1
|
Yavuz HGH, Yavuz I, Isci A, Turhan I. Harnessing deep eutectic solvent for enhanced inulinase production from agricultural via submerged fermentation with Aspergillus niger. Int J Biol Macromol 2025; 295:139592. [PMID: 39788224 DOI: 10.1016/j.ijbiomac.2025.139592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
This study aimed to enhance inulinase production from agricultural biomass pretreated with deep eutectic solvents (DES) using Aspergillus niger A42 (ATCC 204447). Barley husk (BH), wheat bran (WB), and oat husk (OH) were selected as substrates and were pretreated using different molar ratios of choline chloride: glycerol (ChCl: Gly) and choline chloride: acetic acid (ChCl: AA). DES pretreatment was followed by dilute sulfuric acid hydrolysis. The fermentable sugar content (FSC), sugar profiles, and inhibitory components in the hydrolysates were analyzed. DES pretreatment improved the FSC in all substrates, with wheat bran showing the highest FSC of 72.54 g/mL. Considering the fermentable sugar contents, ChCl: Gly (1:2) was selected as the most suitable DES. The analysis of biomass composition after pretreatment indicated a reduction in extractives and lignin, along with an increase in cellulose content. Subsequently, inulinase fermentation using Aspergillus niger A42 has demonstrated that DES-pretreated wheat bran was the most effective substrate, yielding 416.05 U/mL inulinase activity (Iase) and 486.22 U/mL invertase-type (Sase) activity. The enzyme solution was partially purified via Spin-X UF membranes (50 kDa cut-off), resulting in Iase activity of 769.93 U/mL and Sase activity of 566.69 U/mL. The purification coefficients were 1.88 and 0.92 for inulinase and invertase-type activity, respectively. In conclusion, DES pretreatment was successfully applied to produce inulinase enzyme from BH, WB, and OH. Among the materials studied, WB emerged as the most suitable biomass for producing inulinase from Aspergillus niger A42.
Collapse
Affiliation(s)
- Hatice Gözde Hosta Yavuz
- Department of Food Engineering, Akdeniz University, 07058 Antalya, Turkey; Department of Nutrition and Dietetics, Akdeniz University, 07058 Antalya, Turkey
| | - Ibrahim Yavuz
- Department of Food Engineering, Akdeniz University, 07058 Antalya, Turkey
| | - Asli Isci
- Department of Food Engineering, Ankara University, 06830 Ankara, Turkey
| | - Irfan Turhan
- Department of Food Engineering, Akdeniz University, 07058 Antalya, Turkey.
| |
Collapse
|
2
|
Ferro V, Leiva H, Cadena E, Valverde JL. Multiscale Conceptual Design of a Scalable and Sustainable Process to Dissolve and Regenerate Keratin from Chicken Feathers. Ind Eng Chem Res 2023; 62:13324-13339. [PMID: 38356643 PMCID: PMC10863073 DOI: 10.1021/acs.iecr.3c01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 02/16/2024]
Abstract
A multiscale strategy was used to conceptually design and economically analyze a scalable and sustainable process for dissolving and regenerating keratin from chicken feathers by using a sodium acetate-urea deep eutectic solvent as the reacting media. In this study, the recovery and recycling of the solvent were also considered. Moreover, molecular modeling of the solvent, keratin and its derivatives, property estimation of the corresponding mixtures, and simulation of the different process alternatives proposed, including the equipment sizing, estimation of energy needs, and economic analysis were presented. A quasi-planar cluster governed by H-bond interactions resulted in the most stable configuration of the deep eutectic solvent. Molecular models having molecular weights higher than 1.400 g/mol were created to represent the keratin species, where the most abundant amino acids in the feathers were included and conveniently ordered in the chain. Property estimations performed with the conductor-like screening model-real solvent succeeded in describing the main features of the interactions between the keratin derivatives and the solvents used. The process analysis performed on several alternatives showed that the process is technically and economically viable at the industrial scale, the costs being strongly dependent on the excess of both the solvent used to dissolve keratin and the water added for its regeneration. Several options to improve the process and reduce the costs are discussed.
Collapse
Affiliation(s)
- Víctor
R. Ferro
- Department
of Chemical Engineering, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Héctor Leiva
- Department
of Chemical Engineering, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Erasmo Cadena
- Department
of Green Chemistry and Technology, Ghent
University, 9000 Gent, Belgium
| | - José Luis Valverde
- Department
of Chemical Engineering, Universidad de
Castilla la Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
3
|
Deng H, Xu W, Zhang D, Li X, Shi J. Recent Advances in Application of Polyoxometalates in Lignocellulose Pretreatment and Transformation. Polymers (Basel) 2023; 15:polym15102401. [PMID: 37242976 DOI: 10.3390/polym15102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Lignocellulose, composed of cellulose, hemicellulose, and lignin, holds immense promise as a renewable resource for the production of sustainable chemicals and fuels. Unlocking the full potential of lignocellulose requires efficient pretreatment strategies. In this comprehensive review, efforts were taken to survey the latest developments in polyoxometalates (POMs)-assisted pretreatment and conversion of lignocellulosic biomass. An outstanding finding highlighted in this review is that the deformation of the cellulose structure from I to II accompanied by the removal of xylan/lignin through the synergistic effect of ionic liquids (ILs) and POMs resulted in a significant increase in glucose yield and improved cellulose digestibility. Furthermore, successful integration of POMs with deep eutectic solvents (DES) or γ-valerolactone/water (GVL/water) systems has demonstrated efficient lignin removal, opening avenues for advanced biomass utilization. This review not only presents the key findings and novel approaches in POMs-based pretreatment but also addresses the current challenges and prospects for large-scale industrial implementation. By offering a comprehensive assessment of the progress in this field, this review serves as a valuable resource for researchers and industry professionals aiming to harness the potential of lignocellulosic biomass for sustainable chemical and fuel production.
