: kinetic studies and optimization using ANN. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51267-51299. [PMID: 39107643 DOI: 10.1007/s11356-024-34493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Bentazone is a broad-leaved weed-specific herbicide in the pesticide industry. This study focused on removing bentazone from water using three different methods: a two and three-dimensional electro-oxidation process (2D/EOP and 3D/EOP) with a fluid-type reactor arrangement using tetraethylenepentamine-loaded particle electrodes and an adsorption method. Additionally, we analysed the effects of two types of supporting electrolytes (Na2SO4 and NaCl) on the degradation process. The energy consumption amounts were calculated to evaluate the obtained results. The degradation reaction occurs 3.5 times faster in 3D/EOP than in 2D/EOP at 6 V in Na2SO4. Similarly, the degradation reaction of bentazone in NaCl occurs 2.5 times faster in 3D/EOP than in 2D/EOP at a value of 7.2 mA/cm2. Removal of bentazone is significantly better in 3D/EOPs than in 2D/EOPs. The use of particle electrodes can significantly enhance the degradation efficiency. The study further assessed the prediction abilities of the machine learning model (ANN). The ANN presented reasonable accuracy in bentazone degradation with high R2 values of 0.97953, 0.98561, 0.98563, and 0.99649 for 2D with Na2SO4, 2D with NaCl, 3D with Na2SO4, and 3D with NaCl, respectively.
Collapse
Affiliation(s)
- Canan Samdan
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480, Eskişehir, Turkey.
| | - Hakan Demiral
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480, Eskişehir, Turkey
| | - Yunus Emre Simsek
- Department of Chemical Engineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11100, TR, Bilecik, Turkey
| | - Ilknur Demiral
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480, Eskişehir, Turkey
| | - Belgin Karabacakoglu
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Eskisehir Osmangazi University, 26480, Eskişehir, Turkey
| | - Tugce Bozkurt
- Chemical Engineering Department, Eskişehir Osmangazi University, 26480, Eskişehir, Turkey
| | - Hatice Hurrem Cin
- Chemical Engineering Department, Eskişehir Osmangazi University, 26480, Eskişehir, Turkey
| |
Collapse
|
10
|
Samadi A, Kermanshahi Pour A, Beims RF, Xu CC. Delignified porous wood as biofilm support for 1,4-dioxane-degrading bacterial consortium. ENVIRONMENTAL TECHNOLOGY 2024; 45:2541-2557. [PMID: 36749305 DOI: 10.1080/09593330.2023.2178330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Delignified porous wood samples were used as carriers for biofilm formation of a bacterial consortium with the ability to degrade 1,4-dioxane (DX). The delignification treatment of the natural wood resulted in higher porosity, formation of macropores, increase in surface roughness and hydrophilicity of the treated wood pieces. These superior properties of two types of treated carriers (respectively, A and B) compared to the untreated wood resulted in 2.19 ± 0.52- and 2.66 ± 0.23-fold higher growth of biofilm. Moreover, analysis of the fatty acid profiles indicated an increase in proportion of the saturated fatty acids during the biofilm formation, characterising an enhancement in rigidity and hydrophobicity of the biofilms. DX initial concentration of 100 mg/L was completely degraded (detection limit 0.01 mg/L) in 24 and 32 h using the treated A and B woods, while only 25.84 ± 5.95% was removed after 32 h using the untreated wood. However, fitting the DX biodegradation data to the Monod model showed a lower maximum specific growth rate for biofilm (0.0276 ± 0.0018 1/h) versus planktonic (0.0382 ± 0.0024 1/h), because of gradual accumulation of inactive cells in the biofilm. Findings of this study can contribute to the knowledge of biofilm formation regarding the physical/chemical properties of biofilm carriers and be helpful to the ongoing research on bioremediation of DX.
Collapse
Affiliation(s)
- Aryan Samadi
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Canada
| | - Azadeh Kermanshahi Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Canada
| | - Ramon Filipe Beims
- Department of Biochemical and Chemical Engineering, University of Western Ontario, London, Canada
| | - Chunbao Charles Xu
- Department of Biochemical and Chemical Engineering, University of Western Ontario, London, Canada
| |
Collapse
|
11
|
Geng H, Xu Y, Liu R, Yang D, Dai X. Magnetic porous microspheres enhancing the anaerobic digestion of sewage sludge: Synergistic free and attached methanogenic consortia. WATER RESEARCH 2024; 254:121393. [PMID: 38428236 DOI: 10.1016/j.watres.2024.121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
The addition of exogenous materials is a commonly reported method for promoting the anaerobic digestion (AD) of sludge. However, most exogenous materials are nano-sized and their use encounters problems relating to a need for continuous replenishment, uncontrollability and non-recyclability. Here, magnetic porous microspheres (MPMs), which can be controlled by magnetic forces, were prepared and used to enhance the methanogenesis of sludge. It was observed that the MPMs were spherical particles with diameters of approximately 100 µm and had a stable macroporous hybrid structure of magnetic cores and polymeric shells. Furthermore, the MPMs had good magnetic properties and a strong solid-liquid interfacial electron transfer ability, suggesting that MPMs are excellent carriers for methanogenic consortia. Experimental results showed that the addition of MPMs increased methane production and the proportion of methane in biogas from AD by 100.0 % and 21.2 %, respectively, indicating the MPMs notably enhanced the methanogenesis of sludge. Analyses of variations in key enzyme activities and electron transfer in sludge samples with and without MPMs in AD revealed that the MPMs significantly enhanced the activities of key enzymes involved in hydrolysis, acidification and methanation. This was achieved mainly by enhancing the extracellular electron transfer to strengthen the proton motive force on the cell membrane, which provides more energy generation for methanogenic metabolism. A careful examination of the variations in the morphology, pore structure and magnetism of the MPMs before and after AD revealed that the MPMs increased the prevalence of many highly active anaerobes, and that this did not weaken the magnetic performance. The microbial community structure and metatranscriptomic analysis further indicated that the acetotrophic methanogens (i.e., Methanosaeta) were mainly in a free state and that CO2-reducing methanogens (i.e., Methanolinea and Methanobacterium) mainly adhered to the MPMs. The above synergistic metabolism led to efficient methanogenesis, which indicates that the MPMs optimised the spatial ecological niche of methanogenic consortia. These findings provide an important reference for the development of magnetic porous materials promoting AD.
Collapse
Affiliation(s)
- Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
12
|
Clark GG, Geisler D, Coey EJ, Pollitz LJ, Zaki FR, Huang C, Boppart SA, Nguyen TH. Influence of phosphate on bacterial release from activated carbon point-of-use filters and on biofilm characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169932. [PMID: 38199359 PMCID: PMC11090127 DOI: 10.1016/j.scitotenv.2024.169932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/29/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Point-of-use (POU) filters certified to remove lead are often composed of activated carbon and have been shown to release high concentrations of bacteria, including opportunistic pathogens. In this study, we examine the impacts of the common corrosion inhibitor phosphate on biofilm characteristics and the relationship between biofilm structure and bacterial release from POU filters. This knowledge is essential for understanding how best to use the filters and where these filters fit in a system where other lead contamination prevention measures may be in place. We measured the bacterial release from activated carbon POU filters fed with groundwater - a common source of drinking water - with and without phosphate. We used optical coherence tomography (OCT) to quantitatively characterize biofilm growing on activated carbon filter material in which the biofilms were fed groundwater with and without phosphate. Phosphate filters released significantly less (57-87 %) bacteria than groundwater filters, and phosphate biofilms (median thickness: 82-331 μm) grew to be significantly thicker than groundwater biofilms (median thickness: 122-221 μm). The phosphate biofilm roughness ranged from 97 to 142 % of the groundwater biofilm roughness and was significantly greater in most weeks. Phosphate biofilms also had fewer pores per biofilm volume and shorter channels connecting those pores.
Collapse
Affiliation(s)
- Gemma G Clark
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States of America.
| | - Dietrich Geisler
- Department of Computer Science, Cornell University, United States of America
| | - Evan J Coey
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States of America
| | - Lance J Pollitz
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States of America
| | - Farzana R Zaki
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States of America
| | - Conghui Huang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States of America
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, United States of America; Department of Bioengineering, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, United States of America; Carle Illinois College of Medicine, United States of America
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States of America; Carle Illinois College of Medicine, United States of America; Institute of Genomic Biology, University of Illinois at Urbana-Champaign, United States of America
| |
Collapse
|
13
|
Wang H, Dong Y, Jiang Y, Zhang N, Liu Y, Lu X, Fan Y. Multiple stressors determine the process of the benthic diatom community assembly and network stability in urban water bodies in Harbin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169536. [PMID: 38141986 DOI: 10.1016/j.scitotenv.2023.169536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Human activities have triggered biodiversity loss, often resulting in biotic homogenization, which poses a threat to human well-being. Nevertheless, the overall influence of diverse environmental stressors on intra- and inter-community diversity remains insufficiently elucidated. This study aimed to quantify and reveal the impact of environmental stressors on the alpha and beta diversities of benthic diatom communities in the Harbin urban river network during the summer and autumn of 2022 and spring of 2023. The marked seasonal variations observed in alpha and beta diversity indices highlighted the distinct community compositions. Nonetheless, varying types of urban water pollutants were the primary drivers of biotic homogenization in terms of both taxonomic and functional diversities and played a prominent role in steering diversity shifts. These pollutants indirectly led to biotic homogenization by altering water quality parameters and affecting the ecological dynamics of benthic diatom communities. Furthermore, diverse responses to stressors were identified in taxonomic and functional diversities, providing additional insights for understanding ecological shifts in communities. Taxonomic beta diversity was related to environmental filtering, whereas functional beta diversity resulted from stressor-spatial dimension interactions. Our study emphasises that relying solely on traditional water quality monitoring may not fully reveal the current state of river ecosystem protection, and the need to study the continuous changes in biodiversity across seasons in urban waterbodies from the perspective of various stressors is highlighted.
