1
|
Jayasekara UG, Hadibarata T, Hindarti D, Kurniawan B, Jusoh MNH, Gani P, Tan IS, Yuniarto A, Rubiyatno, Khamidun MHB. Environmental bioremediation of pharmaceutical residues: microbial processes and technological innovations: a review. Bioprocess Biosyst Eng 2025; 48:705-723. [PMID: 39760783 DOI: 10.1007/s00449-024-03125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a significant concern due to their persistence, bioaccumulation potential in biota, and diverse implications for human health and wildlife. This review provides an overview of the current state-of-the-art in environmental bioremediation techniques for reducing pharmaceutical residues, with a special emphasis on microbial physiological aspects. Numerous microorganisms, including algae, bacteria or fungi, can biodegrade various pharmaceutical compounds such as antibiotics, analgesics and beta-blockers. Some microorganisms are capable of transferring electrons within the cell, and this feature can be harnessed using Bio Electrochemical Systems (BES) to potentiate the degradation of pharmaceuticals present in wastewater. Moreover, researchers are evaluating the genetic modification of microbial strains to improve their degradation capacity and expand list of target compounds. This includes also discuss how environment changes, such as fluctuations in temperature or pH, may affect bioremediation efficiency. Furthermore, the presence of pharmaceuticals in the environment is emphasised as a major public health issue because it increases the chance for antibiotic-resistant bacteria emerging. This review combines existing information and outlines needed research areas for improving bioremediation technologies in the future.
Collapse
Affiliation(s)
- Upeksha Gayangani Jayasekara
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Tony Hadibarata
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia.
| | - Dwi Hindarti
- Research Center for Oceanography, National Research and Innovation Agency, Jalan Pasir Putih I, Jakarta, 14430, Indonesia
| | - Budi Kurniawan
- Research Center for Environment and Clean Technology, National Research and Innovation Agency, KST BJ Habibie, Puspitek, Serpong, Tangeran Selatan, 15314, Banten, Indonesia
| | - Mohammad Noor Hazwan Jusoh
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Paran Gani
- Environmental Engineering Program, Department of Civil and Construction Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Inn Shi Tan
- Department of Chemical & Energy Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Adhi Yuniarto
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Rubiyatno
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Mohd Hairul Bin Khamidun
- Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Batu Pahat, 86400, Parit Raja, Johor, Malaysia
| |
Collapse
|
2
|
Rodrigues DADS, da Cunha CCRF, Pereira AR, Espírito Santo DRD, Silva SDQ, Starling MCVM, Santiago ADF, Afonso RJDCF. Biodegradation of trimethoprim and sulfamethoxazole in secondary effluent by microalgae-bacteria consortium. Int J Hyg Environ Health 2025; 264:114517. [PMID: 39724811 DOI: 10.1016/j.ijheh.2024.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Trimethoprim (TMP) and sulfamethoxazole (SMX) are bacteriostatic agents, which are co-administered to patients during infection treatment due to their synergetic effects. Once consumed, TMP and SMX end up in wastewater and are directed to municipal wastewater treatment plants (WWTPs) which fail to remove these contaminants from municipal wastewater. The discharge of WWTP effluents containing antibiotics in the environment is a major concern for public health as it contributes to the spread of antimicrobial resistance. Improving treatment applied in WWTPs is one of the measures to tackle this issue. In this study, a natural microalgae-bacteria consortium cultivated under low intensity LED irradiation was used as a quaternary treatment to assess the removal of TMP alone (50 μg L-1) and also mixed with SMX (TMP/SMX; 50 μg L-1 of each) from real WWTP secondary effluents from anaerobic treatment systems. The removal of the sulfonamide resistance gene, sul1, was also evaluated. This is the first study assessed the removal of TMP alone and TMP associated with SMX in real effluent using microalgae-bacteria consortium without nutrient enrichment. Biodegradation experiments were conducted for 7 days, residual amount of antibiotics were assessed by low-temperature partitioning extraction (LTPE) followed by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) and sul1 was analyzed by quantitative Polymerase Chain Reaction (qPCR). Results showed that SMX removal (48.34%) was higher than TMP (24.58%) in the mixture. The presence of both antibiotics at 50 μg L-1 did not inhibit microalgae-bacteria consortium growth. After 7 days, there was a slight increase in the absolute abundance of sul1 and 16S rRNA. The main removal mechanism for both antibiotics might be attributed to symbiotic biodegradation as bioadsorption, bioaccumulation and abiotic factors were very low or insignificant. While the application of a microalgae-bacteria consortium as a quaternary treatment seems to be a promising alternative, further research to improve degradation rate aiming at a global removal >80% as required in the Swiss and European directives is encouraged.
Collapse
Affiliation(s)
- Daniel Aparecido da Silva Rodrigues
- Multicenter Postgraduation Program in Chemistry, Minas Gerais, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil.
| | | | - Andressa Rezende Pereira
- Environmental Engineering Graduation Program, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| | - Daiana Rocha do Espírito Santo
- Postgraduation Program in Chemistry, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, 35450-000, Brazil
| | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, 35400-000, Minas Gerais, Brazil
| | - Maria Clara Vieira Martins Starling
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais (UFMG), Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - Aníbal da Fonseca Santiago
- Department of Civil Engineering, School of Mines, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| | - Robson José de Cássia Franco Afonso
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, 35450-000, Minas Gerais, Brazil
| |
Collapse
|
3
|
Jing M, Zhang J, Li G, Zhang D, Liu F, Yang S. Micro-nano bubbles enhanced immobilized Chlorella vulgaris to remove ofloxacin from groundwater. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 268:104458. [PMID: 39556887 DOI: 10.1016/j.jconhyd.2024.104458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
The phenomenon of antibiotic pollution has emerged as a significant global environmental concern. However, there is a lack of technical research on the effective removal of antibiotics based on the characteristics of the groundwater environment. This paper used micro-nano bubbles (MNBs) enhanced immobilized Chlorella technology to remove ofloxacin (OFLX) from groundwater. The study discussed the impact of initial antibiotic concentration (5-30 mg/mL), algae concentration (0.25-4 bead/mL), aeration time (5-30 min), and coexisting ions on the antibiotic removal rate and analyzed the removal mechanism by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The results showed that MNBs increased Chlorella vulgaris biomass by 2.48 times and significantly improved OFLX removal efficiency. The removal rate of OFLX exhibited a significant positive correlation with the algal concentration and coexisting ions and a significant negative correlation with the aeration time and the initial concentration of antibiotics. Enhanced immobilization of Chlorella vulgaris by MNBs for OFLX removal may involve -NH, -OH, -C=O, -CH2, and -C-O-C groups. Degradation (including biodegradation and non-biodegradation) is the primary mechanism of antibiotic removal. Overall, intensive immobilization of Chlorella by MNBs promises to be a technically feasible method for removing antibiotics from groundwater.
Collapse
Affiliation(s)
- Mengyao Jing
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang' an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang' an University, Xi'an 710054, China
| | - Jianping Zhang
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang' an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang' an University, Xi'an 710054, China
| | - Guijuan Li
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang' an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang' an University, Xi'an 710054, China
| | - Dan Zhang
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang' an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang' an University, Xi'an 710054, China
| | - Fengjia Liu
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang' an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang' an University, Xi'an 710054, China
| | - Shengke Yang
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang' an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang' an University, Xi'an 710054, China.
| |
Collapse
|
4
|
Kariyawasam T, Petkovich M, Vriens B. Diclofenac Degradation by Immobilized Chlamydomonas reinhardtii and Scenedesmus obliquus. Microbiologyopen 2024; 13:e70013. [PMID: 39690526 DOI: 10.1002/mbo3.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
Diclofenac (DCF), a commonly used anti-inflammatory medication, presents environmental concerns due to its presence in water bodies, resistance to conventional wastewater treatment methods, and detection at increasing concentrations (ng/L to µg/L) that highlight DCF as a global emerging pollutant. While microalgae have been effective in degrading DCF in wastewater, immobilization into a matrix offers a promising approach to enhance treatment retention and efficiency. This study aimed to evaluate the efficacy of DCF removal using immobilized freshwater microalgae. Two algal species, Chlamydomonas reinhardtii (Chlamydomonas) and Scenedesmus obliquus (Scenedesmus), were tested for 6 days in both free and immobilized forms to determine if immobilized algae could degrade DCF comparably to free cells. The findings indicate that by Day 3, immobilized Chlamydomonas and Scenedesmus removed 78.0% and 80.1% of DCF, outperforming free-cell cultures. Mixed cultures demonstrated synergistic effects, with removal amounts of 91.4% for free and 92.3% for immobilized systems. By Day 6, all conditions achieved complete DCF removal (100%). Mechanistic analysis showed 80.0% biodegradation and 20.0% bioaccumulation in free Chlamydomonas and 56.8% biodegradation with 43.2% bioaccumulation in Scenedesmus. Immobilization shifted pathways slightly: in Chlamydomonas, 61.6% of DCF removal occurred via biodegradation, 18.3% via bioaccumulation, and 20.1% via abiotic degradation. For Scenedesmus, immobilization achieved 45.6% biodegradation, 36.6% bioaccumulation, and 17.8% abiotic degradation, enhancing abiotic degradation while maintaining biodegradation efficiency. This research serves as a proof of concept for utilizing immobilized algae in DCF removal and suggests an avenue for improved wastewater treatment of emerging contaminants.
Collapse
Affiliation(s)
- Thamali Kariyawasam
- Department of Geological Sciences and Engineering, Queen's University, Kingston, Ontario, Canada
- Beaty Water Research Center, Queen's University, Kingston, Ontario, Canada
- Department of Biomedical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Martin Petkovich
- Department of Biomedical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Bas Vriens
- Department of Geological Sciences and Engineering, Queen's University, Kingston, Ontario, Canada
- Beaty Water Research Center, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Nagarajan D, Chen CW, Ponnusamy VK, Dong CD, Lee DJ, Chang JS. Sustainable aquaculture and seafood production using microalgal technology - A circular bioeconomy perspective. CHEMOSPHERE 2024; 366:143502. [PMID: 39384130 DOI: 10.1016/j.chemosphere.2024.143502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
The aquaculture industry is under the framework of the food-water-energy nexus due to the extensive use of water and energy. Sustainable practices are required to support the tremendous growth of this sector. Currently, the aquaculture industry is challenged by its reliance on capture fisheries for feed, increased use of pharmaceuticals, infectious outbreaks, and solid/liquid waste management. This review posits microalgal technology as a comprehensive solution for the current predicaments in aquaculture in a sustainable way. Microalgae are microscopic, freshwater and marine photosynthetic organisms, capable of carbon mitigation and bioremediation. They are indispensable in aquaculture due to their key role in marine productivity and their position in the marine food chain. Microalgae are nutritious and are currently used as feed in specific sectors of aquaculture. Due to their bioremediation potential, direct application of microalgae in shellfish ponds and in recirculating systems have been adopted to improve water quality and aquatic animal health. The potential of microalgae for integration into various aspects of aquaculture processes, namely hatcheries, feed, and waste management has been critically analyzed. Seamless integration of microalgal technology in aquaculture is feasible, and this review will provide new insights into using microalgal technology for sustainable aquaculture.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan; Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, ROC, Taiwan; Research Center for Smart and Sustainable Circular Economy, Tunghai University, Tainan, 407224, ROC, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, 407224, ROC, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
6
|
Wani AK, Ul Gani Mir T, Akhtar N, Chopra C, Bashir SM, Hassan S, Kumar V, Singh R, Américo-Pinheiro JHP. Algae-Mediated Removal of Prevalent Genotoxic Antibiotics: Molecular Perspective on Algae-Bacteria Consortia and Bioreactor-Based Strategies. Curr Microbiol 2024; 81:112. [PMID: 38472428 DOI: 10.1007/s00284-024-03631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024]
Abstract
Antibiotic pollution poses a potential risk of genotoxicity, as antibiotics released into the environment can induce DNA damage and mutagenesis in various organisms. This pollution, stemming from pharmaceutical manufacturing, agriculture, and improper disposal, can disrupt aquatic ecosystems and potentially impact human health through the consumption of contaminated water and food. The removal of genotoxic antibiotics using algae-mediated approaches has gained considerable attention due to its potential for mitigating the environmental and health risks associated with these compounds. The paper provides an in-depth examination of the molecular aspects concerning algae and bioreactor-driven methodologies utilized for the elimination of deleterious antibiotics. The molecular analysis encompasses diverse facets, encompassing the discernment and profiling of algae species proficient in antibiotic degradation, the explication of enzymatic degradation pathways, and the refinement of bioreactor configurations to augment removal efficacy. Emphasizing the significance of investigating algal approaches for mitigating antibiotic pollution, this paper underscores their potential as a sustainable solution, safeguarding both the environment and human health.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, 190006, India
| | - Shabir Hassan
- Department of Biology, College of Arts and Sciences, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates
| | - Vineet Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, São Paulo, 18610-034, Brazil.
