1
|
Zou J, Ye Z, Ma H, Cai L, Yang J, Yu F, Su Y, Chen Y, Li J. Sodium citrate enhances anaerobic fermentation of granular sludge: the multifaceted roles of structure disruption and metabolic regulation. WATER RESEARCH 2025; 280:123729. [PMID: 40305949 DOI: 10.1016/j.watres.2025.123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Anaerobic fermentation is an efficient approach for recovering organic carbon and other valuable resources from waste sludge, yet its efficiency is constrained by the structural stability of extracellular polymeric substances (EPS), especially for aerobic granular sludge (AGS). Despite the abundant physical-chemical pre-treatment approaches for enhancing EPS dissolution, biocompatible strategies coordinating structural disruption with metabolic regulation remain unexplored. Herein, sodium citrate (SC) was used to enhance the performance of anaerobic fermentation of AGS. The results suggested that SC significantly enhanced the hydrolysis efficiency and volatile fatty acids (VFAs) production of AGS. Despite the direct conversion of SC to acetate, indirect enhancement played more important roles in AGS fermentation. Mechanism analysis indicated that SC disrupted granular sludge structure by chelating Ca2+ and facilitated the release of EPS and hydrolytic enzymes, which was conducive to sludge hydrolysis and acidification. At the level of microbial community, SC facilitated the accumulation of VFAs by enriching the acid-producing microorganisms and inhibiting the acid-consuming microorganisms. Furthermore, SC regulated the genes involved in the direct generation of acetate and pyruvate-centric metabolism, resulting in the massive accumulation of VFAs. Finally, the economic benefits resulting from increased VFA production versus SC costs. Overall, SC enhanced the anaerobic fermentation of AGS by simultaneously affecting EPS structure and regulating metabolism, and this study provided efficient methods for AGS anaerobic treatment.
Collapse
Affiliation(s)
- Jinte Zou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Gongshu Institute of Future Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhou Ye
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haibo Ma
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lei Cai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiaqi Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengfan Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Yifeng Chen
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Ha SH, Shin SG, Ahn JH. Optimization of synergistic microwave and zero-valent iron co-pretreatment for anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2025; 430:132568. [PMID: 40273956 DOI: 10.1016/j.biortech.2025.132568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/11/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
This study optimized co-pretreatment of microwave temperature (TMW) and zero-valent iron dosage ([ZVI]) to enhance anaerobic digestion (AD) of waste activated sludge (WAS). WAS was pretreated at TMW = 100, 150, or 200 °C and [ZVI] = 1, 3, or 5 g/L using a central composite design. Optimal co-pretreatment (TMW = 168 °C and [ZVI] = 5 g/L) reduced the ratio of volatile solids (VS) to total solids by 21.5 %, increased the solubilization ratio seven-fold, removed 53.5 % of phosphate compared to WAS partly because of lignin fragmentation. Biochemical methane potential identified optimal conditions (TMW = 164 °C and [ZVI] = 4.8 g/L), enhancing VS removal by 70.9 %, methane yield by 60 %, and reducing hydrogen sulfide by 82.4 % compared to Control. Kinetic analysis indicated 61 - 108 % increase in maximum methane production rate. Microbial analysis revealed increased acetoclastic methanogens and decreased hydrogenotrophic methanogens. Thus, microwave-ZVI co-pretreatment enhanced WAS biodegradability and AD efficiency.
Collapse
Affiliation(s)
- Seung-Han Ha
- Department of Integrated Energy and Infra System, College of engineering, Kangwon National University, Chuncheon, Gangwon State 24341, Korea
| | - Seung Gu Shin
- Department of Energy System Engineering, College of engineering, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, Korea
| | - Johng-Hwa Ahn
- Department of Integrated Energy and Infra System, College of engineering, Kangwon National University, Chuncheon, Gangwon State 24341, Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, Chuncheon, Gangwon State 24341, Korea.
| |
Collapse
|
3
|
Wu H, Zhang H, Dong T, Li Z, Guo X, Chen H, Yao Y. Overcoming Extreme Ammonia Inhibition on Methanogenesis by Artificially Constructing a Synergistically Community with Acidogenic Bacteria and Hydrogenotrophic Archaea. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502743. [PMID: 40162572 DOI: 10.1002/advs.202502743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/09/2025] [Indexed: 04/02/2025]
Abstract
High total ammonia nitrogen (TAN) inhibits anaerobic digestion (AD) and cannot be completely eliminated by merely enhancing a stage of AD. This study incorporates TAN-tolerant inoculum into substrates hydrolyzed by Rhizopus mixed agents to simultaneously enhance hydrolysis-acidogenesis-methanogenesis. The results show a 16.46-fold increase in CH4 production under TAN-inhibited (6870.97 mg L-1) conditions, even exceeding the AD without TAN by 21.10%. Model substrates sodium acetate and mixed H2 confirm hydrogenotrophic methanogenesis is the main pathway, with reduced TAN inhibition. Furthermore, a synergistic metabolic microbial community dominated by hydrolytic bacteria JAAYGG01 sp. and DTU014 sp., acidogenic bacteria DTU015 sp., DTU013 sp., and JAAYLO01 sp., and methanogens Methanosarcina mazei and an unclassified species in the Methanoculleus is reconstructed to resist TAN inhibition. Metagenomic combined with metatranscriptomic sequencing identifies that this microbial community carries xynD and bglB to regulate substrate hydrolysis, leading to acetate production through glycolysis, butyrate, and pyruvate metabolism with high acetate kinase activity, thereby CH4 produced primarily via hydrogenotrophic methanogenesis with high coenzyme F420 activity, facilitated by efficient mass transfer processes and quorum sensing regulation. This cleaner strategy obtains higher economic benefit (US$149.02) than conventional AD and can increase 154.64-fold energy production of a 24 000 m3 biogas plant, guided by machine learning.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Taili Dong
- Shandong Min-he Biotechnology Co. Ltd., Penglai, 265600, China
| | - Zhenyu Li
- Water Technologies Innovation Institute & Research Advancement, Saudi Water Authority, P.O. Box 8328, Al-Jubail, 31951, Saudi Arabia
| | - Xiaohui Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Heyu Chen
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Yiqing Yao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| |
Collapse
|
4
|
Carpanez TG, Carvalho de Lima E Silva N, Amaral MCS, Moreira VR. Reuse of wastewater and biosolids in soil conditioning: Potentialities, contamination, technologies for wastewater pre-treatment and opportunities for land restoration. CHEMOSPHERE 2025; 373:144185. [PMID: 39908843 DOI: 10.1016/j.chemosphere.2025.144185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
This study reviews the potential use of various wastewaters-vinasse, swine, food industry, paper and pulp, municipal wastewaters, and biosolids-as soil conditioners for restoring degraded areas, focusing on the circular economy concept. Over 90 articles from 2013 to 2024 were analyzed to address current scientific concerns, including these effluents' resistance genes, hormones, and macro/micronutrients. The presence of contaminants was critically examined alongside the necessary treatment methods to prevent soil degradation and ensure soil quality improvement. These included contaminants of emerging concern (CECs), antibiotic resistance genes (AGRs), and pathogens. These contaminants can either be assimilated and degraded by the soil ecosystem or leach into groundwater, translocate to plants, or accumulate in surface soil, necessitating careful monitoring. Furthermore, the study critically evaluates the potential of various physical and biological treatment technologies, such as anaerobic digestion, composting, dewatering, stabilization ponds, biological reactors, membrane processes, rotating disks, and pelletizers, highlighting their effectiveness in mitigating contamination and enhancing soil quality. The long-term effects of wastewater reuse as soil conditioner depend on both wastewater characteristics and soil properties. The benefits of using wastewater as soil conditioners are found to be influenced by characteristics of both the soil and the wastewater, with improvements in soil physical properties (increased porosity and permeability) and chemical properties (increased soil organic carbon and nutrients). Overall, the literature suggests that while wastewaters hold promise as soil conditioners, their successful application depends on effective wastewater management strategies to optimize benefits and mitigate risks.
Collapse
Affiliation(s)
- Thais Girardi Carpanez
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Nayara Carvalho de Lima E Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| |
Collapse
|
5
|
Mu L, Ding J, Wang Y, Peng H, Tao J, Pulkkinen E, Si H, Zhang L, Li A, Li J. Anaerobic biodegradation of PLA at mesophilic and thermophilic temperatures: methanation potential and associated microbial community. ENVIRONMENTAL TECHNOLOGY 2025:1-13. [PMID: 39933550 DOI: 10.1080/09593330.2024.2449267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/26/2024] [Indexed: 02/13/2025]
Abstract
Polylactic acid (PLA) is the most promising bio-based alternative to traditional petrochemical plastics across diverse applications. In this study, the biodegradation performance of PLA plastic under two potential end-of-life scenarios: mesophilic and thermophilic anaerobic digestion (AD) were investigated. The biotic and abiotic influence factors were evaluated through short-time exposure experiments. The potential bacteria and archaea involved in PLA anaerobic biodegradation were identified by high-throughput 16S rRNA sequencing analysis. The results showed that PLA had different biodegradation performance at mesophilic and thermophilic digestion (the biogas yield: 36.70 ± 0.2vs 398.6 ± 1.1 mL/g VS). The increased temperature at thermophilic conditions improved the biodegradability of PLA, but an attack by microorganisms was more crucial for biodegradation. The bacteria engaged in PLA hydrolysis and acidification were closely associated with proteolytic microbes. Mesophilic biodegradation of PLA involved Clostridia (14.94%), Anaerolineae (22.6%) and acetoclastic Methanothrix (53.0%). Thermophilic biodegradation of PLA was mainly accomplished by syntrophic microbes, Clostridia (38.2%), Synergistia (18.99%) and Thermotogae (17.82%), in tandem with hydrogenotrophic Methanothermobacter (20.5%). The results provide some insights for understanding mechanisms governing PLA biodegradation under AD conditions.
Collapse
Affiliation(s)
- Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Jingxuan Ding
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Yifan Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Hao Peng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, People's Republic of China
| | | | - Hang Si
- Company of Metern, Helsinki, Finland
| | - Lei Zhang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Aimin Li
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Jinhe Li
- Tianjin Capital Environmental Protection Group Co., Ltd., Tianjin, People's Republic of China
| |
Collapse
|
6
|
Liu K, Li W, Zhang D, Lv L, Zhang G. Positive effects of appropriate micro-aeration on landfill stabilization: Mitigating ammonia and VFAs accumulation. BIORESOURCE TECHNOLOGY 2024; 413:131483. [PMID: 39270988 DOI: 10.1016/j.biortech.2024.131483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The slow stabilization process of landfill had brought obstacles to urbanization. The paper investigated the efficacy and mechanism of micro-aeration intensity for landfill stabilization. The micro-aeration intensity of 0.05 L/(h·kg) resulted in a significant increase of volatile fatty acids (VFAs) in the hydrolysis stage, and the NH4+-N concentration was reduced by 22.1 %. At the end of landfill, VFAs were rapidly degraded and organic matter was reduced from 36 % to 16 %, which was 55.5 % more efficient than the control group. In addition, the community succession and structure of bacteria and archaea were analyzed. The micro-aeration intensity of 0.05 L/(h·kg) increased the abundance of hydrolyzing functional bacteria such as Pseudomonas and Bacillus, and allowed methanogenic bacteria such as Methanobacterium and Methanothrix to gradually establish oxygen tolerance in the microaerobic environment. The appropriate micro-aeration intensity can accelerate the stabilization process of landfill, which has environmental and economic benefits.
