1
|
Tripathi G, Hussain A, Irum, Firdaus S, Dubey P, Ahmad S, Ashfaque M, Mishra V, Farooqui A. Current Scenario and Global Perspective of Sustainable Algal Biofuel Production. Recent Pat Biotechnol 2025; 19:276-300. [PMID: 39390829 DOI: 10.2174/0118722083322399240927051315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 08/15/2024] [Indexed: 10/12/2024]
Abstract
Industrialization and globalization have increased the demand for petroleum products that has increased a load on natural energy resources. The escalating fossil fuel utilization has resulted in surpassing the Earth's capacity to absorb greenhouse gases, necessitating the exploration of sustainable bioenergy alternatives to mitigate emissions. Biofuels, derived from algae, offer promising solutions to alleviate fossil fuel dependency. Algae, often regarded as third-generation biofuels, present numerous advantages owing to their high biomass production rates. While algae have been utilized for their bioactive compounds, their capability as biomass for the production of biofuel has gained traction among researchers. Various biofuels such as bio-hydrogen, bio-methane, bio-ethanol, bio-oil, and bio-butanol can be derived from algae through diverse processes like fermentation, photolysis, pyrolysis, and transesterification. Despite the enormous commercial potential of algae-derived biofuels, challenges such as high cultivation costs persist. However, leveraging the utilization of algae byproducts could improve economic viability of biofuel production. Moreover, algae derived biofuels offer environmental sustainability, cost-effectiveness, and waste reduction benefits, promising novel opportunities for a more sustainable energy future. Moreover, advancements in the field could lead to patents that drive innovation and commercialization in algae-based biofuel technologies.
Collapse
Affiliation(s)
- Gyanendra Tripathi
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Akhtar Hussain
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Irum
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Saba Firdaus
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Priyanka Dubey
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Suhail Ahmad
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Mohammad Ashfaque
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Vishal Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Alvina Farooqui
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, 226026, India
| |
Collapse
|
2
|
Wang M, Ye X, Bi H, Shen Z. Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:10. [PMID: 38254224 PMCID: PMC10804497 DOI: 10.1186/s13068-024-02461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
The development of microalgal biofuels is of significant importance in advancing the energy transition, alleviating food pressure, preserving the natural environment, and addressing climate change. Numerous countries and regions across the globe have conducted extensive research and strategic planning on microalgal bioenergy, investing significant funds and manpower into this field. However, the microalgae biofuel industry has faced a downturn due to the constraints of high costs. In the past decade, with the development of new strains, technologies, and equipment, the feasibility of large-scale production of microalgae biofuel should be re-evaluated. Here, we have gathered research results from the past decade regarding microalgae biofuel production, providing insights into the opportunities and challenges faced by this industry from the perspectives of microalgae selection, modification, and cultivation. In this review, we suggest that highly adaptable microalgae are the preferred choice for large-scale biofuel production, especially strains that can utilize high concentrations of inorganic carbon sources and possess stress resistance. The use of omics technologies and genetic editing has greatly enhanced lipid accumulation in microalgae. However, the associated risks have constrained the feasibility of large-scale outdoor cultivation. Therefore, the relatively controllable cultivation method of photobioreactors (PBRs) has made it the mainstream approach for microalgae biofuel production. Moreover, adjusting the performance and parameters of PBRs can also enhance lipid accumulation in microalgae. In the future, given the relentless escalation in demand for sustainable energy sources, microalgae biofuels should be deemed a pivotal constituent of national energy planning, particularly in the case of China. The advancement of synthetic biology helps reduce the risks associated with genetically modified (GM) microalgae and enhances the economic viability of their biofuel production.
Collapse
Affiliation(s)
- Min Wang
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Xiaoxue Ye
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Hongwen Bi
- Institute of Agricultural Remote Sensing and Information, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Zhongbao Shen
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| |
Collapse
|
3
|
Zhou T, Gui C, Sun L, Hu Y, Lyu H, Wang Z, Song Z, Yu G. Energy Applications of Ionic Liquids: Recent Developments and Future Prospects. Chem Rev 2023; 123:12170-12253. [PMID: 37879045 DOI: 10.1021/acs.chemrev.3c00391] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Ionic liquids (ILs) consisting entirely of ions exhibit many fascinating and tunable properties, making them promising functional materials for a large number of energy-related applications. For example, ILs have been employed as electrolytes for electrochemical energy storage and conversion, as heat transfer fluids and phase-change materials for thermal energy transfer and storage, as solvents and/or catalysts for CO2 capture, CO2 conversion, biomass treatment and biofuel extraction, and as high-energy propellants for aerospace applications. This paper provides an extensive overview on the various energy applications of ILs and offers some thinking and viewpoints on the current challenges and emerging opportunities in each area. The basic fundamentals (structures and properties) of ILs are first introduced. Then, motivations and successful applications of ILs in the energy field are concisely outlined. Later, a detailed review of recent representative works in each area is provided. For each application, the role of ILs and their associated benefits are elaborated. Research trends and insights into the selection of ILs to achieve improved performance are analyzed as well. Challenges and future opportunities are pointed out before the paper is concluded.
Collapse
Affiliation(s)
- Teng Zhou
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518048, China
| | - Chengmin Gui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Longgang Sun
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Yongxin Hu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Hao Lyu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Zihao Wang
- Department for Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106 Magdeburg, Germany
| | - Zhen Song
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
4
|
Chaos-Hernández D, Reynel-Ávila HE, Bonilla-Petriciolet A, Villalobos-Delgado FJ. Extraction methods of algae oils for the production of third generation biofuels - A review. CHEMOSPHERE 2023; 341:139856. [PMID: 37598949 DOI: 10.1016/j.chemosphere.2023.139856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Microalgae are the main source of third-generation biofuels because they have a lipid content of 20-70%, can be abundantly produced and do not compete in the food market besides other benefits. Biofuel production from microalgae is a promising option to contribute for the resolution of the eminent crisis of fossil energy and environmental pollution specially in the transporting sector. The choice of lipid extraction method is of relevance and associated to the algae morphology (i.e., rigid cells). Therefore, it is essential to develop suitable extraction technologies for economically viable and environment-friendly lipid recovery processes with the aim of achieving a commercial production of biofuels from this biomass. This review presents an exhaustive analysis and discussion of different methods and processes of lipid extraction from microalgae for the subsequent conversion to biodiesel. Physical methods based on the use of supercritical fluids, ultrasound and microwaves were reviewed. Chemical methods using solvents with different polarities, aside from mechanical techniques such as mechanical pressure and enzymatic methods, were also analyzed. The advantages, drawbacks, challenges and future prospects of lipid extraction methods from microalgae have been summarized to provide a wide panorama of this relevant topic for the production of economic and sustainable energy worldwide.
Collapse
Affiliation(s)
- D Chaos-Hernández
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - H E Reynel-Ávila
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico; CONACYT, Av. Insurgentes 1582 Sur, Ciudad de México, 03940, Aguascalientes, Ags, Mexico.
| | - A Bonilla-Petriciolet
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - F J Villalobos-Delgado
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| |
Collapse
|
5
|
Naser I, Yabu Y, Maeda Y, Tanaka T. Highly Efficient Genetic Transformation Methods for the Marine Oleaginous Diatom Fistulifera solaris. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:657-665. [PMID: 36512290 DOI: 10.1007/s10126-022-10189-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The oleaginous diatom Fistulifera solaris is a promising producer of biofuel owing to the high content of the lipids. A genetic transformation technique by microparticle bombardment for this diatom was already established. However, the transformation efficiency was significantly lower than those of other diatoms. Devoting efforts to advance the genetic modifications of this diatom is crucial to unlock its full potential. In this study, we optimized the microparticle bombardment protocol, and newly established a multi-pulse electroporation protocol for this diatom. The nutrient-rich medium in the pre-culture stage played an essential role to increase the transformation efficiency of the bombardment method. On the other hand, use of the nutrient-rich medium in the electroporation experiments resulted in decreasing the efficiency because excess nutrient salts could hamper to establish the best conductivity condition. Adjustments on the number and voltage of the poring pulses were also critical to obtain the best balance between cell viability and efficient pore formation. Under the optimized conditions, the transformation efficiencies of microparticle bombardment and multi-pulse electroporation were 111 and 82 per 108 cells, respectively (37 and 27 times higher than the conventional bombardment method). With the aid of the optimized protocol, we successfully developed the transformant clone over-expressing the endogenous fat storage-inducing transmembrane protein (FIT)-like protein, which was previously found in the genome of the oleaginous diatom F. solaris and the oleaginous eustigmatophyte Nannochloropsis gaditana. This study provides powerful techniques to investigate and further enhance the metabolic functions of F. solaris by genetic engineering.
