1
|
Sun C, Dong J. Effects of engineering injection and supplement mode of in-situ biogeochemical transformation enhancement EVO-FeSO 4 on the remediation of tetrachloroethylene contaminated aquifer. J Environ Sci (China) 2025; 154:200-211. [PMID: 40049867 DOI: 10.1016/j.jes.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 05/13/2025]
Abstract
Traditional in situ biogeochemical transformation suffers from competition among crucial microorganisms and inadequate formation of reactive minerals, thus leading to the accumulation of toxic intermediates. In this study, three regulation schemes were proposed to solve these problems from the perspective of engineering mode. Results showed intermittent injection mode effectively reduced the accumulation of toxic intermediates but the reduction rate of tetrachloroethylene was decreased. And periodical supplementation of carbon and sulfur sources accelerated the removal of tetrachloroethylene but failed to reduce the accumulation of toxic products. While, regular supplementation of sulfate effectively weakened the competition of methanogens and increased the iron sulfide proportion on the surface of the minerals, thus reducing the accumulation of toxicity. Based on the results, this study obtained an effective engineering approach for practical site application. In addition, the main forms of active minerals capable of β-eliminating contaminants during biogeochemical transformation were identified in this study, including FeS, FeS2, and Fe3S4. Furthermore, the engineered regulatory mechanism of this study was summarized through the analysis of microbial community structure and mineral morphology. The amendment promotes the production of minerals and thus controls the transformation pathway of contaminants by altering the abundance of sulfate-reducing bacteria and dissimilatory iron reducing bacteria. This mechanism can provide a basis for subsequent theoretical studies.
Collapse
Affiliation(s)
- Chen Sun
- Key Lab of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Jun Dong
- Key Lab of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
You J, Ye L, Zhang S, Zhao J, Zhao Y, He Y, Chen J, Kennes C, Chen D. Electrode functional microorganisms in bioelectrochemical systems and its regulation: A review. Biotechnol Adv 2025; 79:108521. [PMID: 39814087 DOI: 10.1016/j.biotechadv.2025.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/03/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Bioelectrochemical systems (BES) as environmental remediation biotechnologies have boomed in the last two decades. Although BESs combined technologies with electro-chemistry, -biology, and -physics, microorganisms and biofilms remain at their core. In this review, various functional microorganisms in BESs for CO2 reduction, dehalogenation, nitrate, phosphate, and sulfate reduction, metal removal, and volatile organic compound oxidation are summarized and compared in detail. Moreover, interrelationship regulation approaches for functional microorganisms and methods for electroactive biofilm development, such as targeted electrode surface modification, chemical treatment, physical revealing, biological optimization, and genetic programming are pointed out. This review provides promising guidance and suggestions for the selection of microbial inoculants and provides an analysis of the role of individual microorganisms in mixed microbial communities and its metabolisms.
Collapse
Affiliation(s)
- Juping You
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 312028, China
| | - Lei Ye
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingkai Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Zhao
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yaxue He
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jianmeng Chen
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310018, China
| | - Christian Kennes
- Chemical Engineering Laboratory and Center for Advance Scientific Research (CICA), Faculty of Sciences, Universidade da Coruña, Spain
| | - Dongzhi Chen
- Zhejiang Key Laboratory of Pullution control for Port-Petrochemical Industry, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
3
|
Romão ALE, de Oliveira Damasceno RI, Alves CR, Carrilho ENVM. Nanomodified bamboo (Phyllostachys aurea) biomass: its adsorbent features in the removal of dyes from water under high salinity conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35193-7. [PMID: 39395080 DOI: 10.1007/s11356-024-35193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024]
Abstract
The effluent generated by textile industries is among the most polluting to the environment. Dyes such as methylene blue (MB) and indigo blue (IB) are used in cotton dyeing. This work proposes to evaluate the potential of in natura (BIN) and nanomodified (BNP) bamboo (Phyllostachys aurea) biomass as biosorbents for the removal of MB and IB dyes in an aqueous medium under high salinity conditions. These materials were characterized by Fourier transform infrared (FTIR) and X-ray (XRD) spectroscopies and scanning electron microscopy (SEM) to investigate their morphology and interaction with the dyes and the nanoparticles. The FTIR spectra revealed the existence of hydroxyl and carbonyl groups, ethers, phenols, and aromatic compounds, indicating the presence of a lignocellulosic structure. XRD and SEM analyses confirmed the effectiveness of the nanocomposite synthesis process. The dyes were quantified by ultraviolet-visible spectroscopy (UV/Vis). The material's pH at the point of zero charge (pHPZC) was 5.52 (BIN) and 4.84 (BNP), and the best IB and MB sorption pH were 3.0 and 9.0 for BNP, respectively, employing 30 min of contact time. The material sorption capacity (Qexp) was assessed using batch procedures, in which 100-1000 mg/L dye concentrations were tested with a 0.5 g/L adsorbent dose. The dye's Qexp for BIN and BNP was 25.41 ± 0.58 and 23.42 ± 0.07 mg/g (MB) and 84.26 ± 1.1 and 130.81 ± 0.20 mg/g (IB), respectively. The kinetic model that best fit BNP experimental data was the pseudo-2nd-order with r2 = 0.99868 (MB) and r2 = 0.99873 (IB), and Freundlich, D-R, and Temkin isotherms best fit the dye sorption data. The bamboo nanomodification facilitates the biosorbent removal from the medium after sorption, enabling large-scale studies and industrial applications-the investigated materials provided promising adsorption features for removing contaminant dyes in saline water.
Collapse
Affiliation(s)
- Ana Lúcia Eufrázio Romão
- Environmental Nanobiotechnology Laboratory, State University of Ceará, 1700, Fortaleza, Ceará, 60714-903, Brazil
| | | | - Carlucio Roberto Alves
- Environmental Nanobiotechnology Laboratory, State University of Ceará, 1700, Fortaleza, Ceará, 60714-903, Brazil
| | - Elma Neide Vasconcelos Martins Carrilho
- Department of Natural Sciences, Mathematics, and Education, Federal University of São Carlos, Araras, São Paulo, 13600-970, Brazil.
- Laboratory of Polymeric Materials and Biosorbents, Federal University of São Carlos, Araras, São Paulo, 13600-970, Brazil.
| |
Collapse
|
4
|
Arliyani I, Noori MT, Ammarullah MI, Tangahu BV, Mangkoedihardjo S, Min B. Constructed wetlands combined with microbial fuel cells (CW-MFCs) as a sustainable technology for leachate treatment and power generation. RSC Adv 2024; 14:32073-32100. [PMID: 39399250 PMCID: PMC11467719 DOI: 10.1039/d4ra04658g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024] Open
Abstract
The physical and chemical treatment processes of leachate are not only costly but can also possibly produce harmful by products. Constructed wetlands (CW) has been considered a promising alternative technology for leachate treatment due to less demand for energy, economic, ecological benefits, and simplicity of operations. Various trends and approaches for the application of CW for leachate treatment have been discussed in this review along with offering an informatics peek of the recent innovative developments in CW technology and its perspectives. In addition, coupling CW with microbial fuel cells (MFCs) has proven to produce renewable energy (electricity) while treating contaminants in leachate wastewaters (CW-MFC). The combination of CW-MFC is a promising bio electrochemical that plays symbiotic among plant microorganisms in the rhizosphere of an aquatic plant that convert sun electricity is transformed into bioelectricity with the aid of using the formation of radical secretions, as endogenous substrates, and microbial activity. Several researchers study and try to find out the application of CW-MFC for leachate treatment, along with this system and performance. Several key elements for the advancement of CW-MFC technology such as bioelectricity, reactor configurations, plant species, and electrode materials, has been comprehensively discussed and future research directions were suggested for further improving the performance. Overall, CW-MFC may offer an eco-friendly approach to protecting the aquatic environment and come with built-in advantages for visual appeal and animal habitats using natural materials such as gravel, soil, electroactive bacteria, and plants under controlled condition.
Collapse
Affiliation(s)
- Isni Arliyani
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
- Bioinformatics Research Center, INBIO Indonesia Malang 65162 East Java Indonesia
| | - Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University Yongin 17104 Gyeonggi Republic of Korea
| | - Muhammad Imam Ammarullah
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Diponegoro Semarang 50275 Central Java Indonesia
- Undip Biomechanics Engineering & Research Centre (UBM-ERC), Universitas Diponegoro Semarang 50275 Central Java Indonesia
- Bioengineering and Environmental Sustainability Research Centre, University of Liberia Monrovia 1000 Montserrado Liberia
| | - Bieby Voijant Tangahu
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
| | - Sarwoko Mangkoedihardjo
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember Surabaya 60111 East Java Indonesia
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University Yongin 17104 Gyeonggi Republic of Korea
| |
Collapse
|
5
|
Chen T, Bui Thi TM, Luo T, Cheng W, Hanna K, Boily JF. Redox-Driven Formation of Mn(III) in Ice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39153204 PMCID: PMC11360366 DOI: 10.1021/acs.est.4c03850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Redox-driven reactions involving Mn(II) species adsorbed at Mn(IV) oxide surfaces can release Mn(III) in the form of dissolved Mn(III)-ligand species in natural waters. Using pyrophosphate (PP) as a model ligand, we show that freezing accelerates and enhances Mn(III) formation in the form of Mn(III)-PP complexes. This freeze-promoted reaction is explained by the concentration of Mn(IV) oxides and solutes (Mn(II), Na+, and Cl-) into the minute fractions of liquid water locked between ice (micro)crystals - the Liquid Intergrain Boundary (LIB). Time-resolved freezing experiments at -20 °C showed that Mn(III) yields were greatest at low salt (NaCl) content. In contrast, high salt content promoted Mn(III) formation through chloride complexation, although yields became lower as the cryosalt mineral hydrohalite (NaCl·2H2O) dehydrated the LIB by drawing water into its structure. Consecutive freeze-thaw cycles also showed that dissolved Mn(III) concentrations increased within the very first few minutes of each freezing event. Because each thaw event released unreacted PP previously locked in ice, each sequential freeze-thaw cycle increased Mn(III) yields, until ∼80% of the Mn was converted to Mn(III). This was achieved after only seven cycles. Finally, temperature-resolved freezing experiments down to -50 °C showed that the LIB produced the greatest quantities of Mn(III) at -10 °C, where the volumes were greater. Reactivity was however sustained in ice formed below the eutectic (-21.3 °C), down to -50 °C. We suspect that this sustained reactivity was driven by persistent forms of supercooled water, such as Mn(IV) oxide-bound thin water films. By demonstrating the freeze-driven production of Mn(III) by comproportionation of dissolved Mn(II) and Mn(IV) oxide, this study highlights the potentially important roles these reactions could play in the production of pools of Mn(III) in natural water and sediments of mid- and high-latitudes environments exposed to freeze-thaw episodes.