Collapse
Affiliation(s)
- Hao Wang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Yanlong Dong
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Yutong Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Nannan Zhang
- Modern Educational Technology and Experiment Center, Harbin Normal University, Harbin 150025, China
| | - Yan Liu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Xinxin Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| | - Yawen Fan
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
14
|
Xu R, Hu S, Wan H, Xie Y, Cai Y, Wen J. A unified deep learning framework for water quality prediction based on time-frequency feature extraction and data feature enhancement. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119894. [PMID: 38154219 DOI: 10.1016/j.jenvman.2023.119894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/02/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Deep learning methods exhibited significant advantages in mapping highly nonlinear relationships with acceptable computational speed, and have been widely used to predict water quality. However, various model selection and construction methods resulted in differences in prediction accuracy and performance. Hence, a unified deep learning framework for water quality prediction was established in the paper, including data processing module, feature enhancement module, and data prediction module. In the established model, the data processing module based on wavelet transform method was applied to decomposing complex nonlinear meteorology, hydrology, and water quality data into multiple frequency domain signals for extracting self characteristics of data cyclic and fluctuations. The feature enhancement module based on Informer Encoder was used to enhance feature encoding of time series data in different frequency domains to discover global time dependent features of variables. Finally, the data prediction module based on the stacked bidirectional long and short term memory network (SBiLSTM) method was employed to strengthen the local correlation of feature sequences and predict the water quality. The established model framework was applied in Lijiang River in Guilin, China. The maximum relative errors between the predicted and observed values for dissolved oxygen (DO), chemical oxygen demand (CODMn) were 12.4% and 20.7%, suggesting a satisfactory prediction performance of the established model. The validation results showed that the established model was superior to all other models in terms of prediction accuracy with RMSE values 0.329, 0.121, MAE values 0.217, 0.057, SMAPE values 0.022, 0.063 for DO and CODMn, respectively. Ablation tests confirmed the necessity and rationality of each module for the established model framework. The established method provided a unified deep learning framework for water quality prediction.
Collapse
Affiliation(s)
- Rui Xu
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Shengri Hu
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Hang Wan
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yulei Xie
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanpeng Cai
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianhui Wen
- Ecological and Environmental Monitoring Center of Guangxi, Guilin, 541002, China
| |
Collapse
|
15
|
Xiao X, Peng Y, Zhang W, Yang X, Zhang Z, Ren B, Zhu G, Zhou S. Current status and prospects of algal bloom early warning technologies: A Review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119510. [PMID: 37951110 DOI: 10.1016/j.jenvman.2023.119510] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
In recent years, frequent occurrences of algal blooms due to environmental changes have posed significant threats to the environment and human health. This paper analyzes the reasons of algal bloom from the perspective of environmental factors such as nutrients, temperature, light, hydrodynamics factors and others. Various commonly used algal bloom monitoring methods are discussed, including traditional field monitoring methods, remote sensing techniques, molecular biology-based monitoring techniques, and sensor-based real-time monitoring techniques. The advantages and limitations of each method are summarized. Existing algal bloom prediction models, including traditional models and machine learning (ML) models, are introduced. Support Vector Machine (SVM), deep learning (DL), and other ML models are discussed in detail, along with their strengths and weaknesses. Finally, this paper provides an outlook on the future development of algal bloom warning techniques, proposing to combine various monitoring methods and prediction models to establish a multi-level and multi-perspective algal bloom monitoring system, further improving the accuracy and timeliness of early warning, and providing more effective safeguards for environmental protection and human health.
Collapse
Affiliation(s)
- Xiang Xiao
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yazhou Peng
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Xiuzhen Yang
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zhi Zhang
- Laboratory of Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, China
| | - Bozhi Ren
- School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Guocheng Zhu
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Saijun Zhou
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
16
|
Liu C, Yue Y, Zheng S, Liu X, Pang L, Yang Z. Impacts of substrate properties and aquatic nutrient concentrations on the relative abundance of nitrifying/denitrifying genes and the associated microbes in epilithic biofilms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120930-120944. [PMID: 37945964 DOI: 10.1007/s11356-023-30818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
Substrates like sand or gravels and aquatic nutrient concentrations of rivers are highly heterogeneous, influencing the abundance of functional genes in epilithic biofilms where nitrification-denitrification processes take place. To analyze how the relative abundance of nitrifying/denitrifying genes and the associated microbes changes with the physical properties of substrates and aquatic concentrations of nutrients, this paper utilized metagenomics to comprehensively characterize these functional genes (i.e., amoA, hao, and nxrB involved in nitrification, and napA, narG, nirS, norB, and nosZ associated with denitrification) from epilithic biofilms collected along the Shitingjiang River in Southwest China and further obtained the relative abundance of major nitrifiers and denitrifiers. The results show that substrate size most significantly affects the relative abundance of hao and norB by altering the hydrodynamic conditions. In sampling sites with high heterogeneity in substrate size distribution, the relative abundance of most denitrifying genes is also higher. The carbon-nitrogen ratio negatively correlates with the relative abundance of all the nitrifying genes, while ammonium, total inorganic carbon, and total organic carbon concentrations positively affect the relative abundance of amoA and nxrB. As to the relative abundance of nitrifiers and denitrifiers, mainly belonging to phyla Proteobacteria and Actinobacteria, substrate heterogeneity and the aquatic concentrations of nutrients have greater influences than substrate size. Also, the substrate heterogeneity exerted positive influence on functional species of Pseudogemmobacter bohemicus and Paracoccus zhejiangensis. Considering the genes' functions and the dominant species linked to denitrification, nitrous oxide is more likely to occur in rivers with higher heterogeneity and larger substrates.
Collapse
Affiliation(s)
- Caiqiong Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
| | - Yao Yue
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
- Institute for Water-Carbon Cycles and Carbon Neutrality, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Shan Zheng
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
| | - Xuna Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zhonghua Yang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
17
|
Droumpali A, Liu Y, Ferrer-Florensa X, Sternberg C, Dimaki M, Andersen AJC, Strube ML, Kempen PJ, Gram L, Taboryski R. Biosynthesis enhancement of tropodithietic acid (TDA) antibacterial compound through biofilm formation by marine bacteria Phaeobacter inhibens on micro-structured polymer surfaces. RSC Adv 2023; 13:33159-33166. [PMID: 37964901 PMCID: PMC10641763 DOI: 10.1039/d3ra05407a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/29/2023] [Indexed: 11/16/2023] Open
Abstract
Although aquaculture is a major player in current and future food production, the routine use of antibiotics provides ample ground for development of antibiotic resistance. An alternative route to disease control is the use of probiotic bacteria such as the marine bacteria Phaeobacter inhibens which produces tropodithietic acid (TDA) that inhibit pathogens without affecting the fish. Improving conditions for the formation of biofilm and TDA-synthesis is a promising avenue for biocontrol in aquaculture. In this study, the biosynthesis of TDA by Phaeobacter inhibens grown on micro-structured polymeric surfaces in micro-fluidic flow-cells is investigated. The formation of biofilms on three surface topographies; hexagonal micro-pit-arrays, hexagonal micro-pillar-arrays, and planar references is investigated. The biomass on these surfaces is measured by a non-invasive confocal microscopy 3D imaging technique, and the corresponding TDA production is monitored by liquid chromatography mass spectrometry (LC-MS) in samples collected from the outlets of the microfluidic channels. Although all surfaces support growth of P. inhibens, biomass appears to be decoupled from total TDA biosynthesis as the micro-pit-arrays generate the largest biomass while the micro-pillar-arrays produce significantly higher amounts of TDA. The findings highlight the potential for optimized micro-structured surfaces to maintain biofilms of probiotic bacteria for sustainable aquacultures.