Collapse
Affiliation(s)
- Kaili Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China; College of Environmental Engineering, Tianjin University, Tianjin 300350, PR China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin 150086, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
7
|
Ostos I, Flórez-Pardo LM, Camargo C. A metagenomic approach to demystify the anaerobic digestion black box and achieve higher biogas yield: a review. Front Microbiol 2024; 15:1437098. [PMID: 39464396 PMCID: PMC11502389 DOI: 10.3389/fmicb.2024.1437098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
The increasing reliance on fossil fuels and the growing accumulation of organic waste necessitates the exploration of sustainable energy alternatives. Anaerobic digestion (AD) presents one such solution by utilizing secondary biomass to produce biogas while reducing greenhouse gas emissions. Given the crucial role of microbial activity in anaerobic digestion, a deeper understanding of the microbial community is essential for optimizing biogas production. While metagenomics has emerged as a valuable tool for unravelling microbial composition and providing insights into the functional potential in biodigestion, it falls short of interpreting the functional and metabolic interactions, limiting a comprehensive understanding of individual roles in the community. This emphasizes the significance of expanding the scope of metagenomics through innovative tools that highlight the often-overlooked, yet crucial, role of microbiota in biomass digestion. These tools can more accurately elucidate microbial ecological fitness, shared metabolic pathways, and interspecies interactions. By addressing current limitations and integrating metagenomics with other omics approaches, more accurate predictive techniques can be developed, facilitating informed decision-making to optimize AD processes and enhance biogas yields, thereby contributing to a more sustainable future.
Collapse
Affiliation(s)
- Iván Ostos
- Grupo de Investigación en Ingeniería Electrónica, Industrial, Ambiental, Metrología GIEIAM, Universidad Santiago de Cali, Cali, Colombia
| | - Luz Marina Flórez-Pardo
- Grupo de Investigación en Modelado, Análisis y Simulación de Procesos Ambientales e Industriales PAI+, Universidad Autónoma de Occidente, Cali, Colombia
| | - Carolina Camargo
- Centro de Investigación de la Caña de Azúcar, CENICAÑA, Cali, Colombia
| |
Collapse
|
8
|
Lara-Topete GO, Castanier-Rivas JD, Bahena-Osorio MF, Krause S, Larsen JR, Loge FJ, Mahlknecht J, Gradilla-Hernández MS, González-López ME. Compounding one problem with another? A look at biodegradable microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173735. [PMID: 38857803 DOI: 10.1016/j.scitotenv.2024.173735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Environmental concerns about microplastics (MPs) have motivated research of their sources, occurrence, and fate in aquatic and soil ecosystems. To mitigate the environmental impact of MPs, biodegradable plastics are designed to naturally decompose, thus reducing the amount of environmental plastic contamination. However, the environmental fate of biodegradable plastics and the products of their incomplete biodegradation, especially micro-biodegradable plastics (MBPs), remains largely unexplored. This comprehensive review aims to assess the risks of unintended consequences associated with the introduction of biodegradable plastics into the environment, namely, whether the incomplete mineralization of biodegradable plastics could enhance the risk of MBPs formation and thus, exacerbate the problem of their environmental dispersion, representing a potentially additional environmental hazard due to their presumed ecotoxicity. Initial evidence points towards the potential for incomplete mineralization of biodegradable plastics under both controlled and uncontrolled conditions. Rapid degradation of PLA in thermophilic industrial composting contrasts with the degradation below 50 % of other biodegradables, suggesting MBPs released into the environment through compost. Moreover, degradation rates of <60 % in anaerobic digestion for polymers other than PLA and PHAs suggest a heightened risk of MBPs in digestate, risking their spread into soil and water. This could increase MBPs and adsorbed pollutants' mobilization. The exact behavior and impacts of additive leachates from faster-degrading plastics remain largely unknown. Thus, assessing the environmental fate and impacts of MBPs-laden by-products like compost or digestate is crucial. Moreover, the ecotoxicological consequences of shifting from conventional plastics to biodegradable ones are highly uncertain, as there is insufficient evidence to claim that MBPs have a milder effect on ecosystem health. Indeed, literature shows that the impact may be worse depending on the exposed species, polymer type, and the ecosystem complexity.
Collapse
Affiliation(s)
- Gary Ossmar Lara-Topete
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Juan Daniel Castanier-Rivas
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - María Fernanda Bahena-Osorio
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Joshua R Larsen
- School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom
| | - Frank J Loge
- Department of Civil & Environmental Engineering, University of California - Davis, Davis, CA, United States of America; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Misael Sebastián Gradilla-Hernández
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico
| | - Martín Esteban González-López
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Laboratorio de Sostenibilidad y Cambio Climático, Av. General Ramón Corona 2514, Zapopan, Jalisco 45138, Mexico.
| |
Collapse
|
9
|
Zhou J, Lin WH, Yu YL, Dong CD, Zhang H, Hu Z, Kao CM. Transitioning weathered oil fields towards new energy: A review on utilizing hydrogenotrophic methanogens for petroleum hydrocarbons remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135279. [PMID: 39047569 DOI: 10.1016/j.jhazmat.2024.135279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/06/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The weathering process can cause the volatilization of light components in crude oil, leading to the accumulation of total petroleum hydrocarbons (TPH) in weathered oil field soils. These TPH compounds are relatively resistant to biodegradation, posing a significant environmental hazard by contributing to soil degradation. TPH represents a complex mixture of petroleum-based hydrocarbons classified as persistent organic pollutants in soil and groundwater. The release of TPH pollutants into the environment poses serious threats to ecosystems and human health. Currently, various methods are available for TPH-contaminated soil remediation, with bioremediation technology recognized as an environmentally friendly and cost-effective approach. While converting TPH to CO2 is a common remediation method, the complex structures and diverse types of petroleum hydrocarbons (PHs) involved can result in excessive CO2 generation, potentially exacerbating the greenhouse effect. Alternatively, transforming TPH into energy forms like methane through bioremediation, followed by collection and reuse, can reduce greenhouse gas emissions and energy consumption. This process relies on the synergistic interaction between Methanogens archaea and syntrophic bacteria, forming a consortium known as the oil-degrading bacterial consortium. Methanogens produce methane through anaerobic digestion (AD), with hydrogenotrophic methanogens (HTMs) utilizing H2 as an electron donor, playing a crucial role in biomethane production. Candidatus Methanoliparia (Ca. Methanoliparia) was found in the petroleum archaeal community of weathered Oil field in northeast China. Ca. Methanoliparia has demonstrated its independent ability to decompose and produce new energy (biomethane) without symbiosis, contribute to transitioning weathered oil fields towards new energy. Therefore, this review focuses on the principles, mechanisms, and developmental pathways of HTMs during new energy production in the degradation of PHs. It also discusses strategies to enhance TPH degradation and recovery methods.
Collapse
Affiliation(s)
- Jiaping Zhou
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Wei-Han Lin
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Ying-Liang Yu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Haibing Zhang
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Zhongtao Hu
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Australia
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Salgado-Hernández E, Ortiz-Ceballos ÁI, Alvarado-Lassman A, Martínez-Hernández S, Dorantes-Acosta AE, Rosas-Mendoza ES. Adaptation of a microbial consortium to pelagic Sargassum modifies its taxonomic and functional profile that improves biomethane potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55169-55186. [PMID: 39222230 DOI: 10.1007/s11356-024-34853-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In recent years, pelagic Sargassum has invaded the Caribbean coasts, and anaerobic digestion has been proposed as a sustainable management option. However, the complex composition of these macroalgae acts as a barrier to microbial degradation, thereby limiting methane production. Microbial adaptation is a promising strategy to improve substrate utilization and stress tolerance. This study aimed to investigate the adaptation of a microbial consortium to enhance methane production from the pelagic Sargassum. Microbial adaptation was performed in a fed-batch mode for 100 days by progressive feeding of Sargassum. The evolution of the microbial community was analyzed by high-throughput sequencing of 16S rRNA amplicons. Additionally, 16S rRNA data were used to predict functional profiles using the iVikodak platform. The results showed that, after adaptation, the consortium was dominated by the bacterial phyla Bacteroidota, Firmicutes, and Atribacterota, as well as methanogens of the families Methanotrichaceae and Methanoregulaceae. The abundance of predicted genes related to different metabolic functions was affected during the adaptation stage when Sargassum concentration was increased. At the end of the adaptation stage, the abundance of the predicted genes increased again. The adapted microbial consortium demonstrated a 60% increase in both biomethane potential and biodegradability index. This work offers valuable insights into the development of treatment technologies and the effective management of pelagic Sargassum in coastal regions, emphasizing the importance of microbial adaptation in this context.
Collapse
Affiliation(s)
- Enrique Salgado-Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, 91090, México.
| | | | - Alejandro Alvarado-Lassman
- División de Estudios de Posgrado E Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Orizaba, C.P. 94320, Orizaba, Mexico
| | - Sergio Martínez-Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, 91090, México
| | - Ana Elena Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, 91090, México
| | - Erik Samuel Rosas-Mendoza
- Programa de Investigadoras E Investigadores Por México del CONACYT, Av. Insurgentes Sur 1582, 03940, Ciudad de México, Mexico
| |
Collapse
|
11
|
Wang Z, Li H, Wang P, Zhu J, Yang Z, Liu Y. Comparison of anaerobic co-digestion of vacuum toilet blackwater and kitchen waste under mesophilic and thermophilic conditions: Reactor performance, microbial response and metabolic pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121725. [PMID: 38971070 DOI: 10.1016/j.jenvman.2024.121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Co-digestion of kitchen waste (KW) and black water (BW) can be considered as an attractive method to efficiently achieve the clean energy from waste. To find the optimal operation parameters for the co-digestion, the effects of different temperatures (35 and 55 °C) and BW:KW ratios on the reactor performances, microbial communities and metabolic pathways were studied. The results showed that the optimum BW:KW ratio was 1:3.6 and 1:4.5 for mesophilic and thermophilic optimal reactors, with methane production of 449.04 mL/g VS and 411.90 mL/g VS, respectively. Microbial communities showed significant differences between the reactors under different temperatures. For bacteria, increasing BW:KW ratio significantly promoted Defluviitoga enrichment (1.1%-9.5%) under thermophilic condition. For Archaea, the increase in BW:KW ratio promoted the enrichment of Methanosaeta (8.6%-56.4%) in the mesophilic reactor and Methanothermobacter (62.0%-89.2%) in the thermophilic reactor. The analysis of the key enzymes showed that, acetoclastic methanogenic pathway performed as the dominant under mesophilic condition, with high abundance of Acetate-CoA ligase (EC:6.2.1.1) and Pyruvate synthase (EC:1.2.7.1). Hydrogenotrophic methanogenic pathway was the main pathway in the thermophilic reactors, with high abundance of Formylmethanofuran dehydrogenase (EC:1.2.99.5).