Collapse
Affiliation(s)
- Tao Chen
- École
Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Université de Rennes, F-35000 Rennes, France
| | - Tra My Bui Thi
- École
Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Université de Rennes, F-35000 Rennes, France
| | - Tao Luo
- École
Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Université de Rennes, F-35000 Rennes, France
| | - Wei Cheng
- College
of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Khalil Hanna
- École
Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Université de Rennes, F-35000 Rennes, France
| | | |
Collapse
|
6
|
Bhaduri S, Behera M. Advancement in constructed wetland microbial fuel cell process for wastewater treatment and electricity generation: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50056-50075. [PMID: 39102132 DOI: 10.1007/s11356-024-34574-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
The constructed wetland coupled with a microbial fuel cell (CW-MFC) is a wastewater treatment process that combines contaminant removal with electricity production, making it an environmentally friendly option. This hybrid system primarily relies on anaerobic bioprocesses for wastewater treatment, although other processes such as aerobic bioprocesses, plant uptake, and chemical oxidation also contribute to the removal of organic matter and nutrients. CW-MFCs have been successfully used to treat various types of wastewater, including urban, pharmaceutical, paper and pulp industry, metal-contaminated, and swine wastewater. In CW-MFC, macrophytes such as rice plants, Spartina angalica, Canna indica, and Phragmites australis are used. The treatment process can achieve a chemical oxygen demand removal rate of between 80 and 100%. Initially, research focused on enhancing power generation from CW-MFC, but recent studies have shifted towards resource recovery from wastewater. This review paper provides an overview of the development of constructed wetland microbial fuel cell technology, from its early stages to its current applications. The paper also highlights research gaps and potential directions for future research.
Collapse
Affiliation(s)
- Soumyadeep Bhaduri
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Odisha, 752050, India
| | - Manaswini Behera
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
7
|
Xu D, Huang M, Xu L, Li Z. Salinity-driven nitrogen removal and bacteria community compositions in microbial fuel cell-integrated constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47189-47200. [PMID: 38990258 DOI: 10.1007/s11356-024-34275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
The effects of salinity gradients (500-4000 mg·L-1 NaCl) on electricity generation, nitrogen removal, and microbial community were investigated in a constructed wetland-microbial fuel cell (CW-MFC) system. The result showed that power density significantly increased from 7.77 mW m-2 to a peak of 34.27 mW m-2 as salinity rose, indicating enhanced electron transfer capabilities under saline conditions. At a moderate salinity level of 2000 mg·L-1 NaCl, the removal efficiencies of NH4+-N and TN reached their maximum at 77.34 ± 7.61% and 48.45 ± 8.14%, respectively. This could be attributed to increased microbial activity and the presence of critical nitrogen-removal organisms, such as Nitrospira and unclassified Betaproteobacteria at the anode, as well as Bacillus, unclassified Rhizobiales, Sphingobium, and Simplicispira at the cathode. Additionally, this salinity corresponded with the highest abundance of Exiguobacterium (3.92%), a potential electrogenic bacterium, particularly at the cathode. Other microorganisms, including Geobacter, unclassified Planctomycetaceae, and Thauera, adapted well to elevated salinity, thereby enhancing both electricity generation and nitrogen removal.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Mingyi Huang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Linghong Xu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Zebing Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
8
|
Muhammad Nashafi A, Thiravetyan P, Dolphen R, Treesubsuntorn C. Using stacked pot connection of wetland microbial fuel cells to charge the battery: Potential and effecting factor. ENVIRONMENTAL RESEARCH 2024; 252:119066. [PMID: 38714219 DOI: 10.1016/j.envres.2024.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
In the practical application of wetland microbial fuel cells (WMFCs), suitable designs and stacked connection systems have consistently been employed to increase and harvest power generation. Our study compares different WMFCs designs and demonstrates that the cylinder pot design outperforms the small hanging pot design in terms of electrical energy production. Moreover, power generation from the cylinder pot can be further optimized through separator modification and stacked connections. The stacked WMFCs design exhibited no voltage reversal, with an average power output ranging from 0.03 ± 0.01 mW (single pot) to 0.11 ± 0.05 mW (stacked connection of 5 pots) over a 60-day operational period. Additionally, our study identifies distinct patterns in both anodic and cathodic physiochemical factors including electrical conductivity (EC), pH, and nitrate (NO3-), highlighting the significant influence of plant involvement on altering concentrations and levels in different electrode zones. The WMFCs bioelectricity production system, employing 15 pots stacked connections achieves an impressive maximum power density of 9.02 mW/m2. The system's practical application is evidenced by its ability to successfully power a DC-DC circuit and charge a 1.2 V AAA battery over a period of 30 h, achieving an average charging rate of 0.0.2 V per hour.
Collapse
Affiliation(s)
- Azizuddin Muhammad Nashafi
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rujira Dolphen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
9
|
Yan H, Xu L, Su J, Wei H, Li X. Synergistic promotion of sludge reduction by surfactant-producing and lysozyme-producing bacteria: Optimization and effect of Na . BIORESOURCE TECHNOLOGY 2024; 393:130065. [PMID: 37984671 DOI: 10.1016/j.biortech.2023.130065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
To improve the efficiency of aerobic digestion, this investigation utilized the synergistic effect of lysozyme-producing strain YH14 and surfactant-producing strain ZXY4 to promote sludge hydrolysis, and added NaCl to enhance this promoting effect. The best performance in promoting sludge hydrolysis was achieved when the inoculum of functional bacteria was 12 % (inoculum ratio of strain YH14: strain ZXY4 = 1:3) and the dosage of NaCl was 5 g L-1, which caused an increase of 19.25 % in the SS removal rate and 2588.21 mg L-1 in the SCOD release, as compared with the control. Fluorescence region integral analysis shows that the synergy of two functional bacteria and NaCl can enhance the biodegradability of sludge. Protein secondary structure analysis shows that strain ZXY4 and Na+ cause the EPS structure to loosen, increasing the chances of lysozyme lysis of bacteria. Nucleotide metabolism, metabolism of other amino acids and membrane transport enhanced in a co-processing system.
Collapse
Affiliation(s)
- Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
10
|
Verma P, Ray S. Critical evaluation of electroactive wetlands: traditional and modern advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14349-14366. [PMID: 38289554 DOI: 10.1007/s11356-024-32115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
In the field of sustainable wastewater management, electroactive wetlands (EW), or constructed wetland-microbial fuel cells (CW-MFC), are an emerging technology. With the growing problem of untreated wastewater, the emphasis must shift to decentralisation of wastewater treatment infrastructure, and CW-MFC can be an excellent choice. This review provides a chronologically organized account of the design and configuration of CW-MFCs developed between 2010 and 2023. The research on CW-MFC has mainly focused on material, positioning and number of electrodes; use of electroconductive media and filler materials; flow regime; algal-based CW-MFC and multistage setups. Compared to traditional constructed wetlands (CW) and microbial fuel cells (MFC), CW-MFCs have a number of advantages, including better treatment efficiency, faster organic matter utilisation, lower capital and land requirements and a smaller carbon footprint. However, there are some limitations as well, such as upscaling and viable electricity generation, which are covered in more detail in the article. Moreover, the economics of this technology is also evaluated. The microbiology of a CW-MFC and its influence on its performance are also elaborated. Recent advancements in this field in terms of design, configuration and performance are discussed. Finally, the knowledge gaps that must be addressed before this technique can be successfully implemented on a large scale are highlighted, along with specific recommendations. This article aims to advocate for EWs as an ideal decentralised wastewater treatment technique, while also shedding light on the areas that still need to be worked on.
Collapse
Affiliation(s)
- Palindhi Verma
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanak Ray
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Mittal Y, Srivastava P, Pandey S, Yadav AK. Development of nature-based sustainable passive technologies for treating and disinfecting municipal wastewater: Experiences from constructed wetlands and slow sand filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165320. [PMID: 37414182 DOI: 10.1016/j.scitotenv.2023.165320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
There is an urgent need to develop low-cost technology for effective wastewater treatment and its further disinfection to the level that makes it economically useful. This work has designed and evaluated the various types of constructed wetlands (CWs) followed by a slow sand filter (SSF) for wastewater treatment and disinfection. The studied CWs were, CWs with gravels (CW-G), free water surface-CW (FWS-CWs), and CWs integrated microbial fuel cell (MFC) with granular graphite (CW-MFC-GG) planted with Canna indica plant species. These CWs were operated as secondary wastewater treatment technologies followed by SSF for disinfection purposes. The highest total coliform removal was observed in the combination of CW-MFC-GG-SSF which achieved a final concentration of 172 CFU/100 mL, whereas faecal coliform removal was 100 % with the combinations of CW-G-SSF and CW-MFC-GG-SSF, achieving 0 CFU/100 mL in the effluent. In contrast, FWS-SSF achieved the lowest total and faecal coliform removal attaining a final concentration of 542 CFU/100 mL and 240 CFU/100 mL, respectively. Furthermore, E. coli were detected as negative/absent in CW-G-SSF and CW-MFC-GG-SSF, while it was positive for FWS-SSF. In addition, the highest turbidity removal was achieved in CW-MFC-GG and SSF combination of 92.75 % from the municipal wastewater influent turbidity of 82.8 NTU. Furthermore, in terms of overall treatment performance of CW-G-SSF and CW-MFC-GG-SSF, these systems were able to treat 72.7 ± 5.5 % and 67.0 ± 2.4 % of COD and 92.3 % and 87.6 % of phosphate, respectively. Additionally, CW-MFC-GG also exhibited a power density of 85.71 mA/m3 and a current density of 25.71 mW/m3 with 700 Ω of internal resistance. Thus, CW-G and CW-MFC-GG followed by SSF could be a promising solution for enhanced disinfection and wastewater treatment.
Collapse
Affiliation(s)
- Yamini Mittal
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pratiksha Srivastava
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Sony Pandey
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asheesh Kumar Yadav
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Jain M, Sai Kiran P, Ghosal PS, Gupta AK. Development of microbial fuel cell integrated constructed wetland (CMFC) for removal of paracetamol and diclofenac in hospital wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118686. [PMID: 37536238 DOI: 10.1016/j.jenvman.2023.118686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Hospital wastewater management has become a significant concern across the globe due to the presence of pharmaceutically active compounds (PhACs) and other toxic substances, which can potentially disrupt ecosystems. The presence of recalcitrant PhACs in hospital wastewater increases the difficulty level for conventional wastewater treatment systems. Furthermore, incorporating advanced oxidation-based treatment systems increase capital and operation costs. To reduce treatment costs, low-cost innovative technology, i.e., composite constructed wetland and microbial fuel cell system (CMFC), has been developed for higher treatment efficiency of PhACs in hospital wastewater along with simultaneous bioelectricity generation as an additional outcome. In this study, influencing operating parameters, such as initial chemical oxygen demand (COD), electrode spacing, and substrate-to-water-depth ratio, were optimized for two plant species: water hyacinth (WH) and duckweed (DW). The optimized systems were run in batch and continuous mode for WH-CMFC and DW-CMFC to treat synthetic hospital wastewater with paracetamol and diclofenac, and the bioelectricity generation was monitored. DW-CMFC system depicted better treatment efficiency and voltage generation as compared to WH-CMFC. In continuous mode, the DW-CMFC system exhibited a removal of 95.3% COD, 97.1% paracetamol, and 87.5% diclofenac. WH-CMFC and DW-CMFC achieved power densities of around 21.26 mW/m2 and 42.93 mW/m2, respectively. The fate of PhACs during and after treatment and toxicity analysis of the transformation products formed were also carried out. Higher bio-electricity generation and efficient wastewater treatment of the DW-CMFC make it a sustainable option for hospital wastewater management.