Collapse
Affiliation(s)
- Haoyu Deng
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Wenbiao Xu
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Dan Zhang
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Xiangyu Li
- Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| | - Junyou Shi
- Key Laboratory of Wooden Materials Science and Engineering of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
- Collaborative Innovation Center of Forest Biomass Green Manufacturing of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China
| |
Collapse
|
4
|
Yadav A, Sharma V, Tsai ML, Chen CW, Sun PP, Nargotra P, Wang JX, Dong CD. Development of lignocellulosic biorefineries for the sustainable production of biofuels: Towards circular bioeconomy. BIORESOURCE TECHNOLOGY 2023; 381:129145. [PMID: 37169207 DOI: 10.1016/j.biortech.2023.129145] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The idea of environment friendly and affordable renewable energy resources has prompted the industry to focus on the set up of biorefineries for sustainable bioeconomy. Lignocellulosic biomass (LCB) is considered as an abundantly available renewable feedstock for the production of biofuels which can potentially reduce the dependence on petrochemical refineries. By utilizing various conversion technologies, an integrated biorefinery platform of LCB can be created, embracing the idea of the 'circular bioeconomy'. The development of effective pretreatment methods and biocatalytic systems by various bioengineering and machine learning approaches could reduce the bioprocessing costs, thereby making biomass-based biorefinery more sustainable. This review summarizes the development and advances in the lignocellulosic biorefineries from the LCB to the final product stage using various different state-of-the-art approaches for the progress of circular bioeconomy. The life cycle assessment which generates knowledge on the environmental impacts related to biofuel production chains is also summarized.
Collapse
Affiliation(s)
- Aditya Yadav
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Vishal Sharma
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parushi Nargotra
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Jia-Xiang Wang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
5
|
Zhang B, Liu X, Bao J. High solids loading pretreatment: The core of lignocellulose biorefinery as an industrial technology - An overview. BIORESOURCE TECHNOLOGY 2023; 369:128334. [PMID: 36403909 DOI: 10.1016/j.biortech.2022.128334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Pretreatment is the first and most determinative, yet the least mature step of lignocellulose biorefinery chain. The current stagnation of biorefinery commercialization indicates the barriers of the existing pretreatment technologies are needed to be unlocked. This review focused on one of the core factors, the high lignocellulose solids loading in pretreatment. The high solids loading of pretreatment significantly reduces water input, energy requirement, toxic compound discharge, solid/liquid separation costs, and carbon dioxide emissions, improves the titers of sugars and biproducts to meet the industrial requirements. Meanwhile, lignocellulose feedstock after high solids loading pretreatment is compatible with the existing logistics system for densification, packaging, storage, and transportation. Both the technical-economic analysis and the cellulosic ethanol conversion performance suggest that the solids loading in the pretreatment step need to be further elevated towards an industrial technology and the effective solutions should be proposed to the technical barriers in high solids loading pretreatment operations.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiucai Liu
- Cathay Biotech Inc, 1690 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
6
|
Wu Z, Peng K, Zhang Y, Wang M, Yong C, Chen L, Qu P, Huang H, Sun E, Pan M. Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review. Mater Today Bio 2022; 16:100445. [PMID: 36212906 PMCID: PMC9535326 DOI: 10.1016/j.mtbio.2022.100445] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
Lignocellulose utilization has been gaining great attention worldwide due to its abundance, accessibility, renewability and recyclability. Destruction and dissociation of the cross-linked, hierarchical structure within cellulose hemicellulose and lignin is the key procedure during chemical utilization of lignocellulose. Of the pretreatments, biological treatment, which can effectively target the complex structures, is attractive due to its mild reaction conditions and environmentally friendly characteristics. Herein, we report a comprehensive review of the current biological pretreatments for lignocellulose dissociation and their corresponding degradation mechanisms. Firstly, we analyze the layered, hierarchical structure of cell wall, and the cross-linked network between cellulose, hemicellulose and lignin, then highlight that the cracking of β-aryl ether is considered the key to lignin degradation because of its dominant position. Secondly, we explore the effect of biological pretreatments, such as fungi, bacteria, microbial consortium, and enzymes, on substrate structure and degradation efficiency. Additionally, combining biological pretreatment with other methods (chemical methods and catalytic materials) may reduce the time necessary for the whole process, which also help to strengthen the lignocellulose dissociation efficiency. Thirdly, we summarize the related applications of lignocellulose, such as fuel production, chemicals platform, and bio-pulping, which could effectively alleviate the energy pressure through bioconversion into high value-added products. Based on reviewing of current progress of lignocellulose pretreatment, the challenges and future prospects are emphasized. Genetic engineering and other technologies to modify strains or enzymes for improved biotransformation efficiency will be the focus of future research.