Collapse
Affiliation(s)
- Ziang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haixiang Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Pingbo Wang
- Hangzhou EXPEC Technology Co., Ltd., Hangzhou 310000, China
| | - Jia Zhu
- Shenzhen Key Laboratory of Industrial Water Saving and Urban Sewage Resources, School of Construction and Environmental Engineering, Shenzhen Polytechnic, 518115, China
| | - Ziyi Yang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yanping Liu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
12
|
Gao Z, Wei Z, Zheng Y, Wu S, Zhou X, Ruan A. Evolution mechanism of microbial community structure and metabolic activity in aquatic nutrient-poor sedimentary environments driven by 17β-estradiol pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50333-50346. [PMID: 39093391 DOI: 10.1007/s11356-024-34580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
17β-Estradiol (E2) is a novel micro-pollutant that is widely distributed in aquatic sediments and has a universal toxicological effect on aquatic organisms. However, its ecological impact on aquatic microorganisms is not yet clear. In this study, we designed a simulation system for oligotrophic water deposition in the laboratory, analyzed the impact of different concentrations of E2 pollution on the carbon metabolism activity (carbon gas emission rate) of water microorganisms. Based on high-throughput sequencing results, we revealed the impact of E2 pollution on the community structure succession and metabolic function of bacteria, archaea, and methanogens in the simulated system, explored the impact mechanism of E2 pollution on microbial carbon metabolism in water bodies. Our results suggested that E2 significantly impacts the bacterial and archaeal community rather than the methanogen community, thereby indirectly inhibiting methane production. The achievements will bridge the theoretical gap between estrogen metabolism and carbon metabolism in sedimentary environments and contribute to enriching the ecological toxicology theory of steroid estrogen.
Collapse
Affiliation(s)
- Zihao Gao
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Zhipeng Wei
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Yu Zheng
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Shuai Wu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Xiaotian Zhou
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China.
- College of Geography and Remote Sensing, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
13
|
Percy AJ, Edwin M. A comprehensive review on the production and enhancement techniques of gaseous biofuels and their applications in IC engines with special reference to the associated performance and emission characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173087. [PMID: 38763185 DOI: 10.1016/j.scitotenv.2024.173087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/01/2024] [Accepted: 05/04/2024] [Indexed: 05/21/2024]
Abstract
The increasing global demand for energy, coupled with environmental concerns associated with fossil fuels, has led to the exploration of alternative fuel sources. Gaseous biofuels, derived from organic matter, have gained attention due to their renewable nature and clean combustion characteristics. The paper extensively explores production pathways for gaseous biofuels, including biogas, syngas, and hydrogen, providing insightful discussions on various sources and processes. The energy content, physical, and chemical properties of gaseous biofuels have been analysed, highlighting their potential as viable alternatives to conventional fuels. Distinctive properties of biogas, producer gas, and hydrogen that impact combustion characteristics and engine efficiency in IC engines are underscored. Furthermore, the review systematically reviews enhancement techniques for gaseous biofuels, encompassing strategies to augment quality, purity, and combustion efficiency. Various methods, ranging from substrate pretreatment for biogas to membrane separation for hydrogen, illustrate effective means of enhancing fuel performance. Rigorous examination of performance parameters such as brake thermal efficiency, specific fuel consumption and emissions characteristics such as NOx, CO, CO2, HC of gaseous biofuels in dual-fuel mode emphasizes efficiency and environmental impact, offering valuable insights into their feasibility as engine fuels. The findings of this review will serve as a valuable resource for researchers, engineers, and policymakers involved in alternative fuels and sustainable transportation, while also highlighting the need for further research and development to fully unlock the potential of gaseous biofuels in IC engines.
Collapse
Affiliation(s)
- A Jemila Percy
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, Tamil Nadu, India
| | - M Edwin
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, Tamil Nadu, India.
| |
Collapse
|
14
|
Wang P, Wu D, Su Y, Xie B. Mitigated dissemination of antibiotic resistance genes by nanoscale zero-valent iron and iron oxides during anaerobic digestion: Roles of microbial succession and regulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134636. [PMID: 38772111 DOI: 10.1016/j.jhazmat.2024.134636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Nanoscale zero-valent iron (ZVI) and the oxides have been documented as an effective approach for mitigating the dissemination of antibiotic resistance genes (ARGs) during anaerobic digestion (AD). However, the mechanism of ARGs dissemination mitigated by nanoscale ZVI and iron oxides remain unclear. Here, we investigated the influencing mechanisms of nanoscale ZVI and iron oxides on ARGs dissemination during AD. qPCR results indicated that nanoscale ZVI and iron oxides significantly declined the total ARGs abundances, and the strongest inhibiting effect was observed by 10 g/L nanoscale ZVI. Mantel test showed ARGs distribution was positively correlated with physiochemical properties, integrons and microbial community, among which microbial community primarily contributed to ARGs dissemination (39.74%). Furthermore, redundancy and null model analyses suggested the dominant and potential ARGs host was Fastidiosipila, and homogeneous selection in the determinism factors was the largest factor for driving Fastidiosipila variation, confirming the inhibition of Fastidiosipila was primary reason for mitigating ARGs dissemination by nanoscale ZVI and iron oxides. These results were related to the inhibition of ARGs transfer related functions. This work provides novel evidence for mitigating ARGs dissemination through regulating microbial succession and regulation induced by ZVI and iron oxides.
Collapse
Affiliation(s)
- Panliang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
15
|
Li Q, Zhu Y, Jiang N, Li J, Liu Y, Chen X, Xu X, Wang H, Ma Y, Huang M. Enhanced Sb(V) removal of sulfate-rich wastewater by anaerobic granular sludge assisted with Fe/C amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172113. [PMID: 38580110 DOI: 10.1016/j.scitotenv.2024.172113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Antimony (Sb) and sulfate are two common pollutants in Sb mine drainage and Sb-containing textile wastewater. In this paper, it was found that iron‑carbon (Fe/C) enhanced Sb(V) removal from sulfate-rich wastewater by anaerobic granular sludge (AnGS). Sulfate inhibited Sb(V) removal (S + Sb, k = 0.101), while Fe/C alleviated the inhibition and increased Sb(V) removal rate by 2.3 times (Fe/C + S + Sb, k = 0.236). Fe/C could promote the removal of Sb(III), and Sb(III) content decreased significantly after 8 h. Meanwhile, Fe/C enhanced the removal of sulfate. The 3D-EEM spectrum of supernatant in Fe/C + S + Sb group (at 24 h) showed that Fe/C stimulated the production of soluble microbial products (SMP) in wastewater. SMP alleviated the inhibition of sulfate, promoting AnGS to reduce Sb(V). Sb(V) could be reduced to Sb(III) both by AnGS and sulfides produced from sulfate reduction. Further analysis of extracellular polymeric substances (EPS) and AnGS showed that Fe/C increased the adsorbed Sb(V) in EPS and the c-type cytochrome content in AnGS, which may be beneficial for Sb(V) removal. Sb(V) reduction in Fe/C + S + Sb group may be related to the genus Acinetobacter, while in Sb group, several bacteria may be involved in Sb(V) reduction, such as Acinetobacter, Pseudomonas and Corynebacterium. This study provided insights into Fe/C-enhanced Sb(V) removal from sulfate-rich wastewater.
Collapse
Affiliation(s)
- Qi Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nan Jiang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jun Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoyang Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huangyingzi Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yimeng Ma
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
16
|
An X, Xu Y, Dai X. Biohythane production from two-stage anaerobic digestion of food waste: A review. J Environ Sci (China) 2024; 139:334-349. [PMID: 38105059 DOI: 10.1016/j.jes.2023.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 12/19/2023]
Abstract
The biotransformation of food waste (FW) to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems. To this end, a promising technique is two-stage anaerobic digestion (TSAD), in which the FW is transformed to biohythane, a gaseous mixture of biomethane and biohydrogen. This review summarises the main characteristics of FW and describes the basic principle of TSAD. Moreover, the factors influencing the TSAD performance are identified, and an overview of the research status; economic aspects; and strategies such as pre-treatment, co-digestion, and regulation of microbial consortia to increase the biohythane yield from TSAD is provided. Additionally, the challenges and future considerations associated with the treatment of FW by TSAD are highlighted. This paper can provide valuable reference for the improvement and widespread implementation of TSAD-based FW treatment.
Collapse
Affiliation(s)
- Xiaona An
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
17
|
Cheng B, Zhang D, Lin Q, Zhou L, Jiang J, Bi X, Jiang W, Zan F, Wang Z, Chen G, Guo G. Thiosulfate/FeCl 3 pre-treatment enhances short-chain fatty acid production and mitigates H 2S generation during anaerobic fermentation of waste activated sludge: Performance, microbial community and ecological analyses. BIORESOURCE TECHNOLOGY 2024; 398:130548. [PMID: 38458263 DOI: 10.1016/j.biortech.2024.130548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Anaerobic fermentation (AF) has been identified as a promising method of transforming waste activated sludge (WAS) into high-value products (e.g., short-chain fatty acids (SCFAs)). This study developed thiosulfate/FeCl3 pre-treatment and investigated the effects of different thiosulfate/FeCl3 ratios (S:Fe = 3:1, 3:2, 1:1, 3:4 and 3:5) on SCFA production and sulfur transformation during the AF of WAS. At a S:Fe ratio of 1:1, the maximal SCFA yield (933.3 mg COD/L) and efficient H2S removal (96.5 %) were obtained. S:Fe ratios ≤ 1:1 not only benefited hydrolysis and acidification but largely mitigated H2S generation. These results were supported by the enriched acidogens and reduced sulfur-reducing bacteria (SRB). Molecular ecological network analysis further revealed that the keystone taxon (g_Saccharimonadales) was found in S:Fe = 1:1, together with reductions in associations among methanogens, acidogens and SRB. This work provides a strategy for enhancing high-value product recovery from WAS and minimising H2S emissions.
Collapse
Affiliation(s)
- Boyi Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Da Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Qingshan Lin
- College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Yongchuan 402160, China
| | - Lichang Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Jinqi Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Xinqi Bi
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Zongping Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Wuhan 430074, China.
| |
Collapse
|
18
|
Lee ES, Park SY, Kim CG. Comparison of anaerobic digestion of starch- and petro-based bioplastic under hydrogen-rich conditions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:133-145. [PMID: 38194798 DOI: 10.1016/j.wasman.2023.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
To identify an economically viable waste management system for bioplastics, thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate) (PBAT) were anaerobically digested under hydrogen (H2)/carbon dioxide (CO2) and nitrogen (N2) gas-purged conditions to compare methane (CH4) production and biodegradation. Regardless of the type of bioplastics, CH4 production was consistently higher with H2/CO2 than with N2. The highest amount of CH4 was produced at 307.74 mL CH4/g volatile solids when TPS digested with H2/CO2. A stepwise increased in CH4 yield was observed, with a nominal initial increment followed by accelerated methanogenesis conversion as H2 was depleted. This may be attributed to a substantial shift in the microbial structure from hydrogenotrophic methanogen (Methanobacteriales and Methanomicrobiales) to heterotrophs (Spirochaetia). In contrast, no significant change was observed with PBAT, regardless of the type of purged gas. TPS was broken down into numerous derivatives, including volatile fatty acids. TPS produced more byproducts with H2/CO2 (i.e., 430) than with N2 (i.e., 320). In contrast, differential scanning calorimetry analysis on PBAT revealed an increase in crystallinity from 10.20 % to 12.31 % and 11.36 % in the H2/CO2- and N2-purged conditions, respectively, after 65 days of testing. PBAT surface modifications were characterized via Fourier transform infrared spectroscopy and scanning electron microscopy. The results suggest that the addition of H2/CO2 can enhance the CH4 yield and increase the breakdown rate of TPS more than that of PBAT. This study provides novel insights into the CH4 production potential of two bioplastics with different biodegradabilities in H2/CO2-mediated anaerobic digestion systems.