Collapse
Affiliation(s)
- Mahak Jain
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Pilla Sai Kiran
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
13
|
Xu F, Liu M, Zhang S, Chen T, Sun J, Wu W, Zhao Z, Zhang H, Gong Y, Jiang J, Wang H, Kong Q. Treatment of atrazine-containing wastewater by algae-bacteria consortia: Signal transmission and metabolic mechanism. CHEMOSPHERE 2023:139207. [PMID: 37364639 DOI: 10.1016/j.chemosphere.2023.139207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Atrazine is a toxic endocrine disruptor. Biological treatment methods are considered to be effective. In the present study, a modified version of the algae-bacteria consortia (ABC) was established and a control was simultaneously set up to investigate the synergistic relationship between bacteria and algae and the mechanism by which atrazine is metabolized by those microorganisms. The total nitrogen (TN) removal efficiency of the ABC reached 89.24% and the atrazine concentration was reduced to below the level recommended by the Environment Protection Agency (EPA) regulatory standards within 25 days. The protein signal released from the extracellular polymeric substances (EPS) secreted by the microorganisms triggered the resistance mechanism of the algae, and the conversion of humic acid to fulvic acid and electron transfer constituted the synergistic mechanism between the bacteria and algae. The mechanism by which atrazine is metabolized by the ABC mainly consists of hydrogen bonding, H-pi interactions, and cation exchange with atzA for hydrolysis, followed by a reaction with atzC for decomposition to non-toxic cyanuric acid. Proteobacteria was the dominant phylum for bacterial community evolution under atrazine stress, and the analysis revealed that the removal of atrazine within the ABC was mainly dependent on the proportion of Proteobacteria and the expression of degradation genes (p < 0.01). EPS played a major role in the removal of atrazine within the single bacteria group (p < 0.01).
Collapse
Affiliation(s)
- Fei Xu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Mengyu Liu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Siju Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Tao Chen
- The Natural Resources and Planning Bureau of Weishan, Jining, 273100, PR China
| | - Jingyao Sun
- The Natural Resources and Planning Bureau of Weishan, Jining, 273100, PR China
| | - Wenjie Wu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Zheng Zhao
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Yanyan Gong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Jinpeng Jiang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Hao Wang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China; Dongying Institute, Shandong Normal University, Dongying, Shandong, 257092, PR China.
| |
Collapse
|
14
|
Chen Z, Li T, Liu L. Critical role of Photo-electrode with Ce-g-C 3N 4 in multi-stage microbial fuel cells cascade reactor treating diluted hyper-saline industrial wastewater rich in amines. CHEMOSPHERE 2023:139026. [PMID: 37257656 DOI: 10.1016/j.chemosphere.2023.139026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Treatment of chemical industrial wastewater often faces problems of large volume occupation, high cost, and long processing time. In this study, low-content Ce-modified g-C3N4 was prepared and used as a catalyst on stainless steel mesh photo-cathode in constructing a multi-stage cascade microbial fuel cell system to reduce treatment costs in an energy-saving way. The large specific surface area (332.5 m2 g-1) and mesoporous structure of the material, is favorable for catalytic reactions, in which Ce elements were mainly present in single atoms. The characterized catalyst indicated a pronounced effect of Ce species in increasing photo-current and the synergistic pollutant removal, microbial bio-degradation and cascade operation stability. In Batch-mode (light illumination, aeration, total HRT (hydraulic residence time) of 54 h) treatment through three cascade reactors, removed 88% COD (Chemical Oxygen Demand). With 0.5 mM PMS (peroxymonosulfate), 94% COD and 86% NH4+-N of the system were removed. The cascade net average COD removal capacity reached 16.04 kg per kg catalyst per day. The addition of PMS also enhanced the electricity generation. In continuous-mode, in totally 18 h treatment through the three-stages cascade reactors without PMS, overall, 83% COD and 78% TOC (Total Organic Carbon) were removed, reaching a net calculated system average COD removal capacity of 19.29 kg per kg catalyst per day. With Ce-g-C3N4 catalyst, the batch or continuous multi-stage cascade system demonstrated great technical flexibility and economic potential in treating high-strength, high-salinity amine-rich industrial wastewater.
Collapse
Affiliation(s)
- Zhenyu Chen
- MOE, Key Lab of Industrial Ecology and Environmental Engineering, School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Teng Li
- MOE, Key Lab of Industrial Ecology and Environmental Engineering, School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Lifen Liu
- MOE, Key Lab of Industrial Ecology and Environmental Engineering, School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
15
|
Lu Y, Zhang S, Liu Q, Zhong L, Xie Q, Duan A, Yang Z, Liu Q, Zhang Z, Hao J. Nitrobenzene reduction promoted by the integration of carbon nanotubes and Geobacter sulfurreducens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121444. [PMID: 36921658 DOI: 10.1016/j.envpol.2023.121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Electron shuttles (ES) can mediate long-distance electron transfer between extracellular respiratory bacteria (ERB) and the surroundings. However, the effects of graphite structure in ES on the extracellular electron transfer (EET) process remain ambiguous. This work investigated the function of graphite structure in the process of nitrobenzene (NB) degradation by Geobacter sulfurreducens PCA, in which highly aromatic carbon nanotubes (CNTs) was studied as a typical ES. The results showed that the addition of 1.5 g L-1 of CNTs improved the NB biodegradation up to 81.2%, plus 18.8% NB loss due to the adsorption property of CNTs, achieving complete removal of 200 μM NB within 9 h. The amendment of CNTs greatly increased the EET rate, indicating that graphite structure exhibited excellent electron shuttle performance. Furthermore, Raman spectrum proved that CNTs obtained better graphite structure after 90 h of cultivation with strain PCA, resulting in higher electrochemical performance. Also, CNTs was perceived as the "Contaminant Reservoir", which alleviated the toxic effect of NB and shortened the distance of EET process. Overall, this work focused on the effects of material graphite structure on the EET process, which enriched the understanding of the interaction between CNTs and ERB, and these results might promote their application in the in-situ bioremediation of nitroaromatic-polluted environment.
Collapse
Affiliation(s)
- Yue Lu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Shoujuan Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Qi Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Qian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Zhiyi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Jingru Hao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
16
|
Niu Y, Qu M, Du J, Wang X, Yuan S, Zhang L, Zhao J, Jin B, Wu H, Wu S, Cao X, Pang L. Effects of multiple key factors on the performance of petroleum coke-based constructed wetland-microbial fuel cell. CHEMOSPHERE 2023; 315:137780. [PMID: 36623598 DOI: 10.1016/j.chemosphere.2023.137780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In this study, two constructed wetland-microbial fuel cells (CW-MFC), including a closed-circuit system (CCW-MFC) and an open-circuit system (OCW-MFC) with petroleum coke as electrode and substrate, were constructed to explore the effect of multiple key factors on their operation performances. Compared to a traditional CW, the CCW-MFC system showed better performance, achieving an average removal efficiency of COD, NH4+-N, and TN of 94.49 ± 1.81%, 94.99 ± 4.81%, and 84.67 ± 5.6%, respectively, when the aeration rate, COD concentration, and hydraulic retention time were 0.4 L/min, 300 mg/L, and 3 days. The maximum output voltage (425.2 mV) of the CCW-MFC system was achieved when the aeration rate was 0.2 L/min. In addition, the CCW-MFC system showed a greater denitrification ability due to the higher abundance of Thiothrix that might attract other denitrifying bacteria, such as Methylotenera and Hyphomicrobium, to participate in the denitrifying process, indicating the quorum sensing could be stimulated within the denitrifying microbial community.
Collapse
Affiliation(s)
- Yulong Niu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Mingxiang Qu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jingjing Du
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China.
| | - Xilin Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shuaikang Yuan
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Lingyan Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jianguo Zhao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China
| | - Baodan Jin
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China
| | - Haiming Wu
- School of Environmental Science & Engineering, Shandong University, Qingdao, China
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Xia Cao
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China.
| | - Long Pang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan, China
| |
Collapse
|
17
|
Xue J, Yao Y, Li W, Shi K, Ma G, Qiao Y, Cheng D, Jiang Q. Insights into the effects of operating parameters on sulfate reduction performance and microbial pathways in the anaerobic sequencing batch reactor. CHEMOSPHERE 2023; 311:137134. [PMID: 36343737 DOI: 10.1016/j.chemosphere.2022.137134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Sulfate-reducing bacteria (SRB)-based anaerobic process has aroused wide concern in the treatment of sulfate-containing wastewater. Chemical oxygen demand-to-sulfate ratio (COD/SO42-) and HRT are two key factors that affect not only the anaerobic treatment performance but also the activity of SRB. In this study, an anaerobic sequencing batch reactor was constructed, and the effects of different operating parameters (COD/SO42-, HRT) on the relationship of sulfate (SO42-) reduction performance, microbial communities, and metabolic pathways were comprehensively investigated. The results indicated that the SO42- removal rates could achieve above 95% under different operating parameters. Bioinformatics analysis revealed that microbial community changed with reactor operation. At the genus level, the enrichment of Propionicclava and Peptoclostridium contributed to the establishment of a homotrophic relationship with Desulfobulbus, the dominant SRB in the reactor, which indicated that they took vital part in maintaining the structural and functional stability of the bacterial community under different operating parameters. In particular, an increasing trend of the relative abundance of functional genes encoding dissimilatory sulfate reduction was detected with the increase of COD/SO42-, which indicated high SO42- reduction potentials. This knowledge will help to reveal the mechanism of the effect of operating parameters on the anaerobic sulfate removal process, thus providing effective guidance for the targeted regulation of anaerobic sequencing batch bioreactors treating SO42--containing wastewater.
Collapse
Affiliation(s)
- Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China; Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong, 256600, China
| | - Yuehong Yao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Weisi Li
- Shandong Ecological Environment Monitoring Center, Jinan, Shandong, 250102, China
| | - Ke Shi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Guanbao Ma
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Yanlu Qiao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China; Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong, 256600, China
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Qing Jiang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, China; Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong, 256600, China.
| |
Collapse
|
18
|
Xu F, Zhao Z, Wang X, Guan W, Liu M, Yu N, Tian H, Li J, Zhang S, Gu Y, Kong Q. Cladophora can mitigate the shock of glyphosate-containing wastewater on constructed wetlands coupled with microbial fuel cells. CHEMOSPHERE 2022; 308:136273. [PMID: 36064020 DOI: 10.1016/j.chemosphere.2022.136273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the performance of constructed wetlands coupled with microbial fuel cells (CW-MFCs) treating agricultural wastewater containing glyphosate (N-phosphonomethyl glycine, PMG), and the use of Cladophora as a cathode plant in this system. Ten devices were divided into Cladophora groups (CGs) and no Cladophora groups (NGs), with five PMG concentrations (0, 10, 25, 50, and 100 mg/L). PMG removal efficiency significantly decreased with increasing PMG (P < 0.01) and was higher in CG devices than in NG devices at low PMG concentrations (<50 mg/L). The removal efficiency of chemical oxygen demand (COD) and NH4+ in CGs was significantly higher than in NGs (P < 0.01). The highest power densities of 6.37 (CGs) and 6.26 mW/m2 (NGs) were obtained at 50 mg/L PMG, and the average voltage was significantly higher in CGs than in NGs (p < 0.01). Moreover, PMG had a negative effect on the enrichment of electrochemically active bacteria, but Cladophora could mitigate this effect. The abundance of the resistance gene epsps was stabilized; The phnJ gene increased with increasing PMG in NGs and was downregulated at high PMG concentration in CGs, indicating better microbial adaptation to PMG in CGs throughout the experiment.