Collapse
Affiliation(s)
- Zengyou Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Kun Peng
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yin Zhang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Mei Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Cheng Yong
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ling Chen
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ping Qu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hongying Huang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Enhui Sun
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, China
- College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa
- Corresponding author. Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization/Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Mingzhu Pan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Corresponding author.
| |
Collapse
|
7
|
Fatima Haq F, Mahmood H, Iqbal T, Measam Ali M, Jafar Khan M, Moniruzzaman M. Development of sustainable biocomposite panels assisted with deep eutectic solvent pretreatment of agro-industrial residue. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Han S, Wang R, Wang K, Jiang J, Xu J. Low-condensed lignin and high-purity cellulose production from poplar by synergistic deep eutectic solvent-hydrogenolysis pretreatment. BIORESOURCE TECHNOLOGY 2022; 363:127905. [PMID: 36087647 DOI: 10.1016/j.biortech.2022.127905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
This paper presented a green and environmentally friendly method to obtain lignin with a structure similar to milled wood lignin (MWL) and high-purity cellulose from biomass in a two-step process. The first step, maleic acid (MA), choline chloride (ChCl), and ethylene glycol (EG) ternary deep eutectic solvent (DES) pretreatment was performed to obtain lignin with less-condensed structure. The results showed that the obtained lignin had similar properties to MWL under the condition (MA/ChCl/EG = 1:5:15, 80°C, 10 h). The DES recovered still had good cycle performance. The second step, the cellulose-rich residue was hydrogenated with isopropanol-water solvent and Raney nickel to obtain high-purity cellulose. The results showed that the purity of cellulose obtained by catalytic hydrogenolysis was > 94%. The glucose yield after enzymatic hydrolysis was 243.72 mg/g, which was 14.7 times higher than the untreated poplar. Overall, this work was of great significance for the effective separation of biomass.
Collapse
Affiliation(s)
- Shuangmei Han
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China
| | - Ruizhen Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Junming Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Anand U, Vaishnav A, Sharma SK, Sahu J, Ahmad S, Sunita K, Suresh S, Dey A, Bontempi E, Singh AK, Proćków J, Shukla AK. Current advances and research prospects for agricultural and industrial uses of microbial strains available in world collections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156641. [PMID: 35700781 DOI: 10.1016/j.scitotenv.2022.156641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms are an important component of the ecosystem and have an enormous impact on human lives. Moreover, microorganisms are considered to have desirable effects on other co-existing species in a variety of habitats, such as agriculture and industries. In this way, they also have enormous environmental applications. Hence, collections of microorganisms with specific traits are a crucial step in developing new technologies to harness the microbial potential. Microbial culture collections (MCCs) are a repository for the preservation of a large variety of microbial species distributed throughout the world. In this context, culture collections (CCs) and microbial biological resource centres (mBRCs) are vital for the safeguarding and circulation of biological resources, as well as for the progress of the life sciences. Ex situ conservation of microorganisms tagged with specific traits in the collections is the crucial step in developing new technologies to harness their potential. Type strains are mainly used in taxonomic study, whereas reference strains are used for agricultural, biotechnological, pharmaceutical research and commercial work. Despite the tremendous potential in microbiological research, little effort has been made in the true sense to harness the potential of conserved microorganisms. This review highlights (1) the importance of available global microbial collections for man and (2) the use of these resources in different research and applications in agriculture, biotechnology, and industry. In addition, an extensive literature survey was carried out on preserved microorganisms from different collection centres using the Web of Science (WoS) and SCOPUS. This review also emphasizes knowledge gaps and future perspectives. Finally, this study provides a critical analysis of the current and future roles of microorganisms available in culture collections for different sustainable agricultural and industrial applications. This work highlights target-specific potential microbial strains that have multiple important metabolic and genetic traits for future research and use.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anukool Vaishnav
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh 281406, India; Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland; Plant-Soil Interaction Group, Agroscope (Reckenholz), Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Sushil K Sharma
- National Agriculturally Important Microbial Culture Collection (NAIMCC), ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Mau 275 103, Uttar Pradesh, India.
| | - Jagajjit Sahu
- GyanArras Academy, Gothapatna, Malipada, Bhubaneswar, Odisha 751029, India
| | - Sarfaraz Ahmad
- Department of Botany, Jai Prakash University, Saran, Chhapra 841301, Bihar, India
| | - Kumari Sunita
- Department of Botany, Faculty of Science, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal 462 003, Madhya Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Amit Kishore Singh
- Department of Botany, Bhagalpur National College, (A Constituent unit of Tilka Manjhi Bhagalpur University), Bhagalpur 812007, Bihar, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya (affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya) 224123, Uttar Pradesh, India.
| |
Collapse
|
10
|
Rachiero GP, Berton P, Shamshina J. Deep Eutectic Solvents: Alternative Solvents for Biomass-Based Waste Valorization. Molecules 2022; 27:6606. [PMID: 36235144 PMCID: PMC9573730 DOI: 10.3390/molecules27196606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Innovative technologies can transform what are now considered "waste streams" into feedstocks for a range of products. Indeed, the use of biomass as a source of biopolymers and chemicals currently has a consolidated economic dimension, with well-developed and regulated markets, in which the evaluation of the manufacturing processes relies on specific criteria such as purity and yield, and respects defined regulatory parameters for the process safety. In this context, ionic liquids and deep eutectic solvents have been proposed as environmentally friendly solvents for applications related to biomass waste valorization. This mini-review draws attention to some recent advancements in the use of a series of new-solvent technologies, with an emphasis on deep eutectic solvents (DESs) as key players in the development of new processes for biomass waste valorization. This work aims to highlight the role and importance of DESs in the following three strategic areas: chitin recovery from biomass and isolation of valuable chemicals and biofuels from biomass waste streams.