- Brazil University, Street Carolina Fonseca, 584, São Paulo, São Paulo, 08230-030, Brazil.
| |
Collapse
|
7
|
Guo X, Chen H, Tong Y, Wu X, Tang C, Qin X, Guo J, Li P, Wang Z, Liu W, Mo J. A review on the antibiotic florfenicol: Occurrence, environmental fate, effects, and health risks. ENVIRONMENTAL RESEARCH 2024; 244:117934. [PMID: 38109957 DOI: 10.1016/j.envres.2023.117934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Florfenicol, as a replacement for chloramphenicol, can tightly bind to the A site of the 23S rRNA in the 50S subunit of the 70S ribosome, thereby inhibiting protein synthesis and bacterial proliferation. Due to the widespread use in aquaculture and veterinary medicine, florfenicol has been detected in the aquatic environment worldwide. Concerns over the effects and health risks of florfenicol on target and non-target organisms have been raised in recent years. Although the ecotoxicity of florfenicol has been widely reported in different species, no attempt has been made to review the current research progress of florfenicol toxicity, hormesis, and its health risks posed to biota. In this study, a comprehensive literature review was conducted to summarize the effects of florfenicol on various organisms including bacteria, algae, invertebrates, fishes, birds, and mammals. The generation of antibiotic resistant bacteria and spread antibiotic resistant genes, closely associated with hormesis, are pressing environmental health issues stemming from overuse or misuse of antibiotics including florfenicol. Exposure to florfenicol at μg/L-mg/L induced hormetic effects in several algal species, and chromoplasts might serve as a target for florfenicol-induced effects; however, the underlying molecular mechanisms are completely lacking. Exposure to high levels (mg/L) of florfenicol modified the xenobiotic metabolism, antioxidant systems, and energy metabolism, resulting in hepatotoxicity, renal toxicity, immunotoxicity, developmental toxicity, reproductive toxicity, obesogenic effects, and hormesis in different animal species. Mitochondria and the associated energy metabolism are suggested to be the primary targets for florfenicol toxicity in animals, albeit further in-depth investigations are warranted for revealing the long-term effects (e.g., whole-life-cycle impacts, multigenerational effects) of florfenicol, especially at environmental levels, and the underlying mechanisms. This will facilitate the evaluation of potential hormetic effects and construction of adverse outcome pathways for environmental risk assessment and regulation of florfenicol.
Collapse
Affiliation(s)
- Xingying Guo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Haibo Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Yongqi Tong
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Can Tang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Xian Qin
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China.
| |
Collapse
|
8
|
Kang Y, Lu Y, Wang S. Study on the Direct and Indirect Photolysis of Antibacterial Florfenicol in Water Using DFT/TDDFT Method and Comparison of Its Reactivity with Hydroxyl Radical under the Effect of Metal Ions. TOXICS 2024; 12:127. [PMID: 38393222 PMCID: PMC10891592 DOI: 10.3390/toxics12020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Florfenicol (FLO) is a widely used antibacterial drug, which is often detected in the environment. In this paper, the photolysis mechanism of FLO in water was investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The focus of the study is to elucidate the direct photolysis mechanism of FLO in the water environment and the indirect photolysis of free radicals (·OH, ·NO3, and ·SO4-) as active species. The effect of metal ions Ca2+/Mg2+/Zn2+ on the indirect photolysis was also investigated. The results show that the direct photolysis of FLO involves C-C/C-N/C-S bond cleavage, the C5-S7 bond cleavage is most likely to occur, and the C17-C18 cleavage reaction is not easy to occur during the direct photodegradation of FLO. The indirect photolysis of FLO is more likely to occur in the environment than direct photolysis. The main indirect photolysis involves OH-addition, NO3-addition, and SO4-addition on benzene ring. The order of difficulty in the indirect photolysis with ·OH is C2 > C3 > C4 > C5 > C6 > C1, Ca2+ can promote the indirect photolysis with ·OH, and Mg2+/Zn2+ has a dual effect on the indirect photolysis with ·OH. In other words, Mg2+ and Zn2+ can inhibit or promote the indirect photolysis with ·OH. These studies provide important information for theoretical research on the environmental behavior and degradation mechanism of drug molecules.
Collapse
Affiliation(s)
| | | | - Se Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (Y.K.); (Y.L.)
| |
Collapse
|
9
|
Li C, Li N, Chen X, Li X, Liu C, Abbas A, Wang Y, Qi S, Zhang Y, Li D, Zhang W, Shu G, Lin J, Li H, Xu F, Peng G, Fu H. Enhancement of dissolution rate and oral bioavailability of poorly soluble drug florfenicol by using solid dispersion and effervescent disintegration technology. Drug Dev Ind Pharm 2024; 50:45-54. [PMID: 38095592 DOI: 10.1080/03639045.2023.2295488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Florfenicol(FF) is an excellent veterinary antibiotic, limited by poor solubility and poor bioavailability. SIGNIFICANCE Here in, we aimed to explore the applicability of fast disintegrating tablets compressed from Florfenicol-loaded solid dispersions (FF-SD-FDTs) to improve the dissolution rate and oral bioavailability of Florfenicol. METHODS Utilizing selecting appropriate preparation methods and carriers, the solid dispersions of Florfenicol (FF-SDs) were prepared by solvent evaporation and the fast disintegrating tablets (FF-SD-FDTs) were prepared by the direct compression (DC) method. RESULTS The tablet properties including hardness, friability, disintegration time, weight variation, etc. all met the specifications of Chinese Veterinary Pharmacopeia(CVP). FF-SD-FDTs significantly improved drug dissolution and dispersion of FF in vitro compared to florfenicol conventional tablets (FF-CTs). A pharmacokinetics study in German shepherd dogs proved the AUC0-∞ and Cmax values of FF-SD-FDTs are 1.38 and 1.38 times more than FF-CTs, respectively. CONCLUSIONS Overall, it can be concluded that FF-SD-FDTs with excellent disintegration and dissolution properties were successfully produced, which greatly improved the oral bioavailability of the poorly soluble drug FF, and the study provided a new idea for a broader role of FF in pet clinics.
Collapse
Affiliation(s)
- Chao Li
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Nanxin Li
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingyu Chen
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaojuan Li
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chang Liu
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Awn Abbas
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yueli Wang
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shuangcai Qi
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yifan Zhang
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongbo Li
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohuan Li
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Funeng Xu
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Department of Pharmacy, College of Vet Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Chang X, He Y, Song L, Ding J, Ren S, Lv M, Chen L. Methylparaben toxicity and its removal by microalgae Chlorella vulgaris and Phaeodactylum tricornutum. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131528. [PMID: 37121041 DOI: 10.1016/j.jhazmat.2023.131528] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023]
Abstract
The widespread occurrence of methylparaben (MPB) has aroused great concern due to its weak estrogenic endocrine-disrupting property and potential toxic effects. However, the degradation potential and pathway of MPB by microalgae have rarely been reported. Here, microalgae Chlorella vulgaris and Phaeodactylum tricornutum were used to investigate their responses, degradation potential and mechanisms towards MPB. MPB showed low-dose stimulation (by 86.02 ± 0.07% at 1 mg/L) and high-dose inhibition (by 60.17 ± 0.05% at 80 mg/L) towards the growth of C. vulgaris, while showed inhibition for P. tricornutum (by 6.99 ± 0.05%-20.14 ± 0.19%). The degradation efficiencies and rates of MPB were higher in C. vulgaris (100%, 1.66 ± 0.54-5.60 ± 0.86 day-1) than in P. tricornutum (4.3-34.2%, 0.04 ± 0.01-0.08 ± 0.00 day-1), which could be explained by the significantly higher extracellular enzyme activity and more fluctuation of the protein ratio for C. vulgaris, indicating a higher ability of C. vulgaris to adapt to pollutant stress. Biodegradation was the main removal mechanism of MPB for both the two microalgae. Furthermore, two different degradation pathways of MPB by the two microalgae were proposed. MPB could be mineralized and completely detoxified by C. vulgaris. Overall, this study provides novel insights into MPB degradation by microalgae and strategies for simultaneous biodegradation and detoxification of MPB in the environment.
Collapse
Affiliation(s)
- Xianbo Chang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yuanyuan He
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lehui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Suyu Ren
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai 264003, China.
| |
Collapse
|
11
|
Nkoh JN, Oderinde O, Etafo NO, Kifle GA, Okeke ES, Ejeromedoghene O, Mgbechidinma CL, Oke EA, Raheem SA, Bakare OC, Ogunlaja OO, Sindiku O, Oladeji OS. Recent perspective of antibiotics remediation: A review of the principles, mechanisms, and chemistry controlling remediation from aqueous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163469. [PMID: 37061067 DOI: 10.1016/j.scitotenv.2023.163469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Antibiotic pollution is an ever-growing concern that affects the growth of plants and the well-being of animals and humans. Research on antibiotics remediation from aqueous media has grown over the years and previous reviews have highlighted recent advances in antibiotics remediation technologies, perspectives on antibiotics ecotoxicity, and the development of antibiotic-resistant genes. Nevertheless, the relationship between antibiotics solution chemistry, remediation technology, and the interactions between antibiotics and adsorbents at the molecular level is still elusive. Thus, this review summarizes recent literature on antibiotics remediation from aqueous media and the adsorption perspective. The review discusses the principles, mechanisms, and solution chemistry of antibiotics and how they affect remediation and the type of adsorbents used for antibiotic adsorption processes. The literature analysis revealed that: (i) Although antibiotics extraction and detection techniques have evolved from single-substrate-oriented to multi-substrates-oriented detection technologies, antibiotics pollution remains a great danger to the environment due to its trace level; (ii) Some of the most effective antibiotic remediation technologies are still at the laboratory scale. Thus, upscaling these technologies to field level will require funding, which brings in more constraints and doubts patterning to whether the technology will achieve the same performance as in the laboratory; and (iii) Adsorption technologies remain the most affordable for antibiotic remediation. However, the recent trends show more focus on developing high-end adsorbents which are expensive and sometimes less efficient compared to existing adsorbents. Thus, more research needs to focus on developing cheaper and less complex adsorbents from readily available raw materials. This review will be beneficial to stakeholders, researchers, and public health professionals for the efficient management of antibiotics for a refined decision.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria.