Collapse
Affiliation(s)
- Fei Xu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Zheng Zhao
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Xiaoyu Wang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Wei Guan
- Shandong Jining Eco-environment Monitoring Center, Jining, 272004, Shandong, PR China
| | - Mengyu Liu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Ningning Yu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Haihan Tian
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Jingying Li
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Siju Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Yuchen Gu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, 250014, Shandong, PR China; Dongying Institute, Shandong Normal University, Dongying, 257092, Shandong, PR China.
| |
Collapse
|
19
|
Cao TND, Bui XT, Le LT, Dang BT, Tran DPH, Vo TKQ, Tran HT, Nguyen TB, Mukhtar H, Pan SY, Varjani S, Ngo HH, Vo TDH. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance. BIORESOURCE TECHNOLOGY 2022; 363:127831. [PMID: 36029979 DOI: 10.1016/j.biortech.2022.127831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The discharged saline wastewater has severely influenced the aquatic environment as the treatment performance of many wastewater treatment techniques is limited. In addition, the sources of saline wastewater are also plentiful from agricultural and various industrial fields such as food processing, tannery, pharmaceutical, etc. Although high salinity levels negatively impact the performance of both physicochemical and biological processes, membrane bioreactor (MBR) processes are considered as a potential technology to treat saline wastewater under different salinity levels depending on the adaption of the microbial community. Therefore, this study aims to systematically review the application of MBR widely used in the saline wastewater treatment from the perspectives of microbial structure and treatment efficiencies. At last, the concept of carbon dioxide capture and storage will be proposed for the MBR-treating saline wastewater technologies and considered toward the circular economy with the target of zero emission.
Collapse
Affiliation(s)
- Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| | - Linh-Thy Le
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh City 72714, Viet Nam
| | - Bao-Trong Dang
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Phuc-Hanh Tran
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh City 700000, Viet Nam
| | - Huu-Tuan Tran
- Department of Civil, Environmental & Architectural Engineering, The University of Kansas, Lawrence, KS 66045, United States
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
20
|
Advances in microbial electrochemistry-enhanced constructed wetlands. World J Microbiol Biotechnol 2022; 38:239. [PMID: 36260261 DOI: 10.1007/s11274-022-03413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/09/2022] [Indexed: 10/24/2022]
Abstract
Constructed wetland (CW) is an effective ecological technology to treat water pollution and has the significant advantages of high impact resistance, simple construction process, and low maintenance cost. However, under extreme conditions such as low temperature, high salt concentration, and multiple types of pollutants, some bottlenecks exist, including the difficulty in improving operating efficiency and the low pollutant removal rate. Microbial electrochemical technology is an emerging clean energy technology and has the similar structure and pollutant removal mechanism to CW. Microbial electrochemistry combined with CW can improve the overall removal effect of pollutants in wetlands. This review summarizes characterization methods of microbial electrochemistry-enhanced constructed wetland systems, construction methods of different composite systems, mechanisms of single and composite systems, and removal effects of composite systems on different pollutants in water bodies. Based on the shortcomings of existing studies, the potential breakthroughs in microbial electrochemistry-enhanced constructed wetlands are proposed for developing the optimization solution of constructed wetlands.
Collapse
|
21
|
Li C, Hao L, Cao J, Zhou K, Fang F, Feng Q, Luo J. Mechanism of Fe-C micro-electrolysis substrate to improve the performance of CW-MFC with different factors: Insights of microbes and metabolic function. CHEMOSPHERE 2022; 304:135410. [PMID: 35724720 DOI: 10.1016/j.chemosphere.2022.135410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Constructed wetland-microbial fuel cell (CW-MFC) is a novel technology for wastewater treatment with electrical generation. This work proposed a Fe-C micro-electrolysis substrate (Fe-C) with biomass modified ceramsite to enhance pollutants removal and electricity generation. The key influencing factors were revealed, and the COD, NH4+-N, and TP removal efficiency was respectively increased by 10.2, 8.1 and 8.78% with 76% higher power output at optimal conditions (e.g. OLR 52.5 g/(m2.d), HRT 48 h, and aeration rate 800 mL/min). Fe-C based substrates improved the microenvironments in CW-MFC, including dissolved oxygen (DO) and oxidation-reduction potential (ORP) lowering and electron transfer facilitation. These contributed to the enrichment of critical microorganisms and metabolic activities. The abundance of functional bacteria (i.e. Geobacter, Thauera and Dechloromonas) were evidently increased. Additionally, the energy metabolism and other functional genes encoding cytochrome c (ccoN), nitrite reductase (nirD) and phosphate transporter (pstA) were all stimulated.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Liangshan Hao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Kang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
22
|
Zhang K, Yang S, Luo H, Chen J, An X, Chen W, Zhang X. Enhancement of nitrogen removal and energy recovery from low C/N ratio sewage by multi-electrode electrochemical technology and tidal flow via siphon aeration. CHEMOSPHERE 2022; 299:134376. [PMID: 35358555 DOI: 10.1016/j.chemosphere.2022.134376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/03/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In view of the difficulty in denitrification of low C/N ratio wastewater, electrochemical technology with multiple electrodes and tidal flow method via siphon aeration were used to enhance the denitrification process. At the same time, because of the low phosphorus removal efficiency in traditional activated sludge process, the constructed wetland and microbial fuel cell (CW-MFC) reactor with dewatered alum sludge (DAS) as substrate were constructed. In addition, the REDOX conditions of the reactor were changed by siphon, which significantly improved the removal efficiency of N and P and the energy recovery capacity of the reactor. In the 172 d, the Tidal Flow Constructed Wetland-Microbial Fuel Cell (TF CW-MFC) had the highest removal efficiency of COD and total nitrogen (TN), which were 97.4% and 83.4%, respectively. Although the removal rate of total phosphorus (TP) by TF CW-MFC was lower than artificial aeration, it can still reached 89.0%. The removal effect of aromatic protein substances in water was also significant. The amount of electrons generated by the artificial aeration anode and the amount of oxygen generated by the cathode were not enough to match. The voltage of TF CW-MFC was significantly higher than artificial aeration, around 350 mV, and the maximum power density was 98.16 mW m-3. In addition, MFC had an inhibitory effect on CW methane emissions. The analysis of the microbial community structure showed that most of the dominant bacteria of TF CW-MFC belonged to the Proteobacteria, Actinobacteria and Chloroflexi. These results showed that the TF CW-MFC technology as a zero-energy oxygen supply mode had high efficiency in the treatment of low C/N ratio wastewater and also had the environmental effect of reducing methane emissions. This study suggests that this green wastewater treatment technology has potential application value.
Collapse
Affiliation(s)
- Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, PR China.
| | - Siqiao Yang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Hongbing Luo
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Jia Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Xiaochan An
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Wei Chen
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| | - Xiaoxiao Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, PR China
| |
Collapse
|
23
|
Cheng R, Zhu H, Wang J, Hou S, Shutes B, Yan B. Removal of microcystin (MC-LR) in constructed wetlands integrated with microbial fuel cells: Efficiency, bioelectricity generation and microbial response. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114669. [PMID: 35168133 DOI: 10.1016/j.jenvman.2022.114669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Microcystins (MCs) pollution caused by cyanobacteria harmful blooms (CHBs) has posed short- and long-term risks to aquatic ecosystems and public health. Constructed wetlands (CWs) have been verified as an effective technology for eutrophication but the removal performance for MCs did not achieve an acceptable level. CWs integrated with microbial fuel cell (MFC-CWs) were developed to intensify the nutrient and Microcystin-LR (MC-LR) removal efficiencies in this study. The results indicated that closed-circuit MFC-CWs (T1) exhibited a better NO3--N, NH4+-N, TP and MC-LR removal efficiency compared to that of open-circuit MFC-CWs (CK, i.e., traditional CWs). Therein, a MC-LR removal efficiency of greater than 95% was observed in both trials in T1. The addition of sponge iron to the anode layer of MFC-CWs (T2) improved only the NO3--N removal and efficiency bioelectricity generation performance compared to T1, and the average effluent MC-LR concentration of T2 (1.14 μg/L) was still higher than the provisional limit concentration (1.0 μg/L). The microbial community diversity of T1 and T2 was simplified compared to CK. The relative abundance of Sphingomonadaceae possessing the degradation capability for MCs increased in T1, which contributed to the higher MC-LR removal efficiency compared to CK and T2. While the relative abundance of electrochemically active bacteria (EAB) (i.e., Desulfuromonadaceae and Desulfomicrobiaceae) in the anode of T2 was promoted by the addition of sponge iron. Overall, this study suggests that integrating MFC into CWs provides a feasible intensification strategy for eutrophication and MCs pollution control.
Collapse
Affiliation(s)
- Rui Cheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region and Beautiful Country Construction, Changchun, 130102, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region and Beautiful Country Construction, Changchun, 130102, China.
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Shengnan Hou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region and Beautiful Country Construction, Changchun, 130102, China
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London, NW4 4BT, UK
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region and Beautiful Country Construction, Changchun, 130102, China
| |
Collapse
|
24
|
Influence of Fe2+ and Fe3+ on the Performance and Microbial Community Composition of a MFC Inoculated with Sulfate-Reducing Sludge and Acetate as Electron Donor. J CHEM-NY 2022. [DOI: 10.1155/2022/5685178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A sulfidogenic sludge supplemented with acetate was evaluated in the anodic chamber of microbial fuel cells (MFCs) in the presence of sulfate (SO4-2)/Fe3+ and sulfate (SO4-2)/Fe2+ to investigate the MFC performance and the effect of the iron ions on the composition of the microbial community since sulfate and iron ions are frequently present in wastewater derived from several anthropogenic activities. The current densities were up to 0.025 mA/cm2 and 0.017 mA/cm2 for MFCs with Fe2+ and Fe3+, respectively. Accordingly, the redox activity was slightly higher in the presence of Fe2+ than Fe3+. In general, the metabolic activity of the MFC supplemented with Fe2+ was higher than the system with Fe3+ reaching a percentage of sulfate reduction (% SR), sulfide concentration (mg/L HS-), and removal of chemical oxygen demand (% COD removal) of
,
, and
for % SR, HS-, and % COD, respectively, whereas in the MFC with Fe3+, the percentages were of
,
, and
for % SR, HS-, and % COD, respectively. The microbial population determined in each system was also correlated to the metabolic activity. Rhodospirillales, Caulobacterales, and Burkholderiales were the most abundant orders of bacteria in the MFC with Fe3+, whereas with Fe2+, Rhodobacterales, Sphingomonadales, and Rhizobiales. Desulfohalobiaceae and Desulfovibrionaceae were identified in the presence of Fe2+. Unexpected interactions and combinations of microorganisms were observed in a relatively short culturing time, demonstrating the importance of characterizing the anode biofilm prior to shifts in iron ion concentrations on a long-term basis.