Collapse
Affiliation(s)
| | - Paula Berton
- Chemical and Petroleum Engineering Department, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Julia Shamshina
- Fiber and Biopolymer Research Institute (FBRI), Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
11
|
Enhanced Enzymatic Saccharification of Tomato Stalk by Combination Pretreatment with NaOH and ChCl:Urea-Thioure in One-Pot Manner. Processes (Basel) 2022. [DOI: 10.3390/pr10101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the mixture of NaOH and deep eutectic solvent (DES) ChCl:UA-TA was firstly used to pretreat waste tomato stalk (TS). The effects of pretreatment time, pretreatment temperature, NaOH dosage, and DES dose were investigated, and the synergistic effects of dilute NaOH and DES combination pretreatment were tested on the influence of enzymatic saccharification. It was found that the relationship between delignification and saccharification rate had a significant linear correction. When TS was pretreated with NaOH (7 wt%)–ChCl:UA-TA (8 wt%) in a solid-to-liquid ratio of 1:10 (wt:wt) at 75 °C for 60 min, the delignification reached 82.1%. The highest yield of reducing sugars from NaOH–ChCl:UA-TA-treated TS could reach 62.5% in an acetate buffer (50 mM, pH 4.8) system containing cellulase (10.0 FPU/g TS) and xylanase (30.0 CBU/g TS) at 50 °C. In summary, effective enzymatic saccharification of TS was developed by a combination pretreatment with dilute NaOH and ChCl:UA-TA, which has potential application in the future.
Collapse
|
12
|
Moreira BP, Draszewski CP, Celante D, Brondani L, Lachos-Perez D, Mayer FD, Abaide ER, Castilhos F. Defatted rice bran pretreated with deep eutectic solvents and sequential use as feedstock for subcritical water hydrolysis. BIORESOURCE TECHNOLOGY 2022; 351:127063. [PMID: 35351560 DOI: 10.1016/j.biortech.2022.127063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Deffated rice bran has potential to processing into ethanol due to its lignocellulosic composition and agricultural productivity. The composition of the pretreated deffated rice bran with Deep Eutectic Solvent was investigated aiming the production of sugars and bioproducts using subcritical water hydrolysis. Changes in the deffated rice bran composition at different pretreatment times and mixtures of deep eutectic solvent were evaluated by the derivative of thermogravimetric analysis. The pretreated deffated rice bran presented an enrichment in the content of hemicelluloses (281.0%) and delignification (59.3 %). Under the same condition of subcritical water hydrolysis (230 °C/R-100) the yield of fermentable sugars increased 2.20 times in the same study time interval (20 min) when comparing pretreated and untreated deffated rice bran.
Collapse
Affiliation(s)
- Bárbara P Moreira
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Crisleine P Draszewski
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Dian Celante
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Leoni Brondani
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Daniel Lachos-Perez
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flávio D Mayer
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Ederson R Abaide
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Fernanda Castilhos
- Department of Chemical Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
13
|
Saini R, Kumar S, Sharma A, Kumar V, Sharma R, Janghu S, Suthar P. Deep eutectic solvents: The new generation sustainable and safe extraction systems for bioactive compounds in agri food sector: An update. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rajni Saini
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Satish Kumar
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Ajay Sharma
- Department of Chemistry Career Point University Hamirpur India
| | - Vikas Kumar
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Rakesh Sharma
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Sandeep Janghu
- Department of Food Product Development Indian Institute of Food Processing Technology Thanjavur India
| | - Priyanka Suthar
- Food Technology and Nutrition School of Agriculture Lovely Professional University Phagwara India
| |
Collapse
|
14
|
Wang W, Lee DJ. Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review. BIORESOURCE TECHNOLOGY 2021; 339:125587. [PMID: 34303094 DOI: 10.1016/j.biortech.2021.125587] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Biomass recalcitrance hinders efficient utilization of lignocellulosic biomass, making pretreatment process a crucial step for successful biorefinery process. Pretreatment processes have been developed for processing biomass, while technical obstacles including intensive energy requirement, high operational cost, equipment corrosions resulted from currently applied techniques promote the development of new pretreatment process for biomass. The deep eutectic solvent (DES) has been recognized as a promising solvent for biomass pretreatment, although the DES application toward biomass is still in its nascent stage. This review summarized the current researches using DES for biomass pretreatment, focusing particularly on lignin extraction and saccharification enhancement of lignocellulosic biomass. The mechanisms for biomass fractionation using DES as agents are introduced. Prospect and challenge were outlined.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Chemistry Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
15
|
Bioreactor and Bioprocess Design Issues in Enzymatic Hydrolysis of Lignocellulosic Biomass. Catalysts 2021. [DOI: 10.3390/catal11060680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Saccharification of lignocellulosic biomass is a fundamental step in the biorefinery of second generation feedstock. The physicochemical and enzymatic processes for the depolymerization of biomass into simple sugars has been achieved through numerous studies in several disciplines. The present review discusses the development of technologies for enzymatic saccharification in industrial processes. The kinetics of cellulolytic enzymes involved in polysaccharide hydrolysis has been discussed as the starting point for the design of the most promising bioreactor configurations. The main process configurations—proposed so far—for biomass saccharification have been analyzed. Attention was paid to bioreactor configurations, operating modes and possible integrations of this operation within the biorefinery. The focus is on minimizing the effects of product inhibition on enzymes, maximizing yields and concentration of sugars in the hydrolysate, and reducing the impact of enzyme cost on the whole process. The last part of the review is focused on an emerging process based on the catalytic action of laccase applied to lignin depolymerization as an alternative to the consolidated physicochemical pretreatments. The laccases-based oxidative process has been discussed in terms of characteristics that can affect the development of a bioreactor unit where laccases or a laccase-mediator system can be used for biomass delignification.