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila, Mexico
| | - Ghebretensae Aron Kifle
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya; Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Department of Chemistry, Mai Nefhi College of Science, National Higher Education and Research Institute, Asmara 12676, Eritrea
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Chiamaka Linda Mgbechidinma
- School of Life Sciences, Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Emmanuel A Oke
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India
| | - Saheed Abiola Raheem
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olumuyiwa O Ogunlaja
- Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Omotayo Sindiku
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olatunde Sunday Oladeji
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| |
Collapse
|
12
|
Huang R, Liu W, Su J, Li S, Wang L, Jeppesen E, Zhang W. Keystone microalgae species determine the removal efficiency of sulfamethoxazole: a case study of Chlorella pyrenoidosa and microalgae consortia. FRONTIERS IN PLANT SCIENCE 2023; 14:1193668. [PMID: 37476166 PMCID: PMC10354436 DOI: 10.3389/fpls.2023.1193668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
In recent years, antibiotics pollution has caused serious harm to the aquatic environment, and microalgae mediated degradation of antibiotics has attracted increasing attention. However, the potential toxicity of antibiotics to keystone microalgae species or their microalgae consortia, and the impact of microalgal diversity on antibiotic removal need to be further studied. In this study, we investigated the removal efficiency and tolerance of five freshwater microalgae (Chlorella pyrenoidosa, Scenedesmus quadricauda, Dictyosphaerium sp., Haematoccocus pluvialis, and Botryococcus braunii) and their microalgae consortia to sulfamethoxazole (SMX). We found that the removal efficiency of SMX by C. pyrenoidosa reached 49%, while the other four microalgae ranged between 9% and 16%. In addition, C. pyrenoidosa, S. quadricauda, and Dictyosphaerium sp. had better tolerance to SMX than H. pluvialis, and their growth and photosynthesis were less affected. At 10 and 50 mg/L SMX, the removal capacity of SMX by mixed microalgae consortia was lower than that of C. pyrenoidos except for the consortium with C. pyrenoidos and S. quadricauda. The consortia generally showed higher sensitivity towards SMX than the individual species, and the biochemical characteristics (photosynthetic pigment, chlorophyll fluorescence parameters, superoxide anion (O2 -), superoxide dismutase activity (SOD), malondialdehyde (MDA) and extracellular enzymes) were significantly influenced by SMX stress. Therefore, the removal of antibiotics by microalgae consortia did not increase with the number of microalgae species. Our study provides a new perspective for the selection of microalgal consortia to degrade antibiotics.
Collapse
Affiliation(s)
- Ruohan Huang
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Wan Liu
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Jinghua Su
- Research Institute of Natural Ecology Conservation, Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Shihao Li
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Technology Co., Ltd, Shanghai, China
| | - Liqing Wang
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China
- Limnology Laboratory and EKOSAM, Department of Biological Sciences, Middle East Technical University, Ankara, Türkiye
- Institute of Marine Sciences, Middle East Technical University, Mersin, Türkiye
| | - Wei Zhang
- Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
13
|
Oliveira AS, Alves M, Leitão F, Tacão M, Henriques I, Castro PML, Amorim CL. Bioremediation of coastal aquaculture effluents spiked with florfenicol using microalgae-based granular sludge - a promising solution for recirculating aquaculture systems. WATER RESEARCH 2023; 233:119733. [PMID: 36801579 DOI: 10.1016/j.watres.2023.119733] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Aquaculture is a crucial industry in the agri-food sector, but it is linked to serious environmental problems. There is a need for efficient treatment systems that allow water recirculation to mitigate pollution and water scarcity. This work aimed to evaluate the self-granulation process of a microalgae-based consortium and its capacity to bioremediate coastal aquaculture streams that sporadically contain the antibiotic florfenicol (FF). A photo-sequencing batch reactor was inoculated with an autochthonous phototrophic microbial consortium and was fed with wastewater mimicking coastal aquaculture streams. A rapid granulation process occurred within ca. 21 days, accompanied by a substantially increase of extracellular polymeric substances in the biomass. The developed microalgae-based granules exhibited high and stable organic carbon removal (83-100%). Sporadically wastewater contained FF which was partially removed (ca. 5.5-11.4%) from the effluent. In periods of FF load, the ammonium removal slightly decreased (from 100 to ca. 70%), recovering 2 days after FF feeding ceased. A high-chemical quality effluent was obtained, complying with ammonium, nitrite, and nitrate concentrations for water recirculation within a coastal aquaculture farm, even during FF feeding periods. Members belonging to the Chloroidium genus were predominant in the reactor inoculum (ca. 99%) but were replaced from day-22 onwards by an unidentified microalga from the phylum Chlorophyta (>61%). A bacterial community proliferated in the granules after reactor inoculation, whose composition varied in response to feeding conditions. Bacteria from the Muricauda and Filomicrobium genera, Rhizobiaceae, Balneolaceae, and Parvularculaceae families, thrived upon FF feeding. This study demonstrates the robustness of microalgae-based granular systems for aquaculture effluent bioremediation, even during periods of FF loading, highlighting their potential as a feasible and compact solution in recirculation aquaculture systems.
Collapse
Affiliation(s)
- Ana S Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Marta Alves
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Frederico Leitão
- CESAM and Biology Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Center for Functional Ecology, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Marta Tacão
- CESAM and Biology Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel Henriques
- Center for Functional Ecology, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Catarina L Amorim
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
14
|
Ghaffar I, Hussain A, Hasan A, Deepanraj B. Microalgal-induced remediation of wastewaters loaded with organic and inorganic pollutants: An overview. CHEMOSPHERE 2023; 320:137921. [PMID: 36682632 DOI: 10.1016/j.chemosphere.2023.137921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The recent surge in industrialization has intensified the accumulation of various types of organic and inorganic pollutants due to the illegal dumping of partially and/or untreated wastewater effluents in the environment. The pollutants emitted by several industries pose serious risk to the environment, animals and human beings. Management and diminution of these hazardous organic pollutants have become an incipient research interest. Traditional physiochemical methods are energy intensive and produce secondary pollutants. So, bioremediation via microalgae has appeared to be an eco-friendly and sustainable technique to curb the adverse effects of organic and inorganic contaminants because microalgae can degrade complex organic compounds and convert them into simpler and non-toxic substances without the release of secondary pollutants. Even some of the organic pollutants can be exploited by microalgae as a source of carbon in mixotrophic cultivation. Literature survey has revealed that use of the latest modification techniques for microalgae such as immobilization (on alginate, carrageena and agar), pigment-extraction, and pretreatment (with acids) have enhaced their bioremedial potential. Moreover, microalgal components i.e., biopolymers and extracellular polymeric substances (EPS) can potentially be exploited in the biosorption of pollutants. Though bioremediation of wastewaters by microalgae is quite well-studied realm but some aspects like structural and functional responses of microalgae toward pollutant derivatives/by-products (formed during biodegradation), use of genetic engineering to improve the tolerance of microalgae against higher concentrations of polluatans, and harvesting cost reduction, and monitoring of parameters at large-scale still need more focus. This review discusses the accumulation of different types of pollutants into the environment through various sources and the mechanisms used by microalgae to degrade commonly occurring organic and inorganic pollutants.
Collapse
Affiliation(s)
- Imania Ghaffar
- Applied and Environmental Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Hussain
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| | - Ali Hasan
- Applied and Environmental Microbiology Laboratory, Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Balakrishnan Deepanraj
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.
| |
Collapse
|
15
|
Le VV, Tran QG, Ko SR, Lee SA, Oh HM, Kim HS, Ahn CY. How do freshwater microalgae and cyanobacteria respond to antibiotics? Crit Rev Biotechnol 2023; 43:191-211. [PMID: 35189751 DOI: 10.1080/07388551.2022.2026870] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Antibiotic pollution is an emerging environmental challenge. Residual antibiotics from various sources, including municipal and industrial wastewater, sewage discharges, and agricultural runoff, are continuously released into freshwater environments, turning them into reservoirs that contribute to the development and spread of antibiotic resistance. Thus, it is essential to understand the impacts of antibiotic residues on aquatic organisms, especially microalgae and cyanobacteria, due to their crucial roles as primary producers in the ecosystem. This review summarizes the effects of antibiotics on major biological processes in freshwater microalgae and cyanobacteria, including photosynthesis, oxidative stress, and the metabolism of macromolecules. Their adaptive mechanisms to antibiotics exposure, such as biodegradation, bioadsorption, and bioaccumulation, are also discussed. Moreover, this review highlights the important factors affecting the antibiotic removal pathways by these organisms, which will promote the use of microalgae-based technology for the removal of antibiotics. Finally, we offer some perspectives on the opportunities for further studies and applications.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Sang-Ah Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
16
|
Wang W, Weng Y, Luo T, Wang Q, Yang G, Jin Y. Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. TOXICS 2023; 11:185. [PMID: 36851059 PMCID: PMC9965714 DOI: 10.3390/toxics11020185] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Antimicrobial contamination and antimicrobial resistance have become global environmental and health problems. A large number of antimicrobials are used in medical and animal husbandry, leading to the continuous release of residual antimicrobials into the environment. It not only causes ecological harm, but also promotes the occurrence and spread of antimicrobial resistance. The role of environmental factors in antimicrobial contamination and the spread of antimicrobial resistance is often overlooked. There are a large number of antimicrobial-resistant bacteria and antimicrobial resistance genes in human beings, which increases the likelihood that pathogenic bacteria acquire resistance, and also adds opportunities for human contact with antimicrobial-resistant pathogens. In this paper, we review the fate of antimicrobials and antimicrobial resistance in the environment, including the occurrence, spread, and impact on ecological and human health. More importantly, this review emphasizes a number of environmental factors that can exacerbate antimicrobial contamination and the spread of antimicrobial resistance. In the future, the timely removal of antimicrobials and antimicrobial resistance genes in the environment will be more effective in alleviating antimicrobial contamination and antimicrobial resistance.
Collapse
Affiliation(s)
- Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
17
|
Zhou T, Zhang Z, Liu H, Dong S, Nghiem LD, Gao L, Chaves AV, Zamyadi A, Li X, Wang Q. A review on microalgae-mediated biotechnology for removing pharmaceutical contaminants in aqueous environments: Occurrence, fate, and removal mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130213. [PMID: 36283219 DOI: 10.1016/j.jhazmat.2022.130213] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical compounds in aquatic environments have been considered as emerging contaminants due to their potential risks to living organisms. Microalgae-based technology showed the feasibility of removing pharmaceutical contaminants. This review summarizes the occurrence, classification, possible emission sources, and environmental risk of frequently detected pharmaceutical compounds in aqueous environments. The efficiency, mechanisms, and influencing factors for the removal of pharmaceutical compounds through microalgae-based technology are further discussed. Pharmaceutical compounds frequently detected in aqueous environments include antibiotics, hormones, analgesic and non-steroidal anti-inflammatory drugs (NSAIDs), cardiovascular agents, central nervous system drugs (CNS), antipsychotics, and antidepressants, with a concentration ranging from ng/L to μg/L. Microalgae-based technology majorly remove the pharmaceutical compounds through bioadsorption, bioaccumulation, biodegradation, photodegradation, and co-metabolism. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the occurrence and fate of pharmaceutical contaminants in aqueous environments, highlighting the potential of microalgae-based technology for pharmaceutical contaminants removal.