Collapse
Affiliation(s)
- Insaf Naser
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, 184-8588, Koganei, Tokyo, Japan
| | - Yusuke Yabu
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, 184-8588, Koganei, Tokyo, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, 184-8588, Koganei, Tokyo, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, 184-8588, Koganei, Tokyo, Japan.
| |
Collapse
|
6
|
Gonzalez DI, Ynalvez RA. Comparison of the effects of nitrogen-, sulfur- and combined nitrogen- and sulfur-deprivations on cell growth, lipid bodies and gene expressions in Chlamydomonas reinhardtii cc5373-sta6. BMC Biotechnol 2023; 23:35. [PMID: 37684579 PMCID: PMC10492388 DOI: 10.1186/s12896-023-00808-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Biofuel research that aims to optimize growth conditions in microalgae is critically important. Chlamydomonas reinhardtii is a green microalga that offers advantages for biofuel production research. This study compares the effects of nitrogen-, sulfur-, and nitrogen and sulfur- deprivations on the C. reinhardtii starchless mutant cc5373-sta6. Specifically, it compares growth, lipid body accumulation, and expression levels of acetyl-CoA carboxylase (ACC) and phosphoenolpyruvate carboxylase (PEPC). RESULTS Among nutrient-deprived cells, TAP-S cells showed significantly higher total chlorophyll, cell density, and protein content at day 6 (p < 0.05). Confocal analysis showed a significantly higher number of lipid bodies in cells subjected to nutrient deprivation than in the control over the course of six days; N deprivation for six days significantly increased the size of lipid bodies (p < 0.01). In comparison with the control, significantly higher ACC expression was observed after 8 and 24 h of NS deprivation and only after 24 h with N deprivation. On the other hand, ACC and PEPC expression at 8 and 24 h of S deprivation was not significantly different from that in the control. A significantly lower PEPC expression was observed after 8 h of N and NS deprivation (p < 0.01), but a significantly higher PEPC expression was observed after 24 h (p < 0.01). CONCLUSIONS Based on our findings, it would be optimum to cultivate cc5373-sta6 cells in nutrient deprived conditions (-N, -S or -NS) for four days; whereby there is cell growth, and both a high number of lipid bodies and a larger size of lipid bodies produced.
Collapse
Affiliation(s)
- David I Gonzalez
- Department of Biological Science, Vanderbilt University, 465 21st Ave S, Nashville, TN, 37240, USA
| | - Ruby A Ynalvez
- Department of Biology and Chemistry, Texas A&M International University, 5201 University Blvd, Laredo, TX, 78041, USA.
| |
Collapse
|
7
|
Zhu Z, Sun J, Fa Y, Liu X, Lindblad P. Enhancing microalgal lipid accumulation for biofuel production. Front Microbiol 2022; 13:1024441. [PMID: 36299727 PMCID: PMC9588965 DOI: 10.3389/fmicb.2022.1024441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Microalgae have high lipid accumulation capacity, high growth rate and high photosynthetic efficiency which are considered as one of the most promising alternative sustainable feedstocks for producing lipid-based biofuels. However, commercialization feasibility of microalgal biofuel production is still conditioned to the high production cost. Enhancement of lipid accumulation in microalgae play a significant role in boosting the economics of biofuel production based on microalgal lipid. The major challenge of enhancing microalgal lipid accumulation lies in overcoming the trade-off between microalgal cell growth and lipid accumulation. Substantial approaches including genetic modifications of microalgal strains by metabolic engineering and process regulations of microalgae cultivation by integrating multiple optimization strategies widely applied in industrial microbiology have been investigated. In the present review, we critically discuss recent trends in the application of multiple molecular strategies to construct high performance microalgal strains by metabolic engineering and synergistic strategies of process optimization and stress operation to enhance microalgal lipid accumulation for biofuel production. Additionally, this review aims to emphasize the opportunities and challenges regarding scaled application of the strategic integration and its viability to make microalgal biofuel production a commercial reality in the near future.
Collapse
Affiliation(s)
- Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Jing Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yun Fa
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xufeng Liu
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
- *Correspondence: Xufeng Liu,
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
- Peter Lindblad,
| |
Collapse
|
8
|
Liu H, Yan N, Wong TY, Lam H, Lam JWY, Kwok RTK, Sun J, Tang BZ. Fluorescent Imaging and Sorting of High-Lipid-Content Strains of Green Algae by Using an Aggregation-Induced Emission Luminogen. ACS NANO 2022; 16:14973-14981. [PMID: 36099405 DOI: 10.1021/acsnano.2c05976] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microalgae-based biofuels are receiving attention at the environmental, economic, and social levels because they are clean, renewable, and quickly produced. The green algae Chlorella vulgaris has been extensively studied in research laboratories and the biofuel industry as a model organism to increase lipid production to be cost-effective in commercial production. In this work, we utilized a lipid-droplet-specific luminogen with aggregation-induced emission (AIE) characteristics to increase the lipid production of C. vulgaris by fluorescent imaging and sorting of those algal cells with large and rich lipid droplets for subculturing. The AIE-active TPA-A enabled real-time monitoring of the size and number of lipid droplets in C. vulgaris during their growth period so that we can identify the best time for harvesting. Furthermore, the algae cells with high lipid content were identified and collected for subculturing by the technique of fluorescence-activated cell sorting (FACS). The lipid production in the generation of two successive selections was almost doubled compared to the generation with natural selection. This work demonstrated that the technologies of AIE and FACS could be applied together to improve the production of a third-generation biofuel.
Collapse
Affiliation(s)
- Haixiang Liu
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Tin Yan Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W Y Lam
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ryan T K Kwok
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jianwei Sun
- The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
9
|
Bioenergy, Biofuels, Lipids and Pigments—Research Trends in the Use of Microalgae Grown in Photobioreactors. ENERGIES 2022. [DOI: 10.3390/en15155357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This scientometric review and bibliometric analysis aimed to characterize trends in scientific research related to algae, photobioreactors and astaxanthin. Scientific articles published between 1995 and 2020 in the Web of Science and Scopus bibliographic databases were analyzed. The article presents the number of scientific articles in particular years and according to the publication type (e.g., articles, reviews and books). The most productive authors were selected in terms of the number of publications, the number of citations, the impact factor, affiliated research units and individual countries. Based on the number of keyword occurrences and a content analysis of 367 publications, seven leading areas of scientific interest (clusters) were identified: (1) techno-economic profitability of biofuels, bioenergy and pigment production in microalgae biorefineries, (2) the impact of the construction of photobioreactors and process parameters on the efficiency of microalgae cultivation, (3) strategies for increasing the amount of obtained lipids and obtaining biodiesel in Chlorella microalgae cultivation, (4) the production of astaxanthin on an industrial scale using Haematococcus microalgae, (5) the productivity of biomass and the use of alternative carbon sources in microalgae culture, (6) the effect of light and carbon dioxide conversion on biomass yield and (7) heterotrophy. Analysis revealed that topics closely related to bioenergy production and biofuels played a dominant role in scientific research. This publication indicates the directions and topics for future scientific research that should be carried out to successfully implement economically viable technology based on microalgae on an industrial scale.