Collapse
Affiliation(s)
- Ariadni Droumpali
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark Ørsteds Plads, Building 347 DK-2800 Kgs. Lyngby Denmark
| | - Yuyan Liu
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark Ørsteds Plads, Building 347 DK-2800 Kgs. Lyngby Denmark
| | - Xavier Ferrer-Florensa
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 221 DK-2800 Kgs. Lyngby Denmark
| | - Claus Sternberg
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 221 DK-2800 Kgs. Lyngby Denmark
| | - Maria Dimaki
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 221 DK-2800 Kgs. Lyngby Denmark
| | - Aaron J C Andersen
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 221 DK-2800 Kgs. Lyngby Denmark
| | - Mikael L Strube
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 221 DK-2800 Kgs. Lyngby Denmark
| | - Paul J Kempen
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark Ørsteds Plads, Building 347 DK-2800 Kgs. Lyngby Denmark
| | - Lone Gram
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark Søltofts Plads, Building 221 DK-2800 Kgs. Lyngby Denmark
| | - Rafael Taboryski
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark Ørsteds Plads, Building 347 DK-2800 Kgs. Lyngby Denmark
| |
Collapse
|
18
|
Yang Y, Chen J, Zhou T, Liu D, Yang Q, Xiao H, Liu D, Chen J, Xia Z, Xu W. Effects of freeze-thaw cycling on the engineering properties of vegetation concrete. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118810. [PMID: 37595461 DOI: 10.1016/j.jenvman.2023.118810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Vegetation concrete has been widely applied for the ecological restoration of bare steep slopes in short-term frozen and non-frozen soil regions in China. However, field experiments conducted in seasonally frozen soil regions have revealed decreases in the bulk density, nutrient content and vegetation coverage. This study aimed to clarify the evolution process and mechanism of the engineering properties of vegetation concrete under atmospheric freeze-thaw (F-T) test conditions. The physical, mechanical, and nutrient properties of vegetation concrete were investigated using six F-T cycles (0, 1, 2, 5, 10 and 20) and two initial soil water contents (18 and 22%). The results revealed decreases in the acoustic wave velocity and cohesive forces and an increase in the permeability coefficient of the vegetation concrete owing to F-T action. X-ray diffraction tests indicated that the decreased cohesive force was closely related to the overall decrease in the content of gelling hydration products in the vegetation concrete. Additionally, the contents of NH4+-N, PO43-P and K+ in the vegetation concrete increased, whereas that of NO3--N decreased. The loss rates of these soluble nutrients increased, indicating that the nutrient retention capacity of the vegetation concrete had decreased. Specifically, the decreased nutrient retention capacity was mainly related to the disintegration and fragmentation of larger aggregates due to F-T action. This study provides theoretical support for future research on improving the anti-freezing capability of ecological slope protection substrates in seasonally frozen soil regions.
Collapse
Affiliation(s)
- Yueshu Yang
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area (China Three Gorges University), Ministry of Education, Yichang, 443002, PR China; College of Civil Engineering & Architecture, China Three Gorges University, China; Hubei Provincial Engineering Research Center of Slope Habitat Construction Technique Using Cement-Based Materials, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Jinshun Chen
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area (China Three Gorges University), Ministry of Education, Yichang, 443002, PR China; College of Civil Engineering & Architecture, China Three Gorges University, China
| | - Tianli Zhou
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area (China Three Gorges University), Ministry of Education, Yichang, 443002, PR China; College of Civil Engineering & Architecture, China Three Gorges University, China
| | - Daxiang Liu
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area (China Three Gorges University), Ministry of Education, Yichang, 443002, PR China; Key Laboratory of Mountain Hazards and Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, PR China; Hubei Provincial Engineering Research Center of Slope Habitat Construction Technique Using Cement-Based Materials, China Three Gorges University, Yichang, 443002, Hubei, China.
| | - Qi Yang
- Power China Guiyang Engineering Corporation Limited, Guizhou Province, Guiyang, 550081, China
| | - Hai Xiao
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area (China Three Gorges University), Ministry of Education, Yichang, 443002, PR China; College of Civil Engineering & Architecture, China Three Gorges University, China
| | - Deyu Liu
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area (China Three Gorges University), Ministry of Education, Yichang, 443002, PR China; College of Civil Engineering & Architecture, China Three Gorges University, China
| | - Jiangang Chen
- Key Laboratory of Mountain Hazards and Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Zhenyao Xia
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area (China Three Gorges University), Ministry of Education, Yichang, 443002, PR China; College of Civil Engineering & Architecture, China Three Gorges University, China
| | - Wennian Xu
- Key Laboratory of Geological Hazards on Three Gorges Reservoir Area (China Three Gorges University), Ministry of Education, Yichang, 443002, PR China; College of Civil Engineering & Architecture, China Three Gorges University, China
| |
Collapse
|
19
|
Mishra S, Cheng L, Lian Y. Response of biofilm-based systems for antibiotics removal from wastewater: Resource efficiency and process resiliency. CHEMOSPHERE 2023; 340:139878. [PMID: 37604340 DOI: 10.1016/j.chemosphere.2023.139878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
Biofilm-based systems have efficient stability to cope-up influent shock loading with protective and abundant microbial assemblage, which are extensively exploited for biodegradation of recalcitrant antibiotics from wastewater. The system performance is subject to biofilm types, chemical composition, growth and thickness maintenance. The present study elaborates discussion on different type of biofilms and their formation mechanism involving extracellular polymeric substances secreted by microbes when exposed to antibiotics-laden wastewater. The biofilm models applied for estimation/prediction of biofilm-based systems performance are explored to classify the application feasibility. Further, the critical review of antibiotics removal efficiency, design and operation of different biofilm-based systems (e.g. rotating biological contactor, membrane biofilm bioreactor etc.) is performed. Extending the information on effect of various process parameters (e.g. hydraulic retention time, pH, biocarrier filling ratio etc.), the microbial community dynamics responsible of antibiotics biodegradation in biofilms, the technological problems, related prospective and key future research directions are demonstrated. The biofilm-based system with biocarriers filling ratio of ∼50-70% and predominantly enriched with bacterial species of phylum Proteobacteria protected under biofilm thickness of ∼1600 μm is effectively utilized for antibiotic biodegradation (>90%) when operated at DO concentration ≥3 mg/L. The C/N ratio ≥1 is best suitable condition to eliminate antibiotic pollution from biofilm-based systems. Considering the significance of biofilm-based systems, this review study could be beneficial for the researchers targeting to develop sustainable biofilm-based technologies with feasible regulatory strategies for treatment of mixed antibiotics-laden real wastewater.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Liu Cheng
- College of Environment, Hohai University, Nanjing, Jiangsu Province, 210098, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| |
Collapse
|
20
|
Chao Z, Jingru X, Ahmad M, Khan BZ, Yongyong H, Hongrui M, Mahmood Z. Facile approach for nanoconfinement of multilayer graphene oxide with polyether polyurethane sponge as biological carrier for the establishment of microalgal-bacterial bioreactor. BIORESOURCE TECHNOLOGY 2023; 378:128997. [PMID: 37011849 DOI: 10.1016/j.biortech.2023.128997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Physically precise and mechanically robust biocarrier is basic and urgent requirement of algal-bacterial wastewater treatment plants for homogenously biofilm growth. Herein, a highly efficient graphene oxide (GO) coordinated polyether polyurethane (PP) sponge was synthesized through GO incorporation into PP sponge to improve the GO coating, followed by UV-light treatment for industrial application. The resulted sponge showed remarkable physiochemical characteristics, excellent thermal (>0.02 Wm-1 K-1) and mechanical (>363.3 KPa) stability. To test the potential of sponge in real world scenarios, the activated sludge from real wastewater treatment plant was utilized. Interestingly, the GO-PP sponge enhanced the electron transfer between microorganisms and promoted the standardized microorganism's growth and biofilm formation (22.7 mg/d per gram sponge, 172.1 mg/g), providing the feasibility to accomplish a symbiotic system within specifically design upgraded algal-bacterial reactor. Furthermore, the continuous flow process by utilizing GO-PP sponge in algal-bacterial reactor demonstrated the effectiveness in treating low concentration antibiotic wastewater, presenting 86.7 % removal rate and >85 % after 20 cycles. Overall, this work illustrates an applicable strategy to develop a sophisticated modified pathway for the next-generation biological-based applications.
Collapse
Affiliation(s)
- Zhu Chao
- School of Environmental Science & Engineering. Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xu Jingru
- School of Environmental Science & Engineering. Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Momina Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Bushra Zia Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Hao Yongyong
- School of Environmental Science & Engineering. Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ma Hongrui
- School of Environmental Science & Engineering. Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zarak Mahmood
- School of Environmental Science & Engineering. Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
21
|
Ma Y, Yu Z, Jia S, Wu N, Yin K, Wang Y, Giesy JP, Jin X. Multiple anthropogenic stressors influence the taxonomic and functional homogenization of macroinvertebrate communities on the mainstream of an urban-agricultural river in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118017. [PMID: 37150169 DOI: 10.1016/j.jenvman.2023.118017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
Biodiversity loss is caused by intensive human activities and threatens human well-being. However, less is known about how the combined effects of multiple stressors on the diversity of internal (alpha diversity) and multidimensional (beta diversity) communities. Here, we conducted a long-term experiment to quantify the contribution of environmental stressors (including water quality, land use, climate factors, and hydrological regimes) to macroinvertebrate communities alpha and beta diversity in the mainstream of the Songhua River, the third largest river in China, from 2012 to 2019. Our results demonstrated that the alpha and beta diversity indices showed a decline during the study period, with the dissimilarity in community composition between sites decreasing significantly, especially in the impacted river sections (upper and midstream). Despite overall improvement in water quality after management intervention, multiple human-caused stressors still have led to biotic homogenization of macroinvertebrate communities in terms of both taxonomic and functional diversities in the past decade. Our study revealed the increased human land use explained an important portion of the variation of diversities, further indirectly promoting biotic homogenization by changing the physical and chemical factors of water quality, ultimately altering assemblage ecological processes. Furthermore, the facets of diversity have distinct response mechanisms to stressors, providing complementary information from the perspective of taxonomy and function to better reflect the ecological changes of communities. Environmental filtering determined taxonomic beta diversity, and functional beta diversity was driven by the joint efforts of stressors and spatial processes. Finally, we proposed that traditional water quality monitoring alone cannot fully reveal the status of river ecological environment protection, and more importantly, we should explore the continuous changes in biodiversity over the long term. Meanwhile, our results also highlight timely control of nutrient input and unreasonable expansion of land use can better curb the ecological degradation of rivers and promote the healthy and sustainable development of floodplain ecosystems.