Collapse
Affiliation(s)
- Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Zehao Zhang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Huan Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shiman Dong
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Li Gao
- South East Water, 101 Wells Street, Frankston, VIC 3199, Australia
| | - Alex V Chaves
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Arash Zamyadi
- Water Research Australia Limited, Adelaide, SA 5001, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
18
|
Zhang K, Yang Q, Jin Y, He P, Li Q, Chen P, Zhu J, Gan M. Catalytic activation of peroxydisulfate by secondary mineral derived self-modified iron-based composite for florfenicol degradation: Performance and mechanism. CHEMOSPHERE 2023; 313:137616. [PMID: 36563721 DOI: 10.1016/j.chemosphere.2022.137616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/09/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The advanced oxidation processes (AOPs) driven by iron-based materials are the highly efficient technology for refractory organic pollutants treatment. In this work, self-modified iron-based catalysts were prepared using secondary mineral as the precursor by one-step pyrolysis process without additional dopants. The prepared catalysts exhibited excellent performance in catalytic degradation of florfenicol (FF), especially C-AJ, which was derived from ammoniojarosite [(NH4, H3O)Fe3(OH)6(SO4)2], activated PDS to degrade 93% FF with initial concentration of 50 mg/L. Quenching tests and electron paramagnetic resonance (ESR) studies showed that SO4•-, •OH, and •O2- were the main reactive species for FF degradation and their contribution degree was SO4•- > •OH > •O2-. The Fe0 and the cycle of Fe(II)/Fe(III) both contributed to the PDS activation, and the reduction of Fe(III) to Fe(II) was accelerated by S2- on the catalyst surface. In addition, Fe3O4 on the C-AJ indirectly catalyzes PDS by promoting electron transfer. The effects of catalyst dosage, PDS concentration, pH, inorganic anions, and real aqueous matrices on FF degradation, TOC analysis, and cycling test were investigated. The results showed that iron-based catalysts have superior environmental durability due to their excellent catalytic properties in the real aqueous matrices with common inorganic anions and pH 3-9 and its steady catalytic capacity with multiple cycles. Overall, this study sheds new light on the rational design of self-modified iron-based composite and develops low-cost technology toward remediation of FF-contaminated wastewater.
Collapse
Affiliation(s)
- Ke Zhang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Quanliu Yang
- Guizhou Academy of Tobacco Sciences, Guiyang, 550011, China
| | - Yuwen Jin
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Qiongyao Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Pan Chen
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Min Gan
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| |
Collapse
|
19
|
Zhang Y, Wang JH, Zhang JT, Chi ZY, Kong FT, Zhang Q. The long overlooked microalgal nitrous oxide emission: Characteristics, mechanisms, and influencing factors in microalgae-based wastewater treatment scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159153. [PMID: 36195148 DOI: 10.1016/j.scitotenv.2022.159153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Microalgae-based wastewater treatment is particularly advantageous in simultaneous CO2 sequestration and nutrients recovery, and has received increasing recognition and attention in the global context of synergistic pollutants and carbon reduction. However, the fact that microalgae themselves can generate the potent greenhouse gas nitrous oxide (N2O) has been long overlooked, most previous research mainly regarded microalgae as labile organic carbon source or oxygenic approach that interfere bacterial nitrification-denitrification and the concomitant N2O production. This study, therefore, summarized the amount and rate of N2O emission in microalgae-based systems, interpreted in-depth the multiple pathways that lead to NO formation as the key precursor of N2O, and the pathways that transform NO into N2O. Reduction of nitrite could take place in either the cytoplasm or the mitochondria to form NO by a series of enzymes, while the NO could be enzymatically reduced to N2O at the chloroplasts or the mitochondria respectively under light and dark conditions. The influences of abiotic factors on microalgal N2O emission were analyzed, including nitrogen types and concentrations that directly affect the nitrogen transformation routes, illumination and oxygen conditions that regulate the enzymatic activities related to N2O generation, and other factors that indirectly interfere N2O emission via NO regulation. The uncertainty of microalgae-based N2O emission in wastewater treatment scenarios were emphasized, which would be particularly impacted by the complex competition between microalgae and ammonia oxidizing bacteria or nitrite oxidizing bacteria over ammonium or inorganic carbon source. Future studies should put more efforts in improving the compatibility of N2O emission results expressions, and adopting consistent NO detection methods for N2O emission prediction. This review will provide much valuable information on the characteristics and mechanisms of microalgal N2O emission, and arouse more attention to the non-negligible N2O emission that may impair overall greenhouse gas reduction efficiency in microalgae-based wastewater treatment systems.
Collapse
Affiliation(s)
- Ying Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China.
| | - Jing-Tian Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| |
Collapse
|
20
|
Abdelfattah A, Ali SS, Ramadan H, El-Aswar EI, Eltawab R, Ho SH, Elsamahy T, Li S, El-Sheekh MM, Schagerl M, Kornaros M, Sun J. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100205. [PMID: 36247722 PMCID: PMC9557874 DOI: 10.1016/j.ese.2022.100205] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 05/05/2023]
Abstract
The rapid expansion of both the global economy and the human population has led to a shortage of water resources suitable for direct human consumption. As a result, water remediation will inexorably become the primary focus on a global scale. Microalgae can be grown in various types of wastewaters (WW). They have a high potential to remove contaminants from the effluents of industries and urban areas. This review focuses on recent advances on WW remediation through microalgae cultivation. Attention has already been paid to microalgae-based wastewater treatment (WWT) due to its low energy requirements, the strong ability of microalgae to thrive under diverse environmental conditions, and the potential to transform WW nutrients into high-value compounds. It turned out that microalgae-based WWT is an economical and sustainable solution. Moreover, different types of toxins are removed by microalgae through biosorption, bioaccumulation, and biodegradation processes. Examples are toxins from agricultural runoffs and textile and pharmaceutical industrial effluents. Microalgae have the potential to mitigate carbon dioxide and make use of the micronutrients that are present in the effluents. This review paper highlights the application of microalgae in WW remediation and the remediation of diverse types of pollutants commonly present in WW through different mechanisms, simultaneous resource recovery, and efficient microalgae-based co-culturing systems along with bottlenecks and prospects.
Collapse
Affiliation(s)
- Abdallah Abdelfattah
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Corresponding author. Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Hassan Ramadan
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Eslam Ibrahim El-Aswar
- Central Laboratories for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), El-Kanater, 13621, Qalyubiyah, Egypt
| | - Reham Eltawab
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- Corresponding author.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | | | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Corresponding author.
| |
Collapse
|
21
|
Liang L, Bai X, Hua Z. Enhancement of the immobilization on microalgae protective effects and carbamazepine removal by Chlorella vulgaris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79567-79578. [PMID: 35715671 DOI: 10.1007/s11356-022-21418-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Carbamazepine (CBZ) has drawn extensive attention due to their environmental threats. In this study, polyvinyl alcohol-sodium alginate polymers to immobilize Chlorella vulgaris (FACHB-8) were used to investigate whether immobilization can facilitate microalgae to alleviate the CBZ stress and enhance CBZ removal. The results showed that after immobilized treatment, the biomass of microalgae increased by approximately 20%, the maximum level of malondialdehyde content decreased from 28 to 13 μmol/g, and the photosynthetic capacity of FV/FM recovered to 90% of the control group. The CBZ removal rate increased from 67 to 84% by immobilization at a CBZ concentration of 80 mg·L-1. The results indicated that immobilization technology can effectively protect microalgae from CBZ toxicity and improve the removal of CBZ, especially at high concentrations (> 50 mg/L). Biodegradation was the dominant pathway for microalgae to remove carbamazepine. This study added the understanding of the microalgae responses under immobilization and the interactions between immobilized microalgae and CBZ removal, thereby providing a novel insight into microalgae technology in high concentration wastewater treatments.
Collapse
Affiliation(s)
- Lu Liang
- College of Environment, Hohai University, Xikang road 1#, Gulou District, Nanjing, 210098, China
| | - Xue Bai
- College of Environment, Hohai University, Xikang road 1#, Gulou District, Nanjing, 210098, China
| | - Zulin Hua
- College of Environment, Hohai University, Xikang road 1#, Gulou District, Nanjing, 210098, China.
| |
Collapse
|
22
|
Bhatt P, Bhandari G, Bhatt K, Simsek H. Microalgae-based removal of pollutants from wastewaters: Occurrence, toxicity and circular economy. CHEMOSPHERE 2022; 306:135576. [PMID: 35803375 DOI: 10.1016/j.chemosphere.2022.135576] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The natural and anthropogenic sources of water bodies are contaminated with diverse categories of pollutants such as antibiotics, pharmaceuticals, pesticides, heavy metals, organic compounds, and other industrial chemicals. Depending on the type and the origin of the pollutants, the degree of contamination can be categorized into lower to higher concentrations. Therefore, the removal of hazardous chemicals from the environment is an important aspect. The physical, chemical and biological approaches have been developed and implemented to treat wastewaters. The microbial and algal treatment methods have emerged as a growing field due to their eco-friendly and sustainable approach. Particularly, microalgae emerged as a potential organism for the treatment of contaminated water bodies. The microalgae of the genera Chlorella, Anabaena, Ankistrodesmus, Aphanizomenon, Arthrospira, Botryococcus, Chlamydomonas, Chlorogloeopsis, Dunaliella, Haematococcus, Isochrysis, Nannochloropsis, Porphyridium, Synechococcus, Scenedesmus, and Spirulina reported for the wastewater treatment and biomass production. Microalgae have the potential for adsorption, bioaccumulation, and biodegradation. The microalgal strains can mitigate the hazardous chemicals via their diverse cellular mechanisms. Applications of the microalgae strains were found to be effective for sustainable developments and circular economy due to the production of biomass with the utilization of pollutants.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, 248016, India
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
23
|
Bhatt P, Bhandari G, Turco RF, Aminikhoei Z, Bhatt K, Simsek H. Algae in wastewater treatment, mechanism, and application of biomass for production of value-added product. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119688. [PMID: 35793713 DOI: 10.1016/j.envpol.2022.119688] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/21/2022] [Accepted: 06/24/2022] [Indexed: 05/16/2023]
Abstract
The pollutants can enter water bodies at various point and non-point sources, and wastewater discharge remains a major pathway. Wastewater treatment effectively reduces contaminants, it is expensive and requires an eco-friendly and sustainable alternative approach to reduce treatment costs. Algae have recently emerged as a potentially cost-effective method to remediate toxic pollutants through the mechanism of biosorption, bioaccumulation, and intracellular degradation. Hence, before discharging the wastewater into the natural environment better solutions for environmental resource recovery and sustainable developments can be applied. More importantly, algae are a potential feedstock material for various industrial applications such as biofuel production. Currently, researchers are developing algae as a source for pharmaceuticals, biofuels, food additives, and bio-fertilizers. This review mainly focused on the potential of algae and their specific mechanisms involved in wastewater treatment and energy recovery systems leading to important industrial precursors. The review is highly beneficial for scientists, wastewater treatment plant operators, freshwater managers, and industrial communities to support the sustainable development of natural resources.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, 248016, Uttarakhand, India
| | - Ronald F Turco
- Department of Agronomy, Purdue University, West Lafayette, IN, 47906, USA
| | - Zahra Aminikhoei
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Offshore Fisheries Research Center, Chabahar, Iran
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
24
|
Chu Y, Zhang C, Wang R, Chen X, Ren N, Ho SH. Biotransformation of sulfamethoxazole by microalgae: Removal efficiency, pathways, and mechanisms. WATER RESEARCH 2022; 221:118834. [PMID: 35839594 DOI: 10.1016/j.watres.2022.118834] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Recently, the biotransformation of sulfamethoxazole (SMX) by microalgae has attracted increasing interest. In particular, cytochrome P450 (CYP450) has been suggested to be the main enzymatic contributor to this biodegradation. However, the molecular evidence of CYP450 enzymes being involved in SMX biodegradation remains relatively unclear, hindering its applicability. Herein, the biodegradation of SMX by Chlorella sorokiniana (C. sorokiniana) was investigated, and comprehensively elucidated the reaction mechanism underlying CYP450-mediated SMX metabolism. C. sorokiniana was able to efficiently remove over 80% of SMX mainly through biodegradation, in which CYP450 enzymes responded substantially to metabolize SMX in cells. Additionally, screening of transformation products (TPs) revealed that N4-hydroxylation-SMX (TP270) was the main TP in the SMX biodegradation pathway of microalgae. Molecular dynamics (MD) simulation suggested that the aniline of SMX was the most prone to undergo metabolism, while density functional theory (DFT) indicated that SMX was metabolized by CYP450 enzymes through H-abstraction-OH-rebound reaction. Collectively, this work reveals key details of the hydroxylamine group of SMX, elucidates the SMX biodegradation pathway involving CYP450 in microalgae in detail, and accelerates the development of using microalgae-mediated CYP450 to eliminate antibiotics.