Collapse
|
25
|
Synchronous Cr(VI) Remediation and Energy Production Using Microbial Fuel Cell from a Subsurface Environment: A Review. ENERGIES 2022. [DOI: 10.3390/en15061989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Applying microbial fuel cell (MFC) technology for eco-remediation of Cr(VI) pollution from a subsurface environment has great scientific value and practical significance due to its promising advantages of pollutant remediation and renewable energy generation. The aim of the current review is to summarize the migration characteristics of Cr(VI) in a subsurface soil/water environment and investigate the factors affecting the MFC performance for synchronous Cr(VI) remediation and power generation, and sequentially highlight diverse challenges of MFC technology for in situ remediation of subsurface groundwater and soils. The critical review put forward that Cr(VI) removal efficiency and energy production of MFC can be improved by enhancing the adjustability of cathode pH, setting potential, modifying electrode, and incorporating other technologies into MFC. It was recommended that designing typical large-scale, long-term continuous flow MFC systems, adding electron shuttle media or constructing artificial electron according to actual groundwater/soil and Cr(VI) pollution characteristics, site geology, and the hydrogeology condition (hydrochemical conditions, colloid type, and medium) are essential to overcome the limitations of the small size of the laboratory experiments and improve the application of technology to in situ Cr(VI) remediation. This review provided reference and ideas for future research of MFC-mediated onsite Cr(VI) remediation.
Collapse
|
26
|
Zhao Z, Cheng M, Li Y, Song X, Wang Y, Zhang Y. A Novel Constructed Wetland Combined with Microbial Desalination Cells and its Application. MICROBIAL ECOLOGY 2022; 83:340-352. [PMID: 34089088 DOI: 10.1007/s00248-021-01752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Wastewater recycling can alleviate the shortage of water resources. Saline water is seldom treated with biological processes, and its recycling rate is low. Constructed wetland (CW) is a safe, economical, and ecological water treatment method. However, the saline water treatment performance of CW is not good. Microbial desalination cells (MDC) utilizing a bioelectrochemical approach achieve functions of desalination and power generation. In this study, MDC was used to strengthen CW to form a composite system, MDC-CW. Through optimization of design parameters, MDC-CW was applied in the treatment of salt-containing water. The average total nitrogen removal rate in MDC-CW-P1 reached 87.33% and the average COD removal rate was 92.79%. The average desalination rate of MDC-CW-P1 was 55.78% and the average voltage of MDC-CW-P1 reached 0.40 mV. Planting Canna indica in the MDC-CW was conducive to the functions of desalination and power generation. The above results were also verified by the microbial analysis results of gravels in the substrate, plant rhizosphere, and electrodes. In addition, the decontamination of the device mainly depended on the function of the bacteria commonly used in water treatment, such as Proteobacteria and Bacteroidetes, whereas the generation of power depended on the function of Geobacter. Salt ions moved spontaneously to the cathode and anode under the influence of current generation so that the desalination function was realized under the selective isolation function of exchange membranes. The device design and laboratory applications of MDC-CW experimentally achieved the electrochemical function and broadened the treatment scale of CW.
Collapse
Affiliation(s)
- Zhimiao Zhao
- College of Marine Ecology and Environment, Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai Ocean University, Hucheng Ring Road 999, Office B207, Pudong District, Shanghai, 201306, China
| | - Mengqi Cheng
- College of Marine Ecology and Environment, Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai Ocean University, Hucheng Ring Road 999, Office B207, Pudong District, Shanghai, 201306, China
| | - Yanan Li
- College of Marine Ecology and Environment, Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai Ocean University, Hucheng Ring Road 999, Office B207, Pudong District, Shanghai, 201306, China
| | - Xinshan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuhui Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yinjiang Zhang
- College of Marine Ecology and Environment, Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai Ocean University, Hucheng Ring Road 999, Office B207, Pudong District, Shanghai, 201306, China.
| |
Collapse
|
27
|
Wang L, Xu D, Zhang Q, Liu T, Tao Z. Simultaneous removal of heavy metals and bioelectricity generation in microbial fuel cell coupled with constructed wetland: an optimization study on substrate and plant types. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:768-778. [PMID: 34341922 DOI: 10.1007/s11356-021-15688-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
A microbial fuel cell coupled with constructed wetland (CW-MFC) was built to remove heavy metals (Zn and Ni) from sludge. The performance for the effects of substrates (granular activated carbon (GAC), ceramsite) and plants (Iris pseudacorus, water hyacinth) towards the heavy metal treatment as well as electricity generation was systematically investigated to determine the optimal constructions of CW-MFCs. The CW-MFC systems possessed higher Zn and Ni removal efficiencies as compared to CW. The maximal removal rates of Zn (76.88%) and Ni (66.02%) were obtained in system CW-MFC based on GAC and water hyacinth (GAC- and WH-CW-MFC). Correspondingly, the system produced the maximum voltage of 534.30 mV and power density of 70.86 mW·m-3, respectively. Plant roots and electrodes contributed supremely to the removal of heavy metals, especially for GAC- and WH-CW-MFC systems. The coincident enrichment rates of Zn and Ni reached 21.10% and 26.04% for plant roots and 14.48% and 16.50% for electrodes, respectively. A majority of the heavy metals on the sludge surface were confirmed as Zn and Ni. Furthermore, the high-valence Zn and Ni were effectively reduced to low-valence or elemental metals. This study provides a theoretical guidance for the optimal construction of CW-MFC and the resource utilization of sludge containing heavy metals.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| | - Tingting Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Zhengkai Tao
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| |
Collapse
|
28
|
Lawan J, Wichai S, Chuaypen C, Nuiyen A, Phenrat T. Constructed sediment microbial fuel cell for treatment of fat, oil, grease (FOG) trap effluent: Role of anode and cathode chamber amendment, electrode selection, and scalability. CHEMOSPHERE 2022; 286:131619. [PMID: 34346343 DOI: 10.1016/j.chemosphere.2021.131619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
For wastewater treatment, sediment microbial fuel cells (SMFCs) have advantages over traditional microbial fuel cells in cost (due to their membrane-less structure) and operation (less intensive maintenance). Nevertheless, the technical obstacles of SMFCs include their high internal electrical resistance due to sediment in the anode chamber and slow oxygen reduction reaction (ORR) in the cathode chamber, which is responsible for their low power density (PD) (0.2-50 mW/m2). This study evaluated several SMFC improvements, including anode and cathode chamber amendment, electrode selection, and scaling the chamber size up to obtain optimally constructed single-chamber SMFCs to treat fat, oil, and grease (FOG) trap effluent. The chemical oxygen demand (COD) removal efficiency, PD, and electrical energy conversion efficiency concerning theoretically available chemical energy from FOG trap effluent treatment (%ECWW) were examined. Packing biochar in the anode chamber reduced its electrical resistance by 5.76 times, but the improvement in PD was trivial. Substantial improvement occurred when packing the cathode chamber with activated carbon (AC), which presumably catalyzed the ORR, yielding a maximum PD of 109.39 mW/m2, 959 times greater than without AC in the cathode chamber. This SMFC configuration resulted in a COD removal efficiency of 85.80 % and a %ECWW of 99.74 % in 30 days. Furthermore, using the most appropriate electrode pair and chamber volume increased the maximum PD to 1787.26 mW/m2, around 1.7 times greater than the maximum PD by SMFCs reported thus far. This optimally constructed SMFC is low cost and applicable for household wastewater treatment.
Collapse
Affiliation(s)
- Jesada Lawan
- Research Unit for Integrated Natural Resources Remediation and Reclamation (IN3R), Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence for Sustainability of Health, Environment, and Industry (SHEI), Faculty of Engineering, Naresuan University, Phitsanulok, 65000, Thailand
| | - Siriwan Wichai
- Department of Medical Science, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Choopong Chuaypen
- Department of Mechanical of Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, 65000, Thailand
| | - Aussanee Nuiyen
- Department of Medical Science, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Tanapon Phenrat
- Research Unit for Integrated Natural Resources Remediation and Reclamation (IN3R), Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence for Sustainability of Health, Environment, and Industry (SHEI), Faculty of Engineering, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
29
|
Su K, Song M, Yu Z, Wang C, Sun J, Li X, Liu N, Mou Y, Lu T. The effect of volatile fatty acids on the growth and lipid properties of two microalgae strains during batch heterotrophic cultivation. CHEMOSPHERE 2021; 283:131204. [PMID: 34467947 DOI: 10.1016/j.chemosphere.2021.131204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
To overcome the bottlenecks of waste resource utilization and energy shortage that restrict the commercial production of microalgae biodiesel, volatile fatty acids (VFAs) derived from activated sludge were used as the sole carbon source to culture oleaginous microalgae Chlorella pyrenoidosa FACHB-1216 and Scenedesmus quadricauda FACHB-1297 under the mixotrophic and heterotrophic cultivation. Four VFAs ratios (acetic acids (AA): propionic acids (PA): butyric acids (BA)) were tested to determine the effects and mechanisms of the VFAs on the two microalgae. The highest lipid content (29.54%) and lipid production (71.10 mg L-1) were achieved by S. quadricauda at the VFAs ratio of 6: 1: 3 under heterotrophic condition, with 46.27% and 67.52% removal efficiencies of total nitrogen and phosphorus, respectively. The assimilation efficiency of AA was the highest at 73.37%, followed by that of PA and BA. For C. pyrenoidosa, VFAs promoted the rapid reproduction within 2 days under the heterotrophic condition at different initial inoculation densities. At the optimal VFA ratio, algae achieved the highest biomass concentration (0.14 ± 0.02 g L-1), with a specific growth rate of 0.91 d-1 and biomass productivity of 125.17 mg L-1 d-1. The removal rates of total nitrogen and phosphorus were 47.03% and 74.40%, respectively, and the assimilation efficiency of AA was the best (61.06%). High AA assimilation efficiency under the heterotrophic condition was beneficial for the algal growth and lipid accumulation. These results simultaneously produced microalgae-based bioenergy and recycled VFAs in anaerobically digested effluent.
Collapse
Affiliation(s)
- Kunyang Su
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Mingming Song
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| | - Ze Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Chen Wang
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Jing Sun
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Xue Li
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Na Liu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Yiwen Mou
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Tianxiang Lu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| |
Collapse
|
30
|
Xu F, Sun R, Wang H, Wang Y, Liu Y, Jin X, Zhao Z, Zhang Y, Cai W, Wang C, Kong Q. Improving the outcomes from electroactive constructed wetlands by mixing wastewaters from different beverage-processing industries. CHEMOSPHERE 2021; 283:131203. [PMID: 34147984 DOI: 10.1016/j.chemosphere.2021.131203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Denitrification in electroactive constructed wetland (EW) systems is constrained by the carbon source and the carbon/nitrogen (C/N) ratio (the COD/TN ratio). In this study, wastewater with a high C/N from a brewery was added to wastewater with a low C/N (dairy wastewater) in an EW system, and the pollutant removal, bioelectricity generation, transformations of dissolved organic matter, and microbial community structures were evaluated. The results showed that the average removal rates of ammonium nitrogen, total nitrogen, and chemical oxygen demand from the wastewater mixture were 6.40%, 46.44%, and 23.85% higher than those from the wastewater with a low C/N, respectively. Dissimilatory nitrate reduction to ammonium was effectively inhibited, and the NH4+-N removal was 25.52% higher, when the wastewater mixture was used instead of the high C/N wastewater. Similarly, the output voltage was significantly increased, and the internal resistance of the device was reduced, for the wastewater mixture. The structure of the microbial community improved, the relative abundance of electrochemically active bacteria was higher, and the protein-like and humic-like components were lower, in the mixture treatment than in the individual treatment. The results show that the nitrogen removal and biopower generation improved in an EW system when high C/N wastewater was used as the carbon source.