Collapse
|
10
|
Cheng P, Huang J, Song X, Yao T, Jiang J, Zhou C, Yan X, Ruan R. Heterotrophic and mixotrophic cultivation of microalgae to simultaneously achieve furfural wastewater treatment and lipid production. BIORESOURCE TECHNOLOGY 2022; 349:126888. [PMID: 35202828 DOI: 10.1016/j.biortech.2022.126888] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Furfural wastewater (FWW) treatment is important in modern chemical production. However, traditional wastewater treatment methods are inappropriate for the treatment of FWW. In this work, Chlorella pyrenoidosa was employed to study the growth and pollutants removal with both heterotrophic and mixotrophic cultures. The results show that the biomass and removal efficiency for COD and TN were the highest under 10-fold dilution. However, TP removal were inconsistent when the algae were cultivated in both mixotrophic and heterotrophic modes. Compared to high nitrogen (0.75 g/L NaNO3), the algal cells grew faster when adding 0.25 g/L NaNO3 to the FWW, whether in mixotrophic or heterotrophic conditions. The total lipid content in heterotrophic conditions was 18.53%, which was higher than the values in mixotrophy when the concentration of NaNO3 was 0.75 g/L. Different carbon assimilation mechanisms of the algal cells result in a discrepancy in cell growth and pollutant removal, under different culture modes.
Collapse
Affiliation(s)
- Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jianke Huang
- Institute of Marine Biotechnology and Bioresource Utilization, College of Oceanography, Hehai University, Nanjing, Jiangsu 213022, China
| | - Xiaotong Song
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ting Yao
- Institute of Marine Biotechnology and Bioresource Utilization, College of Oceanography, Hehai University, Nanjing, Jiangsu 213022, China
| | - Jingshun Jiang
- Institute of Marine Biotechnology and Bioresource Utilization, College of Oceanography, Hehai University, Nanjing, Jiangsu 213022, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| |
Collapse
|
11
|
Sivakumar R, Sachin S, Priyadarshini R, Ghosh S. Sustainable production of EPA-rich oil from microalgae: Towards an algal biorefinery. J Appl Microbiol 2022; 132:4170-4185. [PMID: 35238451 DOI: 10.1111/jam.15508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 02/07/2022] [Accepted: 02/26/2022] [Indexed: 11/27/2022]
Abstract
Utilization of sustainable natural resources such as microalgae has been considered for the production of biofuels, aquaculture feed, high-value bioactives such as omega-3 fatty acids, carotenoids, etc. Eicosapentaenoic acid (EPA) is an omega-3 fatty acid present in fish oil, which is of physiological importance to both humans and fishes. Marine microalgae are sustainable sources of lipid rich in EPA and different species have been explored for the production of EPA as a single product. There has been a rising interest in the concept of a multi-product biorefinery, focusing on maximum valorization of the algal biomass. Targeting one or more value-added compounds in a biorefinery scenario can improve the commercial viability of low-value products like triglycerides for biofuel. This approach has been viewed by technologists and experts as a sustainable and economically feasible possibility for the large-scale production of microalgae for its potential applications in biodiesel and jet fuel production, nutraceuticals, animal and aquaculture feeds, etc. In this review paper, we describe the recent developments in the production of high-value EPA-rich oil from microalgae, emphasizing on the upstream and downstream bioprocess techniques, and the advantages of considering an EPA-rich oil based biorefinery.
Collapse
Affiliation(s)
- Rohith Sivakumar
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sharika Sachin
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rajashri Priyadarshini
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sanjoy Ghosh
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
12
|
Design and performance of a low-cost microalgae culturing system for growing Chlorella sorokiniana on cooking cocoon wastewater. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Park WK, Min K, Yun JH, Kim M, Kim MS, Park GW, Lee SY, Lee S, Lee J, Lee JP, Moon M, Lee JS. Paradigm shift in algal biomass refinery and its challenges. BIORESOURCE TECHNOLOGY 2022; 346:126358. [PMID: 34800638 DOI: 10.1016/j.biortech.2021.126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Microalgae have been studied and tested for over 70 years. However, biodiesel, the prime target of the algal industry, has suffered from low competitiveness and current steps toward banning the internal combustion engine all over the world. Meanwhile, interest in reducing CO2 emissions has grown as the world has witnessed disasters caused by global warming. In this situation, in order to maximize the benefits of the microalgal industry and surmount current limitations, new breakthroughs are being sought. First, drop-in fuel, mandatory for the aviation and maritime industries, has been discussed as a new product. Second, methods to secure stable and feasible outdoor cultivation focusing on CO2 sequestration were investigated. Lastly, the need for an integrated refinery process to simultaneously produce multiple products has been discussed. While the merits of microalgae industry remain valid, further investigations into these new frontiers would put algal industry at the core of future bio-based economy.
Collapse
Affiliation(s)
- Won-Kun Park
- Department of Chemistry & Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Minsik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Min-Sik Kim
- Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Gwon Woo Park
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Soo Youn Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Sangmin Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Jiye Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Joon-Pyo Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea
| |
Collapse
|
14
|
Udayan A, Pandey AK, Sirohi R, Sreekumar N, Sang BI, Sim SJ, Kim SH, Pandey A. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:1-28. [PMID: 35095355 PMCID: PMC8783767 DOI: 10.1007/s11101-021-09784-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/07/2021] [Indexed: 05/05/2023]
Abstract
In the current global scenario, the world is under a serious dilemma due to the increasing human population, industrialization, and urbanization. The ever-increasing need for fuels and increasing nutritional problems have made a serious concern on the demand for nutrients and renewable and eco-friendly fuel sources. Currently, the use of fossil fuels is creating ecological and economic problems. Microalgae have been considered as a promising candidate for high-value metabolites and alternative renewable energy sources. Microalgae offer several advantages such as rapid growth rate, efficient land utilization, carbon dioxide sequestration, ability to cultivate in wastewater, and most importantly, they do not participate in the food crop versus energy crop dilemma or debate. An efficient microalgal biorefinery system for the production of lipids and subsequent byproduct for nutraceutical applications could well satisfy the need. But, the current microalgal cultivation systems for the production of lipids and nutraceuticals do not offer techno-economic feasibility together with energy and environmental sustainability. This review article has its main focus on the production of lipids and nutraceuticals from microalgae, covering the current strategies used for lipid production and the major high-value metabolites from microalgae and their nutraceutical importance. This review also provides insights on the future strategies for enhanced microalgal lipid production and subsequent utilization of microalgal biomass. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Nidhin Sreekumar
- Accubits Invent, Accubits Technologies Inc., Thiruvananthapuram, Kerala 695 004 India
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Sung Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Sang Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226 001 India
| |
Collapse
|
15
|
Jakhwal P, Kumar Biswas J, Tiwari A, Kwon EE, Bhatnagar A. Genetic and non-genetic tailoring of microalgae for the enhanced production of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) - A review. BIORESOURCE TECHNOLOGY 2022; 344:126250. [PMID: 34728356 DOI: 10.1016/j.biortech.2021.126250] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The myriad health benefits associated with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) laid the path for their application in the functional foods and nutraceutical industries. Fish being primarily exploited for extraction of EPA and DHA are unsustainable sources; thus, oleaginous microalgae turn out to be an alternative sustainable source. This review paper aims to provide the recent developments in the context of enhancing EPA and DHA production by utilising non-genetic tailoring and genetic tailoring methods. We have also summarized the legislation, public perception, and possible risks associated with the usage of genetically modified microalgae focusing on EPA and DHA production.