Collapse
Affiliation(s)
- Yu Ma
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Zongling Yu
- Ecological Environmental Monitoring Central Station of Heilongjiang Province, Harbin, 150056, China
| | - Shiqi Jia
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, NingboUniversity, Ningbo, 315211, China
| | - Kun Yin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Yeyao Wang
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - John P Giesy
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48895, USA; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76798-7266, USA
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China.
| |
Collapse
|
22
|
Singh S, Soti A, Kulshreshtha NM, Kumar N, Brighu U, Gupta AB, Bezbaruah AN. Optimization of depth of filler media in horizontal flow constructed wetlands for maximizing removal rate coefficients of targeted pollutant(s). BIORESOURCE TECHNOLOGY 2023; 376:128898. [PMID: 36931442 DOI: 10.1016/j.biortech.2023.128898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Varying the depth of HFCW media causes differences in the redox status within the system, and hence the community structure and diversity of bacteria, affecting removal rates of different pollutants. The key functional microorganisms of CWs that remove contaminants belong to the phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. Secondary data of 111 HFCWs (1232 datasets) were analyzed to deduce the relationship between volumetric removal rate coefficients (KBOD, KTN, KTKN, and KTP) and depth. Equations of depth were derived in terms of rate coefficients using machine learning approach (MLR and SVR) (R2 = 0.85, 0.87 respectively). These equations were then used to find the optimum depth for pollutant(s) removal using Grey wolf optimization (GWO). The computed optimum depths were 1.48, 1.71, 1.91, 2.09, and 2.14 m for the removal of BOD, TKN, TN, TP, and combined nutrients, respectively, which were validated through primary data. This study would be helpful for optimal design of HFCWs.
Collapse
Affiliation(s)
- Saurabh Singh
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India
| | - Abhishek Soti
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India
| | - Niha Mohan Kulshreshtha
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India
| | - Nikhil Kumar
- Department of Electrical Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India
| | - Urmila Brighu
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India
| | - Akhilendra Bhushan Gupta
- Department of Civil Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, India.
| | - Achintya N Bezbaruah
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
23
|
Ahmad M, Yousaf M, Han JC, Huang Y, Zhou Y, Tang Z. Development of biocatalytic microbial ecosystem (FPUS@RODMs@In-PAOREs) for rapid and sustainable degradation of various refractory organics. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131514. [PMID: 37150099 DOI: 10.1016/j.jhazmat.2023.131514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The removal of diverse refractory organics from complex industrial wastewater continues to be a challenge. Although biological treatments are commonly employed, only partial degradation and increasing emergence of nitrogenous compounds, i.e., nitrate (NO3) and nitrite (NO2) would pose severe toxicity to the intact microbes. Herein, an efficient biocatalytic microbial ecosystem (BCME) was designed over a porous bio-carrier made of a functional polyurethane sponge (FPUS). The BCME comprised a unique set of organisms (RODMs) with novel metabolism, efficiently degrading highly-concentrated aromatics. Strategic enzyme immobilization was utilized to introduce in-situ production and aggregation of the oxidation and reduction enzymes (In-PAOREs) onto the FPUS, thereby ensuing sustained functions of the RODMs community. The developed FPUS@RODMs@In-PAOREs system was found to enhance the refractory organics removal rate to 4 kg/m3/day, and it would be attributed to the enzymatic catalysis of refractory organics (2000 mg/L) accompanied by the removal of COD (1200 mg/L) and nitrogenous compounds (200 mg/L). Besides, the fluctuating concentration of extra polymeric substances (EPS) played a dual role through enhancing adhesion, promoting the development of a functional microbial ecosystem, and creating an EPS gradient within the FPUS bio-carrier. This differential distribution of enzymes was established to significantly boost biocatalysis activity reaching 400 U/g VSS.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yuefei Huang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhaozhao Tang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
24
|
Jin F, Hu Z, Liu H, Su J, Zhang J, Wang S, Zhao Y. Impact of clogging on accumulation and stability of phosphorus in the subsurface flow constructed wetland. CHEMOSPHERE 2023; 313:137429. [PMID: 36462565 DOI: 10.1016/j.chemosphere.2022.137429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Substrate clogging is one of the major operation challenges of subsurface flow constructed wetlands (SSF-CWs). And the phosphorus (P) removal performance and stability of P accumulation of SSF-CWs would be varied with the development of substrate clogging. In this study, three horizontal SSF-CWs microcosms with different clogging degrees were conducted to explore the mechanism of P accumulation behavior influenced by substrate clogging. Increase in clogging degree resulted in hydraulic retention time (HRT) diminution and adsorption sites increase, which jointly led to reduced P removal efficiency at low clogging degree (L-CW), however, higher P removal efficiency was obtained as adsorption sites increase offset HRT diminution at high clogging degree (H-CW). Substrate adsorption was the primary removal pathway in all SSF-CW systems. It accounted for 77.86 ± 2.63% of the P input in the H-CW, significantly higher than the control (60.08 ± 4.79%). This was attributed to a higher proportion of Fe/Al-P accumulated on the substrate of H-CW, since clogging aggravated the anaerobic condition and promoted the generation of Fe ions. The increase in clogging degree also elevated the release risk of the accrued P in SSF-CWs, since Fe/Al-P was considered bioavailable and readily released under environmental disturbance. The obtained results provide new insights into the P transport and transformation in SSF-CWs and would be helpful to optimize substrate clogging management.
Collapse
Affiliation(s)
- Fenglin Jin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jixin Su
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shuo Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Yanhui Zhao
- Field Monitoring Station of the Ministry of Education for the East Route of the South-to-North Water Transfer Project, Shandong University, Jinan 250100, PR China
| |
Collapse
|
25
|
Rambabu K, Avornyo A, Gomathi T, Thanigaivelan A, Show PL, Banat F. Phycoremediation for carbon neutrality and circular economy: Potential, trends, and challenges. BIORESOURCE TECHNOLOGY 2023; 367:128257. [PMID: 36343781 DOI: 10.1016/j.biortech.2022.128257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Phycoremediation is gaining attention not only as a pollutant mitigation approach but also as one of the most cost-effective paths to achieve carbon neutrality. When compared to conventional treatment methods, phycoremediation is highly effective in removing noxious substances from wastewater and is inexpensive, eco-friendly, abundantly available, and has many other advantages. The process results in valuable bioproducts and bioenergy sources combined with pollutants capture, sequestration, and utilization. In this review, microalgae-based phycoremediation of various wastewaters for carbon neutrality and circular economy is analyzed scientometrically. Different mechanisms for pollutants removal and resource recovery from wastewaters are explained. Further, critical parameters that influence the engineering design and phycoremediation performance are described. A comprehensive knowledge map highlighting the microalgae potential to treat a variety of industrial effluents is also presented. Finally, challenges and future prospects for industrial implementation of phycoremediation towards carbon neutrality coupled with circular economy are discussed.
Collapse
Affiliation(s)
- K Rambabu
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Amos Avornyo
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - T Gomathi
- Biomaterials Research Lab, Department of Chemistry, DKM College for Women (Autonomous), Vellore, India
| | - A Thanigaivelan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
26
|
Ahmad M, Yousaf M, Cai W, Zhao ZP. Enhanced H2S Removal from Diverse Fuels by a Coupled Absorption and Biological Process Uses CO2 as Carbon Resource for Microbial Ecosystem. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Zou L, Zhou M, Qin C, Luo Z, Zhang H, Yang Z, Cheng H, Li R, He Q, Ai H. Improving the performance of coupled solid carbon source biofilm carriers through pore-forming methods. CHEMOSPHERE 2022; 308:136172. [PMID: 36037949 DOI: 10.1016/j.chemosphere.2022.136172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Coupled solid carbon source biofilm carriers (CCBs) was usually utilized to enhance the treatment efficiency of low carbon/nitrogen (C/N) wastewater. However, current CCBs have low carbon release capacity because of its small inner mass transfer coefficient. Therefore, this study innovatively applied pore-forming methods to modify CCBs. After orthogonal selections, two porous CCBs, which were respectively prepared through circulating freezing pore-forming method (CCB2) and ammonium bicarbonate pore-forming method (CCB3), were proposed and further applied in sequencing batch moving bed biofilm reactors (SBMBBRs). The results indicated that circulating freezing pore-forming method could improve the mechanical strength and carbon source release rate of CCBs. In addition, CCB2 could significantly enhance the total nitrogen (TN) removal efficiency of SBMBBRs, when compared with the non-porous CCBs (i.e., CCB1). Further biofilm and simultaneous nitrification and denitrification (SND) rate calculation attributed this enhancement to the higher biofilm amount (i.e., 0.06 g g-1 CCB) and the higher SND rate (i.e., 33.60%). Microbial community analysis reiterated these observations that CCB2 and CCB3 could accumulate Proteobacteria, Actinobacteriota and Nitrospirota, and also stimulate nitrification and denitrification associated pathways. More importantly, the cost calculation indicated CCB2 cost only 47.37% of CCB1 and 31.34% of CCB3, showing highly economic applicability. Overall, our results collectively proved that CCBs manufactured by circulating freezing pore-forming method could provide more carbon releasing points and microorganisms attaching positions, exhibiting effectively nitrogen removal when treating low C/N wastewater.