Collapse
|
16
|
Wang R, Wang K, Zhou M, Xu J, Jiang J. Efficient fractionation of moso bamboo by synergistic hydrothermal-deep eutectic solvents pretreatment. BIORESOURCE TECHNOLOGY 2021; 328:124873. [PMID: 33639413 DOI: 10.1016/j.biortech.2021.124873] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 05/24/2023]
Abstract
As an attractive renewable carbon resource, lignocellulose could be exploited to produce high-value-added products. Notably, comprehensive utilization of lignocelluloses and lignin first exploitation is still a challenge during bio-refinery process. In this study, an environmentally benign extraction method via hydrothermal-deep eutectic solvents pretreatment was proposed to separate hemicelluloses and high purity of lignin simultaneously from moso bamboo with most of cellulose retaining in the residues. Hemicelluloses were firstly removed by hydrothermal pretreatment, following with lignin extraction by DESs which was prepared from choline chloride and lactic acid, betaine and lactic acid, respectively. Notably, 98.2 wt% of hemicelluloses were degraded and mainly converted into pentose. Meanwhile, 80.1 wt% of delignification was achieved under the optimum condition (CC/LA, 140℃, 6 h), following with up to 99.49% of lignin purity. The mass balance evaluation demonstrated that the combined hydrothermal-deep eutectic solvents pretreatment is a potential method for efficient fractionation of lignocellulose.
Collapse
Affiliation(s)
- Ruizhen Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Minghao Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China
| | - Junming Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China
| |
Collapse
|
17
|
Molnar M, Lončarić M, Jakovljević M, Komar M, Lončar M. Some applications of deep eutectic solvents in alkylation of heterocyclic compounds: A review of the past 10 years. HETEROCYCL COMMUN 2021. [DOI: 10.1515/hc-2020-0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
This mini-review encapsulates the latest findings (past 10 years) in the field of the deep eutectic solvents (DESs) application in the alkylation/arylation of different heterocyclic compounds. These solvents have been developed to fulfill the green chemistry concept demands and have been proven excellent for the application in various fields. This review describes their application in different types of alkylation, C-, N-, O- and S-alkylation. P-alkylation has not yet been published within this scope. Not only have the authors in this study proven that DESs could be successfully applied for this specific type of reaction, but they have also offered an excellent insight into the mechanisms of their action.
Collapse
Affiliation(s)
- Maja Molnar
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek , F. Kuhača 18 , 31000 Osijek , Croatia
| | - Melita Lončarić
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek , F. Kuhača 18 , 31000 Osijek , Croatia
| | - Martina Jakovljević
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek , F. Kuhača 18 , 31000 Osijek , Croatia
| | - Mario Komar
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek , F. Kuhača 18 , 31000 Osijek , Croatia
| | - Mirjana Lončar
- Department of Applied Chemistry and Ecology, Faculty of Food Technology Osijek , F. Kuhača 18 , 31000 Osijek , Croatia
| |
Collapse
|
18
|
Zhu Y, Qi B, Liang X, Luo J, Wan Y. Comparison of Corn Stover Pretreatments with Lewis Acid Catalyzed Choline Chloride, Glycerol and Choline Chloride-Glycerol Deep Eutectic Solvent. Polymers (Basel) 2021; 13:polym13071170. [PMID: 33917314 PMCID: PMC8038657 DOI: 10.3390/polym13071170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Herein, corn stover (CS) was pretreated by less corrosive lewis acid FeCl3 acidified solutions of neat and aqueous deep eutectic solvent (DES), aqueous ChCl and glycerol at 120 °C for 4 h with single FeCl3 pretreatment as control. It was unexpected that acidified solutions of both ChCl and glycerol were found to be more efficient at removing lignin and xylan, leading to higher enzymatic digestibility of pretreated CS than acidified DES. Comparatively, acidified ChCl solution exhibited better pretreatment performance than acidified glycerol solution. In addition, 20 wt% water in DES dramatically reduced the capability of DES for delignification and xylan removal and subsequent enzymatic cellulose saccharification of pretreated CS. Correlation analysis showed that enzymatic saccharification of pretreated CS was highly correlated to delignification and cellulose crystallinity, but lowly correlated to xylan removal. Recyclability experiments of different acidified pretreatment solutions showed progressive decrease in the pretreatment performance with increasing recycling runs. After four cycles, the smallest decrease in enzymatic cellulose conversion (22.07%) was observed from acidified neat DES pretreatment, while the largest decrease (43.80%) was from acidified ChCl pretreatment. Those findings would provide useful information for biomass processing with ChCl, glycerol and ChCl-glycerol DES.
Collapse
Affiliation(s)
- Yuan Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (Y.W.)
| | - Benkun Qi
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- Correspondence: (B.Q.); (X.L.)
| | - Xinquan Liang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (Y.W.)
- Correspondence: (B.Q.); (X.L.)
| | - Jianquan Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinhua Wan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Jiang Y, Xu B, Yan W, Liu J, Dong W, Zhou J, Zhang W, Xin F, Jiang M. Inhibitors tolerance analysis of Clostridium sp. strain LJ4 and its application for butanol production from corncob hydrolysate through electrochemical detoxification. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Abstract
Deep eutectic solvents (DESs) have emerged as promising green solvents, due to their versatility and properties such as high biodegradability, inexpensiveness, ease of preparation and negligible vapor pressure. Thus, DESs have been used as sustainable media and green catalysts in many chemical processes. On the other hand, lignocellulosic biomass as an abundant source of renewable carbon has received ample interest for the production of biobased chemicals. In this review, the state of the art of the catalytic use of DESs in upgrading the biomass-related substances towards biofuels and value-added chemicals is presented, and the gap in the knowledge is indicated to direct the future research.
Collapse
|
21
|
Kist JA, Zhao H, Mitchell-Koch KR, Baker GA. The study and application of biomolecules in deep eutectic solvents. J Mater Chem B 2021; 9:536-566. [DOI: 10.1039/d0tb01656j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deep eutectic solvents offer stimulating possibilities for biomolecular stabilization and manipulation, biocatalysis, bioextraction, biomass processing, and drug delivery and therapy.