Collapse
Affiliation(s)
- Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
25
|
Martínez-Ruiz M, Molina-Vázquez A, Santiesteban-Romero B, Reyes-Pardo H, Villaseñor-Zepeda KR, Meléndez-Sánchez ER, Araújo RG, Sosa-Hernández JE, Bilal M, Iqbal HMN, Parra-Saldivar R. Micro-algae assisted green bioremediation of water pollutants rich leachate and source products recovery. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119422. [PMID: 35533958 DOI: 10.1016/j.envpol.2022.119422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/05/2023]
Abstract
Water management and treatment are high concern fields with several challenges due to increasing pollutants produced by human activity. It is imperative to find integral solutions and strategic measures with robust remediation. Landfill leachate production is a high concern emerging problem. Especially in low middle-income countries due to no proper local waste disposition regulation and non-engineered implemented methods to dispose of urban waste. These landfills can accumulate electronic waste and release heavy metals during the degradation process. Similar phenomena include expired pharmaceuticals like antibiotics. All these pollutants accumulated in leachate made it hard to dispose of or treat. Leachate produced in non-engineered landfills can permeate soils and reach groundwater, dragging different contaminants, including antibiotics and heavy metals, which eventually can affect the environment, changing soil properties and affecting wildlife. The presence of antibiotics in the environment is a problem with particular interest to solve, mainly to avoid the development of antibiotic-resistant microorganisms, which represent a future risk for human health with possible epidemic implications. It has been reported that the use of contaminated water with heavy metals to produce and grow vegetables is a risk for consumers, heavy metals effects in humans can include carcinogenic induction. This work explores the opportunities to use leachate as a source of nutrients to grow microalgae. Microalgae stand out as an alternative to bioremediate leachate, at the same time, microalgae produce high-value compounds that can be used in bioplastic, biofuels, and other industrial applications.
Collapse
Affiliation(s)
- Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico
| | | | | | - Humberto Reyes-Pardo
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico
| | | | | | - Rafael G Araújo
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, 64849, Mexico.
| | | |
Collapse
|
26
|
Wan L, Wu Y, Zhang Y, Zhang W. Toxicity, biodegradation of moxifloxacin and gatifloxacin on Chlamydomonas reinhardtii and their metabolic fate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113711. [PMID: 35653971 DOI: 10.1016/j.ecoenv.2022.113711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The novel fourth-generation fluoroquinolones (FQs) were developed to improve the antimicrobial activity and their utilization has rapidly increased in recent years. However, knowledge of the ecotoxicity and microalgae-mediated biodegradation of these novel FQs is limited. In this research, the toxic effects of moxifloxacin (MOX) and gatifloxacin (GAT) on Chlamydomonas reinhardtii as well as their biodegradation and metabolic fate were investigated. The results showed that the toxicity of MOX to C. reinhardtii was higher than that of GAT, and increased with culture time. Chlorophyll fluorescence and pigment content analyses suggested that the decrease in photosynthetic efficiency was primarily caused by the inhibition of electron transport after QA in PSII complex. These FQs induced oxidative damage in cells, and the antioxidation mechanisms of C. reinhardtii were analyzed. The maximum MOX removal of 77.67% by C. reinhardtii was achieved at 1 mg/L MOX, whereas the maximum GAT removal of 34.04% was attained at 20 mg/L GAT. The different hydrophilicity and lipophilicity of these FQs resulted in distinct findings in biodegradation experiments. Identification of the transformation products suggested that the likely biodegradation pathways of FQs by C. reinhardtii were hydroxylation, demethylation, and ring cleavage.
Collapse
Affiliation(s)
- Liang Wan
- Hubei Key Laboratory of Ecological Restoration of Rivers-lakes and Algae Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China; Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| | - Yixiao Wu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China; School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yan Zhang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Weihao Zhang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
27
|
Li Z, Dong S, Huang F, Lin L, Hu Z, Zheng Y. Toxicological Effects of Microplastics and Sulfadiazine on the Microalgae Chlamydomonas reinhardtii. Front Microbiol 2022; 13:865768. [PMID: 35572694 PMCID: PMC9096495 DOI: 10.3389/fmicb.2022.865768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the fact that microplastics (MPs) facilitate the adsorption of environmental organic pollutants and influence their toxicity for organisms, more study is needed on the combination of MPs and antibiotics pollutant effects. In this study, polystyrene MPs (1 and 5 μm) and sulfadiazine (SDZ) were examined separately and in combination on freshwater microalga, Chlamydomonas reinhardtii. The results suggest that both the MPs and SDZ alone and in combination inhibited the growth of microalgae with an increasing concentration of MPs and SDZ (5–200 mg l–1); however, the inhibition rate was reduced by combination. Upon exposure for 7 days, both the MPs and SDZ inhibited algal growth, reduced chlorophyll content, and enhanced superoxide dismutase (SOD) activities, whereas glutathione peroxidase (GSH-Px) activity was elevated only with the exposure of 1 μm MPs. Fluorescence microscopy and scanning electron microscopy also indicated that particle size contributed to the combined toxicity by aggregating MPs with periphery pollutants. Further, the amount of extracellular secretory protein increased in the presence of MPs and SDZ removal ratio decreased when MPs and SDZ coexisted, suggesting that MPs affected SDZ metabolism by microalgae. The particle size of microplastics affected the toxicity of MPs on microalgae and the combined effect of MPs and SDZ could be mitigated by MPs adsorption. These findings provide insight into microalgae responses to the combination of MPs and antibiotics in water ecosystems.
Collapse
Affiliation(s)
- Ze Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Sheng Dong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Fei Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Langli Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yihong Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
28
|
Zhong X, Zhang X, Zhou T, Lv G, Zhao Q. Exploring kinetics, removal mechanism and possible transformation products of tigecycline by Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152988. [PMID: 35026238 DOI: 10.1016/j.scitotenv.2022.152988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of antibiotics in wastewater leads to broad antibiotic resistance, threating human health. Microalgae have been receiving attention due to their ability to remove antibiotics from wastewater. Tigecycline (TGC) is a broad-spectrum glycylcycline antibiotic. It has not been investigated for removal by microalgae. The removal kinetics of TGC by Chlorella pyrenoidosa were evaluated under different initial dry cell densities, TGC concentrations, temperatures and light intensity conditions. Approximately 90% of TGC could be removed when the TGC concentration was 10 mg∙L-1 and the initial dry cell density was more than 0.2 g∙L-1. A low value of TGC per g dry cell weight ratio led to a high removal efficiency of TGC. The initial dry cell density of microalgae was also critical for the removal of TGC. A high initial dry cell density is better than a low initial dry cell density to remove TGC when the ratio of the TGC concentration to dry cell weight are the same at the beginning of the cultivation. The removal mechanisms were investigated. Photolysis was a slow process that did not lead to removal at the beginning. Adsorption, hydrolysis, photolysis and biodegradation by microalgae were the main contributors to the removal of TGC. TGC was easily hydrolyzed under high -temperature conditions. Three transformation products of TGC by microalgae were identified. The stability of TGC was evaluated in water and salt solutions of citric acid, K2HPO4·3H2O and ferric ammonium citrate. TGC was stable in ultrapure water and citric acid solution. TGC was hydrolyzed in K2HPO4·3H2O and ferric ammonium citrate solutions.
Collapse
Affiliation(s)
- Xueqing Zhong
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Xiangxiang Zhang
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Tianyi Zhou
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Guangping Lv
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Quanyu Zhao
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
29
|
Zeeshan QM, Qiu S, Gu J, Abbew AW, Wu Z, Chen Z, Xu S, Ge S. Unravelling multiple removal pathways of oseltamivir in wastewater by microalgae through experimentation and computation. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128139. [PMID: 34983009 PMCID: PMC8713958 DOI: 10.1016/j.jhazmat.2021.128139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 05/03/2023]
Abstract
Increased worldwide consumption of antiviral drugs (AVDs) amid COVID-19 has induced enormous burdens to the existing wastewater treatment systems. Microalgae-based bioremediation is a competitive alternative technology due to its simultaneous nutrient recovery and sustainable biomass production. However, knowledge about the fate, distribution, and interaction of AVDs with microalgae is yet to be determined. In this study, a concentration-determined influence of AVD oseltamivir (OT) was observed on the biochemical pathway of Chlorella sorkiniana (C.S-N1) in synthetic municipal wastewater. The results showed that high OT concentration inhibited biomass growth through increased oxidative stress and restrained photosynthesis. Nevertheless, complete OT removal was achieved at its optimized concentration of 10 mg/L by various biotic (82%) and abiotic processes (18.0%). The chemical alterations in three subtypes of extracellular polymeric substances (EPS) were primarily investigated by electrostatic (OT +8.22 mV vs. C.S-N1 -18.31 mV) and hydrophobic interactions between EPS-OT complexes supported by secondary structure protein analysis. Besides, six biodegradation-catalyzed transformation products were identified by quadrupole-time-of-flight mass spectrometer and by density functional theory. Moreover, all the TPs exhibited log Kow ≤ 5 and bioconcentration factor values of < 5000 L/kg, meeting the practical demands of environmental sustainability. This study broadens our understanding of microalgal bioadsorption and biodegradation, promoting microalgae bioremediation for nutrient recovery and AVDs removal.