Collapse
Affiliation(s)
- Fei Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Ruipeng Sun
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Hao Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Yuting Wang
- College of Arts, Shandong Management University, Jinan, 250357, PR China
| | - Yongming Liu
- Shandong Provincial Geo-Mineral Engineering Co., Ltd., Jinan, 250013, PR China
| | - Xing Jin
- Shandong Provincial Geo-Mineral Engineering Co., Ltd., Jinan, 250013, PR China
| | - Zheng Zhao
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Yujia Zhang
- College of Life Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wenjun Cai
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Chunxiao Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
31
|
Chen X, Xu P, Yang C, Wang S, Lu Q, Sun X. Study of enhanced nitrogen removal efficiency and microbial characteristics of an improved two-stage A/O process. ENVIRONMENTAL TECHNOLOGY 2021; 42:4306-4316. [PMID: 32419659 DOI: 10.1080/09593330.2020.1754924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
During the cold winter in northern China, the temperature is generally below 8°C, and low water temperature significantly inhibits biological treatment processes, especially the biological denitrification process. To solve this problem, this study proposed an improved two-stage A/O process with built-in submerged biofilm modules. Experimental water was acquired from the Sanbaotun Wastewater Treatment Plant, which is situated in the city of Fushun, Liaoning Province. After one year of experimental research, the improved two-stage A/O process proved to be significantly better than the traditional two-stage A/O process, especially in winter. In the one-year experiment, the average removal rates of COD, TN, and NH4+-N in the improved two-stage A/O process were 85.2%, 77.6%, and 96.9%, respectively. Microbial properties of the process were studied by means of high-throughput sequencing. High-throughput sequencing was conducted on the biofilm of the improved two-stage A/O terminal aerobic tank and the activated sludge of the conventional two-stage A/O aerobic tank. The result showed that the microbial diversity and abundance of the biofilms were considerably higher than those of the activated sludge during stable operation in winter. Under low-temperature conditions, the main denitrifying bacteria of the improved two-stage A/O process was Terrimonas, belonging to the sphingolipid class of Bacteroides, and the main genus of nitrifying bacteria was Nitrospira, belonging to the nitrite oxidizing bacteria.
Collapse
Affiliation(s)
- Xiurong Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, PR People's Republic of China
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, People's Republic of China
| | - Peng Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, PR People's Republic of China
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, People's Republic of China
| | - Chenchen Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, PR People's Republic of China
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shanshan Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, PR People's Republic of China
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, People's Republic of China
| | - Quanling Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, PR People's Republic of China
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiaoli Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, PR People's Republic of China
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Liu S, Feng X, Xue H, Qiu D, Huang Z, Wang N. Bioenergy generation and nitrogen removal in a novel ecological-microbial fuel cell. CHEMOSPHERE 2021; 278:130450. [PMID: 33838413 DOI: 10.1016/j.chemosphere.2021.130450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/10/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
A novel ecological-microbial fuel cell (E-MFC) was constructed based on the mutualistic symbiosis relationship among wetland plants Ipomoea aquatic, benthic fauna Tubifex tubifex (T. tubifex) and microorganisms. The maximum power densities of sediment MFC (S-MFC), wetland plant MFC (WP-MFC) and E-MFC were 6.80 mW/m2, 10.60 mW/m2 and 15.59 mW/m2, respectively. Ipomoea aquatic roots secreted organic matter as electricigens' fuel for electricity generation, while T. tubifex decomposed decaying leaves and roots into soluble organic matter and plant nutrients, forming a co-dependent and mutually beneficial system, which was conducive to bioelectricity production. The E-MFC obtained the highest nitrogen removal, and the removal efficiencies of NH4+-N and NO3--N were 90.4% and 96.5%, respectively. Hydraulic retention time (HRT), cathodic aeration and T. tubifex abundance had significant effects on E-MFC power generation. The performeance boost of E-MFC was closely related to anodic microbial community change caused by the introduction of T. tubifex.
Collapse
Affiliation(s)
- Shentan Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaojuan Feng
- School of Water and Environment, Chang'an University, Xi'an, 710054, China; Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hongpu Xue
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Dengfei Qiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Zhiguang Huang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Nianqin Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
33
|
Ebrahimi A, Sivakumar M, McLauchlan C. A taxonomy of design factors in constructed wetland-microbial fuel cell performance: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112723. [PMID: 33940362 DOI: 10.1016/j.jenvman.2021.112723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
The past decade has seen the rapid development of constructed wetland-microbial fuel cell (CW-MFC) technology in many aspects. The first publication on the combination of constructed wetland (CW) and microbial fuel cell (MFC) appeared in 2012, subsequently, research on the subject has grown exponentially to improve the performance of CW-MFCs in their dual roles of wastewater treatment and power generation. Although significant research has been conducted on this technology worldwide, a comprehensive and critical review of effective controlling parameters is lacking. More broadly, research is needed to draw up-to-date conclusions on recent developments and to identify knowledge gaps for further studies. This review paper systematically enumerates and reviews research studies published in this area to determine the key design factors and their role in CW-MFC performance. Moreover, a taxonomy of all CW-MFC design parameters has been synthesised from the literature. Importantly, this original work provides a comprehensive conceptual framework for future researchers, designers, builders, and users to understand CW-MFC technology. Within the taxonomy, parameters are placed in three main categories (physical/environmental, chemical, and biological/electrochemical) and comprehensive details are given for each parameter. Finally, a comprehensive summary of the parameters has been tabulated showing their impact on CW-MFC operation, design recommendations from literature, and the significant research gaps that this review has identified within the existing literature. It is hoped that this paper will provide a clear and rich picture of this technology at its current stage of development and furthermore, will facilitate a deeper understanding of CW-MFC performance for long-term and large-scale development.
Collapse
Affiliation(s)
- Atieh Ebrahimi
- School of Civil, Mining, and Environmental Engineering, University of Wollongong, NSW, 2522, Australia.
| | - Muttucumaru Sivakumar
- School of Civil, Mining, and Environmental Engineering, University of Wollongong, NSW, 2522, Australia
| | - Craig McLauchlan
- Faculty of Engineering and Information Sciences, University of Wollongong, NSW, 2522, Australia
| |
Collapse
|
34
|
Xie B, Liang H, You H, Deng S, Yan Z, Tang X. Microbial community dynamic shifts associated with sulfamethoxazole degradation in microbial fuel cells. CHEMOSPHERE 2021; 274:129744. [PMID: 33540308 DOI: 10.1016/j.chemosphere.2021.129744] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Though sulfamethoxazole (SMX) degradation at the low or medium concentration (SMX< 30 mg/L) has been reported in the microbial fuel cell (MFC), further exploration is still urgently required to investigate how the high concentration of SMX affect the anode biofilm formation. In this study, the degradation mechanism of SMX and the response of microbial community to SMX at different initial concentrations (0, 0.5, 5 and 50 mg/L) were investigated in MFCs. The highest SMX removal efficiency of 98.4% was obtained in MFC (5 mg/L). SMX at optimal concentration (5 mg/L) could serve as substrate accelerating the extracellular electron transfer. However, high concentration of SMX (50 mg/L) conferred significant inhibition on the electron transfer with SMX removal decline to 84.4%. The 16S rRNA high-throughput sequencing revealed the significant shift of the anode biofilms communities with different initial SMX concentrations were observed in MFCs. Thauera and Geobacter were the predominant genus, with relative abundance of 31.9% in MFC (50 mg/L SMX) and 52.7% in MFC (5 mg/L SMX). Methylophilus exhibited a huge increase with the highest percentage of 16.4% in MFC (50 mg/L). Hence, the functional bacteria of Thauera, Geobacter and Methylophilus endowed significant tolerance to the selection pressure from high concentration of SMX in MFCs. Meanwhile, some bacteria including Ornatilinea, Dechloromonas and Longilinea exhibited a decrease or even disappeared in MFCs. Therefore, initial concentrations of SMX played a fundamental role in modifying the relative abundance of predominant populations. This finding would promote theories support for understanding the evolution of anode biofilm formation related to the different initial concentrations of SMX in MFCs.
Collapse
Affiliation(s)
- Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, 264209, PR China
| | - Shihai Deng
- National University of Singapore Environmental Research Institute, National University of Singapore, 5A Engineering Dr. 1, Singapore, 117411, Singapore.
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
35
|
He J, Pang H, Pan X, Zheng Y, Wang L, Xu J, Li L, Yan Z. An innovative cation regulation-based anaerobic fermentation strategy for enhancing short-chain fatty acids production from waste activated sludge: Metal ion removal coupled with Na +-regulation. BIORESOURCE TECHNOLOGY 2021; 331:124921. [PMID: 33798852 DOI: 10.1016/j.biortech.2021.124921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
This study proposed a cation-regulation strategy based on metal ion removal coupled Na+-regulation for enhancing anaerobic fermentation of waste activated sludge. The optimal treatment condition was: cation-exchange resin dosage of 1.75 g/g SS for 1-day treatment, followed by Na+-enhanced anaerobic fermentation at NaCl concentration of 20 g/L. The CER induced sludge solubilization and the Na+-regulation treatment triggered secondary hydrolysis of CER-solubilized sludge, causing remarkable sludge disintegration and extracellular polymeric substance (EPS) disruption. Numerous SCOD of 6588 mg/L (SCOD/TCOD = 40.6%) was released within 2 days, and the short-chain fatty acids (SCFAs) of 439.9 mg COD/g VSS was produced through 4-day anaerobic fermentation. More than 59% of the SCFAs was composed of acetate and propionate. Nitrogen-free organic matters (i.e. SCFAs and carbohydrates) accounted for 77.9% of SCOD, while considerable sludge solid reduction (51.6% of total VSS) was achievable, which was beneficial for fermentative liquid utilization and sludge disposal.
Collapse
Affiliation(s)
- Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Heliang Pang
- Environmental and Municipal Engineering Department, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yanshi Zheng
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Ling Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Jie Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Lin Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian 350116, PR China
| |
Collapse
|
36
|
Zhu G, Huang S, Lu Y, Gu X. Simultaneous nitrification and denitrification in the bio-cathode of a multi-anode microbial fuel cell. ENVIRONMENTAL TECHNOLOGY 2021; 42:1260-1270. [PMID: 31538864 DOI: 10.1080/09593330.2019.1663938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
A multi-anode microbial fuel cell (MA-MFC) was developed to investigate simultaneous nitrification and denitrification (SND) in the bio-cathode. As the chemical oxygen demand to nitrogen (COD/N) ratio of the cathode was increased from 0 to 4.5, the electricity-producing quantity ranged between 498 and 543 C and the attained total nitrogen (TN) removal rate reached 12.07 g TN·m-3·d-1, resulting in a TN removal efficiency of 78.8% under the target COD/N ratio of 3.5. The removal of pollutants in series and parallel, open-circuit and closed-circuit were compared, respectively. The removal rates of TN, NH4+-N, and cathode and anode COD were all higher in the parallel connection configuration than in the series configuration. In parallel connection, the TN removal rate reached 14.4 g TN·m-3·d-1, which was 1.9 times that in series connection. Compared with the open-circuit system, the removal rate of TN in the closed-circuit system was improved by 17.8%, which could be ascribed to electrochemical denitrification. The results of high-throughput sequencing confirmed and clarified the presence of autotrophic denitrification and heterotrophic denitrification, including aerobic denitrification, when the MA-MFC had been operated for 18 months.