Collapse
Affiliation(s)
- Jennifer A. Kist
- Department of Chemistry
- University of Missouri-Columbia
- Columbia
- USA
| | - Hua Zhao
- Department of Chemistry and Biochemistry
- University of Northern Colorado
- Greeley
- USA
| | | | - Gary A. Baker
- Department of Chemistry
- University of Missouri-Columbia
- Columbia
- USA
| |
Collapse
|
22
|
Kalhor P, Ghandi K, Ashraf H, Yu Z. The structural properties of a ZnCl 2-ethylene glycol binary system and the peculiarities at the eutectic composition. Phys Chem Chem Phys 2021; 23:13136-13147. [PMID: 34075959 DOI: 10.1039/d1cp00573a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ATR-FTIR spectroscopy was performed on a series of ZnCl2-ethylene glycol (EG) mixtures with a wide-range of compositions (1 : 1.5-1 : 14 in molar ratios), involving the stable ZnCl2-4EG deep-eutectic solvent (DES) composition, to explore the spectral variations, structural heterogeneity, and hydrogen bonding (H-bonding) properties. To enhance the resolution of the spectra, excess absorption and two-dimensional correlation spectroscopies were employed. In the initial IR spectra, a quasi-isosbestic point was identified, signaling that the major disturbance on EG microstructures by adding ZnCl2 is to form a distinct complex. Further analysis uncovered the main transformation process to be from the EG tetramer to the ZnCl2-4EG complex. It was also found that as the EG content increases, negative charge increasingly transfers to ZnCl2, resulting in the strengthening of the Zn ← O coordination bonds and the weakening and finally dissociation of Zn-Cl bonds. Regarding the ZnCl2-4EG DES, several incomparable specificities were observed. It was found that ZnCl2 destructed the H-bonding network of pure EG to the largest extent, resulting in the highest production of the dimer and trimer of EG. Moreover, in comparison with other compositions, the ZnCl2-4EG DES showed abrupt increases in the negative charge of the salt, the length of the Zn-Cl bond, and the strength of the Zn ← O coordination bond. All these imply the strongest intermolecular interactions and the highest solvation of ZnCl2 in EG at the eutectic composition compared to those of other mixtures, resulting in a super-stable liquid mixture. The work provides physical insights into the structural and interactive properties of deep-eutectic solvents.
Collapse
Affiliation(s)
- Payam Kalhor
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hamad Ashraf
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zhiwu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
A conceptual review on microalgae biorefinery through thermochemical and biological pathways: Bio-circular approach on carbon capture and wastewater treatment. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100477] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Tan YT, Chua ASM, Ngoh GC. Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products - A review. BIORESOURCE TECHNOLOGY 2020; 297:122522. [PMID: 31818720 DOI: 10.1016/j.biortech.2019.122522] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Since the introduction of deep eutectic solvent (DES) in biomass processing field, the efficiency of DES in lignocellulosic biopolymer model compounds' (cellulose, hemicellulose and lignin) solubilisation and conversion was widely recognized. Nevertheless, DES's potential for biorefinery application can be reflected more accurately through their performance in raw lignocellulosic biomass processing rather than model compound conversion. Therefore, this review examines the studies on raw lignocellulosic biomass fractionation using DES and the subsequent conversion of DES-fractionated products into bio-based products. The review stresses on three key parts: performance of varying types of DESs and pretreatment schemes for biopolymer fractionation, properties and conversion of fractionated saccharides as well as DES-extracted lignin. The prospects and challenges of DES implementation in biomass processing will also be discussed. This review provides a front-to-end view on the DES's performance, starting from pretreatment to DES-fractionated products conversion, which would be helpful in devising a comprehensive biomass utilization process.
Collapse
Affiliation(s)
- Yee Tong Tan
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Adeline Seak May Chua
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Gek Cheng Ngoh
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Galbe M, Wallberg O. Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:294. [PMID: 31890022 PMCID: PMC6927169 DOI: 10.1186/s13068-019-1634-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/11/2019] [Indexed: 05/02/2023]
Abstract
The implementation of biorefineries based on lignocellulosic materials as an alternative to fossil-based refineries calls for efficient methods for fractionation and recovery of the products. The focus for the biorefinery concept for utilisation of biomass has shifted, from design of more or less energy-driven biorefineries, to much more versatile facilities where chemicals and energy carriers can be produced. The sugar-based biorefinery platform requires pretreatment of lignocellulosic materials, which can be very recalcitrant, to improve further processing through enzymatic hydrolysis, and for other downstream unit operations. This review summarises the development in the field of pretreatment (and to some extent, of fractionation) of various lignocellulosic materials. The number of publications indicates that biomass pretreatment plays a very important role for the biorefinery concept to be realised in full scale. The traditional pretreatment methods, for example, steam pretreatment (explosion), organosolv and hydrothermal treatment are covered in the review. In addition, the rapidly increasing interest for chemical treatment employing ionic liquids and deep-eutectic solvents are discussed and reviewed. It can be concluded that the huge variation of lignocellulosic materials makes it difficult to find a general process design for a biorefinery. Therefore, it is difficult to define "the best pretreatment" method. In the end, this depends on the proposed application, and any recommendation of a suitable pretreatment method must be based on a thorough techno-economic evaluation.