Collapse
Affiliation(s)
- Linzhi Zou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Mi Zhou
- The IT Electronics Eleventh Design & Research Institute Scientific and Technological Engineering Corporation Ltd, PR China
| | - Chuan Qin
- 3rd Construction Co., Ltd. of China Construction 5th Engineering Bureau, PR China
| | - Zhongwu Luo
- 3rd Construction Co., Ltd. of China Construction 5th Engineering Bureau, PR China
| | - Houlin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Zhi Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Hong Cheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Runjia Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Hainan Ai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
28
|
Goveas LC, Nayak S, Vinayagam R, Loke Show P, Selvaraj R. Microalgal remediation and valorisation of polluted wastewaters for zero-carbon circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 365:128169. [PMID: 36283661 DOI: 10.1016/j.biortech.2022.128169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Overexploitation of natural resources to meet human needs has considerably impacted CO2 emissions, contributing to global warming and severe climatic change. This review furnishes an understanding of the sources, brutality, and effects of CO2 emissions and compelling requirements for metamorphosis from a linear to a circular bioeconomy. A detailed emphasis on microalgae, its types, properties, and cultivation are explained with significance in attaining a zero-carbon circular bioeconomy. Microalgal treatment of a variety of wastewaters with the conversion of generated biomass into value-added products such as bio-energy and pharmaceuticals, along with agricultural products is elaborated. Challenges encountered in large-scale implementation of microalgal technologies for low-carbon circular bioeconomy are discussed along with solutions and future perceptions. Emphasis on the suitability of microalgae in wastewater treatment and its conversion into alternate low-carbon footprint bio-energies and value-added products enforcing a zero-carbon circular bioeconomy is the major focus of this review.
Collapse
Affiliation(s)
- Louella Concepta Goveas
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Sneha Nayak
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
29
|
Du R, Li C, Liu Q, Fan J, Peng Y. A review of enhanced municipal wastewater treatment through energy savings and carbon recovery to reduce discharge and CO 2 footprint. BIORESOURCE TECHNOLOGY 2022; 364:128135. [PMID: 36257527 DOI: 10.1016/j.biortech.2022.128135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Municipal wastewater treatment that mainly performed by conventional activated sludge (CAS) process faces the challenge of intensive aeration-associated energy consumption for oxidation of organics and ammonium, contributing to significant directly/indirectly greenhouse gas (GHG) emissions from energy use, which hinders the achievement of carbon neutral, the top priority mission in the coming decades to cope with the global climate change. Therefore, this article aimed to offer a comprehensive analysis of recently developed biological treatment processes with the focus on reducing discharge and CO2 footprint. The biotechnologies including "Zero Carbon", "Low Carbon", "Carbon Capture and Utilization" are discussed, it suggested that, by integrating these processes with energy-saving and carbon recovery, the challenges faced in current wastewater treatment plants can be overcome, and a carbon-neutral even be possible. Future research should investigate the integration of these methods and improve anammox contribution as well as minimize organics lost under different scales.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
30
|
Wang X, Yang H, Liu X, Wang J. Formation mechanisms and assembly patterns of anammox biofilm induced by carrier type: Novel insights based on low-strength wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 362:127863. [PMID: 36055541 DOI: 10.1016/j.biortech.2022.127863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The morphological structure, properties, microbial community and function of anammox biofilms induced by large-pore carriers (Bls), small-pore carriers, filament carriers and non-carriers (Bn) in low-strength wastewater were comprehensively studied. The carriers promoted biomass accumulation and agglomeration, with Bls demonstrating the highest biomass proportion of 0.76, the highest specific anammox activity (0.41 kgN/(kgVSS·d)-1) and the largest aggregates. Hydraulic shearing stimulated Bn to secrete most extracellular polymeric substances and capture more inorganic ions for enhanced strength. Metagenomic sequencing showed that the four biofilms shared a common core flora, but differed in cross-metabolism. The proportion of the functional bacterium Candidatus Brocadia was highest in Bls, while the increase in heterotrophic bacteria in Bn supported stronger metabolic capacity. Finally, the proposed anisotropic or isotropic carrier structure was identified as the key to generating "uniform development" and "central development" models. This study is helpful for understanding the anammox aggregation mechanism and carrier optimization.
Collapse
Affiliation(s)
- XiaoTong Wang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China.
| | - XuYan Liu
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing 100124, China
| | - JiaWei Wang
- Department of Municipal and Environmental Engineering, Hebei University of Architecture, Zhangjiakou 075000, China
| |
Collapse
|
31
|
Raj Deena S, Kumar G, Vickram AS, Rani Singhania R, Dong CD, Rohini K, Anbarasu K, Thanigaivel S, Ponnusamy VK. Efficiency of various biofilm carriers and microbial interactions with substrate in moving bed-biofilm reactor for environmental wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 359:127421. [PMID: 35690237 DOI: 10.1016/j.biortech.2022.127421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In a moving bed-biofilm reactor (MBBR), the fluidization efficiency, immobilization of microbial cells, and treatment efficiency are directly influenced by the shape and pores of biofilm carriers. Moreover, the efficacy of bioremediation mainly depends on their interaction interface with microbes and substrate. This review aims to comprehend the role of different carrier properties such as material shapes, pores, and surface area on bioremediation productivity. A porous biofilm carrier with surface ridges containing spherical pores sizes > 1 mm can be ideal for maximum efficacy. It provides diverse environments for cell cultures, develops uneven biofilms, and retains various cell sizes and biomass. Moreover, the thickness of biofilm and controlled scaling shows a significant impact on MBBR performance. Therefore, the effect of these parameters in MBBR is discussed detailed in this review, through which existing literature and technical strategies that focus on the surface area as the primary factor can be critically assessed.
Collapse
Affiliation(s)
- Santhana Raj Deena
- Departemnt of Biotechnology, Saveetha School of Engineering, Saveetha University, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - A S Vickram
- Departemnt of Biotechnology, Saveetha School of Engineering, Saveetha University, India
| | - Reeta Rani Singhania
- PhD Program of Aquatic Science and Technology & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- PhD Program of Aquatic Science and Technology & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 81157, Taiwan
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, Centre for Excellence in Biomaterials Engineering (CoEBE), AIMST University, 08100, Bedong, Kedah, Malaysia
| | - K Anbarasu
- Departemnt of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - S Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Vinoth Kumar Ponnusamy
- PhD Program of Aquatic Science and Technology & Department of Marine Environmental Engineering, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City 81157, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, Taiwan; Deparment of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City, Taiwan.
| |
Collapse
|
32
|
Qian Y, Guo Y, Shen J, Qin Y, Li YY. Biofilm growth characterization and treatment performance in a single stage partial nitritation/anammox process with a biofilm carrier. WATER RESEARCH 2022; 217:118437. [PMID: 35447572 DOI: 10.1016/j.watres.2022.118437] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Biofilm carriers can avoid microorganism washout while maintaining a high amount of biomass, but are also associated with a long biofilm formation period and biofilm aging. A single stage partial nitritation/anammox process (single stage PN/A) reactor was setup to study the biofilm growth characterization and treatment performance under an NLR of 0.53 to 0.90 gN/L/d over one year. Biofilm growth was divided into three stages: the formation stage, maturation stage and aging stage. The initial biofilm was observed at day 84. A nitrogen removal efficiency of 83.4% was achieved at an NLR of 0.90 gN/L/d during the mature biofilm stage. Starvation, nitrogen gas accumulation and hydroxyapatite formation resulted in biofilm aging. After mechanical stirring treatment, biofilm reactivation was achieved by biofilm re-formation within one month. There is clear potential for phosphorus recovery, as indicated by the 5.24% - 6.29% phosphorus content in the biofilm (similar to the 5%-7% phosphorus content in enhanced biological phosphate removal sludge). The AnAOB genera abundance in the biofilm maintained at a high level of 18.25%-32.31%, while the abundance of AnAOB increased from the initial 4.10% to 13.78% after mechanical stirring treatment in the suspended sludge ensured biofilm reactivation. The results of this study clearly show that mechanical stirring treatment can be used to achieve the biofilm reactivation as the biofilm fills with the hollow cylindrical carrier. This study has potential as a useful reference for the realization of the wide application of the biofilm single stage PN/A process in the future.