Collapse
Affiliation(s)
- Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, People's Republic of China
| | - Shan Huang
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, People's Republic of China
| | - Yongze Lu
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, People's Republic of China
| | - Xia Gu
- School of Energy and Environment, Southeast University, Nanjing, People's Republic of China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
37
|
Zhang X, Wang C, Wu P, Xia Y, Chen Y, Liu W, Xu L, Faustin F. A novel denitrifying phosphorus removal and partial nitrification, anammox (DPR-PNA) process for advanced nutrients removal from high-strength wastewater. CHEMOSPHERE 2021; 265:129165. [PMID: 33302198 DOI: 10.1016/j.chemosphere.2020.129165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/29/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
This study developed a novel DPR-PNA (denitrifying phosphorus removal, partial nitrification and anammox) process for sustaining high-strength wastewater treatment in a modified continuous flow reactor without external carbon source. After 259-days operation, a synchronous highly-efficient total inorganic nitrogen, PO43--P and CODcr removal efficiencies of 88.5%, 89.5% and 90.1% were obtained, respectively even influent nitrogen loading rate up to 3.2 kg m-3 d-1. Batch tests revealed that denitrifying phosphorus accumulating organisms (DPAOs) using NO3--N as electron acceptors significantly enriched (74% in total PAOs), which emerged remarkable positive impacts on deep-level nutrient removal as the key limiting factor. Furthermore, the NO2--N inhibitory threshold value (∼20.0 mg L-1) for DPAOs was identified, which demonstrated as an inhibitory component in excessive recycling NOx--N. From the molecular biology perspective, Dechloromonas-DPAOs group (18.59%) dominated the excellent dephosphatation performance, while Nitrosomonas-AOB (ammonia oxidizing bacteria) group (16.26%) and Candidatus_Brocadia-AnAOB (anammox bacteria) group (15.12%) were responsible for the desirable nitrogen loss process. Overall, the present work highlighted the novel DPR-PNA process for nutrients removal is a promising alternation for wastewater of high nitrogen but low carbon.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, 215009, China.
| | - Yunkang Xia
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China
| | - Ya Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, 215009, China
| | - Lezhong Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, 215009, China
| | - Fangnigbe Faustin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, 215009, China
| |
Collapse
|
38
|
Cao X, Wang H, Long X, Nishimura O, Li X. Limitation of voltage reversal in the degradation of azo dye by a stacked double-anode microbial fuel cell and characterization of the microbial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142454. [PMID: 33254847 DOI: 10.1016/j.scitotenv.2020.142454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/10/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
In this study, two double-anode microbial fuel cells (MFCs) were connected in series for degradation of the azo dye reactive brilliant red X-3B. After the series connection, the electricity generation of one of the MFCs decreased, and the other was not affected too much. Due to the special structure in the double-anode MFC reduced the imbalanced performance between the MFC units, the occurrence of voltage reversal was limited. The removal efficiencies in two MFC reactors were not consistent after the series connection, the results showed that the MFC with the reduced electricity generation had the higher removal efficiencies, it was 12.90, 11.66, and 40.05% higher than in the MFC in which the power generation capacity was not affected after the series connection, the MFC without serial connection, and the control group, respectively. Meanwhile, the microbial communities related to the degradation of refractory organic compounds increased and related to electricity generation decreased in the MFC with the reduced electricity generation, the changes of the microbial communities were consistent with its electricity generation and the removal efficiencies. The degradation products in the effluent from two MFC units showed that had the products generated from the MFC with the reduced electricity generation had simpler structures comparing the other MFC unit.
Collapse
Affiliation(s)
- Xian Cao
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China.
| | - Xizi Long
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Osamu Nishimura
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Aramaki 6-6-06, Sendai 980-8579, Japan.
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
39
|
Li W, Liang C, Dong L, Zhao X, Wu H. Accumulation and characteristics of fluorescent dissolved organic matter in loess soil-based subsurface wastewater infiltration system with aeration and biochar addition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116100. [PMID: 33246765 DOI: 10.1016/j.envpol.2020.116100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Subsurface wastewater infiltration systems (SWISs) have been widely used to treat rural domestic sewage. However, the low nitrogen removal and severe clogging problem always restrict the sustainability of SWISs for wastewater treatment. This study investigated the effects of aeration and biochar on the accumulation of nutrients and dissolved organic matter (DOM) in the substrate of loess soil-based SWISs for understanding the accumulation characteristics of DOM and the enhanced decontamination mechanism. The results showed that biochar addition could not improve the accumulation of nitrogen and phosphorus in the substrate, but could enhance denitrification (22%) via providing sufficient carbon for microorganisms. Moreover, the accumulation of organic matter in the substrate was also greatly affected. The DOM concentration of System D in the 40-60 cm layer reached 85.76 mg L-1, which indicated that biochar could release abundant DOM. Substrate DOM mainly contained humic acid-like and tryptophan-like substances. Moreover, the refractory macromolecular DOM components with high aromaticity and humification were found in the substrate below 60 cm of systems with biochar addition. This may be related to the DOM released by biochar and the extracellular polymeric substance (EPS) produced by microorganisms. It may affect the sustainability of the substrate to a certain extent, but fortunately that intermittent aeration could reduce this adverse effect. This research could provide new insights for preventing clogging and useful guidance for improving wastewater treatment performance in SWISs.
Collapse
Affiliation(s)
- Wen Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chenglong Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lu Dong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xin Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
40
|
Ji B, Zhao Y, Vymazal J, Mander Ü, Lust R, Tang C. Mapping the field of constructed wetland-microbial fuel cell: A review and bibliometric analysis. CHEMOSPHERE 2021; 262:128366. [PMID: 33182086 DOI: 10.1016/j.chemosphere.2020.128366] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The embedding microbial fuel cell (MFC) into constructed wetlands (CW) to form CW-MFC bears the potential to obtain bioelectricity and a clean environment. In this study, a bibliometric analysis using VOSviewer based on Web of Science data was conducted to provide an overview by tracing the development footprint of this technology. The countries, institutions, authors, key terms, and keywords were tracked and corresponding mapping was generated. From 2012 to September 2020, 442 authors from 129 organizations in 26 countries published 135 publications in 42 journals with total citation of 3139 times were found. The key terms analysis showed four clusters: bioelectricity generation performance, mechanism study, refractory pollutants removal, and enhanced conventional contaminants removal. Further research themes include exploring the biochemical properties of electrochemically active bacteria, emerging contaminants removal, effective bioelectricity harvest and the use, and biosensor development as well as scaling-up for real field application. The bibliometric results provide valuable references and information on potential research directions for future studies.
Collapse
Affiliation(s)
- Bin Ji
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Yaqian Zhao
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China.
| | - Jan Vymazal
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Ülo Mander
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Rauno Lust
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Cheng Tang
- School of Water and Environmental Engineering, Chang'an University, Xi'an, 710054, PR China
| |
Collapse
|
41
|
Yang Y, Zhao Y, Tang C, Liu R, Chen T. Dual role of macrophytes in constructed wetland-microbial fuel cells using pyrrhotite as cathode material: A comparative assessment. CHEMOSPHERE 2021; 263:128354. [PMID: 33297276 DOI: 10.1016/j.chemosphere.2020.128354] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/11/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
In the recent years many studies have shown that wetland plants play beneficial roles in bioelectricity enhancement in constructed wetland-microbial fuel cell (CW-MFC) because of the exudation of root oxygen and root exudates. In this study, the long-term roles of plants on the bioelectricity generation and contaminant removal were investigated in multi-anode (Anode1 and Anode2) and single cathode CW-MFCs. The electrode distances were 20 cm between Anode1-cathode and 10 cm between Anode2-cathode, respectively. Additionally, the employment of natural conductive pyrrhotite mineral as cathode material was firstly investigated in CW-MFC system. A cathode potential of -98 ± 52 mV to -175 ± 60 mV was achieved in the unplanted (CW-MFC 1), and planted CW-MFCs with Iris pseudacorus (CW-MFC 2), Lythrum salicaria (CW-MFC 3), and Phragmites australis (CW-MFC 4). The maximum power densities of Anode1-cathode and Anode2-cathode were 8.23 and 15.29 mW/m2 in CW-MFC 1, 8.51 and 1.67 mW/m2 in CW-MFC 2, 5.67 and 3.15 mW/m2 in CW-MFC 3, and 7.59 and 14.71 mW/m2 in CW-MFC 4, respectively. Interestingly, smaller power density was observed at Anode2-cathode, which has shorter electrode distance than Anode1-cathode in both CW-MFC 2 and CW-MFC 3, which indicates the negative role of oxygen released from the flourished plant roots at Anode2 micro-environment in power production. Therefore, recovering power from commercial CW-MFCs with flourished plants will be a challenge. The contradiction between keeping short electrode distance and avoiding the interference from plant roots to maintain anaerobic anode may be solved by the proposed modular CW-MFCs.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China; UCD Dooge Centre for Water Resources Research, School of Civil Engineering, Newstead Building, University College Dublin, Belfield, Dublin 4, Ireland; Department of Environmental Engineering, Anhui Jianzhu University, Hefei, 230601, Anhui, China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China.
| | - Cheng Tang
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, Newstead Building, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ranbin Liu
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, Newstead Building, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tianhu Chen
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
42
|
Xu H, Song HL, Singh RP, Yang YL, Xu JY, Yang XL. Simultaneous reduction of antibiotics leakage and methane emission from constructed wetland by integrating microbial fuel cell. BIORESOURCE TECHNOLOGY 2021; 320:124285. [PMID: 33130542 DOI: 10.1016/j.biortech.2020.124285] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/12/2023]
Abstract
In this study, a microbial fuel cell coupled with constructed wetland (CW-MFC) was built to demonstrate that integration of MFC can enhance antibiotics (sulfadiazine (SDZ) and ciprofloxacin (CIP)) removal in CWs and control CH4 emissions. Better COD and antibiotics removal performance was obtained in CW-MFC. Notably, both reactors can remove more than 90.00% of CIP. A decline in methane fluxes (by 15.29%) was also observed in CW-MFC compared with CW. The presence of Acorus tatarinowii had no obvious effect on antibiotics removal but the application of manganese ore substrate reduced methane emissions. Further study showed that Proteobacteria was enriched on the Mn substrate anode and the relative abundance of Methanothrix was declined. The results suggested that suppression of methanogenesis may be contributed to a low methane flux in CW-MFC. This study will facilitate the application of CW-MFC to treat antibiotics wastewater and control the ecological risks of greenhouse gas emissions.