Collapse
Affiliation(s)
- Mats Galbe
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Ola Wallberg
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
26
|
Kalhor P, Ghandi K. Deep Eutectic Solvents for Pretreatment, Extraction, and Catalysis of Biomass and Food Waste. Molecules 2019; 24:E4012. [PMID: 31698717 PMCID: PMC6891572 DOI: 10.3390/molecules24224012] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Valorization of lignocellulosic biomass and food residues to obtain valuable chemicals is essential to the establishment of a sustainable and biobased economy in the modern world. The latest and greenest generation of ionic liquids (ILs) are deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs); these have shown great promise for various applications and have attracted considerable attention from researchers who seek versatile solvents with pretreatment, extraction, and catalysis capabilities in biomass- and biowaste-to-bioenergy conversion processes. The present work aimed to review the use of DESs and NADESs in the valorization of biomass and biowaste as pretreatment or extraction solvents or catalysis agents.
Collapse
Affiliation(s)
- Payam Kalhor
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
27
|
Procentese A, Raganati F, Olivieri G, Russo ME, De La Feld M, Marzocchella A. Agro Food Wastes and Innovative Pretreatments to Meet Biofuel Demand in Europe. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alessandra Procentese
- Consiglio Nazionale delle RicercheIstituto di Ricerche sulla Combustione P. le V. Tecchio 80 80125 Napoli Italy
- ENCO S.r.l. Engineering & Consulting Via Michelangelo Schipa 115 80122 Napoli Italy
| | - Francesca Raganati
- Università degli Studi di Napoli Federico IIDipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale P. le V. Tecchio 80 80125 Napoli Italy
| | - Giuseppe Olivieri
- Wageningen UniversityBioprocess Engineering, AlgaePARC P.O. Box 16 6700 AA Wageningen The Netherlands
| | - Maria Elena Russo
- Consiglio Nazionale delle RicercheIstituto di Ricerche sulla Combustione P. le V. Tecchio 80 80125 Napoli Italy
| | - Marco De La Feld
- ENCO S.r.l. Engineering & Consulting Via Michelangelo Schipa 115 80122 Napoli Italy
| | - Antonio Marzocchella
- Università degli Studi di Napoli Federico IIDipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale P. le V. Tecchio 80 80125 Napoli Italy
| |
Collapse
|
28
|
Effective separation, recovery and recycling of deep eutectic solvent after biomass fractionation with membrane-based methodology. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Holland C, Perzon A, Cassland PRC, Jensen JP, Langebeck B, Sørensen OB, Whale E, Hepworth D, Plaice-Inglis R, Moestrup Ø, Ulvskov P, Jørgensen B. Nanofibers Produced from Agro-Industrial Plant Waste Using Entirely Enzymatic Pretreatments. Biomacromolecules 2018; 20:443-453. [DOI: 10.1021/acs.biomac.8b01435] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claire Holland
- Department of Plant and Environmental Sciences, Section for Glycobiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Alixander Perzon
- Department of Plant and Environmental Sciences, Section for Glycobiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | - John P. Jensen
- Nordzucker, Technology and Innovation, Falckvænget 1, 4900 Nakskov, Denmark
| | - Birger Langebeck
- Nordzucker, Technology and Innovation, Falckvænget 1, 4900 Nakskov, Denmark
| | | | - Eric Whale
- Cellucomp Ltd., Unit 3, West
Dock, Harbour Place, Burntisland, Fife KY3 9DW, United Kingdom
| | - David Hepworth
- Cellucomp Ltd., Unit 3, West
Dock, Harbour Place, Burntisland, Fife KY3 9DW, United Kingdom
| | - Robyn Plaice-Inglis
- Cellucomp Ltd., Unit 3, West
Dock, Harbour Place, Burntisland, Fife KY3 9DW, United Kingdom
| | - Øjvind Moestrup
- Department of Biology, University of Copenhagen, 2100 København Ø, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, Section for Glycobiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, Section for Glycobiology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
30
|
Amiri H, Karimi K. Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives. BIORESOURCE TECHNOLOGY 2018; 270:702-721. [PMID: 30195696 DOI: 10.1016/j.biortech.2018.08.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Butanol is acknowledged as a drop-in biofuel that can be used in the existing transportation infrastructure, addressing the needs for sustainable liquid fuel. However, before becoming a thoughtful alternative for fossil fuel, butanol should be produced efficiently from a widely-available, renewable, and cost-effective source. In this regard, lignocellulosic materials, the main component of organic wastes from agriculture, forestry, municipalities, and even industries seems to be the most promising source. The butanol-producing bacteria, i.e., Clostridia sp., can uptake a wide range of hexoses, pentoses, and oligomers obtained from hydrolysis of cellulose and hemicellulose content of lignocelluloses. The present work is dedicated to reviewing different processes containing pretreatment and hydrolysis of hemicellulose and cellulose developed for preparing fermentable hydrolysates for biobutanol production.