Collapse
Affiliation(s)
- Yunzhi Qian
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yan Guo
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Junhao Shen
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
33
|
Wang J, Liang J, Ning D, Zhang T, Wang M. A review of biomass immobilization in anammox and partial nitrification/anammox systems: Advances, issues, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:152792. [PMID: 35033568 DOI: 10.1016/j.scitotenv.2021.152792] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/11/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Two biomass immobilization techniques; entrapment and carrier-based, attract increasing attention in anammox and partial nitrification/anammox (PN/A) systems. This paper provides a comprehensive review of the advances, outstanding issues, and future research directions in this field. The application of both entrapment and carrier-based biofilm immobilization for reactor start up, improving the nitrogen removal performance, and protecting autotrophic bacteria from environmental fluctuations in anammox and partial nitrification/anammox systems are summarized and discussed. The key characteristics of carriers for biomass immobilization are biocompatibility for supporting microbial growth, permeability for effective mass transfer, and physical/chemical stability for long-term use. Carriers without these characteristics must be improved and re-evaluated for their feasibility in applications. Lab-scale, pilot, and full-scale studies are needed to overcome the potential obstacles of preliminary studies, and to investigate the long-term performance of biomass immobilization techniques, especially using real wastewater as influent, which may introduce more complexity and threaten the carrier's immobilization. In addition, calculating the 'nitrogen removal rate normalized by the packing ratio of carriers (NRR-C)' in the immobilization system is strongly suggested to obtain a direct comparison of immobilization performance/limitations from different studies. This review will improve understanding of the major challenges of immobilization technology in anammox and PN/A systems and provide insights into the next-stage of research and full-scale applications.
Collapse
Affiliation(s)
- Jinxing Wang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China; College of Horticulture, North West Agriculture and Forestry University, Yangling 712100, China
| | - Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dingying Ning
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tengge Zhang
- Department of Energy and Mineral Engineering and EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Meng Wang
- Department of Energy and Mineral Engineering and EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
34
|
Yang S, Peng Y, Zhang Q, Li J, Zhang L. Biofilm phenotypes and internal community succession determines distinct growth of anammox bacteria in functional anammox biofilms. BIORESOURCE TECHNOLOGY 2022; 349:126893. [PMID: 35202827 DOI: 10.1016/j.biortech.2022.126893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
In this study, time-series anammox functional biofilms were obtained in a lab-scale simultaneous partial nitritation/anammox process for treating high-strength ammonium. The variations in the biofilm phenotypes, community succession, and anammox bacteria abundance over time were evaluated using optical microscopy, 16S rRNA gene sequencing, and qPCR. The result revealed that biofilm has three distinct stages of the community development trajectory across a 182-day temporal scale. Anammox bacteria growth rates were 0.035 d-1, 0.0015 d-1, and 0.011 d-1, respectively. The diversity and network analysis suggested that the positive priority effect of ammonia oxidizing bacteria was the primary factor for the rapid proliferation of anammox bacteria, and the species replacement triggering priority effect forfeiture and substituted functional recruitment were reasons for the slow proliferation and stable proliferation of anammox bacteria, respectively. Taken together, the higher microbial diversity and stable community composite were key prerequisites for the proliferation of the anammox bacteria.
Collapse
Affiliation(s)
- Shenhua Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
35
|
Cheng B, Du J, Bao J, Tufail H, Xu T, Zhang Y, Mao Q, Faheem M. Insight into enrichment of anammox bacteria by a polyurethane sponge carrier coupled with iron-carbon micro-electrolysis under no strict anaerobic condition. BIORESOURCE TECHNOLOGY 2022; 347:126673. [PMID: 35007733 DOI: 10.1016/j.biortech.2022.126673] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
A novel composite carrier (ICME-PS) was formed by coupling polyurethane sponge carriers (PS) with different pore sizes (15, 25, 40 ppi) and iron-carbon micro-electrolysis (ICME), which was used for enrichment of anammox bacteria and stable operation under no strict anaerobic condition. An increase of 5.67%-38.55% in specific anammox activity (SAA), an significant enhancement of biofilm stability and an improvement of 14.61%-42.38% in Ca.Brocadia were observed in ICME-PS, compared to PS carriers. ICME played a dual role: 1) contributed to the formation of an anaerobic microenvironment; 2) used for nitrogen cycle reactions. Additionally, small-pore carriers with highest biofilm stability can be used in high shear environments, while medium-pore carriers achieved the highest SAA in stable environments. Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that ICME application reduced the energy barrier and improved aggregation performance. This study designed a novel composite carrier to broaden the application of anammox under no strict anaerobic condition.
Collapse
Affiliation(s)
- Benai Cheng
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jiangkun Du
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - JianGuo Bao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Haseeb Tufail
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Tiantian Xu
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Yi Zhang
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Qidi Mao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Muhammad Faheem
- School of Environment Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
36
|
Cayetano RDA, Kim GB, Park J, Yang YH, Jeon BH, Jang M, Kim SH. Biofilm formation as a method of improved treatment during anaerobic digestion of organic matter for biogas recovery. BIORESOURCE TECHNOLOGY 2022; 344:126309. [PMID: 34798247 DOI: 10.1016/j.biortech.2021.126309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The efficiency of anaerobic digestion could be increased by promoting microbial retention through biofilm development. The inclusion of certain types of biofilm carriers has differentiated existing AD biofilm reactors through their respective mode of biofilm growth. Bacteria and archaea engaged in methanogenesis during anaerobic processes potentially build biofilms by adhering or attaching to biofilm carriers. Meta-analyzed results depicted varying degrees of biogas enhancement within AD biofilm reactors. Furthermore, different carrier materials highly induced the dynamicity of the dominant microbial population in each system. It is suggested that the promotion of surface contact and improvement of interspecies electron transport have greatly impacted the treatment results. Modern spectroscopy techniques have been and will continue to give essential information regarding biofilm's composition and structural organization which can be useful in elucidating the added function of this special layer of microbial cells.
Collapse
Affiliation(s)
- Roent Dune A Cayetano
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gi-Beom Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungsu Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
37
|
Havlíček K, Nechanická M, Lederer T, Kolčavová Sirková B. Analysis of nitrifying bacteria growth on two new types of biomass carrier using respirometry and molecular genetic methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112795. [PMID: 34544026 DOI: 10.1016/j.ecoenv.2021.112795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
This work addresses the testing of two newly produced biomass carriers (micro- and nanofibers) and one commercially available AnoxKaldnes™ K3 carrier in a laboratory post-nitrification reactor. The carriers were prepared under parameters suitable for high-quality biomass adhesion to their surface, and each was characterized by its specific structures. As part of the evaluation of the biofilms using respirometry and molecular genetic methods, the carriers were assessed in terms of their effectiveness and comparability. The rate of biofilm development was dependent on the structure and surface properties of the individual carriers. The results showed that the biofilm most strongly adhered to nanofiber carriers, where nitrating bacteria's slower but more abundant development occurred. Microfiber carriers were more stable, but a diverse internal structure may be unsuitable in a populated carrier's early stages. The AnoxKaldnes™ K3 carriers showed the slowest growth of biofilm, but the monitored nitrifying bacteria were abundant after an extended time. AOB representatives are likely to prefer an environment with a high amount of biomass and a large active area. Conversely, NOB representatives thrive better in a slowly forming biofilm. The methods used to monitor biofilm are challenging to compare directly, but they do complement each other, which aids in verifying the individual test results. Developing new types of biomass carriers with the potential for high-quality adhesion of microorganisms is a prerequisite for the expansion of highly efficient biotechnological processes, especially for wastewater treatment.
Collapse
Affiliation(s)
- Karel Havlíček
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic.
| | - Magda Nechanická
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Tomáš Lederer
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Brigita Kolčavová Sirková
- Faculty of Textile Engineering, Department of Technologies and Structures, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| |
Collapse
|
38
|
Adams M, Xie J, Chang Y, Kabore AWJ, Chen C. Start-up of Anammox systems with different biochar amendment: Process characteristics and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148242. [PMID: 34380265 DOI: 10.1016/j.scitotenv.2021.148242] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
As the 'go-to' process when it comes to biological nitrogen removal from wastewaters in recent years, the Anammox process has undergone lots of investigations in order to optimize its performance. In evaluating the effect of distinct biochar types at different concentrations on the Anammox startup process, as well as analyze their corresponding influence on the microbial community structure, three additives (coconut, peach, and bamboo) at either 5%, 10%, or 15% respectively were amended in various Anammox EGSB setups. (i). The 5% coconut biochar amendment resulted in the fastest startup of 46 days with an average ammonium removal efficiency of 96% whereas the control setup took 69 days. Thus, a more robust and cost effective Anammox process could be realized on an industrial scale. (ii) The Illumina high-throughput sequencing of the collected sludge samples indicated that the amendment with distinct biochar resulted in varied prevailing microbial communities in the respective setups. (iii) Proteobacteria was the dominant microbial community. (iv) However, two Anammox bacteria species, Candidatus Brocadia and Candidatus Jettenia were identified, with relative abundances of 0-4.72% and 0-6.23% respectively. The results from this study illustrate the correlation between Anammox reactor performance (startup and nitrogen removal efficiency), type and concentration of biochar amendment employed, as well as microbial community succession.