Collapse
Affiliation(s)
- Parul Jakhwal
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland.
| |
Collapse
|
16
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
17
|
Xue Z, Li S, Yu W, Gao X, Zheng X, Yu Y, Kou X. Research advancement and commercialization of microalgae edible oil: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5763-5774. [PMID: 34148229 DOI: 10.1002/jsfa.11390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
The global food crisis has led to a great deal of attention being given to microalgal oil as a sustainable natural food source. This article provides an overview of the progress and future directions in promoting the commercialization of microalgal edible oils, including microalgal triglyceride accumulation, suitable edible oil culture strategies for high nutritional value, metabolic engineering, production, and downstream technologies. The integration of the production process, biosafety, and the economic sustainability of microalgal oil production are analyzed for their critical roles in the commercialization of microalgal edible oil to provide a theoretical and scientific basis for the comprehensive development and utilization of microalgal edible oil. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaohui Xue
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shihao Li
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wancong Yu
- Medicinal Plant Laboratory, Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xin Gao
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xu Zheng
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yue Yu
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaohong Kou
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
18
|
Xu J, Zhao F, Su X. Direct extraction of lipids from wet microalgae slurries by super-high hydrostatic pressure. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Abstract
In recent years, there has been considerable interest in using microalgal lipids in the food, chemical, pharmaceutical, and cosmetic industries. Several microalgal species can accumulate appreciable lipid quantities and therefore are characterized as oleaginous. In cosmetic formulations, lipids and their derivatives are one of the main ingredients. Different lipid classes are great moisturizing, emollient, and softening agents, work as surfactants and emulsifiers, give consistence to products, are color and fragrance carriers, act as preservatives to maintain products integrity, and can be part of the molecules delivery system. In the past, chemicals have been widely used but today’s market and customers’ demands are oriented towards natural products. Microalgae are an extraordinary source of lipids and other many bioactive molecules. Scientists’ attention to microalgae cultivation for their industrial application is increasing. For the high costs associated, commercialization of microalgae and their products is still not very widespread. The possibility to use biomass for various industrial purposes could make microalgae more economically competitive.
Collapse
|
20
|
Enhancing carbohydrate repartitioning into lipid and carotenoid by disruption of microalgae starch debranching enzyme. Commun Biol 2021; 4:450. [PMID: 33837247 PMCID: PMC8035404 DOI: 10.1038/s42003-021-01976-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/11/2021] [Indexed: 02/01/2023] Open
Abstract
Light/dark cycling is an inherent condition of outdoor microalgae cultivation, but is often unfavorable for lipid accumulation. This study aims to identify promising targets for metabolic engineering of improved lipid accumulation under outdoor conditions. Consequently, the lipid-rich mutant Chlamydomonas sp. KOR1 was developed through light/dark-conditioned screening. During dark periods with depressed CO2 fixation, KOR1 shows rapid carbohydrate degradation together with increased lipid and carotenoid contents. KOR1 was subsequently characterized with extensive mutation of the ISA1 gene encoding a starch debranching enzyme (DBE). Dynamic time-course profiling and metabolomics reveal dramatic changes in KOR1 metabolism throughout light/dark cycles. During light periods, increased flux from CO2 through glycolytic intermediates is directly observed to accompany enhanced formation of small starch-like particles, which are then efficiently repartitioned in the next dark cycle. This study demonstrates that disruption of DBE can improve biofuel production under light/dark conditions, through accelerated carbohydrate repartitioning into lipid and carotenoid.
Collapse
|
21
|
Liu X, Zhang D, Zhang J, Chen Y, Liu X, Fan C, Wang RRC, Hou Y, Hu Z. Overexpression of the Transcription Factor AtLEC1 Significantly Improved the Lipid Content of Chlorella ellipsoidea. Front Bioeng Biotechnol 2021; 9:626162. [PMID: 33681161 PMCID: PMC7925920 DOI: 10.3389/fbioe.2021.626162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
Microalgae are considered to be a highly promising source for the production of biodiesel. However, the regulatory mechanism governing lipid biosynthesis has not been fully elucidated to date, and the improvement of lipid accumulation in microalgae is essential for the effective production of biodiesel. In this study, LEAFY COTYLEDON1 (LEC1) from Arabidopsis thaliana, a transcription factor (TF) that affects lipid content, was transferred into Chlorella ellipsoidea. Compared with wild-type (WT) strains, the total fatty acid content and total lipid content of AtLEC1 transgenic strains were significantly increased by 24.20–32.65 and 22.14–29.91%, respectively, under mixotrophic culture conditions and increased by 24.4–28.87 and 21.69–30.45%, respectively, under autotrophic conditions, while the protein content of the transgenic strains was significantly decreased by 18.23–21.44 and 12.28–18.66%, respectively, under mixotrophic and autotrophic conditions. Fortunately, the lipid and protein content variation did not affect the growth rate and biomass of transgenic strains under the two culture conditions. According to the transcriptomic data, the expression of 924 genes was significantly changed in the transgenic strain (LEC1-1). Of the 924 genes, 360 were upregulated, and 564 were downregulated. Based on qRT-PCR results, the expression profiles of key genes in the lipid synthesis pathway, such as ACCase, GPDH, PDAT1, and DGAT1, were significantly changed. By comparing the differentially expressed genes (DEGs) regulated by AtLEC1 in C. ellipsoidea and Arabidopsis, we observed that approximately 59% (95/160) of the genes related to lipid metabolism were upregulated in AtLEC1 transgenic Chlorella. Our research provides a means of increasing lipid content by introducing exogenous TF and presents a possible mechanism of AtLEC1 regulation of lipid accumulation in C. ellipsoidea.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Analysis and Test Center, Guangzhou Higher Education Mega Center, Guangdong University of Technology, Guangzhou, China
| | - Jianhui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiuli Liu
- Inner Mongolia Academy of Agriculture and Animal Husbandry, Huhhot, China
| | - Chengming Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Richard R-C Wang
- United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT, United States
| | - Yongyue Hou
- Inner Mongolia Academy of Agriculture and Animal Husbandry, Huhhot, China
| | - Zanmin Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,College of Agriculture, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Biomass and Lipid Productivity by Two Algal Strains of Chlorella sorokiniana Grown in Hydrolysate of Water Hyacinth. ENERGIES 2021. [DOI: 10.3390/en14051411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrolysate prepared from the chemical hydrolysis of water hyacinth biomass contains a high amount of solubilised carbohydrate and nutrients. This hydrolysate was utilised as a medium for the cultivation of two strains of Chlorella sorokiniana, isolated from a municipal wastewater treatment plant using two different media, i.e., BG-11 and Knop’s medium. Different light intensities, light–dark cycles, and various concentrations of external carbon sources (monosaccharides and inorganic carbon) were used to optimise the microalgal growth. For the accumulation of lipids and carbohydrates, the microalgal strains were transferred to nutrient amended medium (N-amended and P-amended). It was observed that the combined effect of glucose, inorganic carbon, and a 12:12 h light–dark cycle proved to be the optimum parameters for high biomass productivity (~200 mg/L/day). For Chlorella sorokiniana 1 (isolated from BG-11 medium), the maximum carbohydrate content (22%) was found in P-amended medium (N = 0 mg/L, P: 3 mg/L), whereas, high lipid content (17.3%) was recorded in N-amended medium (N = 5 mg/L, P = 0 mg/L). However, for Chlorella sorokiniana 2 (isolated from the Knop’s medium), both lipid (17%) and carbohydrate accumulation (12.3%) were found to be maximum in the N-amended medium. Chlorella sorokiniana 2 showed a high saturated lipid accumulation compared to other strains. Kinetic modelling of the lipid profile revealed that the production rate of fatty acids and their various constituents were species dependent under identical conditions.