Collapse
Affiliation(s)
- Qasim M Zeeshan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Jia Gu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhengshuai Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Sai Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
30
|
Ricky R, Chiampo F, Shanthakumar S. Efficacy of Ciprofloxacin and Amoxicillin Removal and the Effect on the Biochemical Composition of Chlorella vulgaris. Bioengineering (Basel) 2022; 9:134. [PMID: 35447694 PMCID: PMC9032391 DOI: 10.3390/bioengineering9040134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Antibiotics are frequently detected in the aquatic environment due to their excessive usage and low-efficiency removal in wastewater treatment plants. This can provide the origin to the development of antibiotic-resistant genes in the microbial community, with considerable ecotoxicity to the environment. Among the antibiotics, the occurrence of ciprofloxacin (CIP) and amoxicillin (AMX) has been detected in various water matrices at different concentrations around the Earth. They are designated as emerging contaminants (ECs). Microalga Chlorella vulgaris (C. vulgaris) has been extensively employed in phycoremediation studies for its acclimatization property, non-target organisms for antibiotics, and the production of value-added bioproducts utilizing the nutrients from the wastewater. In this study, C. vulgaris medium was spiked with 5 mg/L of CIP and AMX, and investigated for its growth-stimulating effects, antibiotic removal capabilities, and its effects on the biochemical composition of algal cells compared to the control medium for 7 days. The results demonstrated that C. vulgaris adapted the antibiotic spiked medium and removed CIP (37 ± 2%) and AMX (25 ± 3%), respectively. The operating mechanisms were bioadsorption, followed by bioaccumulation, and biodegradation, with an increase in cell density up to 46 ± 3% (CIP) and 36 ± 4% (AMX), compared to the control medium. Further investigations revealed that, in the CIP stress-induced algal medium, an increase in major photosynthetic pigment chlorophyll-a (30%) and biochemical composition (lipids (50%), carbohydrates (32%), and proteins (65%)) was observed, respectively, compared to the control medium. In the AMX stress-induced algal medium, increases in chlorophyll-a (22%), lipids (46%), carbohydrates (45%), and proteins (49%) production were observed compared to the control medium. Comparing the two different stress conditions and considering that CIP is more toxic than AMX, this study provided insights on the photosynthetic activity and biochemical composition of C. vulgaris during the stress conditions and the response of algae towards the specific antibiotic stress. The current study confirmed the ability of C. vulgaris to adapt, bioadsorb, bioaccumulate, and biodegrade emerging contaminants. Moreover, the results showed that C. vulgaris is not only able to remove CIP and AMX from the medium but also can increase the production of valuable biomass usable in the production of various bioproducts.
Collapse
Affiliation(s)
- Rajamanickam Ricky
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India; (R.R.); (S.S.)
| | - Fulvia Chiampo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Subramaniam Shanthakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India; (R.R.); (S.S.)
| |
Collapse
|
31
|
Yu C, Pang H, Wang JH, Chi ZY, Zhang Q, Kong FT, Xu YP, Li SY, Che J. Occurrence of antibiotics in waters, removal by microalgae-based systems, and their toxicological effects: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151891. [PMID: 34826467 DOI: 10.1016/j.scitotenv.2021.151891] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 05/27/2023]
Abstract
Global antibiotics consumption has been on the rise, leading to increased antibiotics release into the environment, which threatens public health by selecting for antibiotic resistant bacteria and resistance genes, and may endanger the entire ecosystem by impairing primary production. Conventional bacteria-based treatment methods are only moderately effective in antibiotics removal, while abiotic approaches such as advanced oxidation and adsorption are costly and energy/chemical intensive, and may cause secondary pollution. Considered as a promising alternative, microalgae-based technology requires no extra chemical addition, and can realize tremendous CO2 mitigation accompanying growth related pollutants removal. Previous studies on microalgae-based antibiotics removal, however, focused more on the removal performances than on the removal mechanisms, and few studies have concerned the toxicity of antibiotics to microalgae during the treatment process. Yet understanding the removal mechanisms can be of great help for targeted microalgae-based antibiotics removal performances improvement. Moreover, most of the removal and toxicity studies were carried out using environment-irrelevant high concentrations of antibiotics, leading to reduced guidance for real-world situations. Integrating the two research fields can be helpful for both improving antibiotics removal and avoiding toxicological effects to primary producers by the residual pollutants. This study, therefore, aims to build a link connecting the occurrence of antibiotics in the aquatic environment, the removal of antibiotics by microalgae-based processes, and the toxicity of antibiotics to microalgae. Distribution of various categories of antibiotics in different water environments were summarized, together with the antibiotics removal mechanisms and performances in microalgae-based systems, and the toxicological mechanisms and toxicity of antibiotics to microalgae after either short-term or long-term exposure. Current research gaps and future prospects were also analyzed. The review could provide much valuable information to the related fields, and provoke interesting thoughts on integrating microalgae-based antibiotics removal research and toxicity research on the basis of environmentally relevant concentrations.
Collapse
Affiliation(s)
- Chong Yu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Hao Pang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China.
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yong-Ping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China
| | - Shu-Ying Li
- Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China
| | - Jian Che
- Dalian Xinyulong Marine Biological Seed Technology Co. Ltd., Dalian 116222, PR China
| |
Collapse
|
32
|
Li B, Wu D, Li Y, Shi Y, Wang C, Sun J, Song C. Metabolic Mechanism of Sulfadimethoxine Biodegradation by Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025. Front Microbiol 2022; 13:840562. [PMID: 35369425 PMCID: PMC8971708 DOI: 10.3389/fmicb.2022.840562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Antibiotic resistance is one of the most important environmental challenges. Microalgae has been considered as a promising green media for environmental purification. In this work, sulfadimethoxine (SDM) biodegradation potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025 is investigated. Experimental results indicated that the tested freshwater and marine microalgae strains presented stress response to SDM addition. For Chlorella sp. L38, it has a good adaptability to SDM condition via antioxidant enzyme secretion (SOD, MDA, and CAT up to 23.27 U/mg, 21.99 μmol/g, and 0.31 nmol/min/mg) with removal rate around 88%. P. tricornutum MASCC-0025 exhibited 100% removal of 0.5 mg/L SDM. With increasing salinity (adding a certain amount of NaCl) of cultivation media, the removal rate of SDM by microalgae increased. Although its adaptive process was slower than Chlorella sp. L38, the salinity advantage would facilitate enzyme accumulation. It indicated that microalgae could be used to remove SDM from freshwater and marine environment via suitable microalgae strain screening.
Collapse
Affiliation(s)
- Bing Li
- Tianjin Academy of Agricultural Sciences, The Institute of Agriculture Resources and Environmental Sciences, Tianjin, China
| | - Di Wu
- Tianjin Academy of Agricultural Sciences, The Institute of Agriculture Resources and Environmental Sciences, Tianjin, China
| | - Yan Li
- Tianjin Academy of Agricultural Sciences, The Institute of Agriculture Resources and Environmental Sciences, Tianjin, China
| | - Yan Shi
- Tianjin Academy of Agricultural Sciences, The Institute of Agriculture Resources and Environmental Sciences, Tianjin, China
| | - Chenlin Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jiasi Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
33
|
Ahmad A, Banat F, Alsafar H, Hasan SW. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150585. [PMID: 34597562 DOI: 10.1016/j.scitotenv.2021.150585] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
A growing world population is causing hazardous compounds to form at an increasingly rapid rate, calling for ecological action. Wastewater management and treatment is an expensive process that requires appropriate integration technology to make it more feasible and cost-effective. Algae are of great interest as potential feedstocks for various applications, including environmental sustainability, biofuel production, and the manufacture of high-value bioproducts. Bioremediation with microalgae is a potential approach to reduce wastewater pollution. The need for effective nutrient recovery, greenhouse gas reduction, wastewater treatment, and biomass reuse has led to a wide interest in the use of microalgae for wastewater treatment. Furthermore, algae biomass can be used to produce bioenergy and high-value bioproducts. The use of microalgae as medicine (production of bioactive and medicinal compounds), biofuels, biofertilizers, and food additives has been explored by researchers around the world. Technological and economic barriers currently prevent the commercial use of algae, and optimal downstream processes are needed to reduce production costs. Therefore, the simultaneous use of microalgae for wastewater treatment and biofuel production could be an economical approach to address these issues. This article provides an overview of algae and their application in bioremediation, bioenergy production, and bioactive compound production. It also highlights the current problems and opportunities in the algae-based sector, which has recently become quite promising.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Habiba Alsafar
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
34
|
Ricky R, Shanthakumar S. Phycoremediation integrated approach for the removal of pharmaceuticals and personal care products from wastewater - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113998. [PMID: 34717103 DOI: 10.1016/j.jenvman.2021.113998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are of emerging concerns because of their large usage, persistent nature which promised their continuous disposal into the environment, as these pollutants are stable enough to pass through wastewater treatment plants causing hazardous effects on all the organisms through bioaccumulation, biomagnification, and bioconcentration. The available technologies are not capable of eliminating all the PPCPs along with their degraded products but phycoremediation has the advantage over these technologies by biodegrading the pollutants without developing resistant genes. Even though phycoremediation has many advantages, industries have found difficulty in adapting this technology as a single-stage treatment process. To overcome these drawbacks recent research studies have focused on developing technology that integrated phycoremediation with the commonly employed treatment processes that are in operation for treating the PPCPs effectively. This review paper focuses on such research approaches that focused on integrating phycoremediation with other technologies such as activated sludge process (ASP), advanced oxidation process (AOP), Up-flow anaerobic sludge blanket reactor (UASBR), UV irradiation, and constructed wetland (CW) with the advantages and limitations of each integration processes. Furthermore, augmenting phycoremediation by co-metabolic mechanism with the addition of sodium chloride, sodium acetate, and glucose for the removal of PPCPs has been highlighted in this review paper.
Collapse
Affiliation(s)
- R Ricky
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - S Shanthakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
35
|
Li S, Show PL, Ngo HH, Ho SH. Algae-mediated antibiotic wastewater treatment: A critical review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 9:100145. [PMID: 36157853 PMCID: PMC9488067 DOI: 10.1016/j.ese.2022.100145] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 05/04/2023]
Abstract
The existence of continually increasing concentrations of antibiotics in the environment is a serious potential hazard due to their toxicity and persistence. Unfortunately, conventional treatment techniques, such as those utilized in wastewater treatment plants, are not efficient for the treatment of wastewater containing antibiotic. Recently, algae-based technologies have been found to be a sustainable and promising technique for antibiotic removal. Therefore, this review aims to provide a critical summary of algae-based technologies and their important role in antibiotic wastewater treatment. Algal removal mechanisms including bioadsorption, bioaccumulation, and biodegradation are discussed in detail, with using algae-bacteria consortia for antibiotic treatment, integration of algae with other microorganisms (fungi and multiple algal species), hybrid algae-based treatment and constructed wetlands, and the factors affecting algal antibiotic degradation comprehensively described and assessed. In addition, the use of algae as a precursor for the production of biochar is highlighted, along with the modification of biochar with other materials to improve its antibiotic removal capacity and hybrid algae-based treatment with advanced oxidation processes. Furthermore, recent novel approaches for enhancing antibiotic removal, such as the use of genetic engineering to enhance the antibiotic degradation capacity of algae and the integration of algal antibiotic removal with bioelectrochemical systems are discussed. Finally, some based on the critical review, key future research perspectives are proposed. Overall, this review systematically presents the current progress in algae-mediated antibiotic removal technologies, providing some novel insights for improved alleviation of antibiotic pollution in aquatic environments.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS, 2007, Australia
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| |
Collapse
|
36
|
Khurana P, Pulicharla R, Kaur Brar S. Antibiotic-metal complexes in wastewaters: fate and treatment trajectory. ENVIRONMENT INTERNATIONAL 2021; 157:106863. [PMID: 34534786 DOI: 10.1016/j.envint.2021.106863] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Unregulated usage, improper disposal, and leakage from pharmaceutical use and manufacturing sites have led to high detection levels of antibiotic residues in wastewater and surface water. The existing water treatment technologies are insufficient for removing trace antibiotics and these residual antibiotics tend to interact with co-existing metal ions and form antibiotic-metal complexes (AMCs) with altered bioactivity profile and physicochemical properties. Typically, antibiotics, including tetracyclines, fluoroquinolones, and sulphonamides, interact with heavy metals such as Fe2+, Co2+, Cu2+, Ni2+, to form AMCs which are more persistent and toxic than parent compounds. Although many studies have reported antibiotics detection, determination, distribution and risks associated with their environmental persistence, very few investigations are published on understanding the chemistry of these complexes in the wastewater and sludge matrix. This review, therefore, summarizes the structural features of both antibiotics and metals that facilitate complexation in wastewater. Further, this work critically appraises the treatment methods employed for antibiotic removal, individually and combined with metals, highlights the knowledge gaps, and delineates future perspectives for their treatment.