Collapse
Affiliation(s)
- Mabruk Adams
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Junxiang Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaofeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | | | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, PR China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
39
|
Yang S, Peng Y, Zhang S, Han X, Li J, Zhang L. Carrier type induces anammox biofilm structure and the nitrogen removal pathway: Demonstration in a full-scale partial nitritation/anammox process. BIORESOURCE TECHNOLOGY 2021; 334:125249. [PMID: 33975142 DOI: 10.1016/j.biortech.2021.125249] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
In this study, two typical carrier types, microporous and macroporous carriers, were collected from a full-scale partial nitritation/anammox reactor for analysis and comparison of the biofilm structure characteristics, performance and removal nitrogen pathway. For microporous carriers, a thicker biofilm (>5 mm) was obtained with higher biomass and abundance of anammox bacteria as well as a higher nitrogen removal efficiency due to the integration of denitrifying and anammox bacteria. In addition, higher microbial community stability can be expected under varying environmental conditions. In comparison, macroporous carrier biofilm exhibited a lower thickness (0.4-2.3 mm) and lower microbial richness, with a strong network correlation among genera. Analysis showed that the mainly positive correlation between anammox bacteria and ammonium oxidizing bacteria, enhancing coupling partial nitritation and anammox. These findings help further our understanding of the mechanisms of anammox biofilm nitrogen removal and provide a baseline for optimization of the design of carrier structures.
Collapse
Affiliation(s)
- Shenhua Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, China
| | - Xiaoyu Han
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
40
|
Ahmad HA, Ni SQ, Ahmad S, Zhang J, Ali M, Ngo HH, Guo W, Tan Z, Wang Q. Gel immobilization: A strategy to improve the performance of anaerobic ammonium oxidation (anammox) bacteria for nitrogen-rich wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 313:123642. [PMID: 32536456 DOI: 10.1016/j.biortech.2020.123642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic ammonium oxidation (anammox) process appears a suitable substitute to nitrification-denitrification at a lower C/N ratios. Anammox is a chemolithoautotrophic process, belong to phylum Planctomycetes, and they are slow growing bacteria. Different strategies, e.g., biofilm formation, granulation and gel immobilization, have been applied to maintain a critical mass of bacterial cells in the system by avoiding washout from the bioreactor. Gel immobilization of anammox appears the best alternative to the natural process of biofilm formation and granulation. Polyvinyl alcohol-sodium alginate, polyethylene glycol, and waterborne polyurethane are the most reported materials used for the entrapment of anammox bacteria. However, dissolution of the gel beads refrains its application for long term bioprocess. Magnetic powder could coat on the surface of the beads which may increase the mechanical strength and durability of pellets. Application and problem of immobilization technology for the commercialization of this technology also addressed.
Collapse
Affiliation(s)
- Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Shakeel Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Muhammad Ali
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 23955-6900, Saudi Arabia
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Zuwan Tan
- China Gezhouba Group Co., Ltd. & China Gezhouba Group Three Gorges Construction Engineering Co., Ltd., Yichang, China
| | - Qi Wang
- Shandong Hongda Construction Engineering Co., Ltd., Jinan, China
| |
Collapse
|
41
|
Ma J, Wang K, Gong H, Yuan Q, Yang M, He C, Shi C, San E. Integrating floc, aggregate and carrier to reap high-quality anammox biofilm. BIORESOURCE TECHNOLOGY 2020; 309:123325. [PMID: 32330801 DOI: 10.1016/j.biortech.2020.123325] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
This work investigated the effects of integration of floc, aggregate and carrier (IFAC) on anammox biofilm quality and development mechanisms. The IFAC system harvested high-quality anammox biofilm with a reduction of 60% in the formation period, an increment of 282.14%~397.26% in mechanical stability, an enhancement of 10.18 ~ 21.56% in ecological stability and an improvement of 9.44%~46.18% in abundance of the phylum Planctomycetes. Aggregates enabled carriers to accumulate initial biomass efficiently and equipped biofilm with additional joint forces. Floc promoted accumulation of terminal biomass, enhanced ecological stability by improving community diversity and raised abundance of the phylum Planctomycetes by assisting anammox consortium settlement. A model of the development procedure of high-quality anammox biofilm was established and a strategy for pre-designing the IFAC system to reap high-quality biofilm was proposed. We expect our findings to provide theoretical guidance for designs and applications of anammox process with excellent stability.
Collapse
Affiliation(s)
- Jinyuan Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Hui Gong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Quan Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Meijuan Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Conghui He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Chuan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Erfu San
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
42
|
Afridi ZUR, Qammar NW. Technical Challenges and Optimization of Biogas Plants. CHEMBIOENG REVIEWS 2020. [DOI: 10.1002/cben.202000005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zohaib Ur Rehman Afridi
- University of Engineering and Technology U.S.-Pakistan Center for Advanced Studies in Energy, Energy Management and Sustainability 25100 Peshawar Pakistan
| | - Naseha Wafa Qammar
- City University of Science & Information Technology Department of Electrical Engineering 25100 Peshawar Pakistan
| |
Collapse
|
43
|
Chen S, Dong B, Yang D, Li N, Dai X. Micron-sized silica particles in wastewater influenced the distribution of organic matters in sludge and their anaerobic degradation. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122340. [PMID: 32213426 DOI: 10.1016/j.jhazmat.2020.122340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
The influence of micron-sized silica particles on the distribution of organic matters in sludge and anaerobic degradation of macromolecular organic components (MOCs) in sludge was investigated. With the addition of micron-sized particles in the influent (VS/TS decreased gradually from 90.46 ± 0.21 % to 33.36 ± 0.17 %), the protein degradation percentage was significantly promoted while the polysaccharides degradation percentage was largely inhibited, resulting in the total MOCs degradation and methane production increasing firstly (with the promotion extent within 10 %) and then declining slightly, with the peak value at VS/TS of 56.03 ± 0.21 %. The shifted degradation percentage of protein and polysaccharides were caused by the significant changed distribution of organic matters in sludge. With the addition of micron-sized silica particles, the MW of EPS and secondary structure of protein in EPS changed little, which brought about little influence. While, the promoted extracellular protein content (so that the total protein content) and declined extracellular carbohydrates content (so that the total polysaccharides content), were found to be strongly correlated to the enhanced protein degradation and inhibited polysaccharides degradation. The results suggested that large amounts of grit in sludge might not be the main reason for lower degradability of sewage sludge in China.
Collapse
Affiliation(s)
- Sisi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Ning Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
44
|
Enhanced Hydrophilic and Electrophilic Properties of Polyvinyl Chloride (PVC) Biofilm Carrier. Polymers (Basel) 2020; 12:polym12061240. [PMID: 32485913 PMCID: PMC7361826 DOI: 10.3390/polym12061240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/02/2023] Open
Abstract
Polyvinyl chloride (PVC) biofilm carrier is used as a carrier for bacterial adsorption in wastewater treatment. The hydrophilicity and electrophilicity of its surface play an important role in the adsorption of bacteria. The PVC biofilm carrier was prepared by extruder, and its surface properties were investigated. In order to improve the hydrophilicity and electrophilic properties of the PVC biofilm carrier, polyvinyl alcohol (PVA) and cationic polyacrylamide (cPAM) were incorporated into polyvinyl chloride (PVC) by blending. Besides, the surface area of the PVC biofilm carrier was increased by azodicarbonamide modified with 10% by weight of zinc oxide (mAC). The surface contact angle of PVC applied by PVA and cPAM at 5 wt %, 15 wt % was 81.6°, which was 18.0% lower than pure PVC. It shows the significant improvement of the hydrophilicity of PVC. The zeta potential of pure PVC was −9.59 mV, while the modified PVC was 14.6 mV, which proves that the surface charge of PVC changed from negative to positive. Positive charge is more conducive to the adsorption of bacteria. It is obvious from the scanning electron microscope (SEM) images that holes appeared on the surface of the PVC biofilm carrier after adding mAC, which indicates the increase of PVC surface area.