Collapse
|
23
|
Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12219083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microalgae have received widespread interest owing to their potential in biofuel production. However, economical microalgal biomass production is conditioned by enhancing the lipid accumulation without decreasing growth rate or by increasing both simultaneously. While extensive investigation has been performed on promoting the economic feasibility of microalgal-based biofuel production that aims to increase the productivity of microalgae species, only a handful of them deal with increasing lipid productivity (based on lipid contents and growth rate) in the feedstock production process. The purpose of this review is to provide an overview of the recent advances and novel approaches in promoting lipid productivity (depends on biomass and lipid contents) in feedstock production from strain selection to after-harvesting stages. The current study comprises two parts. In the first part, bilateral improving biomass/lipid production will be investigated in upstream measures, including strain selection, genetic engineering, and cultivation stages. In the second part, the enhancement of lipid productivity will be discussed in the downstream measure included in the harvesting and after-harvesting stages. An integrated approach involving the strategies for increasing lipid productivity in up- and down-stream measures can be a breakthrough approach that would promote the commercialization of market-driven microalgae-derived biofuel production.
Collapse
|
24
|
Sung YJ, Lee JS, Yoon HK, Ko H, Sim SJ. Outdoor cultivation of microalgae in a coal-fired power plant for conversion of flue gas CO2 into microalgal direct combustion fuels. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43393-020-00007-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Kumar M, Sun Y, Rathour R, Pandey A, Thakur IS, Tsang DCW. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137116. [PMID: 32059310 DOI: 10.1016/j.scitotenv.2020.137116] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The current review explores the potential application of algal biomass for the production of biofuels and bio-based products. The variety of processes and pathways through which bio-valorization of algal biomass can be performed are described in this review. Various lipid extraction techniques from algal biomass along with transesterification reactions for biodiesel production are briefly discussed. Processes such as the pretreatment and saccharification of algal biomass, fermentation, gasification, pyrolysis, hydrothermal liquefaction, and anaerobic digestion for the production of biohydrogen, bio-oils, biomethane, biochar (BC), and various bio-based products are reviewed in detail. The biorefinery model and its collaborative approach with various processes are highlighted for the production of eco-friendly, sustainable, and cost-effective biofuels and value-added products. The authors also discuss opportunities and challenges related to bio-valorization of algal biomass and use their own perspective regarding the processes involved in production and the feasibility to make algal research a reality for the production of biofuels and bio-based products in a sustainable manner.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Rashmi Rathour
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, 31 MG Marg, Lucknow 226 001, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
26
|
Abd El Fatah HM, El-Baghdady KZ, Zakaria AE, Sadek HN. Improved lipid productivity of Chlamydomonas globosa and Oscillatoria pseudogeminata as a biodiesel feedstock in artificial media and wastewater. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Feng P, Xu Z, Qin L, Asraful Alam M, Wang Z, Zhu S. Effects of different nitrogen sources and light paths of flat plate photobioreactors on the growth and lipid accumulation of Chlorella sp. GN1 outdoors. BIORESOURCE TECHNOLOGY 2020; 301:122762. [PMID: 31972402 DOI: 10.1016/j.biortech.2020.122762] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 05/20/2023]
Abstract
To assess the potential of Chlorella sp. GN1 for producing biodiesel raw materials in flat plate photobioreactors (FPPs) outdoors, we optimized the nitrogen sources and concentrations for the growth of the algae. The effects of different light paths of FPPs on the growth, lipid accumulation, and fatty acids of Chlorella sp. GN1 were also studied. As the light path of the FPPs was reduced, the alga could accumulate lipids rapidly, achieving high lipid content and lipid productivity outdoors. The highest lipid content obtained was 53.5%, when the light path was 5 cm. In addition, the lipid productivity was 66.7 mg L-1 day-1. The main fatty acids were C16/C18, accounting more than 90% of the total fatty acids. Results showed that Chlorella sp. GN1 had the ability to accumulate large quantities of lipids in FPPs outdoors and was a promising microalgal species for biofuel production.
Collapse
Affiliation(s)
- Pingzhong Feng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Zhongbin Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| |
Collapse
|
28
|
Yin Z, Zhu L, Li S, Hu T, Chu R, Mo F, Hu D, Liu C, Li B. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. BIORESOURCE TECHNOLOGY 2020; 301:122804. [PMID: 31982297 DOI: 10.1016/j.biortech.2020.122804] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 05/05/2023]
Abstract
Biodiesel is one of the best promising candidates in response to the energy crisis, since it has the capability to minimize most of the environmental problems. Microalgae, as the feedstock of third-generation biodiesel, are considered as one of the most sustainable resources. However, microalgae production for biodiesel feedstock on a large scale is still limited, because of the influences of lipid contents, biomass productivities, lipid extraction technologies, the water used in microalgae cultivation and processes of biomass harvesting. This paper firstly reviews the recent advances in microalgae cultivation and growth processes. Subsequently, current microalgae harvesting technologies are summarized and flocculation mechanisms are analyzed, while the characteristics that the ideal harvesting methods should have are summarized. This review also summarizes the environmental pollution control performances and the key challenges in future. The key suggestions and conclusions in the paper can offer a promising roadmap for the cost-effective biodiesel production.
Collapse
Affiliation(s)
- Zhihong Yin
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China; Faculty of Technology, and Vaasa Energy Institute, University of Vaasa, PO Box 700, FI-65101 Vaasa, Finland.
| | - Shuangxi Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Tianyi Hu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Ruoyu Chu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Fan Mo
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Dan Hu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Chenchen Liu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| | - Bin Li
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, and Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430079, PR China
| |
Collapse
|
29
|
Heuristic Optimization of Culture Conditions for Stimulating Hyper-Accumulation of Biomass and Lipid in Golenkinia SDEC-16. ENERGIES 2020. [DOI: 10.3390/en13040964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Overproduction of biomass and hyper-accumulation of lipids endow microalgae with promising characteristics to realize the cost-effective potential of advanced bioenergy. This study sought to heuristically optimize the culture conditions on a rarely reported Golenkinia sp. The results indicate that Golenkinia SDEC-16 can withstand the strong light intensity and grow in a modified BG11 medium. The optimal culture conditions for the favorable tradeoff between biomass and lipid accumulation were suggested as follows, 25,000 lux of light intensity, 9 mM of initial nitrogen concentration, and 20 mM of initial sodium chloride concentration. Under these conditions, the biomass concentration and productivity reached 6.65 g/L and 545 mg/L/d, and the synchronous lipid content and productivity reached 54.38% and 296.39 mg/L/d. Hypersalinity significantly promoted lipid contents at the cost of biomass and resulted in an increase of cell size but loss of spines of Golenkinia SDEC-16. The results shed new light on optimizing biomass and lipid productivity.
Collapse
|
30
|
Arif M, Bai Y, Usman M, Jalalah M, Harraz FA, Al-Assiri MS, Li X, Salama ES, Zhang C. Highest accumulated microalgal lipids (polar and non-polar) for biodiesel production with advanced wastewater treatment: Role of lipidomics. BIORESOURCE TECHNOLOGY 2020; 298:122299. [PMID: 31706891 DOI: 10.1016/j.biortech.2019.122299] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Microalgal lipids consist of non-polar and polar lipids. Triacyleglyceride (TAG), a non-polar lipid, is convertible to biodiesel, whereas glycolipids and phospholipids are polar and not convertible to biodiesel owing to their high degree of unsaturation (polyunsaturated fatty acids), which makes the production process insufficient and expensive. In this review, microalgal species that contain the highest lipid content (≥40%) in the literature till 2019 are highlighted. The differentiation between non-polar and polar lipids and the limitations in the conversion of polar lipids to biodiesel are reported. The basic and advanced factors contributing to the accumulation of lipids convertible to biodiesel is discussed. Microalgal species including Scenedesmus obliquus, Ourococcus multisporus, Chlamydomonas pitschmannii, Micractinium reisseri, and Botryococcus braunii with high lipid content are potential candidates for biomass/biodiesel production and nutrient removal from wastewater. Application of lipidomics and transcriptomics to manipulate the lipid associated gene acetyl-CoA synthetase in microalgae improves the accumulative lipid content.