Collapse
Affiliation(s)
- Pratishtha Khurana
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
37
|
Xiong Q, Hu LX, Liu YS, Zhao JL, He LY, Ying GG. Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. ENVIRONMENT INTERNATIONAL 2021; 155:106594. [PMID: 33940395 DOI: 10.1016/j.envint.2021.106594] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 05/12/2023]
Abstract
Antibiotics contamination is an emerging environmental concern, owing to its potential risks to ecosystems and human health. Microalgae-based technology has been widely reported as a promising alternative to conventional wastewater treatment, since it is a solar-power driven, ecologically friendly, cost-effective, and sustainable reclamation strategy. This review provides fundamental insights into the major mechanisms underpinning microalgae-based antibiotics removal, including bioadsorption, bioaccumulation, and biodegradation. The critical role of extracellular polymeric substances on bioadsorption and extracellular biodegradation of antibiotics are also covered. Moreover, this review sheds light on the important factors affecting the removal of antibiotics by microalgae, and summarizes several novel approaches to improve the removal efficiency, including acclimation, co-metabolism and microbial consortium. Besides, hybrid systems (such as, microalgae-based technologies combined with the conventional activated sludge, advanced oxidation processes, constructed wetlands, and microbial fuel cells), and genetic engineering are also recommended, which will be feasible for enhanced removal of antibiotics. Finally, this review also highlights the need for further studies aimed at optimizing microalgae-based technology, with emphasis on improving performance and expanding its application in large-scale settings, especially in terms of technical, environmental-friendly and economically competitiveness. Overall, this review summarizes current understanding on microalgae-based technologies for removal of antibiotics and outlines future research directions.
Collapse
Affiliation(s)
- Qian Xiong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
38
|
Rempel A, Gutkoski JP, Nazari MT, Biolchi GN, Cavanhi VAF, Treichel H, Colla LM. Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144918. [PMID: 33578141 DOI: 10.1016/j.scitotenv.2020.144918] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Emerging contaminants (EC) have been detected in effluents and drinking water in concentrations that can harm to a variety of organisms. Therefore, several technologies are developed to treat these compounds, either for their complete removal or degradation in less toxic by-products. Some technologies applied to the treatment of EC, such as adsorption, advanced oxidative processes, membrane separation processes, and bioremediation through microalgal metabolism, were identified by thematic maps. In this review, we used a bibliometric software from >1000 articles. These manuscripts, in general, present removals from 0% to 100% for different ECs. This efficiency varies between treatment technologies and the contaminants' physical-chemical properties and their concentration and operational parameters. This review explored the bioremediation of EC through microalgae with greater emphasis. The main mechanisms of action of microalgae in the bioremediation of ECs are biodegradation bioadsorption, and bioaccumulation. Also, physicochemical properties and removal efficiencies of >50 emerging contaminants are presented. Although there are challenges related to the generation of more toxic by-products and economic and environmental viability, these can be minimized with advances in the development of treatment technologies and even through the integration of different techniques to make the treatment of contaminants emerging from environmental media more sustainable.
Collapse
Affiliation(s)
- Alan Rempel
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Julia Pedó Gutkoski
- Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Mateus Torres Nazari
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | - Gabrielle Nadal Biolchi
- Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil
| | | | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul - Campus Erechim, 99700-000 Erechim, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Environmental and Civil Engineering, University of Passo Fundo (UPF), Passo Fundo, Rio Grande do Sul 99052-900, Brazil.
| |
Collapse
|
39
|
Zhong X, Zhu Y, Wang Y, Zhao Q, Huang H. Effects of three antibiotics on growth and antioxidant response of Chlorella pyrenoidosa and Anabaena cylindrica. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111954. [PMID: 33476846 DOI: 10.1016/j.ecoenv.2021.111954] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Antibiotics are essential for treatments of bacterial infection and play important roles in the fields of aquaculture and animal husbandry. Antibiotics are accumulated in water and soil due to the excessive consumption and incomplete treatment of antibiotic wastewater. The accumulation of antibiotics in ecological systems leads to global environmental risks. The toxic effects of spiramycin (SPI), tigecycline (TGC), and amoxicillin (AMX) on Chlorella pyrenoidesa and Anabaena cylindrica were evaluated based on growth inhibition experiments, and determinations of ROS production and antioxidant enzyme activities (catalase, superoxide dismutase, and malondialdehyde). Half maximal effective concentrations (EC50) of TGC, SPI, and AMX for A. cylindrica were 62.52 μg/L, 38.40 μg/L, and 7.66 mg/L, respectively. Those were 6.20 mg/L, 4.58 mg/L, and > 2 g/L for C. pyrenoidesa, respectively. It was shown that A. cylindrica was much more sensitive to these antibiotics than C. pyrenoidesa. In addition, EC50 values of SPI and TGC were lower than that of AMX. It was indicated that SPI and TGC had higher toxic than AMX to C. pyrenoidesa and A. cylindrica. The current study is helpful to evaluating possible ecological risks of TGC, SPI, and AMX by green microalgae and cyanobacteria.
Collapse
Affiliation(s)
- Xueqing Zhong
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Yali Zhu
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Yujiao Wang
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Quanyu Zhao
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China.
| | - He Huang
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China.
| |
Collapse
|
40
|
Hena S, Gutierrez L, Croué JP. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124041. [PMID: 33265054 DOI: 10.1016/j.jhazmat.2020.124041] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are a group of emerging micro-pollutants causing detrimental effects on living organisms even at low doses. Previous investigations have confirmed the presence of PPCPs in the environment at hazardous levels, mainly due to the inefficiency of conventional wastewater treatment plants (CWWTPs). Their stable structure induces longer persistence in the environment. Microalgae are currently used to bioremediate numerous pollutants of different characteristics and properties released from the domestic, industrial, agricultural, and farm sectors. CO2 mitigation during culture and the use of biomass as feedstock for biodiesel or biofuel production are, briefly, other benefits of microalgae-mediated treatment over CWWTPs. This review provides a comprehensive summary of recent literature, an overview of approaches and treatment systems, and breakthrough in the field of algal-mediated removal of PPCPs in wastewater treatment processes. The mechanisms involved in phycoremediation, along with their experimental approaches, have been discussed in detail. Factors influencing the removal of PPCPs from aqueous media are comprehensively described and assessed. A comparative study on microalgal strains is analyzed for a more efficient implementation of future processes. The role of microalgae to mitigate the most severe environmental impacts of PPCPs and the generation of antibiotic-resistant bacteria is discussed. Also, a detailed assessment of recent research on potential toxic effects of PPCPs on microalgae was conducted. The current review highlights microalgae as a promising and sustainable approach to efficiently bio-transform or bio-adsorb PPCPs.
Collapse
Affiliation(s)
- Sufia Hena
- Department of Chemistry, Curtin Water Quality Research Centre, Curtin University, Australia
| | | | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux, IC2MP UMR 7285 CNRS, Université de Poitiers, France.
| |
Collapse
|
41
|
Chen Q, Zhang L, Han Y, Fang J, Wang H. Degradation and metabolic pathways of sulfamethazine and enrofloxacin in Chlorella vulgaris and Scenedesmus obliquus treatment systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28198-28208. [PMID: 32415445 DOI: 10.1007/s11356-020-09008-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The degradation and metabolic pathways of sulfamethazine (SMZ) and enrofloxacin (ENR) via microalgal treatment systems were investigated in this study. SMZ and ENR applied at 1-25 mg L-1 did not significantly inhibit the growth of Chlorella vulgaris or Scenedesmus obliquus. SMZ and ENR exposure did not significantly alter the maximum quantum efficiencies of C. vulgaris and S. obliquus. When cultured at light intensities of 45-50 μmol photon m-2 s-1, the C. vulgaris and S. obliquus treatment systems achieved 24% and 11% degradation, respectively. The greatest removal of ENR was 52% and 43.3%, for C. vulgaris and S. obliquus treatment systems, respectively, after 15 days. The results indicated that the degradation of SMZ and ENR occurred by a combination of biodegradation and photolysis. Kinetic investigations revealed that the removal of SMZ and ENR (5 mg L-1) followed a first-order model, with apparent rate constants (k) ranging from 0.0141 to 0.0048 day-1 and 0.0132 to 0.0086 day-1, respectively. Fifteen metabolites of SMZ and five intermediates of ENR were identified by UPLC-MS, and degradation pathways for SMZ and ENR were proposed. SMZ transformation reactions included ring cleavage, hydroxylation, methylation, and oxidation, whereas ENR was degraded by dealkylation, decarboxylation, and defluorination. Graphical abstract.
Collapse
Affiliation(s)
- Qiaohong Chen
- Key laboratory of Hubei Province for the Protection and Utilization of Special Plant Germplasm in Wuling Mountain Area, College of Life Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Li Zhang
- Key laboratory of Hubei Province for the Protection and Utilization of Special Plant Germplasm in Wuling Mountain Area, College of Life Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Yihong Han
- Key laboratory of Hubei Province for the Protection and Utilization of Special Plant Germplasm in Wuling Mountain Area, College of Life Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Jingyun Fang
- Crean Lutheran High School, Irvine, CA, 92618, USA
| | - Haiying Wang
- Key laboratory of Hubei Province for the Protection and Utilization of Special Plant Germplasm in Wuling Mountain Area, College of Life Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China.
| |
Collapse
|
42
|
Song C, Liu Z, Wang C, Li S, Kitamura Y. Different interaction performance between microplastics and microalgae: The bio-elimination potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138146. [PMID: 32222515 DOI: 10.1016/j.scitotenv.2020.138146] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/21/2020] [Accepted: 03/21/2020] [Indexed: 06/10/2023]
Abstract
Microplastics have recently been identified as an important emerging global problem which affects marine organisms and even humans. As a green and cost-effective environmental purification alternative, microalgae have attracted more and more attention. In this work, the interaction between microplastics (PP, PE, PET and PVC) and microalgae (Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025) has been investigated. In addition, SEM and TEM characterization were also carried out to observe interactions between microplastics and microalgae. Experimental results indicated that there was an obvious inhibition effect of microplastics on Phaeodactylum tricornutum MASCC-0025 growth with inhibition ratio up to 21.1%. By contrast, Chlorella sp. L38 presented strong adaptive capacity to microplastics. The key active enzymes concentration variation and characterization (SEM and TEM) images also verified the toxic effect of tested microplastics on Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025. The toxic effect might be explained by the possible leaching of additives of four tested microplastics. It could also be observed that microalgae have a potential to be used as an alternative bio-solution for microplastics treatment.