Collapse
Affiliation(s)
- Hamid Amiri
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
31
|
Fermentable Sugar Production from a Coffee Processing By-product after Deep Eutectic Solvent Pretreatment. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Combined antioxidant-biofuel production from coffee silverskin. Appl Microbiol Biotechnol 2018; 103:1021-1029. [DOI: 10.1007/s00253-018-9530-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/07/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023]
|
33
|
Chen Z, Reznicek WD, Wan C. Deep eutectic solvent pretreatment enabling full utilization of switchgrass. BIORESOURCE TECHNOLOGY 2018; 263:40-48. [PMID: 29729540 DOI: 10.1016/j.biortech.2018.04.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
In this study, an acidified, aqueous DES comprising choline chloride: glycerol (ChCl:Gly) was used to fractionate switchgrass into three major streams under a relatively mild condition: cellulose-rich pulp, lignin, and xylose-rich liquor. The pulp showed good digestibility with about 89% glucose yield. The solvent can be recycled successfully and reused for at least four more pretreatment cycles while maintaining its pretreatment capability. The solvent recycling also improved the lignin recovery from the pretreatment liquor. Lignin recovered from different pretreatment cycles had the β-O-4 bonds preserved, and shared similar structures with native lignin. Using the pretreatment liquor as a substrate, the oleaginous yeast Rhodotorula toruloides produced 18.7 g/L biomass with lipid and carotenoid titers of 8.1 g/L and 15.0 mg/L, respectively. Overall, this study demonstrated a green process integrating chemical and biological methods toward full utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Wesley D Reznicek
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Caixia Wan
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
34
|
Isaac A, de Paula J, Viana CM, Henriques AB, Malachias A, Montoro LA. From nano- to micrometer scale: the role of microwave-assisted acid and alkali pretreatments in the sugarcane biomass structure. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:73. [PMID: 29588658 PMCID: PMC5863382 DOI: 10.1186/s13068-018-1071-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/08/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND To date, great strides have been made in elucidating the role of thermochemical pretreatments in the chemical and structural features of plant cell walls; however, there is no clear picture of the plant recalcitrance and its relationship to deconstruction. Previous studies precluded full answers due to the challenge of multiscale features of plant cell wall organization. Complementing the previous efforts, we undertook a systematic, multiscale, and integrated approach to track the effect of microwave-assisted H2SO4 and NaOH treatments on the hierarchical structure of plants, i.e., from a nano- to micrometer scale. We focused on the investigation of the highly recalcitrant sclerenchyma cell walls from sugarcane bagasse. RESULTS Through atomic force microscopy and X-ray diffraction analyses, remarkable details of the assembly of cellulose microfibrils not previously seen were revealed. Following the H2SO4 treatment, we observed that cellulose microfibrils were almost double the width of the alkali pretreated sample at the temperature of 160 °C. Such enlargement led to a greater contact between cellulose chains, with a subsequent molecule alignment, as indicated by the X-ray diffraction (XRD) results with the conspicuous expansion of the average crystallite size. The delignification process had little effect on the local nanometer-sized arrangement of cellulose molecules. However, the rigidity and parallel alignment of cellulose microfibrils were partially degraded. The XRD analysis also agrees with these findings as evidenced by large momentum transfer vectors (q > 20 nm-1), interpreted as indicators of the long-range order of cell wall components, which were similar for all the studied samples except with application of the NaOH treatment at 160 °C. These changes were followed by the eventual swelling of the fiber cell walls. CONCLUSIONS Based on an integrated approach, we presented multidimensional architectural models of cell wall deconstruction resulting from microwave-assisted pretreatments. We provided direct evidence supporting the idea that hemicellulose is the main barrier for the swelling of cellulose microfibrils, whereas lignin adds rigidity to cell walls. Our findings shed light on the design of more efficient strategies, not only for the conversion of biomass to fuels but also for the production of nanocellulose, which has great potential for several applications such as composites, rheology modifiers, and pharmaceuticals.
Collapse
Affiliation(s)
- Augusta Isaac
- Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Jéssica de Paula
- Microscopy Center, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Carlos Martins Viana
- Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Andréia Bicalho Henriques
- Mining Engineering Department, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Angelo Malachias
- Department of Physics, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Luciano A. Montoro
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| |
Collapse
|
35
|
Procentese A, Raganati F, Olivieri G, Russo ME, Rehmann L, Marzocchella A. Deep Eutectic Solvents pretreatment of agro-industrial food waste. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:37. [PMID: 29449885 PMCID: PMC5808427 DOI: 10.1186/s13068-018-1034-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/27/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Waste biomass from agro-food industries are a reliable and readily exploitable resource. From the circular economy point of view, direct residues from these industries exploited for production of fuel/chemicals is a winning issue, because it reduces the environmental/cost impact and improves the eco-sustainability of productions. RESULTS The present paper reports recent results of deep eutectic solvent (DES) pretreatment on a selected group of the agro-industrial food wastes (AFWs) produced in Europe. In particular, apple residues, potato peels, coffee silverskin, and brewer's spent grains were pretreated with two DESs, (choline chloride-glycerol and choline chloride-ethylene glycol) for fermentable sugar production. Pretreated biomass was enzymatic digested by commercial enzymes to produce fermentable sugars. Operating conditions of the DES pretreatment were changed in wide intervals. The solid to solvent ratio ranged between 1:8 and 1:32, and the temperature between 60 and 150 °C. The DES reaction time was set at 3 h. Optimal operating conditions were: 3 h pretreatment with choline chloride-glycerol at 1:16 biomass to solvent ratio and 115 °C. Moreover, to assess the expected European amount of fermentable sugars from the investigated AFWs, a market analysis was carried out. The overall sugar production was about 217 kt yr-1, whose main fraction was from the hydrolysis of BSGs pretreated with choline chloride-glycerol DES at the optimal conditions. CONCLUSIONS The reported results boost deep investigation on lignocellulosic biomass using DES. This investigated new class of solvents is easy to prepare, biodegradable and cheaper than ionic liquid. Moreover, they reported good results in terms of sugars' release at mild operating conditions (time, temperature and pressure).
Collapse
Affiliation(s)
- Alessandra Procentese
- Istituto di Ricerche sulla Combustione – Consiglio Nazionale delle Ricerche, P.le V. Tecchio 80, 80125 Naples, Italy
| | - Francesca Raganati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale – Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
| | - Giuseppe Olivieri
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale – Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
| | - Maria Elena Russo
- Istituto di Ricerche sulla Combustione – Consiglio Nazionale delle Ricerche, P.le V. Tecchio 80, 80125 Naples, Italy
| | - Lars Rehmann
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7 Canada
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale – Università degli Studi di Napoli Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|