Collapse
Affiliation(s)
- Eun Seo Lee
- Program in Environmental and Polymer Engineering, INHA University, Incheon 22212, Republic of Korea
| | - Seon Yeong Park
- Institute of Environmental Research, INHA University, Incheon 22212, Republic of Korea
| | - Chang Gyun Kim
- Program in Environmental and Polymer Engineering, INHA University, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, Incheon 22212, Republic of Korea.
| |
Collapse
|
19
|
Das A, Verma M, Mishra V. Food waste to resource recovery: a way of green advocacy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17874-17886. [PMID: 37186182 DOI: 10.1007/s11356-023-27193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Due to the massive growth in population and urbanization, there has been a huge increase in the volume of food waste globally. The Food and Agriculture Organization (FAO) has estimated that around one-third of all food produced each year is wasted. Food waste leads to the emission of greenhouse gas and depletion of the soil fertility. Nevertheless, it has immense potential for the recovery of high-value energy, fuel, and other resources. This review summarizes the latest advances in resource recovery from food waste by using technologies that include food waste-mediated microbial fuel cell (MFC) for bioenergy production. In addition to this, utilization of food waste for the production of bioplastic, biogas, bioethanol, and fertilizer has been also discussed in detail. Competitive benefits and accompanying difficulties of these technologies have also been highlighted. Furthermore, future approaches for more efficient use of food waste for the recovery of valuable resources have been also offered from an interdisciplinary perspective.
Collapse
Affiliation(s)
- Alok Das
- School of Biochemical Engineering, IIT (BHU), U.P, Varanasi, 221005, India
| | - Manisha Verma
- School of Biochemical Engineering, IIT (BHU), U.P, Varanasi, 221005, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT (BHU), U.P, Varanasi, 221005, India.
| |
Collapse
|
20
|
Ng HJ, Goh KM, Yahya A, Abdul-Wahab MF. Microbial community dynamics and functional potentials in the conversion of oil palm wastes into biomethane. 3 Biotech 2024; 14:91. [PMID: 38419684 PMCID: PMC10897112 DOI: 10.1007/s13205-024-03933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Oil palm processing generates substantial waste materials rich in organic content, posing various environmental challenges. Anaerobic digestion (AD), particularly for palm oil mill effluent (POME), offers a sustainable solution, by converting waste into valuable biomethane for thermal energy or electricity generation. The synergistic activities of the AD microbiota directly affect the biomethane production, and the microbial community involved in biomethane production in POME anaerobic digestion has been reported. The composition of bacterial and archaeal communities varies under different substrate and physicochemical conditions. This review discusses the characteristics of POME, explores the microbial members engaged in each stage of AD, and elucidates the impacts of substrate and physicochemical conditions on the microbial community dynamics, with a specific focus on POME. Finally, the review outlines current research needs and provides future perspectives on optimizing the microbial communities for enhanced biomethane production from oil palm wastes.
Collapse
Affiliation(s)
- Hui Jing Ng
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Kian Mau Goh
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Adibah Yahya
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Mohd Firdaus Abdul-Wahab
- Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), 81310 UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|
21
|
Cheng H, Qin H, Li Y, Guo G, Liu J, Li YY. Comparative study of high-performance mesophilic and thermophilic anaerobic membrane bioreactors in the co-digestion of sewage sludge and food waste: Methanogenic performance and energy recovery potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169518. [PMID: 38142003 DOI: 10.1016/j.scitotenv.2023.169518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/03/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
To support smart cities in terms of waste management and bioenergy recovery, the co-digestion of sewage sludge (SeS) and food waste (FW) was conducted by the anaerobic membrane bioreactor (AnMBR) under mesophilic and thermophilic conditions in this study. The biogas production rate of the thermophilic AnMBR (ThAnMBR) at the SeS to FW ratio of 0:100, 75:25, 50:50 and 100:0 was 2.84 ± 0.21, 2.51 ± 0.26, 1.54 ± 0.26 and 1.31 ± 0.08 L-biogas/L/d, inconspicuous compared with that of the mesophilic AnMBR (MeAnMBR) at 3.00 ± 0.25, 2.46 ± 0.30, 1.63 ± 0.23 and 1.30 ± 0.17 L-biogas/L/d, respectively. The higher hydrolysis ratio and the poorer rejection efficiencies of the membrane under thermophilic conditions, resulting that the permeate COD, carbohydrate and protein of the ThAnMBR was higher than that of the MeAnMBR. The lost COD that might be converted into biogas was discharged with the permeate in the ThAnMBR, which was partly responsible for the inconspicuous methanogenic performance. Furthermore, the results of energy recovery potential assessment showed that the energy return on investment (EROI) of the MeAnMBR was 4.54, 3.81, 2.69 and 2.22 at the four SeS ratios, which was higher than that of the ThAnMBR at 3.29, 2.97, 2.02 and 1.80, respectively, indicating the advantage of the MeAnMBR over the ThAnMBR in energy recovery potential. The outcomes of this study will help to choose a more favorable temperature to co-digest SeS and FW to support the construction of smart cities.
Collapse
Affiliation(s)
- Hui Cheng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Haojie Qin
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yemei Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Guangze Guo
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
22
|
Le TS, Bui XT, Nguyen PD, Hao Ngo H, Dang BT, Le Quang DT, Thi Pham T, Visvanathan C, Diels L. Bacterial community composition in a two-stage anaerobic membrane bioreactor for co-digestion of food waste and food court wastewater. BIORESOURCE TECHNOLOGY 2024; 391:129925. [PMID: 37898371 DOI: 10.1016/j.biortech.2023.129925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
This study investigated the microbial community of a two-stage anaerobic membrane bioreactor (2S-AnMBR) co-digesting food waste and food court wastewater. The hydrolysis reactor (HR) was dominated by Bacteroidetes and Firmicutes phylum, with genus Lactobacillus enriched due to food waste fermentation. The up-flow anaerobic sludge blanket (UASB) was dominated by genus such as Methanobacterium and Methanosaeta. The presence of Methanobacterium (91 %) and Methanosaeta (7.5 %) suggested that methane production pathways inevitably undergo both hydrogenotrophic and acetoclastic methanogenesis. Hydrogen generated during hydrolysis fermentation in the HR contributed to methane production in the UASB via hydrogenotrophic pathways. However, the low abundance of Methanosaeta in the UASB can be attributed to the limited inffluent of volatile fatty acids (VFA) and the competitive presence of acetate-consuming bacteria Acinetobacter. The UASB exhibited more excellent dispersion and diversity of metabolic pathways compared to the HR, indicating efficient methane production.
Collapse
Affiliation(s)
- Thanh-Son Le
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Institute for Environment and Natural Resources, 142 To Hien Thanh street, District 10, Ho Chi Minh City, Viet Nam
| | - Xuan-Thanh Bui
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Phuoc-Dan Nguyen
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Bao-Trong Dang
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Do-Thanh Le Quang
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Tan Thi Pham
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Chettiyappan Visvanathan
- Department of Civil and Environmental Engineering, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Ludo Diels
- University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
23
|
Sharma P, Bano A, Singh SP, Atkinson JD, Lam SS, Iqbal HM, Tong YW. Biotransformation of food waste into biogas and hydrogen fuel – A review. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024; 52:46-60. [DOI: 10.1016/j.ijhydene.2022.08.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
24
|
Li Q, Kong X, Chen Y, Niu J, Jing J, Yuan J, Zhang Y. Co-enhancing effects of zero valent iron and magnetite on anaerobic methanogenesis of food waste at transition temperature (45 °C) and various organic loading rates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 173:87-98. [PMID: 37984263 DOI: 10.1016/j.wasman.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Deoiling of food waste (FW) after hydrothermal pretreatment occurs at high temperatures, and more energy is required for substrate cooling before the anaerobic digestion (AD) process. AD at the transition temperature (for example 45 °C) is good for energy saving and carbon emission reducing when treating deoiling FW. However, the metabolic activity of methanogens must increase at the transition temperatures. This study proposes the use of zero-valent iron (Fe0) and magnetite (Fe3O4) to boost CH4 yield from deoiling FW. The results showed a co-enhancing effect on CH4 yield upgradation when using Fe0 and Fe3O4 simultaneously, and the highest CH4 yield reached 536.23 mLCH4/gVS, which was 67.5 % higher than that of Fe0 alone (320.14 mLCH4/gVS). In addition, a high organic loading was favorable for increasing the CH4 yield from deoiling FW. Microbial diversity analysis suggested that the dominant methanogenic pathway at 45 °C was hydrogenotrophic methanogenesis. Herein, a potential metabolic pathway analysis revealed that the co-enhancing effects of Fe0 and Fe3O4 enhanced syntrophic methanogenesis and possibly boosted electron transfer efficiency.
Collapse
Affiliation(s)
- Qingxia Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China.
| | - Yuxin Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jianan Niu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jia Jing
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Jin Yuan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
25
|
Krebs R, Farrington KE, Johnson GR, Luckarift HR, Diltz RA, Owens JR. Biotechnology to reduce logistics burden and promote environmental stewardship for Air Force civil engineering requirements. Biotechnol Adv 2023; 69:108269. [PMID: 37797730 DOI: 10.1016/j.biotechadv.2023.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
This review provides discussion of advances in biotechnology with specific application to civil engineering requirements for airfield and airbase operations. The broad objectives are soil stabilization, waste management, and environmental protection. The biotechnology focal areas address (1) treatment of soil and sand by biomineralization and biopolymer addition, (2) reduction of solid organic waste by anaerobic digestion, (3) application of microbes and higher plants for biological processing of contaminated wastewater, and (4) use of indigenous materials for airbase construction and repair. The consideration of these methods in military operating scenarios, including austere environments, involves comparison with conventional techniques. All four focal areas potentially reduce logistics burden, increase environmental sustainability, and may provide energy source, or energy-neutral practices that benefit military operations.
Collapse
Affiliation(s)
- Rachel Krebs
- Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA.
| | - Karen E Farrington
- ARCTOS, LLC, 2601 Mission Point Blvd., Ste. 300, Beavercreek, OH 45431, USA; Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| | - Glenn R Johnson
- Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA; Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| | - Heather R Luckarift
- Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, USA; Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| | - Robert A Diltz
- Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| | - Jeffery R Owens
- Air Force Civil Engineer Center, 139 Barnes Drive, Suite #2, Tyndall Air Force Base, FL 32403, USA.
| |
Collapse
|
26
|
Gao P, Ming X, Wang X, Chen Z, Liu Y, Li X, Zhang D. Effects of ozone on activated sludge: performance of anaerobic digestion and structure of the microbial community. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2826-2836. [PMID: 38096071 PMCID: wst_2023_378 DOI: 10.2166/wst.2023.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The treatment and disposal of activated sludge are currently challenging tasks in the world. As a common biological engineering technology, biological fermentation exists with disadvantages such as low efficiency and complex process. Ozone pretreatments are commonly applied to improve this problem due to their high efficiency and low cost. In this study, the significant function of ozone in anaerobic fermentation gas production was verified with excess sludge. Compared with other untreated sludge, ozone pretreatment can effectively degrade activated sludge. After ozone treatment and mixing with primary sludge, the methane production of excess sludge increased by 49.30 and 50.78%, and the methanogenic activity increased by 69.99 and 73.83%, respectively. The results indicated that the mixing of primary sludge with excess sludge possessed synergistic effects, which contributed to the anaerobic fermentation of excess sludge. The results of microbial community structure exhibited that methanogenic processes mainly involve hydrogenogens, acidogens and methanogens. The relative abundance of both bacteria and microorganisms changed significantly in the early stage of hydraulic retention time, which coincided exactly with the gas production stage. This study provided a feasible pretreatment strategy to improve sludge biodegradability and revealed the role of microorganisms during anaerobic digestion.