Collapse
|
45
|
Guo Y, Niu Q, Sugano T, Li YY. Biodegradable organic matter-containing ammonium wastewater treatment through simultaneous partial nitritation, anammox, denitrification and COD oxidization process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136740. [PMID: 32018962 DOI: 10.1016/j.scitotenv.2020.136740] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/29/2019] [Accepted: 01/14/2020] [Indexed: 05/12/2023]
Abstract
For both nitrogen and COD removal from biodegradable organic matter (BOM)-containing ammonium wastewater, the simultaneous partial nitritation, anammox, denitrification and COD oxidization (SNADCO) process is a promising solution. In this study, with the stable influent ammonium concentration of 250.0 mg/L (nitrogen loading rate of 0.5 kg/m3/d) and the variation of influent COD/NH4+-N (C/N) ratio from 0.0 to 1.6, the performance of the SNADCO process in a one-stage carrier-packing airlift reactor with continuous mode was investigated for the first time. The results showed that until the C/N ratio of 0.8, both the well nitrogen and COD removal targets could be reached. Mass balance calculations indicated that the average nitrogen removal efficiency (NRE) of 80.9% achieved at the C/N ratio of 0.8 were due to both the anammox and denitrification pathways. Correspondingly, the achieved average COD removal efficiency of 94.6% was attributed to both the denitrification and COD oxidization pathways. Based on the specific sludge activity tests and Fluorescence in Situ Hybridization observation, anammox and denitrification bacteria were mainly distributed in the biofilm sludge, while ammonium oxidizing bacteria and ordinary heterotrophic organisms were mainly in the suspended sludge. At the C/N ratio of 1.6, the washout of suspended sludge became serious while the biofilm sludge was well retained, resulting in inefficient nitritation and a subsequent decrease in NRE. The microbial interaction analysis provided a clear explanation of the performance change of the SNADCO process under different C/N ratios. This research enriches the knowledge of the SNADCO process in BOM-containing ammonium wastewater treatment.
Collapse
Affiliation(s)
- Yan Guo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong University, 27# Shanda South Road, Jinan 250100, China
| | - Takumi Sugano
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
46
|
Peng MW, Yu XL, Guan Y, Liu P, Yan P, Fang F, Guo J, Chen YP. Underlying Promotion Mechanism of High Concentration of Silver Nanoparticles on Anammox Process. ACS NANO 2019; 13:14500-14510. [PMID: 31794189 DOI: 10.1021/acsnano.9b08263] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are largely discharged into sewers and mostly accumulated in the sediments and sludge. The toxicity of AgNPs to environmental microorganisms has attracted great attention. However, the effect of AgNPs on anaerobic ammonium-oxidizing (anammox) granules remains unknown. Here we present the underlying promotion mechanism of AgNPs on anammox granules from a morphological and molecular biology perspective. Our results demonstrate a positive effect of AgNPs on the proliferation of anammox bacteria. AgNPs resulted in a change in the three-dimensional structure of anammox granules and led to larger pore size and higher porosity. In addition, the diffusion capacity of the substrate and metal ions was enhanced. Furthermore, the expression of anammox-related enzymes, such as nitrite oxidoreductase (NirS), hydrazine dehydrogenase (Hdh), and hydrazine synthase (HZS), was upregulated. Therefore, the growth rate and the nitrogen removal performance of the anammox granules were improved. Our findings clarify the underlying mechanism of AgNPs on anammox granules and provide a promising method for the treatment of AgNPs-rich wastewater.
Collapse
Affiliation(s)
- Meng-Wen Peng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE , Chongqing University , Chongqing 400045 , China
| | - Xiu-Ling Yu
- Zhejiang Provincial Key Laboratory of Agricultural Resource and Environment , Zhejiang University , Hangzhou 310058 , China
| | - Yong Guan
- National Synchrotron Radiation Laboratory , University of Science and Technology of China , Hefei 230026 , China
| | - Peng Liu
- School of Environmental Studies , China University of Geosciences , Wuhan 430074 , China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE , Chongqing University , Chongqing 400045 , China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE , Chongqing University , Chongqing 400045 , China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE , Chongqing University , Chongqing 400045 , China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE , Chongqing University , Chongqing 400045 , China
| |
Collapse
|
47
|
Zhang C, Li L, Wang Y, Hu X. Enhancement of the ANAMMOX bacteria activity and granule stability through pulsed electric field at a lower temperature (16 ± 1 °C). BIORESOURCE TECHNOLOGY 2019; 292:121960. [PMID: 31437798 DOI: 10.1016/j.biortech.2019.121960] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
The effects of different frequencies of pulsed electric field (PEF) on the ANAMMOX process were investigated. The results showed that the intermediate frequency could dramatically enhance both the ANAMMOX bacterial activity and granule sludge stability at 16 ± 1 °C The nitrogen removal efficiency of R1 (intermediate frequency) was significantly enhanced by 62.24% and 79.51% compared to R2 (lower frequency) and R3 (higher frequency), with a nitrogen loading rate of 6.84 kg Nm-3 d-1. In addition, the intermediate frequency could stimulate cells to secrete more extracellular polymeric substances (EPS) to sustain the granule sludge stability. The granule sludge disintegrated on days 55 and 35 in R2 and R3. The protein (PN)/polysaccharide (PS) ratios of R1 were 28.46% and 54.20% higher than R2 and R3, which was beneficial to granule sludge stability. This study showed that PEF could solve the problem of decreased ANAMMOX bacterial activity and granule stability at lower temperatures.
Collapse
Affiliation(s)
- Chi Zhang
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University) Ministry of Education, PR China
| | - Liang Li
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University) Ministry of Education, PR China
| | - Yujia Wang
- Shenyang JianZhu Univ, Sch Municipal & Environm Engn, Shenyang 110168, PR China
| | - Xiaomin Hu
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
48
|
Zhao Y, Liu D, Huang W, Yang Y, Ji M, Nghiem LD, Trinh QT, Tran NH. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. BIORESOURCE TECHNOLOGY 2019; 288:121619. [PMID: 31202712 DOI: 10.1016/j.biortech.2019.121619] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Biofilm carriers play an important role in attached growth systems for wastewater treatment processes. This study systematically summarizes the traditional and novel biofilm carriers utilized in biofilm-based wastewater treatment technology. The advantages and disadvantages of traditional biofilm carriers are evaluated and discussed in light of basic property, biocompatibility and applicability. The characteristics, applications performance, and mechanism of novel carriers (including slow-release carriers, hydrophilic/electrophilic modified carriers, magnetic carriers and redox mediator carriers) in wastewater biological treatment were deeply analyzed. Slow release biofilm carriers are used to provide a solid substrate and electron donor for the growth of microorganisms and denitrification for anoxic and/or anaerobic bioreactors. Carriers with hydrophilic/electrophilic modified surface are applied for promoting biofilm formation. Magnetic materials-based carriers are employed to shorten the start-up time of bioreactor. Biofilm carriers acting as redox mediators are used to accelerate biotransformation of recalcitrant pollutants in industrial wastewater.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Duo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Wenli Huang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Quang Thang Trinh
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| | - Ngoc Han Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore 138602, Singapore.
| |
Collapse
|
49
|
Biogas Production and Fundamental Mass Transfer Mechanism in Anaerobic Granular Sludge. SUSTAINABILITY 2019. [DOI: 10.3390/su11164443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Anaerobic granules are responsible for organic degradation and biogas production in a reactor. The biogas production is entirely dependent on a mass transfer mechanism, but so far, the fundamental understanding remains poor due to the covered surface of the reactor. The study aimed at investigating the fundamental mass transfer characteristics of single anaerobic granules of different sizes using microscopic imaging and analytical monitoring under single and different organic loadings. The experiment was conducted in a micro reactor and mass transfer was calculated using modified Fick’s law. Scanning electron microscopy was applied to observe biogas production zones in the granule, and a lab-scale microscope equipped with a camera revealed the biogas bubble detachment process in the micro reactor for the first time. In this experiment, the granule size was 1.32, 1.47, and 1.75 mm, but 1.75 mm granules were chosen for further investigation due to their large size. The results revealed that biogas production rates for 1.75 mm granules at initial Chemical Oxygen Demand (COD) 586, 1700, and 6700 mg/L were 0.0108, 0.0236, and 0.1007 m3/kg COD, respectively; whereas the mass transfer rates were calculated as 1.83 × 10−12, 5.30 × 10−12, and 2.08 × 10−11 mg/s. It was concluded that higher organic loading and large granules enhance the mass transfer inside the reactor. Thus, large granules should be preferred in the granule-based reactor to enhance biogas production.
Collapse
|
50
|
Zhou X, Zhang X, Zhang Z, Liu Y. Full nitration-denitration versus partial nitration-denitration-anammox for treating high-strength ammonium-rich organic wastewater. BIORESOURCE TECHNOLOGY 2018; 261:379-384. [PMID: 29680704 DOI: 10.1016/j.biortech.2018.04.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the performance of full nitration-denitration (FND) and partial nitration-denitration-anammox (PNDA) in treating a synthetic wastewater with 300 mg/L NH4+-N and 600 mg/L COD. It was found that approximately 40% higher total nitrogen removal was achieved via PNDA than via FND. Meanwhile, high-throughput sequencing also revealed that aerobic heterotrophic bacteria were predominant in the FND process, while facultative and even anaerobic bacteria including anammox bacteria were dominant in PNDA process. Furthermore, the mass balance on nitrogen showed that 44% of nitrogen was removed by partial nitration-denitration, while 36% via nitritation-anammox pathway in the PNDA process, with the significant saving in aeration and demand of organic carbon source. Compared to the FND process, it is obvious that the PNDA process will offer a more cost-effective alternative with easy operation for treating ammonium-rich organic wastewater.
Collapse
Affiliation(s)
- Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore.
| | - Xinai Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Zeqian Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Innovation Center for Postgraduate Education in Municipal Engineering of Shanxi Province, Taiyuan 030024, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 637819, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore
| |
Collapse
|