Collapse
Affiliation(s)
- Muhammad Arif
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Muhammad Usman
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Mohammed Jalalah
- Promising Center for Sensors and Electronic Devices (PCSED) Najran University, Najran 11001, Saudi Arabia
| | - Farid A Harraz
- Promising Center for Sensors and Electronic Devices (PCSED) Najran University, Najran 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. 87 Helwan, Cairo 11421, Egypt
| | - M S Al-Assiri
- Promising Center for Sensors and Electronic Devices (PCSED) Najran University, Najran 11001, Saudi Arabia
| | - Xiangkai Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
31
|
Sung YJ, Patel AK, Yu BS, Choi HI, Kim J, Jin E, Sim SJ. Sedimentation rate-based screening of oleaginous microalgae for utilization as a direct combustion fuel. BIORESOURCE TECHNOLOGY 2019; 293:122045. [PMID: 31470230 DOI: 10.1016/j.biortech.2019.122045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
The co-combustion of microalgae biomass with coal has the potential to significantly reduce CO2 emissions by eliminating expensive and carbon-emitting downstream processes. In this study, the utilization of microalgal biomass as a direct combustion fuel in co-firing industries and the screening of potential oleaginous strains of high calorific value was investigated. High-lipid accumulating mutants were selected from mutant mixtures based on cell density using differential sedimentation rates. Of the mutant strains obtained in the top phase of the separation medium, 72% showed a higher lipid content than the wild-type strain. One mutant strain exhibited a 57.3% enhanced lipid content and a 9.3% lower heating value (LHV), both indicators of direct combustion fuel performance, compared to the wild-type strain. Our findings indicate that sedimentation rate-based strain selection allows for the easy and rapid screening of high-lipid content algal strains for the use of microalgae as direct combustion fuels.
Collapse
Affiliation(s)
- Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Anil Kumar Patel
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Byung Sun Yu
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hong Il Choi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jongrae Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
32
|
Sá M, Monte J, Brazinha C, Galinha CF, Crespo JG. Fluorescence coupled with chemometrics for simultaneous monitoring of cell concentration, cell viability and medium nitrate during production of carotenoid-rich Dunaliella salina. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Choi HI, Hwang SW, Sim SJ. Comprehensive approach to improving life-cycle CO 2 reduction efficiency of microalgal biorefineries: A review. BIORESOURCE TECHNOLOGY 2019; 291:121879. [PMID: 31377048 DOI: 10.1016/j.biortech.2019.121879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Along with the increase in global awareness of rising CO2 levels, microalgae have attracted considerable interest as a promising CO2 reduction platforms since they exhibit outstanding biomass productivity and are capable of producing numerous valuable products. At this moment, however, two major barriers, relatively low photosynthetic CO2 fixation efficiency and necessity of carbon-intensive microalgal process, obstruct them to be practically utilized. This review suggests effective approaches to improve life-cycle CO2 reduction of microalgal biorefinery. In order to enhance photosynthetic CO2 fixation, strategies to augment carbon content and to increase biomass productivity should be considered. For reducing CO2 emissions associated with the process operations, introduction of efficient process elements, designing of energy-saving process routes, reuse of waste resources and utilization of process integration can be noteworthy options. These comprehensive strategies will provide guidance for microalgal biorefineries to become a practical CO2 reduction technology in near future.
Collapse
Affiliation(s)
- Hong Il Choi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Sung-Won Hwang
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
34
|
Lu H, Yu X, Li H, Tu ST, Sebastian S. Lipids extraction from wet Chlorella pyrenoidosa sludge using recycled [BMIM]Cl. BIORESOURCE TECHNOLOGY 2019; 291:121819. [PMID: 31369925 DOI: 10.1016/j.biortech.2019.121819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
In this study, experiments on pretreating one species of microalgae (Chlorella pyrenoidosa) using one kind of ionic liquid (IL) of [BMIM]Cl were conducted. The aim of this work is to evaluate the recycling efficacy of expensive IL solvent for effective cell disruption. It was indicated that the molecular structure of IL was stable during the recycling test. Five times antisolvent precipitation of microalgae debris after lipid extraction using methanol recovered 99.8% IL with the energy consumption of 4.46 MJ per kg dry Chlorella pyrenoidosa. The chromatography was used to separate IL and hydrolysates, resulting in the IL loss below 1.97 g per kg dry Chlorella pyrenoidosa.
Collapse
Affiliation(s)
- Haitao Lu
- Key Laboratory of Safety Science of Pressurized System (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinhai Yu
- Key Laboratory of Safety Science of Pressurized System (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Hailong Li
- School of Business Society and Technology, Mälardalen University, Västerås, Sweden
| | - Shan-Tung Tu
- Key Laboratory of Safety Science of Pressurized System (MOE), School of Mechanical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Schwede Sebastian
- School of Business Society and Technology, Mälardalen University, Västerås, Sweden
| |
Collapse
|
35
|
Lin WR, Tan SI, Hsiang CC, Sung PK, Ng IS. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery. BIORESOURCE TECHNOLOGY 2019; 291:121932. [PMID: 31387837 DOI: 10.1016/j.biortech.2019.121932] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Microalgae and cyanobacteria are easy to culture, with higher growth rates and photosynthetic efficiencies compared to terrestrial plants, and thus generating higher productivity. The concept of microalgal biorefinery is to assimilate carbon dioxide and convert it to chemical energy/value-added products, such as vitamins, carotenoids, fatty acids, proteins and nucleic acids, to be applied in bioenergy, health foods, aquaculture feed, pharmaceutical and medical fields. Therefore, microalgae are annotated as the third generation feedstock in bioenergy and biorefinery. In past decades, many studies thrived to improve the carbon sequestration efficiency as well as enhance value-added compounds from different algae, especially via genetic engineering, synthetic biology, metabolic design and regulation. From the traditional Agrobacterium-mediated transformation DNA to novel CRISPR (clustered regularly interspaced short palindromic repeats) technology applied in microalgae and cyanobacteria, this review has highlighted the genome editing technology for biorefinery that is a highly environmental friendly trend to sustainable and renewable development.
Collapse
Affiliation(s)
- Way-Rong Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Chuan-Chieh Hsiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - Po-Kuei Sung
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC.
| |
Collapse
|
36
|
Khalid M. Nanotechnology and chemical engineering as a tool to bioprocess microalgae for its applications in therapeutics and bioresource management. Crit Rev Biotechnol 2019; 40:46-63. [DOI: 10.1080/07388551.2019.1680599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Muneeba Khalid
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
37
|
Pahija E, Hui CW. A systematic study on the effects of dynamic environments on microalgae concentration. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Investigation of the Relationship between Bacteria Growth and Lipid Production Cultivating of Microalgae Chlorella Vulgaris in Seafood Wastewater. ENERGIES 2019. [DOI: 10.3390/en12122282] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Algae biorefinery is gaining much attention for the sustainable production of value-added products (e.g., biofuels, protein supplements etc.) globally. The current study aimed to investigate the relationship between lipid production and bacteria growth by an initial microalgae Chlorella vulgaris density culture in seafood wastewater effluent (SWE). According to our results, the initial C. vulgaris concentration in SWE influenced lipid accumulation. The concentration ranged from 25–35 mg·L−1 which corresponds to SWE’s chemical oxygen demand concentration of 365.67 ± 3.45 mg·L−1. A higher microalgae growth rate and lipid content of 32.15 ± 1.45% was successfully attained. A higher lipid content, approximately double, was observed when compared to the control (16.8 ± 0.5%). Moreover, this study demonstrates that bacteria inhibited microalgae growth as the initial cell density stepped over 35 mg·L−1, which also affected lipid accumulation. This study shows an optimal lipid accumulation attained at moderate Chlorella vulgaris density culture in SWE. Hence, wastewater treatment incorporating microalgae culture could be greatly developed in the future to achieve a greener environment.