Collapse
Affiliation(s)
- Pei Gao
- P.G. and X.M. contributed equally to this work. E-mail:
| | - Xujia Ming
- P.G. and X.M. contributed equally to this work
| | | | | | | | | | | |
Collapse
|
27
|
Kongthong O, Dokmaingam P, Chu CY. Fermentative Biohydrogen and Biomethane Production from High-Strength Industrial Food Waste Hydrolysate Using Suspended Cell Techniques. Mol Biotechnol 2023:10.1007/s12033-023-00939-0. [PMID: 37934388 DOI: 10.1007/s12033-023-00939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023]
Abstract
The food waste was very difficult to treat in a proper way since its high-organic matter. The novel biohythane (H2 + CH4) production from high-strength industry food waste hydrolysate in two steps anaerobic well mixed batch bioreactor was carried out in this study using cultivated microflora. The temperature was controlled at 37 °C and initial substrate concentration of industrial food waste hydrolysate varied from 60, 80, 100, and 120 g COD/L, respectively. The pH, TS, VS, and SCOD were analyzed from the influent and effluent samples. These analytical parameters showed the correlations between the biogas production rates and yields in the batch fermentation system. This study was the first time to use the industry food waste hydrolysate which was collected from the subcritical water hydrolysis process. In this study, the optimal biohydrogen and biomethane yield production by using suspended cells were 0.65 mL H2/g COD and 203.72 mL CH4/g COD where the initial substrate concentrations of total COD and SCOD were 60 g/L and 39.80 g/L, respectively. The optimal of the biohydrogen and biomethane yields production by using suspended cells were 0.65 mL H2/g COD and 203.72 mL CH4/g COD where the initial substrate concentrations of total COD and SCOD were 60 g/L and 39.80 g/L, respectively. The results of this study supported that the cultivation of inoculum in a suspended cell type can have a higher tolerance for the biohydrogen and biomethane production in a high-strength initial substrate concentration of 60 g COD/L.
Collapse
Affiliation(s)
- Onjira Kongthong
- Environmental Health Program, School of Health Science, Mae Fah Luang University, 333 M.1 Tasud, Muang, Chiang Rai, 57100, Thailand
| | - Pannipha Dokmaingam
- Environmental Health Program, School of Health Science, Mae Fah Luang University, 333 M.1 Tasud, Muang, Chiang Rai, 57100, Thailand.
- Research Center of Circular Economy for Waste-Free Thailand, School of Science, Mae Fah Luang University, 333 M.1 Tasud, Muang, Chiang Rai, 57100, Thailand.
| | - Chen-Yeon Chu
- Institute of Green Products, Feng Chia University, 100, Wenhua Rd. Xitun Dist., Taichung City, 407102, Taiwan.
- Master's Program of Green Energy Science and Technology, Feng Chia University, 100, Wenhua Rd. Xitun Dist., Taichung City, 407102, Taiwan.
| |
Collapse
|
28
|
Kim M, Lee SA, Yun JH, Ko SR, Cho DH, Kim HS, Oh HM, Kim HS, Ahn CY. Cultivation of Chlorella sp. HS2 using wastewater from soy sauce factory. CHEMOSPHERE 2023; 342:140162. [PMID: 37709062 DOI: 10.1016/j.chemosphere.2023.140162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Incorporation of wastewater from industrial sectors into the design of microalgal biorefineries has significant potential for advancing the practical application of this emerging industry. This study tested various food industrial wastewaters to assess their suitability for microalgal cultivation. Among these wastewaters, defective soy sauce (DSS) and soy sauce wastewater (SWW) were chosen but DSS exhibited the highest nutrient content with 13,500 ppm total nitrogen and 3051 ppm total phosphorus. After diluting DSS by a factor of 50, small-scale cultivation of microalgae was conducted to optimize culture conditions. SWW exhibited optimal growth at 25-30 °C and 300-500 μE m-2 s-1, while DSS showed optimal growth at 30-35 °C. Based on a 100-mL lab-scale and 3-L outdoor cultivation with an extended cultivation period, DSS outperformed SWW, exhibiting higher final biomass productivity. Additionally, nutrient-concentrated nature of DSS is advantageous for transportation at an industrial scale, leading us to select it as the most promising feedstock for microalgal cultivation. With further optimization, DSS has the potential to serve as an effective microalgal cultivation feedstock for large-scale biomass production.
Collapse
Affiliation(s)
- Minsik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Dept. of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Sang-Ah Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advance Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hee Su Kim
- FarmHannong, Nonsan, Chungcheongnam-do, 33010, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
29
|
Wang Y, Li J, Liu M, Gu L, Xu L, Li J, Ao L. Enhancement of anaerobic digestion of high salinity food waste by magnetite and potassium ions: Digestor performance, microbial and metabolomic analyses. BIORESOURCE TECHNOLOGY 2023; 388:129769. [PMID: 37722541 DOI: 10.1016/j.biortech.2023.129769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
The study investigated the effectiveness of magnetite and potassium ions (K+) in enhancing anaerobic digestion of high salinity food waste. Results indicated that both magnetite and K+ improved anaerobic digestion in high-salt environments, and their combination yielded even better results. The combination of magnetite and K+ promoted microorganism activity, and resulted in increased abundance of DMER64, Halobacteria and Methanosaeta. Metabolomic analysis revealed that magnetite mainly influenced quorum sensing, while K+ mainly stimulated the synthesis of compatible solutes, aiding in maintaining osmotic balance. The combined additives regulated pathways such as ATP binding cassette transport, methane metabolism, and inhibitory substance metabolism, enabling cells to resist environmental stress and maintain normal metabolic activity. Overall, this study demonstrated the potential of magnetite and K+ to enhance food waste anaerobic digestion in high salt conditions and provided valuable insights into the molecular mechanism.
Collapse
Affiliation(s)
- Yi Wang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Jianhao Li
- Yangtze River Delta (jiaxing) Ecological Development Co.,LTD, 32 Qinyi Road, 314050, Zhejiang, PR China
| | - Miao Liu
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, 174 Shapingba Road, 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Linji Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Jinze Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Lianggen Ao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| |
Collapse
|
30
|
Al-Dahidi S, Alrbai M, Al-Ghussain L, Alahmer A, Hayajneh HS. Data-driven analysis and prediction of wastewater treatment plant performance: Insights and forecasting for sustainable operations. BIORESOURCE TECHNOLOGY 2023; 391:129937. [PMID: 39492535 DOI: 10.1016/j.biortech.2023.129937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
This study presents a comprehensive performance and forecasting analysis of the As-Samra wastewater treatment plant (WWTP) in Jordan, with two main objectives. Firstly, a thorough evaluation of the plant's performance is conducted. The analysis involves independently assessing historical operational conditions, plant production, and their statistical correlations using various statistical techniques. The second objective focuses on developing a data-driven forecasting approach to predict the plant's production one month in advance, using multiple machine learning models. The results highlight the effectiveness of principal component analysis (PCA) in simplifying operational data, revealing distinct operational clusters, and identifying seasonal production patterns while showing correlations between operational conditions and overall power production. The support vector machine (SVM) forecasting model emerged as the top performer, showcasing the potential of a hybrid forecasting approach. The findings offer valuable perspectives for enhancing operational efficiency, refining production planning, and ultimately improving the environmental impact of the plant.
Collapse
Affiliation(s)
- Sameer Al-Dahidi
- Department of Mechanical and Maintenance Engineering, School of Applied Technical Sciences, German Jordanian University, Amman 11180, Jordan.
| | - Mohammad Alrbai
- Department of Mechanical Engineering, School of Engineering, University of Jordan, Amman 11942, Jordan.
| | - Loiy Al-Ghussain
- Energy Systems and Infrastructure Analysis Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Ali Alahmer
- Department of Mechanical Engineering, Tuskegee University, Tuskegee, AL 36088, USA; Department of Mechanical Engineering, Faculty of Engineering, Tafila Technical University, Tafila 66110, Jordan.
| | - Hassan S Hayajneh
- Department of Engineering Technology, College of Technology, Purdue University Northwest, 2200, USA.
| |
Collapse
|
31
|
Ochoa-Hernández ME, Reynoso-Varela A, Martínez-Córdova LR, Rodelas B, Durán U, Alcántara-Hernández RJ, Serrano-Palacios D, Calderón K. Linking the shifts in the metabolically active microbiota in a UASB and hybrid anaerobic-aerobic bioreactor for swine wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118435. [PMID: 37379625 DOI: 10.1016/j.jenvman.2023.118435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Due to the high concentration of pollutants, swine wastewater needs to be treated prior to disposal. The combination of anaerobic and aerobic technologies in one hybrid system allows to obtain higher removal efficiencies compared to those achieved via conventional biological treatment, and the performance of a hybrid system depends on the microbial community in the bioreactor. Here, we evaluated the community assembly of an anaerobic-aerobic hybrid reactor for swine wastewater treatment. Sequencing of partial 16S rRNA coding genes was performed using Illumina from DNA and retrotranscribed RNA templates (cDNA) extracted from samples from both sections of the hybrid system and from a UASB bioreactor fed with the same swine wastewater influent. Proteobacteria and Firmicutes were the dominant phyla and play a key role in anaerobic fermentation, followed by Methanosaeta and Methanobacterium. Several differences were found in the relative abundances of some genera between the DNA and cDNA samples, indicating an increase in the diversity of the metabolically active community, highlighting Chlorobaculum, Cladimonas, Turicibacter and Clostridium senso stricto. Nitrifying bacteria were more abundant in the hybrid bioreactor. Beta diversity analysis revealed that the microbial community structure significantly differed among the samples (p < 0.05) and between both anaerobic treatments. The main predicted metabolic pathways were the biosynthesis of amino acids and the formation of antibiotics. Also, the metabolism of C5-branched dibasic acid, Vit B5 and CoA, exhibited an important relationship with the main nitrogen-removing microorganisms. The anaerobic-aerobic hybrid bioreactor showed a higher ammonia removal rate compared to the conventional UASB system. However, further research and adjustments are needed to completely remove nitrogen from wastewater.