Collapse
Affiliation(s)
- Han Xu
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China.
| | | | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, China.
| | - Jia-Ying Xu
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
43
|
Zhang X, Xia Y, Wang C, Li J, Wu P, Ma L, Wang Y, Wang Y, Da F, Liu W, Xu L. Enhancement of nitrite production via addition of hydroxylamine to partial denitrification (PD) biomass: Functional genes dynamics and enzymatic activities. BIORESOURCE TECHNOLOGY 2020; 318:124274. [PMID: 33096441 DOI: 10.1016/j.biortech.2020.124274] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the activity of partial denitrification (PD) biomass/key enzymes, functional gene expressions in response to 0 ~ 50 mg/L hydroxylamine (NH2OH) addition. Results indicated that NH2OH contributed to nitrite (NO2--N) production, facilitating the maximum increase of nitrate (NO3--N) to NO2--N transformation ratio to 80.47 ± 2.82%, leading to 2.56-fold NO2--N higher than those of control. The observed transient inhibitory effect on NO3--N reduction process was attributed by high-level NH2OH (35 ~ 50 mg/L). Enzymatic assays revealed the enhanced activity of both NO3--N and NO2--N reductase while the former showed obvious superiority which led to high NO2--N accumulation. These results were further confirmed by the corresponding functional genes (narG, napA, nirS and nirK). Besides, negative influence of NH2OH addition was limited to PD aggregates, due to the increasing secretion of extracellular polymeric substances (EPS) as well as proteins/polysaccharides ratios in tightly-bound structure of EPS.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Yunkang Xia
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Jiajia Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, China.
| | - Liping Ma
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuguang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Yao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Fanghua Da
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, China
| | - Lezhong Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou, China
| |
Collapse
|
44
|
Pang H, Wang L, He J, Zhang P, Yan Z, Ma Y, Nan J. Enhanced anaerobic fermentation of waste activated sludge by reverse osmosis brine and composition distribution in fermentative liquid. BIORESOURCE TECHNOLOGY 2020; 318:123953. [PMID: 32927314 DOI: 10.1016/j.biortech.2020.123953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
This study reported a "treating waste by waste" strategy to dispose waste activated sludge (WAS), i.e. reverse osmosis (RO) brine-enhanced anaerobic fermentation. RO brine was hazardous by-product from seawater desalination process, which contains numerous Na+. After 4-day RO brine-enhanced anaerobic fermentation at Na+ concentration of 0.33 mol/L, 5.0 g/L VSS reduction (37.9% of VSS) was achievable, leading to considerable soluble chemical oxygen demand (SCOD) release of 349.6 mg/g VSS. Acetic acid was predominant component in SCOD (31.1%), followed by propionic, butyric, valeric acids and proteins (14.0-17.6%). Sludge solubilization and SCOD composition in the enhanced anaerobic fermentation with RO brine and NaCl agent were similar, whereas less nutrient release and extracellular polymeric substance (EPS) disruption were achieved by RO brine, attributing to the Ca2+&Mg2+-caused skeleton strengthening on EPS matrix. Such RO brine-based strategy provided environmental and economic benefits, e.g. none chemical consumption, synchronous disposal of WAS and RO brine.
Collapse
Affiliation(s)
- Heliang Pang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Ling Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Junguo He
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Pengfei Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
45
|
Pang H, Xin X, He J, Cui B, Guo D, Liu S, Yan Z, Liu C, Wang X, Nan J. Effect of NaCl Concentration on Microbiological Properties in NaCl Assistant Anaerobic Fermentation: Hydrolase Activity and Microbial Community Distribution. Front Microbiol 2020; 11:589222. [PMID: 33162967 PMCID: PMC7581909 DOI: 10.3389/fmicb.2020.589222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 01/27/2023] Open
Abstract
Previous studies have demonstrated that sludge hydrolysis and short-chain fatty acids (SCFAs) production were improved through NaCl assistant anaerobic fermentation. However, the effect of NaCl concentrations on hydrolase activity and microbial community structure was rarely reported. In this study, it was found that α-glucosidase activity and some carbohydrate-degrading bacteria were inhibited in NaCl tests, owing to their vulnerability to high NaCl concentration. Correspondingly, the microbial community richness and diversity were reduced compared with the control test, while the evenness was not affected by NaCl concentration. By contrast, the protease activity was increased in the presence of NaCl and reached the highest activity at the NaCl concentration of 20 g/L. The protein-degrading and SCFAs-producing bacteria (e.g., Clostridium algidicarnis and Proteiniclasticum) were enriched in the presence of NaCl, which were salt-tolerant.
Collapse
Affiliation(s)
- Heliang Pang
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen, China
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Baihui Cui
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Dabin Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.,Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Shiming Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou, China
| | - Chong Liu
- Frog Biotechnology Co., LTD, Harbin, China
| | - Xinyu Wang
- School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jun Nan
- School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
46
|
Zhang S, Su J, Zheng Z, Yang S. Denitrification strategies of strain YSF15 in response to carbon scarcity: Based on organic nitrogen, soluble microbial products and extracellular polymeric substances. BIORESOURCE TECHNOLOGY 2020; 314:123733. [PMID: 32619805 DOI: 10.1016/j.biortech.2020.123733] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 05/06/2023]
Abstract
This paper aims to determine the denitrification strategies of strain YSF15 in carbon scarcity condition from novel view of organic nitrogen, soluble microbial products (SMP) and extracellular polymeric substances (EPS). The batch tests demonstrated that strain YSF15 could achieve complete denitrification at C/N of 3.0. The conversion ratio of nitrogen gas accounted for 89.03%, 85.29% and 82.95% among total nitrogen in C/N systems from 3.0 to 5.0, respectively, indicating denitrification instead of assimilation was the major contribution to nitrogen removal. C/N could affect composition and content of organic nitrogen, SMP and EPS. The biodegradability of EPS was better than SMP, whereas polysaccharide (PS) likely correlated with nitrogen removal, predating the protein (PN). These results implied high biodegradability of EPS and more electron donors for denitrification both improved denitrification capacity of strain YSF15, which revealed the potential contribution of bacterium with production of biodegradable SMP or EPS in biological treatment process.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
47
|
Wang W, Zhang Y, Li M, Wei X, Wang Y, Liu L, Wang H, Shen S. Operation mechanism of constructed wetland-microbial fuel cells for wastewater treatment and electricity generation: A review. BIORESOURCE TECHNOLOGY 2020; 314:123808. [PMID: 32713782 DOI: 10.1016/j.biortech.2020.123808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Constructed wetland-microbial fuel cells (CWL-MFCs) are eco-friendly and sustainable technology, simultaneously implementing contaminant removal and electricity production. According to intensive research over the last five years, this review on the operation mechanism was conducted for in-depth understanding and application guidance of CWL-MFCs. The electrochemical mechanism based on anodic oxidation and cathodic reduction is the core for improved treatment in CWL-MFCs compared to CWLs. As the dominant bacterial community, the abundance and gene-expression patterns of electro-active bacteria responds to electrode potentials and contaminant loadings, further affecting operational efficiency of CWL-MFCs. Plants benefit COD and N removal by supplying oxygen for aerobic degradation and rhizosphere secretions for microorganisms. Multi-electrode configuration, carbon-based electrodes and rich porous substrates affect transfer resistance and bacterial communities. The possibilities of CWL-MFCs targeting at recalcitrant contaminants like flame retardants and interchain interactions among effect components need systematic research.
Collapse
Affiliation(s)
- Wenjing Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, China
| | - Yu Zhang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, China
| | - Mengxiang Li
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, China
| | - Xiaogang Wei
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, China
| | - Yali Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, China
| | - Ling Liu
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, China
| | - Hongjie Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China; Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, China.
| | - Shigang Shen
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, China
| |
Collapse
|
48
|
Li H, Xu H, Song HL, Lu Y, Yang XL. Antibiotic resistance genes, bacterial communities, and functions in constructed wetland-microbial fuel cells: Responses to the co-stresses of antibiotics and zinc. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115084. [PMID: 32806463 DOI: 10.1016/j.envpol.2020.115084] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 05/12/2023]
Abstract
The effects of the continuous accumulation of Zinc (Zn) on the fate of antibiotic resistance genes (ARGs) in constructed wetland-microbial fuel cells (CW-MFCs) remain unclear. In this study, the impacts of Zn addition and a circuit mode on antibiotic removal, occurrence of ARGs, the bacterial community, and bacterial functions were investigated in three groups of CW-MFCs. The results showed that continuous Zn exposure enriched the target ARGs during the initial stage, while excessive Zn accumulation decreased antibiotic removal and the abundance of ARGs. A principal component analysis demonstrated that ARGs and the bacterial community distribution characteristics were significantly impacted by the mass accumulation of antibiotics and Zn, as well as the circuit mode. A redundancy analysis, partial least squares path modeling, and Procrustes analysis revealed that the accumulation of antibiotics and Zn, the composition of the bacterial community, the circuit mode, and the abundance of intI associated with horizontal gene transfer jointly contributed to the distributions of ARGs in the electrodes and effluent. Moreover, continuous exposure to Zn decreased the bacterial diversity and changed the composition and function of the bacterial community predicted using PICRUSt tool. The co-occurrence of ARGs, their potential hosts and bacterial functions were further revealed using a network analysis. A variation partition analysis also showed that the accumulation of target pollutants and the circuit mode had a significant impact on the bacterial community composition and functions. Therefore, the interaction among ARGs, the bacterial community, bacterial functions, and pollutant accumulations in the CW-MFC was complex. This study provides useful implications for the application of CW-MFCs for the treatment of wastewater contaminated with antibiotics and heavy metals.
Collapse
Affiliation(s)
- Hua Li
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Han Xu
- School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Yi Lu
- School of Environmental and Natural Resources, Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
49
|
Martinez-Guerra E, Ghimire U, Nandimandalam H, Norris A, Gude VG. Wetlands for environmental protection. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1677-1694. [PMID: 32744347 DOI: 10.1002/wer.1422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
This article presents an update on the research and practical demonstration of wetland-based treatment technologies for protecting water resources and environment covering papers published in 2019. Wetland applications in wastewater treatment, stormwater management, and removal of nutrients, metals, and emerging pollutants including pathogens are highlighted. A summary of studies focusing on the effects of vegetation, wetland design and operation strategies, and process configurations and modeling, for efficient treatment of various municipal and industrial wastewaters, is included. In addition, hybrid and innovative processes with wetlands as a platform treatment technology are presented.
Collapse
Affiliation(s)
- Edith Martinez-Guerra
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Umesh Ghimire
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Hariteja Nandimandalam
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Anna Norris
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| | - Veera Gnaneswar Gude
- Department of Civil and Environmental Engineering, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
50
|
Wang L, Pang Q, Zhou Y, Peng F, He F, Li W, Xu B, Cui Y, Zhu X. Robust nitrate removal and bioenergy generation with elucidating functional microorganisms under carbon constraint in a novel multianode tidal constructed wetland coupled with microbial fuel cell. BIORESOURCE TECHNOLOGY 2020; 314:123744. [PMID: 32615443 DOI: 10.1016/j.biortech.2020.123744] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
This study investigated synthetic wastewater treatment under low inflow C/N ratio and characterized NO3--N-transforming and electricity-producing bacteria in a multi-anode tidal constructed wetland-microbial fuel cell (TFCW-MFC). The optimal concurrent average removal rates of NH4+-N and NO3--N were 73% and 78%, respectively, under a flood/rest/flood time of 4 h/2h/4h in "tide" mode accompanied by one recirculation. The lowest NO3--N concentration among all anodes was observed when the electrode gap was 45 cm. Similarly, the 45 cm anode exhibited selective enrichment of Variovorax and Azoarcus. Correction analysis showed that the high relative abundance of Azoarcus was crucial in enhancing NO3--N removal, and the internal resistance significantly decreased as the relative abundance of Acidovorax increased. These results suggest that NO3--N removal and bioelectricity generation can be promoted in a TFCW-MFC with limited carbon by improving the culture conditions for specific genera.
Collapse
Affiliation(s)
- Longmian Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Qingqing Pang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Ying Zhou
- College of Environment, Hohai University, Nanjing 210098, PR China
| | - Fuquan Peng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Weixin Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Xiang Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| |
Collapse
|