Collapse
|
39
|
Lipid and unsaturated fatty acid productions from three microalgae using nitrate and light-emitting diodes with complementary LED wavelength in a two-phase culture system. Bioprocess Biosyst Eng 2019; 42:1517-1526. [DOI: 10.1007/s00449-019-02149-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
|
40
|
Deprá MC, Mérida LG, de Menezes CR, Zepka LQ, Jacob-Lopes E. A new hybrid photobioreactor design for microalgae culture. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
41
|
Kato Y, Fujihara Y, Vavricka CJ, Chang JS, Hasunuma T, Kondo A. Light/dark cycling causes delayed lipid accumulation and increased photoperiod-based biomass yield by altering metabolic flux in oleaginous Chlamydomonas sp. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:39. [PMID: 30828384 PMCID: PMC6383270 DOI: 10.1186/s13068-019-1380-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Light/dark cycling is an inevitable outdoor culture condition for microalgal biofuel production; however, the influence of this cycling on cellular lipid production has not been clearly established. The general aim of this study was to determine the influence of light/dark cycling on microalgal biomass production and lipid accumulation. To achieve this goal, specific causative mechanisms were investigated using a metabolomics approach. Laboratory scale photoautotrophic cultivations of the oleaginous green microalga Chlamydomonas sp. JSC4 were performed under continuous light (LL) and light/dark (LD) conditions. RESULTS Lipid accumulation and carbohydrate degradation were delayed under the LD condition compared with that under the LL condition. Metabolomic analysis revealed accumulation of phosphoenolpyruvate and decrease of glycerol 3-phosphate under the LD condition, suggesting that the imbalance of these metabolites is a source of delayed lipid accumulation. When accounting for light dosage, biomass yield under the LD condition was significantly higher than that under the LL condition. Dynamic metabolic profiling showed higher levels of lipid/carbohydrate anabolism (including production of 3-phosphoglycerate, fructose 6-phosphate, glucose 6-phosphate, phosphoenolpyruvate and acetyl-CoA) from CO2 under the LD condition, indicating higher CO2 fixation than that of the LL condition. CONCLUSIONS Photoperiods define lipid accumulation and biomass production, and light/dark cycling was determined as a critical obstacle for lipid production in JSC4. Conversions of phosphoenolpyruvate to pyruvate and 3-phosphoglycerate to glycerol 3-phosphate are the candidate rate-limiting steps responsible for delayed lipid accumulation. The accumulation of substrates including ribulose 5-phosphate could be explained by the close relationship of increased biomass yield with enhanced CO2 fixation. The present study investigated the influence of light/dark cycling on lipid production by direct comparison with continuous illumination for the first time, and revealed underlying metabolic mechanisms and candidate metabolic rate-limiting steps during light/dark cycling. These findings suggest promising targets to metabolically engineer improved lipid production.
Collapse
Affiliation(s)
- Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Yusuke Fujihara
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Christopher J. Vavricka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
- Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, 701 Taiwan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| |
Collapse
|
42
|
Aburai N, Maruyama S, Shimizu K, Abe K. Production of bioactive oligopeptide hydrolyzed by protease derived from aerial microalga Vischeria helvetica. J Biotechnol 2019; 294:67-72. [PMID: 30772329 DOI: 10.1016/j.jbiotec.2019.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/26/2019] [Accepted: 01/27/2019] [Indexed: 11/17/2022]
Abstract
This study focused on a culture system of aerial microalgae with the decomposition of casein protein for obtaining bioactive compounds such as peptides with inhibitory activity against angiotensin-converting enzyme (ACE). The aerial microalga Vischeria helvetica exhibited growth in Bold's basal medium supplemented with casein protein as nitrogen source. The algal cells secreted protease and amino oxidase into the medium, and ammonium ions as a nitrogen source was produced by the conjugated-enzyme reaction. Furthermore, a bioactive peptide with ACE-inhibitory activity was efficiently produced from casein protein by the proteases secreted under light conditions. The results presented will facilitate the development of production systems for useful materials from photosynthetic microorganisms and casein protein in a culture medium.
Collapse
Affiliation(s)
- Nobuhiro Aburai
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo 192-0015, Japan.
| | - Sayo Maruyama
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo 192-0015, Japan
| | - Kohei Shimizu
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo 192-0015, Japan
| | - Katsuya Abe
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji, Tokyo 192-0015, Japan
| |
Collapse
|
43
|
Tasca AL, Bacci di Capaci R, Tognotti L, Puccini M. Biomethane from Short Rotation Forestry and Microalgal Open Ponds: System Modeling and Life Cycle Assessment. BIORESOURCE TECHNOLOGY 2019; 273:468-477. [PMID: 30469137 DOI: 10.1016/j.biortech.2018.11.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Gasification of Short Rotation Forestry (SRF) poplar wood chips and anaerobic digestion of the microalga Chlorella vulgaris have been analyzed as alternative supply chains for the production of biomethane. Life Cycle Assessment (LCA) was performed from the biomass cultivation to the upgrading stages. Process simulation of gasification and upgrading was carried out, environmental impacts of the entire supply chains have been estimated and discussed. The highest CO2 removal has been reached by absorption on monoethanolamine. Electricity requirements heavily affect the SRF chain, while productions of carbon dioxide and fertilizers are the main sources of impact of the microalgae cultivation. The recycle of non-absorbed fertilizers, as well as integration of microalgae digestion in wastewater plants, are recommended. Capture and re-injection of the CO2 lost during the upgrading stages would result, simultaneously, in an 8.53% reduction of the atmospheric emission, and in a minor demand to promote algal growth.
Collapse
Affiliation(s)
- Andrea Luca Tasca
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy.
| | | | - Leonardo Tognotti
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Monica Puccini
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy.
| |
Collapse
|
44
|
Shin YS, Jeong J, Nguyen THT, Kim JYH, Jin E, Sim SJ. Targeted knockout of phospholipase A 2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production. BIORESOURCE TECHNOLOGY 2019; 271:368-374. [PMID: 30293032 DOI: 10.1016/j.biortech.2018.09.121] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 05/10/2023]
Abstract
Biofuel derived from microalgae have several advantages over other oleaginous crops, however, still needs to be improved with its cost aspect and can be achieved by developing of a strain with improved lipid productivity. In this study, the CRISPR-Cas9 system was incorporated to carry out a target-specific knockout of the phospholipase A2 gene in Chlamydomonas reinhardtii. The targeted gene encodes a key enzyme in the Lands cycle. As a result, the mutants showed a characteristic of increased diacylglycerol pool, followed by a higher accumulation of triacylglycerol without being significantly compensated with the cell growth. As a result, the overall lipid productivities of phospholipase A2 knockout mutants have increased by up to 64.25% (to 80.92 g L-1 d-1). This study can provide crucial information for the biodiesel industry.