Collapse
Affiliation(s)
- María E Ochoa-Hernández
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico
| | - Andrea Reynoso-Varela
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur., Ciudad Obregón, Sonora, CP.85000, Mexico
| | - Luis R Martínez-Córdova
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico
| | - Belén Rodelas
- Department of Microbiology and Institute of Water Research, University of Granada, Spain
| | - Ulises Durán
- Universidad Autónoma Metropolitana, Biotechnology Dept., P.A. 55-535, 09340, Iztapalapa, Mexico City, Mexico
| | - Rocío J Alcántara-Hernández
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de México, Mexico
| | - Denisse Serrano-Palacios
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur., Ciudad Obregón, Sonora, CP.85000, Mexico.
| | - Kadiya Calderón
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
32
|
Zhang Z, Li C, Wang G, Yang X, Zhang Y, Wang R, Angelidaki I, Miao H. Mechanistic insights into Fe 3O 4-modified biochar relieving inhibition from erythromycin on anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118459. [PMID: 37399623 DOI: 10.1016/j.jenvman.2023.118459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
Anaerobic digestion (AD) of antibiotic manufacturing wastewater to degrade residual antibiotics and produce mixture of combustible gases has been investigated actively in the past decades. However, detrimental effect of residual antibiotic to microbial activities is commonly faced in AD process, leading to the reduction of treatment efficiency and energy recovery. Herein, the present study systematically evaluated the detoxification effect and mechanism of Fe3O4-modified biochar in AD of erythromycin manufacturing wastewater. Results showed that Fe3O4-modified biochar had stimulatory effect on AD at 0.5 g/L erythromycin existence. A maximum methane yield of 327.7 ± 8.0 mL/g COD was achieved at 3.0 g/L Fe3O4-modified biochar, leading to the increase of 55.7% compared to control group. Mechanistic investigation demonstrated that different levels of Fe3O4-modified biochar could improve methane yield via different metabolic pathways involved in specific bacteria and archaea. Low levels of Fe3O4-modified biochar (i.e., 0.5-1.0 g/L) led to the enrichment of Methanothermobacter sp., strengthening the hydrogenotrophic pathway. On the contrary, high levels of Fe3O4-modified biochar (2.0-3.0 g/L) favored the proliferation of acetogens (e.g., Lentimicrobium sp.) and methanogen (Methanosarcina sp.) and their syntrophic relations played vital role on the simulated AD performance at erythromycin stress. Additionally, the addition of Fe3O4-modified biochar significantly decreased the abundance of representative antibiotic resistant genes (ARGs), benefiting the reduction of environmental risk. The results of this study verified that the application of Fe3O4-modified biochar could be an efficient approach to detoxify erythromycin on AD system, which brings high impacts and positive implications for biological antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Zengshuai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Guan Wang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Xiaoyong Yang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Ruming Wang
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Hengfeng Miao
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
33
|
Yuan T, Shi X, Xu Q. Enhancing methane production from food waste with iron-carbon micro-electrolysis in a two-stage process. BIORESOURCE TECHNOLOGY 2023; 385:129474. [PMID: 37429555 DOI: 10.1016/j.biortech.2023.129474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
A two-stage process, consisting of a leach-bed reactor (LBR) and an up-flow anaerobic sludge blanket reactor (UASB), has been commonly adopted to improve food waste anaerobic digestion. However, its application is limited due to low hydrolysis and methanogenesis efficiencies. This study proposed a strategy of incorporating iron-carbon micro-electrolysis (ICME) into the UASB and recirculating its effluent to the LBR to improve the two-stage process efficiency. Results showed that the integration of the ICME with the UASB significantly increased the CH4 yield by 168.29%. The improvement of the food waste hydrolysis in the LBR mainly contributed to the enhanced CH4 yield (approximately 94.5%). The enrichment of hydrolytic-acidogenic bacterial activity, facilitated by the Fe2+ generated through ICME, might be the primary cause of the improved food waste hydrolysis. Moreover, ICME enriched the growth of hydrogenotrophic methanogens and stimulated the hydrogenotrophic methanogenesis pathway in the UASB, contributing partially to the enhanced CH4 yield.
Collapse
Affiliation(s)
- Tugui Yuan
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, China; Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaoyu Shi
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
34
|
Wang M, Ren T, Yin M, Lu K, Xu H, Huang X, Zhang X. Enhanced Anaerobic Wastewater Treatment by a Binary Electroactive Material: Pseudocapacitance/Conductance-Mediated Microbial Interspecies Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12072-12082. [PMID: 37486327 DOI: 10.1021/acs.est.3c01986] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Anaerobic digestion (AD) is a promising method to treat organic matter. However, AD performance was limited by the inefficient electron transfer and metabolism imbalance between acid-producing bacteria and methanogens. In this study, a novel binary electroactive material (Fe3O4@biochar) with pseudocapacitance (1.4 F/g) and conductance (10.2 μS/cm) was exploited to store-release electrons as well as enhance the direct electron transfer between acid-producing bacteria and methanogens during the AD process. The mechanism of pseudocapacitance/conductance on mediating interspecies electron transfer was deeply studied at each stage of AD. In the hydrolysis acidification stage, the pseudocapacitance of Fe3O4@biochar acting as electron acceptors proceeded NADH/NAD+ transformation of bacteria to promote ATP synthesis by 21% which supported energy for organics decomposition. In the methanogenesis stage, the conductance of Fe3O4@biochar helped the microbes establish direct interspecies electron transfer (DIET) to increase the coenzyme F420 content by 66% and then improve methane production by 13%. In the complete AD experiment, electrons generated from acid-producing bacteria were rapidly transported to methanogens via conductors. Excess electrons were buffered by the pseudocapacitor and then gradually released to methanogens which alleviated the drastic drop in pH. These findings provided a strategy to enhance the electron transfer in anaerobic treatment as well as guided the design of electroactive materials.
Collapse
Affiliation(s)
- Mingwei Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tengfei Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengxi Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kechao Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Wang C, Nakakoji S, Ng TCA, Zhu P, Tsukada R, Tatara M, Ng HY. Acclimatizing waste activated sludge in a thermophilic anaerobic fixed-bed biofilm reactor to maximize biogas production for food waste treatment at high organic loading rates. WATER RESEARCH 2023; 242:120299. [PMID: 37441869 DOI: 10.1016/j.watres.2023.120299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Thermophilic anaerobic digestion (TAD) provides a promising solution for sustainable high-strength waste treatment due to its enhanced methane-rich biogas recovery. However, high organic loading rates (OLR) exceeding 3.0 kgCOD/m3/day and short hydraulic retention times (HRT) below 10 days pose challenges in waste-to-energy conversion during TAD, stemming from volatile fatty acids (VFAs) accumulation and methanogenesis failure. In this study, we implemented a stepwise strategy for acclimatizing waste activated sludge (WAS) in a thermophilic anaerobic fixed-bed biofilm reactor (TA-FBBR) to optimize methanogen populations, thereby enhancing waste-to-energy efficiencies under elevated OLRs in food waste treatment. Results showed that following stepwise acclimatization, the TA-FBBR achieved stable methane production of approximately 5.8 L/L-reactor/day at an ultrahigh OLR of ∼20 kgCOD/m3/day and ∼15 kgVS/m3/day at 6-day HRT in food waste treatment. The average methane yield reached 0.45 m3/kgCODremoval, attaining the theoretical production in TAD. Moreover, VFA concentrations were stabilized below 1000 mg/L at the ultrahigh OLR under 6-day HRT, while maintaining an acetate/propionate ratio of > 1.8 and a VFA/TAK ratio of < 0.3 serving as effective indicators of system stability and methane yield potential. The microbial community analysis revealed that the WAS acclimatization strategy fostered the microbial diversity and abundance of Methanothermobacter and Methanosarcina. Methanosarcina in the biofilm were observed to be twice as abundant as Methanothermobacter, indicating a potential preference for biofilm existence among methanogens. The findings demonstrated an effective strategy, specifically the stepwise acclimatization of WAS in a thermophilic fixed-bed biofilm reactor, to enhance the food waste treatment performance at high OLRs, contributing valuable mechanistic and technical insights for future sustainable high-strength waste management.
Collapse
Affiliation(s)
- Chuansheng Wang
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Sumire Nakakoji
- Kajima Technical Research Institute, 2-19-1 Tobitakyu, Chofushi, Tokyo 182-0036, Japan
| | - Tze Chiang Albert Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore
| | - Peilin Zhu
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Ryohei Tsukada
- Kajima Technical Research Institute, 2-19-1 Tobitakyu, Chofushi, Tokyo 182-0036, Japan
| | - Masahiro Tatara
- Kajima Technical Research Institute, 2-19-1 Tobitakyu, Chofushi, Tokyo 182-0036, Japan
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
36
|
Tang L, O'Dwyer J, Kimyon Ö, Manefield MJ. Microbial community composition of food waste before anaerobic digestion. Sci Rep 2023; 13:12703. [PMID: 37543702 PMCID: PMC10404229 DOI: 10.1038/s41598-023-39991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023] Open
Abstract
Anaerobic digestion is widely used to process and recover value from food waste. Commercial food waste anaerobic digestion facilities seek improvements in process efficiency to enable higher throughput. There is limited information on the composition of microbial communities in food waste prior to digestion, limiting rational exploitation of the catalytic potential of microorganisms in pretreatment processes. To address this knowledge gap, bacterial and fungal communities in food waste samples from a commercial anaerobic digestion facility were characterised over 3 months. The abundance of 16S rRNA bacterial genes was approximately five orders of magnitude higher than the abundance of the fungal intergenic spacer (ITS) sequence, suggesting the numerical dominance of bacteria over fungi in food waste before anaerobic digestion. Evidence for the mass proliferation of bacteria in food waste during storage prior to anaerobic digestion is presented. The composition of the bacterial community shows variation over time, but lineages within the Lactobacillaceae family are consistently dominant. Nitrogen content and pH are correlated to community variation. These findings form a foundation for understanding the microbial ecology of food waste and provide opportunities to further improve the throughput of anaerobic digestion.
Collapse
Affiliation(s)
- Linjie Tang
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Jack O'Dwyer
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Önder Kimyon
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Michael J Manefield
- School of Civil and Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
37
|
Sharma P, Bano A, Singh SP, Srivastava SK, Singh SP, Iqbal HMN, Varjani S. Different stages of microbial community during the anaerobic digestion of food waste. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2079-2091. [PMID: 37273563 PMCID: PMC10232690 DOI: 10.1007/s13197-022-05477-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 10/17/2022]
Abstract
Large-scale food waste (FW) disposal has resulted in severe environmental degradation and financial losses around the world. Although FW has a high biomass energy contents and a growing large number of national projects to recover energy from FW by anaerobic digestion (AD) are being developed. AD is a promising solution for FW management and energy generation when compared to typical disposal options including landfill disposal, incineration, and composting. AD of FW can be combined with an existing AD operation or linked to the manufacture of value-added products to reduce costs and increase income. AD is a metabolic process that requires four different types of microbes: hydrolyzers, acidogens, acetogens, and methanogens. Microbes use a variety of strategies to avoid difficult situations in the AD, such as competition for the same substrate between sulfate-reducing bacteria and methane-forming bacteria. An improved comprehension of the microbiology involved in the anaerobic digestion of FW will provide new insight into the circumstances needed to maximize this procedure, including its possibilities for use in co-digestion mechanisms. This paper reviewed the present scientific knowledge of microbial community during the AD and the connection between microbial diversity during the AD of FW.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, Singapore, 138602 Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602 Singapore
| | - Ambreen Bano
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, Uttar Pradesh India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001 India
| | - Sudhir Kumar Srivastava
- Chemical Research Laboratory, Department of Chemistry, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001 India
| | - Surendra Pratap Singh
- Pandit Prithi Nath College, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh 208001 India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, NL Mexico
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010 India
| |
Collapse
|
38
|
Wang Z, Wang S, Zhuang W, Liu J, Meng X, Zhao X, Zheng Z, Chen S, Ying H, Cai Y. Trace elements' deficiency in energy production through methanogenesis process: Focus on the characteristics of organic solid wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163116. [PMID: 36996981 DOI: 10.1016/j.scitotenv.2023.163116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Excessive or insufficient supplementation of trace elements (TEs) limits the progression of anaerobic digestion. The main reason for this is the lack of sufficient understanding of digestion substrate characteristics, which significantly affects the demand for TEs. In this review, the relationship between TEs requirements and substrate characteristics is discussed. We mainly focus on three aspects. 1) The basis for TE optimization and existing problems: The optimization of TEs often based on the total solids (TS) or volatile solids (VS) of substrates, does not fully consider substrate characteristics. 2) TE deficiency mechanisms for different types of substrates: nitrogen-rich, sulfur-rich, TE-poor, and easily hydrolyzed substrates are the four main types of substrates. The mechanisms underlying TEs deficiency in the different substrates are investigated. 3) Regulation of TE bioavailability: characteristics of substrates affect digestion parameters, which disturb the bioavailability TE. Therefore, methods for regulating bioavailability of TEs are discussed.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Wei Zhuang
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jinle Liu
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Xingyao Meng
- Beijing Technology and Business University, State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing 100048, China
| | - Xiaoling Zhao
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Shanshuai Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya 572025, China
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Kexue Dadao 100, 450001 Zhengzhou, China.