Collapse
Affiliation(s)
- Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Haihe Education Park, Tianjin, PR China.
| | - Zhengzheng Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Haihe Education Park, Tianjin, PR China
| | - Chenlin Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 135 Yaguan Road, Haihe Education Park, Tianjin, PR China
| | - Shuhong Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yutaka Kitamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
43
|
Xiong Q, Liu YS, Hu LX, Shi ZQ, Cai WW, He LY, Ying GG. Co-metabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa. WATER RESEARCH 2020; 175:115656. [PMID: 32145399 DOI: 10.1016/j.watres.2020.115656] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Microalgae-mediated biodegradation of antibiotics has recently gained increased attention from international scientific community. However, limited information is available regarding microalgae-mediated biodegradation of SMX in a co-metabolic system. Here we investigated the biodegradation of sulfamethoxazole (SMX) by five algal species (Pseudokirchneriella subcapitata, Scenedesmus quadricauda, Scenedesmus obliquus, Scenedesmus acuminatus and Chlorella pyrenoidosa), and its transformation pathways by C. pyrenoidosa in a sodium acetate (3 mM) co-metabolic system. The results showed that the highest SMX dissipation (14.9%) was detected by C. pyrenoidosa after 11 days of cultivation among the five tested algal species in the absence of other carbon sources. The addition of sodium acetate (0-8 mM) significantly enhanced the dissipation efficiency of SMX (0.4 μM) from 6.05% to 99.3% by C. pyrenoidosa after 5 days of cultivation, and the dissipation of SMX followed the first-order kinetic model with apparent rate constants (k) ranging from 0.0107 to 0.9811 d-1. Based on the results of mass balance analysis, biodegradation by C. pyrenoidosa was the main mechanism for the dissipation of SMX in the culture medium. Fifteen phase I and phase II metabolites were identified, and subsequently the transformation pathway was proposed, including oxidation, hydroxylation, formylation and side chain breakdown, as well as pterin-related conjugation. The majority of metabolites of SMX were only observed in the culture medium and varied with cultivation time. The findings of the present study showed effective co-metabolism of a sulfonamide by microalgae, and it may be applied in the aquatic environment remediation and wastewater treatment in the future.
Collapse
Affiliation(s)
- Qian Xiong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Zhou-Qi Shi
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Wen Cai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
44
|
Leng L, Wei L, Xiong Q, Xu S, Li W, Lv S, Lu Q, Wan L, Wen Z, Zhou W. Use of microalgae based technology for the removal of antibiotics from wastewater: A review. CHEMOSPHERE 2020; 238:124680. [PMID: 31545213 DOI: 10.1016/j.chemosphere.2019.124680] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/29/2019] [Accepted: 08/25/2019] [Indexed: 05/12/2023]
Abstract
The antibiotic resistance induced by the release of antibiotics to the environment has urged research towards developing effective technologies for antibiotic removal from wastewater. Traditional technologies such as activated sludge processes are not effective for antibiotic removal. Recently, microalgae-based technology has been explored as a potential alternative for the treatment of wastewater containing antibiotics by adsorption, accumulation, biodegradation, photodegradation, and hydrolysis. In this review, the toxicities of antibiotics on microalgae, the mechanisms of antibiotic removal by microalgae, and the integration of microalgae with other technologies such as ultraviolet irradiation (photocatalysis), advanced oxidation, and complementary microorganism degradation for antibiotic removal were discussed. The limitations of current microalgae-based technology and future research needs were also discussed.
Collapse
Affiliation(s)
- Lijian Leng
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China.
| | - Liang Wei
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Qin Xiong
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Siyu Xu
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Wenting Li
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Sen Lv
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Qian Lu
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Liping Wan
- Zhenghe Environmental Group, Nanchang, 330001, China
| | - Zhiyou Wen
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, USA.
| | - Wenguang Zhou
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
45
|
Song C, Wei Y, Sun J, Song Y, Li S, Kitamura Y. Biodegradation and metabolic fate of thiamphenicol via Chlorella sp. UTEX1602 and L38. BIORESOURCE TECHNOLOGY 2020; 296:122320. [PMID: 31678704 DOI: 10.1016/j.biortech.2019.122320] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Thiamphenicol (TAP) is a typical medicament in animal husbandry and aquaculture for treating diverse infections. In this work, thiamphenicol biodegradation performance via microalgae was tested. The cultivation results showed that TAP could be biodegraded via the target algae. Chlorella sp. L38 presented strong adaptive ability to high concentration TAP. Biodegradation, biosorption and bioaccumulation were the dominant metabolic fates. Biodegradation contributed around 97% of the total removal efficiency at the TAP concentration of 46.2 mg·L-1. The removal of TAP by Chlorella L38 and UTEX1602 agreed with the kinetic range of zero-order reaction, and the shortest half-lives were 3.2 d and 5.0 d. Based on the identification of metabolites, the metabolic pathway of TAP by microalgae was proposed, including chlorination, chlorine substitution, dehydration and hydroxylation. Therefore, biological treatment via microalgae has the potential for TAP purification.
Collapse
Affiliation(s)
- Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, PR China
| | - Yanling Wei
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, PR China
| | - Jiasi Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, PR China
| | - Yingjin Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, PR China
| | - Shuhong Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yutaka Kitamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
46
|
Wang XX, Zhang QQ, Wu YH, Dao GH, Zhang TY, Tao Y, Hu HY. The light-dependent lethal effects of 1,2-benzisothiazol-3(2H)-one and its biodegradation by freshwater microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:563-571. [PMID: 30970286 DOI: 10.1016/j.scitotenv.2019.03.468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 06/09/2023]
Abstract
As 1,2-benzisothiazol-3(2H)-one (BIT) has been widely used in high concentrations for microbial growth control in many domestic and industrial processes, its potential eco-risk should be assessed. This study investigated the interaction between BIT and microalgae in aquatic environment as the mechanism of BIT lethal effect on microalgae was unclear and whether microalgae could efficiently remove BIT was unknown. It was found that Chlorella vulgaris could be killed by high concentrations of BIT, and this lethal effect was strongly enhanced when exposed to light. Inhibition of photosystem II electron transport followed by a decrease in cellular chlorophyll led to serious damage to algal photosynthesis. The excess accumulation of reactive oxygen species caused by the photosynthetic damage under light further increased the oxidative damage and promoted cell death. Under dark condition, however, the algae could tolerate higher BIT concentrations. BIT could be efficiently removed when the growth of Scenedesmus sp. LX1 was not completely inhibited. With an initial concentration of 4.5 mg/L, over 99% of BIT was removed during 168 hour cultivation. Microalgal biodegradation was the primary reason for this removal, and the contributions of BIT hydrolytic/photolytic degradation, microalgal growth, photosynthesis and sorption were negligibly small. These results pointed to the potential application of microalgae for efficient BIT removal from wastewater.
Collapse
Affiliation(s)
- Xiao-Xiong Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Qi-Qi Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen (SMARC), Tsinghua University, Shenzhen 518055, China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guo-Hua Dao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tian-Yuan Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Tao
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Graduate School at Shenzhen (SMARC), Tsinghua University, Shenzhen 518055, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
| |
Collapse
|
47
|
Miazek K, Brozek-Pluska B. Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review. Int J Mol Sci 2019; 20:ijms20102492. [PMID: 31137560 PMCID: PMC6567089 DOI: 10.3390/ijms20102492] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
In this review, the effect of pharmaceuticals (PHRs) and personal care products (PCPs) on microalgal growth and metabolism is reported. Concentrations of various PHRs and PCPs that cause inhibition and toxicity to growths of different microalgal strains are summarized and compared. The effect of PHRs and PCPs on microalgal metabolism (oxidative stress, enzyme activity, pigments, proteins, lipids, carbohydrates, toxins), as well as on the cellular morphology, is discussed. Literature data concerning the removal of PHRs and PCPs from wastewaters by living microalgal cultures, with the emphasis on microalgal growth, are gathered and discussed. The potential of simultaneously bioremediating PHRs/PCPs-containing wastewaters and cultivating microalgae for biomass production in a single process is considered. In the light of reviewed data, the feasibility of post-bioremediation microalgal biomass is discussed in terms of its contamination, biosafety and further usage for production of value-added biomolecules (pigments, lipids, proteins) and biomass as a whole.
Collapse
Affiliation(s)
- Krystian Miazek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Beata Brozek-Pluska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
48
|
Fu M, Deng B, Lü H, Yao W, Su S, Wang D. The Bioaccumulation and Biodegradation of Testosterone by Chlorella vulgaris. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071253. [PMID: 30965641 PMCID: PMC6479411 DOI: 10.3390/ijerph16071253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022]
Abstract
: In the present study, the accumulation and degradation of testosterone by Chlorella vulgaris were studied. The results showed that C. vulgaris has a significant ability to eliminate testosterone by bioaccumulation and biodegradation, and during the 96 h experimental period, the data demonstrated that the accumulation of testosterone followed a sigmoidal accumulation pattern. At the end of the experiment, the bioconcentration percentages of testosterone by C. vulgaris in the high-concentration group and the low-concentration group were 11.49 ± 2.78% and 40.10 ± 1.98%, respectively, and the biodegradation percentages of testosterone were 69.64 ± 4.33% and 42.48 ± 1.92%, respectively. The rate of biodegradation of testosterone by C. vulgaris mainly depended on the relative initial concentration of testosterone. When the relative initial concentration of testosterone increases, the degradation may gradually change from zero-order kinetics to second-order kinetics.
Collapse
Affiliation(s)
- Mei Fu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Bixiang Deng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Hongjian Lü
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Weizhi Yao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Shengqi Su
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
49
|
Response of Freshwater Biofilms to Antibiotic Florfenicol and Ofloxacin Stress: Role of Extracellular Polymeric Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050715. [PMID: 30818877 PMCID: PMC6427337 DOI: 10.3390/ijerph16050715] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022]
Abstract
Antibiotic residues have been detected in aquatic environments worldwide. Biofilms are one of the most successful life forms, and as a result are ubiquitous in natural waters. However, the response mechanism of freshwater biofilms to the stress of various antibiotic residues is still unclear. Here, the stress of veterinary antibiotic florfenicol (FF) and fluoroquinolone antibiotic ofloxacin (OFL) on freshwater biofilms were investigated by determining the changes in the key physicochemical and biological properties of the biofilms. The results showed that the chlorophyll a content in biofilms firstly decreased to 46–71% and then recovered to original content under the stress of FF and OFL with high, mid, and low concentrations. Meanwhile, the activities of antioxidant enzymes, including superoxide dismutase and catalase, increased between 1.3–6.7 times their initial values. FF was more toxic to the biofilms than OFL. The distribution coefficients of FF and OFL binding in extracellular polymeric substances (EPS)-free biofilms were 3.2 and 6.5 times higher than those in intact biofilms, respectively. It indicated that EPS could inhibit the FF and OFL accumulation in biofilm cells. The present study shows that the EPS matrix, as the house of freshwater biofilms, is the primary barrier that resists the stress from antibiotic residues.
Collapse
|