Collapse
Affiliation(s)
- Ye Sol Shin
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seoungbuk-gu, Seoul 02841, Republic of Korea
| | - Jooyeon Jeong
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Thu Ha Thi Nguyen
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jaoon Young Hwan Kim
- Convergence Research Division, National Marine Biodiversity Institute of Korea, Jangsan-ro 101beon-gil 75, Janghang-eup, Seocheon-gun, Chungcheongnam-do 33662, Republic of Korea
| | - EonSeon Jin
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seoungbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
45
|
Ren HY, Xiao RN, Kong F, Zhao L, Xing D, Ma J, Ren NQ, Liu BF. Enhanced biomass and lipid accumulation of mixotrophic microalgae by using low-strength ultrasonic stimulation. BIORESOURCE TECHNOLOGY 2019; 272:606-610. [PMID: 30389248 DOI: 10.1016/j.biortech.2018.10.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Ultrasonic treatment was applied to enhance the biomass and lipid accumulation of mixotrophic microalgae. The optimal microalgal ultrasonic power, ultrasonic frequency, ultrasonic interval and growth phase were 20 W, 20 Hz, 2 s and logarithmic phase, respectively. The maximum biomass concentration and lipid content reached 2.78 g L-1 and 28.5%, which were 26.9% and 37% higher than those of the control group. Microscope analysis shows that ultrasonic exposure caused tiny cracks or holes on the surface of cell walls, but did not damage the integrity of algal cell structure. After ultrasonic stimulation, the permeability of membrane and the transport of nutrients were improved, and the utilization rate of substrate and pigment concentration increased 22.7% and 18.4%, respectively. However, excessive ultrasonic irradiation significantly inhibited the cell growth and lipid accumulation of microalgae. This study indicates the feasibility and efficiency of using low-strength ultrasound in promoting biomass and lipid production of microalgae.
Collapse
Affiliation(s)
- Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ruo-Nan Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
46
|
Wang F, Gao B, Huang L, Su M, Dai C, Zhang C. Evaluation of oleaginous eustigmatophycean microalgae as potential biorefinery feedstock for the production of palmitoleic acid and biodiesel. BIORESOURCE TECHNOLOGY 2018; 270:30-37. [PMID: 30212771 DOI: 10.1016/j.biortech.2018.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 05/28/2023]
Abstract
This study aimed to evaluate the potential of six oleaginous eustigmatophytes for use as biorefinery feedstock for the co-production of palmitoleic acid (PA) and biodiesel under different initial nitrogen concentrations (INCs). Six eustigmatophytes were studied, the nitrogen deficiency strategy significantly stimulated the simultaneous hyper-accumulation of PA and lipids, and led to a desirable fatty acid profile (FAP), except in Vacuoliviride sp. and Nannochloropsis oculata. Particularly, Eustigmatos cf. polyphem exhibited great potential when supplied with 1 mM INC and yielded the highest PA (29.71% of dry weight (DW)) and lipid (72.01% of DW) contents, as their productivities increased to 96.26 and 232.79 mg/L/d, respectively. Furthermore, neutral lipids accounted for 91.82% of the total lipids and were rich in PA, and the favourable FAPs of C16-C18 (87.95%) and monounsaturated FAs (70.10%) ensured good biodiesel properties including the cetane number (55.69) and iodine value (92.81 gI2/100 g), and all met the standard requirements.
Collapse
Affiliation(s)
- Feifei Wang
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Baoyan Gao
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Loudong Huang
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Min Su
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Chenming Dai
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Chengwu Zhang
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
47
|
Kim EJ, Jung W, Lim S, Kim S, Choi HG, Han SJ. Lipid Production by Arctic Microalga Chlamydomonas sp. KNF0008 at Low Temperatures. Appl Biochem Biotechnol 2018; 188:326-337. [PMID: 30443891 DOI: 10.1007/s12010-018-2921-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/05/2018] [Indexed: 11/27/2022]
Abstract
A lipid-producing microalga, Chlamydomonas sp. KNF0008, collected from the Arctic was capable of growing at temperatures ranging from 4 to 20 °C, and the highest cell density was measured at 15 °C and 100 μmol photons m-2 s-1 light intensity under continuous shaking and external aeration. KNF0008 showed the elevated accumulation of lipid bodies under nitrogen-deficient conditions, rather than under nitrogen-sufficient conditions. Fatty acid production of KNF0008 was 4.2-fold (104 mg L-1) higher than that of C. reinhardtii CC-125 at 15 °C in Bold's Basal Medium. The dominant fatty acids were C16:0, C16:4, C18:1, and C18:3, and unsaturated fatty acids (65.69%) were higher than saturated fatty acids (13.65%) at 15 °C. These results suggested that Arctic Chlamydomonas sp. KNF0008 could possibly be utilized for production of biodiesel during periods of cold weather because of its psychrophilic characteristics.
Collapse
Affiliation(s)
- Eun Jae Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea
| | - Woongsic Jung
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
- Department of Research and Development, GDE, Siheung, 14985, South Korea
| | - Suyoun Lim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
- Functional Genomics R&D Team, Syntekabio, Daejeon, 34025, South Korea
| | - Sanghee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Han-Gu Choi
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Se Jong Han
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea.
| |
Collapse
|
48
|
Sung YJ, Kwak HS, Hong ME, Choi HI, Sim SJ. Two-Dimensional Microfluidic System for the Simultaneous Quantitative Analysis of Phototactic/Chemotactic Responses of Microalgae. Anal Chem 2018; 90:14029-14038. [DOI: 10.1021/acs.analchem.8b04121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Young Joon Sung
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ho Seok Kwak
- Department of Food Engineering, Dongyang Mirae University, 445, Gyeongin-ro, Guro-gu, Seoul, 08221, Republic of Korea
| | - Min Eui Hong
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hong Il Choi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
49
|
Lv J, Liu Y, Feng J, Liu Q, Nan F, Xie S. Nutrients removal from undiluted cattle farm wastewater by the two-stage process of microalgae-based wastewater treatment. BIORESOURCE TECHNOLOGY 2018; 264:311-318. [PMID: 29857286 DOI: 10.1016/j.biortech.2018.05.085] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Chlorella vulgaris was selected from five freshwater microalgal strains of Chlorophyta, and showed a good potential in nutrients removal from undiluted cattle farm wastewater. By the end of treatment, 62.30%, 81.16% and 85.29% of chemical oxygen demand (COD), ammonium (NH4+-N) and total phosphorus (TP) were removed. Then two two-stage processes were established to enhance nutrients removal efficiency for meeting the discharge standards of China. The process A was the biological treatment via C. vulgaris followed by the biological treatment via C. vulgaris, and the process B was the biological treatment via C. vulgaris followed by the activated carbon adsorption. After 3-5 d of treatment of wastewater via the two processes, the nutrients removal efficiency of COD, NH4+-N and TP were 91.24%-92.17%, 83.16%-94.27% and 90.98%-94.41%, respectively. The integrated two-stage process could strengthen nutrients removal efficiency from undiluted cattle farm wastewater with high organic substance and nitrogen concentration.
Collapse
Affiliation(s)
- Junping Lv
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yang Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qi Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Fangru Nan
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
50
|
Sun H, Mao X, Wu T, Ren Y, Chen F, Liu B. Novel insight of carotenoid and lipid biosynthesis and their roles in storage carbon metabolism in Chlamydomonas reinhardtii. BIORESOURCE TECHNOLOGY 2018; 263:450-457. [PMID: 29772507 DOI: 10.1016/j.biortech.2018.05.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 05/26/2023]
Abstract
Revenues of carotenoid and lipid biosynthesis under excess light and nitrogen starvation were firstly analyzed for the increased biomass value through carbon metabolism analysis. The results suggested excess light and nitrogen starvation resulted in carbon partitioning among protein, starch, lipid and carotenoid. Nitrogen starvation promoted more cellular lipid content than excess light, while excess light promoted carotenoid and polyunsaturated fatty acid accumulation. In the molecular level, the stresses redirected carbon skeletons into the central metabolite of pyruvate and oriented into starch and lipid as the primary and secondary carbon storage, respectively. Economic estimation revealed nitrogen starvation potentially increased 14.76 × 10-6 and 72.11 × 10-6 $/g revenues of biofuel production at per batch and cell weight scales, respectively. Excess light could increase 63.90 × 10-6 and 19.21 × 10-6 $/g at per cell weight scale of lipid and carotenoid, respectively. In combination with metabolism analysis, conversion procedure of process-compatible products was divided into four phases.
Collapse
Affiliation(s)
- Han Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Xuemei Mao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Yuanyuan Ren
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Bin Liu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|