| |
Collapse
|
39
|
Li J, Xu X, Chen C, Xu L, Du Z, Gu L, Xiang P, Shi D, Huangfu X, Liu F. Conductive materials enhance microbial salt-tolerance in anaerobic digestion of food waste: Microbial response and metagenomics analysis. ENVIRONMENTAL RESEARCH 2023; 227:115779. [PMID: 36967003 DOI: 10.1016/j.envres.2023.115779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
Previous studies have shown that high salinity environments can inhibit anaerobic digestion (AD) of food waste (FW). Finding ways to alleviate salt inhibition is important for the disposal of the growing amount of FW. We selected three common conductive materials (powdered activated carbon, magnetite, and graphite) to understand their performance and individual mechanisms that relieve salinity inhibition. Digester performances and related enzyme parameters were compared. Our data revealed that under normal and low salinity stress conditions, the anaerobic digester ran steady without significant inhibitions. Further, the presence of conductive materials promoted conversion rate of methanogenesis. This promotion effect was highest from magnetite > powdered activated carbon (PAC) > graphite. At 1.5% salinity, PAC and magnetite are beneficial in maintaining high methane production efficiency while control and the graphite added digester acidified and failed rapidly. Additionally, metagenomics and binning were used to analyze the metabolic capacity of the microorganisms. Some species enriched by PAC and magnetite possessed higher cation transport capacities and were to accumulate compatible solutes. PAC and magnetite promoted direct interspecies electron transference (DIET) and syntrophic oxidation of butyrate and propionate. Also, the microorganisms had more energy available to cope with salt inhibition in the PAC and magnetite added digesters. Our data imply that the promotion of Na+/H+ antiporter, K+ uptake, and osmoprotectant synthesis or transport by conductive materials may be crucial for their proliferation in highly stressful environments. These findings will help to understand the mechanisms of alleviate salt inhibition by conductive materials and help to recover methane from high-salinity FW.
Collapse
Affiliation(s)
- Jianhao Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Xiaofeng Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Cong Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Linji Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Zexuan Du
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Ping Xiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Dezhi Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Xiaoliu Huangfu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China
| |
Collapse
|
40
|
Xu Y, Meng X, Song Y, Lv X, Sun Y. Effects of different concentrations of butyrate on microbial community construction and metabolic pathways in anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 377:128845. [PMID: 36898564 DOI: 10.1016/j.biortech.2023.128845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Investigating the effect of butyric acid concentration on anaerobic digestion systems in complex systems is important for the efficient degradation of butyric acid and improving the efficiency of anaerobic digestion. In this study, different loadings of butyric acid with 2.8, 3.2, and 3.6 g/(L·d) were added to the anaerobic reactor. At a high organic loading rate of 3.6 g/(L·d), methane was efficiently produced with VBP (Volumetric Biogas Production) of 1.50 L/(L·d) and biogas content between 65% and 75%. VFAs concentration remained below 2000 mg/L. Metagenome sequencing revealed changes in the functional flora within different stages. Methanosarcina, Syntrophomonas, and Lentimicrobium were the main and functional microorganisms. That the relative abundance of methanogens exceeded 35% and methanogenic metabolic pathways were increased indicated the methanogenic capacity of the system significantly improved. The presence of a large number of hydrolytic acid-producing bacteria also indicated the importance of the hydrolytic acid-producing stage in the system.
Collapse
Affiliation(s)
- Yonghua Xu
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Xianghui Meng
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Yunong Song
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Xiaoyi Lv
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China
| | - Yong Sun
- Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, China; Key Laboratory of Pig-breeding Facilities Engineering, Ministry of Agriculture, Harbin 150030, China.
| |
Collapse
|
41
|
Khanthong K, Kadam R, Kim T, Park J. Synergetic effects of anaerobic co-digestion of food waste and algae on biogas production. BIORESOURCE TECHNOLOGY 2023; 382:129208. [PMID: 37217150 DOI: 10.1016/j.biortech.2023.129208] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Anaerobic co-digestion of food waste and algae was assessed to offset the drawbacks of anaerobic mono-digestion of each substrate. Batch test results indicated that a food waste and algae mixture ratio of 8:2 facilitated the highest CH4 yield (334 mL CH4/g CODInput). This ratio was applied to the anaerobic co-digestion reactor, resulting in a CH4 yield that was twice that of the anaerobic mono-digestion reactors, thereby facilitating high operational stability. In contrast to the anaerobic mono-digestion, anaerobic co-digestion resulted in stable CH4 production by overcoming volatile fatty acid accumulation and a decreased pH, even under a high organic loading rate (3 kg COD/m3∙d). Furthermore, a comparative metagenomic analysis revealed that the abundance of volatile fatty acid-oxidizing bacteria and hydrogenotrophic and methylotrophic methanogens was significantly increased in the anaerobic co-digestion reactor. These findings indicate that the anaerobic co-digestion of food waste and algae significantly improves CH4 production and process stability.
Collapse
Affiliation(s)
- Kamonwan Khanthong
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea
| | - Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea
| | - Taeyoung Kim
- Department of Environmental Engineering, Chosun University, Gwangju 61457, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea.
| |
Collapse
|
42
|
Jiang S, Yu D, Xiong F, Lian X, Jiang X. Enhanced methane production from the anaerobic co-digestion of food waste plus fruit and vegetable waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27328-z. [PMID: 37155098 DOI: 10.1007/s11356-023-27328-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Food waste (FW) and fruit, vegetable waste (FVW) are important components of municipal solid waste, yet the performance and related mechanisms of anaerobic co-digestion of FW and FVW for methane production have been rarely investigated. In order to get a deeper understanding of the mechanisms involved, the mesophilic FW and FVW anaerobic co-digestion in different proportions was investigated. The experimental results showed that when the ratio of FW and FVW was 1/1 (in terms of volatile suspended solid), the maximum biomethane yield of 269.9 mL/g TCOD from the codigested substrate is significantly higher than that in FW or FVW anaerobic digestion alone. FW and FVW co-digestion promoted the dissolution and biotransformation of organic matter. When the recommended mixing ratio was applied, the maximum concentration of dissolved chemical oxygen demand (COD) was high as 11971 mg/L. FW and FVW co-digestion reduced the accumulation of volatile fatty acids (VFA) in the digestive system, thus reducing its negative impact on the methanogenesis process. FW and FVW co-digestion process synergistically enhanced microbial activity. The analysis of microbial population structure showed that when FW and FVW were co-digested at the recommended ratio, the relative abundance of Proteiniphilum increased to 26.5%, and the relative abundances of Methanosaeta and Candidatus Methanofastidiosum were also significantly increased. The results of this work provide a certain amount of theoretical basis and technical support for the co-digestion of FW and FVW.
Collapse
Affiliation(s)
- Shangsong Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Dan Yu
- Qingdao Municipal Engineering Design and Research Institute, Qingdao, 266101, China
| | - Fei Xiong
- Qingdao Shunqingyuan Environment Co., Ltd., Qingdao, 266109, China
| | - Xiaoying Lian
- Qingdao Sunrui Marine Environment Co., Ltd., Qingdao, 266101, China
| | - Xiuyan Jiang
- Qingdao Municipal Engineering Design and Research Institute, Qingdao, 266101, China
| |
Collapse
|
43
|
Mu L, Wang Y, Xu F, Li J, Tao J, Sun Y, Song Y, Duan Z, Li S, Chen G. Emerging Strategies for Enhancing Propionate Conversion in Anaerobic Digestion: A Review. Molecules 2023; 28:3883. [PMID: 37175291 PMCID: PMC10180298 DOI: 10.3390/molecules28093883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Anaerobic digestion (AD) is a triple-benefit biotechnology for organic waste treatment, renewable production, and carbon emission reduction. In the process of anaerobic digestion, pH, temperature, organic load, ammonia nitrogen, VFAs, and other factors affect fermentation efficiency and stability. The balance between the generation and consumption of volatile fatty acids (VFAs) in the anaerobic digestion process is the key to stable AD operation. However, the accumulation of VFAs frequently occurs, especially propionate, because its oxidation has the highest Gibbs free energy when compared to other VFAs. In order to solve this problem, some strategies, including buffering addition, suspension of feeding, decreased organic loading rate, and so on, have been proposed. Emerging methods, such as bioaugmentation, supplementary trace elements, the addition of electronic receptors, conductive materials, and the degasification of dissolved hydrogen, have been recently researched, presenting promising results. But the efficacy of these methods still requires further studies and tests regarding full-scale application. The main objective of this paper is to provide a comprehensive review of the mechanisms of propionate generation, the metabolic pathways and the influencing factors during the AD process, and the recent literature regarding the experimental research related to the efficacy of various strategies for enhancing propionate biodegradation. In addition, the issues that must be addressed in the future and the focus of future research are identified, and the potential directions for future development are predicted.
Collapse
Affiliation(s)
- Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yifan Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Fenglian Xu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinhe Li
- Tianjin Capital Environmental Protection Group Co., Ltd., Tianjin 300133, China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yunan Sun
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Zhaodan Duan
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Siyi Li
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| |
Collapse
|
44
|
Xu Q, Yang G, Liu X, Wong JWC, Zhao J. Hydrochar mediated anaerobic digestion of bio-wastes: Advances, mechanisms and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163829. [PMID: 37121315 DOI: 10.1016/j.scitotenv.2023.163829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Bio-wastes treatment and disposal has become a challenge because of their increasing output. Given the abundant organic matter in bio-wastes, its related resource treatment methods have received more and more attention. As a promising strategy, anaerobic digestion (AD) has been widely used in the treatment of bio-wastes, during which not only methane as energy can be recovered but also their reduction can be achieved. However, AD process is generally disturbed by some internal factors (e.g., low hydrolysis efficiency and accumulated ammonia) and external factors (e.g., input pollutants), resulting in unstable AD operation performance. Recently, hydrochar was wildly found to improve AD performance when added to AD systems. This review comprehensively summarizes the research progress on the performance of hydrochar-mediated AD, such as increased methane yield, improved operation efficiency and digestate dewatering, and reduced heavy metals in digestate. Subsequently, the underlying mechanisms of hydrochar promoting AD were systematically elucidated and discussed, including regulation of electron transfer (ET) mode, microbial community structure, bio-processes involved in AD, and reaction conditions. Moreover, the effects of properties of hydrochar (e.g., feedstock, hydrothermal carbonization (HTC) temperature, HTC time, modification and dosage) on the improvement of AD performance are systematically concluded. Finally, the relevant knowledge gaps and opportunities to be studied are presented to improve the progress and application of the hydrochar-mediated AD technology. This review aims to offer some references and directions for the hydrochar-mediated AD technology in improving bio-wastes resource recovery.
Collapse
Affiliation(s)
- Qiuxiang Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
45
|
Cheng B, Wang Y, Zhang D, Wu D, Zan F, Ma J, Miao L, Wang Z, Chen G, Guo G. Thiosulfate pretreatment enhancing short-chain fatty acids production from anaerobic fermentation of waste activated sludge: Performance, metabolic activity and microbial community. WATER RESEARCH 2023; 238:120013. [PMID: 37148694 DOI: 10.1016/j.watres.2023.120013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
A novel strategy based on thiosulfate pretreatment for enhancing short-chain fatty acids (SCFAs) from anaerobic fermentation (AF) of waste activated sludge (WAS) was proposed in this study. The results showed that the maximal SCFA yield increased from 206.1 ± 4.7 to 1097.9 ± 17.2 mg COD/L with thiosulfate dosage increasing from 0 to 1000 mg S/L, and sulfur species contribution results revealed that thiosulfate was the leading contributor to improve SCFA yield. Mechanism exploration disclosed that thiosulfate addition largely improved WAS disintegration, due to thiosulfate serving as a cation binder for removing organic-binding cations, especially Ca2+ and Mg2+, dispersing the extracellular polymeric substance (EPS) structure and further entering into the intracellularly by stimulated carrier protein SoxYZ and subsequently caused cell lysis. Typical enzyme activities and related functional gene abundances indicated that both hydrolysis and acidogenesis were remarkably enhanced while methanogenesis was substantially suppressed, which were further strengthened by the enriched hydrolytic bacteria (e.g. C10-SB1A) and acidogenic bacteria (e.g. Aminicenantales) but severely reduced methanogens (e.g. Methanolates and Methanospirillum). Economic analysis confirmed that thiosulfate pretreatment was a cost-effective and efficient strategy. The findings obtained in this work provide a new thought for recovering resource through thiosulfate-assisted WAS AF for sustainable development.
Collapse
Affiliation(s)
- Boyi Cheng
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Da Zhang
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Di Wu
- Centre for Environmental and Energy Research, Department of Green Chemistry and Technology, Ghent University Global Campus, Ghent University, Ghent B9000, Belgium.
| | - Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Jie Ma
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Lei Miao
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Zongping Wang
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China
| | - Guanghao Chen
- Civil & Environmental Engineering and Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Gang Guo
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology (HUST), Wuhan 430074, PR China.
| |
Collapse
|
46
|
Yang S, Luo F, Yan J, Zhang T, Xian Z, Huang W, Zhang H, Cao Y, Huang L. Biogas production of food waste with in-situ sulfide control under high organic loading in two-stage anaerobic digestion process: Strategy and response of microbial community. BIORESOURCE TECHNOLOGY 2023; 373:128712. [PMID: 36758645 DOI: 10.1016/j.biortech.2023.128712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
A two-stage anaerobic digestion process utilizing food waste was investigated in this study, without any additive and co-digestion. Solid content, temperature and pH value were key controlling factors for hydrolysis, which results the optimized food waste hydrolysate with COD/VSfood waste of 2.67. Efficient biogas production was maintained in long-term operation (>150 d) without any additive, and methane production yields up to 699.7 mL·gVS-1·d-1 was achieved under organic loading rate (OLR) of 31.0 gVS·d-1. Methane production can be recovered (70.4 %) after temperature shock within 30 days. This study confirmed the possibility to establish two-stage food waste anaerobic digestion system under high organic load. pH, OLR, and temperature are key factors to maintain stable biogas production, while pH control was performed as a in situ sulfide control technology (75.8 % sulfide reduction). This study provides practical strategies for food waste utilization and decreasing carbon footprint.
Collapse
Affiliation(s)
- Siman Yang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Fan Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality Security and Protection in Pearl River Delta, Ministry of Education, Guangzhou 510006, PR China.
| | - Tianlang Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Ziyan Xian
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Weiyao Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality Security and Protection in Pearl River Delta, Ministry of Education, Guangzhou 510006, PR China
| | - Yongjian Cao
- Shenzhen Leoking Environmental Group Company Limited, 518117 Shenzhen, PR China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
47
|
Microalgal Feedstock for Biofuel Production: Recent Advances, Challenges, and Future Perspective. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Globally, nations are trying to address environmental issues such as global warming and climate change, along with the burden of declining fossil fuel reserves. Furthermore, countries aim to reach zero carbon emissions within the existing and rising global energy crisis. Therefore, bio-based alternative sustainable feedstocks are being explored for producing bioenergy. One such renewable energy resource is microalgae; these are photosynthetic microorganisms that grow on non-arable land, in extreme climatic conditions, and have the ability to thrive even in sea and wastewater. Microalgae have high photosynthetic efficiencies and biomass productivity compared to other terrestrial plants. Whole microalgae biomass or their extracted metabolites can be converted to various biofuels such as bioethanol, biodiesel, biocrude oil, pyrolytic bio-oil, biomethane, biohydrogen, and bio jet fuel. However, several challenges still exist before faster and broader commercial application of microalgae as a sustainable bioenergy feedstock for biofuel production. Selection of appropriate microalgal strains, development of biomass pre-concentrating techniques, and utilization of wet microalgal biomass for biofuel production, coupled with an integrated biorefinery approach for producing value-added products, could improve the environmental sustainability and economic viability of microalgal biofuel. This article will review the current status of research on microalgal biofuels and their future perspective.
Collapse
|
48
|
Yang B, Yu Q, Zhang Y. Applying Dynamic Magnetic Field To Promote Anaerobic Digestion via Enhancing the Electron Transfer of a Microbial Respiration Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2138-2148. [PMID: 36696287 DOI: 10.1021/acs.est.2c08577] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrochemical methods have been reported to strengthen anaerobic digestion, but the continuous electrical power supply and the complicated electrode installed inside the digester have restricted it from practical use. In this study, a dynamic magnetic field (DMF) was placed outside a digester to induce an electromotive force to electrically promote anaerobic digestion. With the applied DMF, an electromotive force of 0.14 mV was generated in the anaerobic sludge, and a 65.02% methane increment was obtained from the anaerobic digestion of waste-activated sludge. Experiments on each stage of anaerobic digestion showed that acidification and methanogenesis that involve electron transfer of respiration chains were promoted with the DMF, while solubilization and hydrolysis less related to respiration chains were not enhanced. Further analysis indicated that the induced electromotive force polarized the protein-like substances in the sludge to increase the conductivity and capacitance of the sludge. Electrotrophic methanogens (Methanothrix) and exoelectrogens (Exiguobacterium) were enriched with DMF. The kinetic isotope effect test confirmed that electron transfer was accelerated with DMF. Consistently, the concentration ratio of co-enzymes (NADH/NAD+ and F420H2/F420) that reflects the electron exchange with respiration chains significantly increased. Applying the DMF seemed a more accessible strategy to electrically strengthen anaerobic digestion.
Collapse
Affiliation(s)
- Bowen Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
49
|
Workie E, Kumar V, Bhatnagar A, He Y, Dai Y, Wah Tong Y, Peng Y, Zhang J, Fu C. Advancing the bioconversion process of food waste into methane: A systematic review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 156:187-197. [PMID: 36493662 DOI: 10.1016/j.wasman.2022.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/24/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
With the continuous rise of food waste (FW) throughout the world, a research effort to reveal its potential for bioenergy production is surging. There is a lack of harmonized information and publications available that evaluate the state-of-advance for FW-derived methane production process, particularly from an engineering and sustainability point of view. Anaerobic digestion (AD) has shown remarkable efficiency in the bioconversion of FW to methane. This paper reviews the current research progress, gaps, and prospects in pre-AD, AD, and post-AD processes of FW-derived methane production. Briefly, the review highlights innovative FW collection and optimization routes such as AI that enable efficient FW valorization processes. As weather changes and the FW sources may affect the AD efficiency, it is important to assess the spatio-seasonal variations and microphysical properties of the FW to be valorized. In that case, developing weather-resistant bioreactors and cost-effective mechanisms to modify the raw substrate morphology is necessary. An AI-guided reactor could have high performance when the internal environment of the centralized operation is monitored in real-time and not susceptible to changes in FW variety. Monitoring solvent degradation and fugitive gases during biogas purification is a challenging task, especially for large-scale plants. Furthermore, this review links scientific evidence in the field with full-scale case studies from different countries. It also highlights the potential contribution of ADFW to carbon neutrality efforts. Regarding future research needs, in addition to the smart collection scheme, attention should be paid to the management and utilization of FW impurities, to ensure sustainable AD operations.
Collapse
Affiliation(s)
- Endashaw Workie
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Vinor Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 OAL, UK
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang District, Shanghai 200240, China
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Yinghong Peng
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Cunbin Fu
- Everbright Water (Nan Ning) Limited, China
| |
Collapse
|
50
|
Kumar A, Bhardwaj S, Samadder SR. Evaluation of methane generation rate and energy recovery potential of municipal solid waste using anaerobic digestion and landfilling: A case study of Dhanbad, India. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:407-417. [PMID: 36134679 DOI: 10.1177/0734242x221122494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, two most common biological waste to energy conversion techniques have been analysed and compared on the basis of methane generation and energy recovery potential. The biogas generation potential has been estimated using anaerobic co-digestion experiment. The main substrate used for this study was food waste, while cow dung and anaerobic digester sludge were used as co-digestion substrates. Food waste was used because of its maximum composition (36% of total wastes) in the study area (Dhanbad city, India) with high biogas generation potential. Cow dung acted as a natural buffer, while anaerobic digester sludge was a source of active inoculum. Based on the maximum biogas yield of 402 mL g-1 VS and annual food waste generation rate in the study area, the energy recovery potential using anaerobic digestion was estimated to be 6.59 × 106 kWh year-1. Presently, the wastes in the mixed form are being dumped on a large abandoned land with an approximate area of 93 ha in the outskirts of Dhanbad city in an uncontrolled manner. The annual landfill gas generation from the existing landfill has been estimated using Landfill Gas Emissions Model (LandGEM) based on the waste characteristics, anticipated landfill life and other region-specific parameters of the present study area. The maximum electrical energy recovery potential of 44.62 × 105 kWh from landfill gas has been estimated for the year 2041. Although, the results are based on the waste generation and characteristics of Dhanbad city, the comparison methodology can be applied to other cities.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Subham Bhardwaj
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Sukha Ranjan Samadder
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|