1
|
Peng Y, Tian Y, Li Q, Li S, Shi X, Wang K, Fu L. Influence of Expansion Pretreatment on the Structure Evolution and Reaction Chemistry during Oxidative Pyrolysis of Tobacco Biomass. ACS OMEGA 2025; 10:18552-18560. [PMID: 40385187 PMCID: PMC12079588 DOI: 10.1021/acsomega.4c11162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
This study aimed to investigate the effects of expansion pretreatment on the chemical structure and reaction characteristics of tobacco pyrolysis. Systematic characterization of the pretreated feedstock was conducted to analyze changes in the physicochemical properties of the feedstock. The thermal conductivity and specific heat capacity of the tobacco decreased significantly after expansion pretreatment. Furthermore, the average pore diameter and pore volume of the feedstock increased, leading to a significant enlargement of the specific surface area from 0.18 to 0.46 m2/g, which consequently resulted in higher reaction rates. The pyrolysis characteristics and products of the pretreated feedstock were further investigated using thermogravimetric analysis (TGA), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), and pyrolysis-gas chromatography/mass spectrometry (py-GC/MS). The results showed that the presence of oxygen significantly altered the pyrolysis mechanism, resulting in increased mass loss at high temperatures and triggering the decomposition of high molecular weight polymers in the feedstock. The expansion process disrupted the inherent structure of the lignocellulosic fibers, leading to enhanced interactions between aromatic compounds and nitrogen-containing functional groups, which increased the yield of nitrogen-containing compounds.
Collapse
Affiliation(s)
- Yuhan Peng
- China
Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310008, China
| | - Yunong Tian
- China
Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310008, China
| | - Qingxiang Li
- China
Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310008, China
| | - Shitou Li
- China
Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310008, China
| | - Xiaopeng Shi
- State
Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kaige Wang
- State
Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Liao Fu
- China
Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310008, China
| |
Collapse
|
2
|
Bouramdane Y, Haddad M, Mazar A, Aît Lyazidi S, Oudghiri Hassani H, Boukir A. Aged Lignocellulose Fibers of Cedar Wood (9th and 12th Century): Structural Investigation Using FTIR-Deconvolution Spectroscopy, X-Ray Diffraction (XRD), Crystallinity Indices, and Morphological SEM Analyses. Polymers (Basel) 2024; 16:3334. [PMID: 39684079 DOI: 10.3390/polym16233334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The characterization of lignocellulosic biomass present in archaeological wood is crucial for understanding the degradation processes affecting wooden artifacts. The lignocellulosic fractions in both the external and internal parts of Moroccan archaeological cedar wood (9th, 12th, and 21st centuries) were characterized using infrared spectroscopy (FTIR-ATR deconvolution mode), X-ray diffraction (XRD), and SEM analysis. The XRD demonstrates a significant reduction in the crystallinity index of cellulose from recent to aging samples. This finding is corroborated by the FTIR analysis, which shows a significant reduction in the area profiles of the C-H crystalline cellulosic bands (1374, 1315, and 1265 cm-1) and C-O-C (1150-1000 cm-1). The alterations in the lignin fraction of aging samples (from the 9th and 12th centuries) were demonstrated by a reduction in the intensity of the bands at 1271 and 1232 cm-1 (Car-O) and the formation of new compounds, such as quinones and/or diaryl carbonyl structures, within the 1700-1550 cm-1 range. The SEM images of cedar wood samples from the 9th and 12th centuries reveal voids, indicating that the entire cell wall component has been removed, a characteristic feature of simultaneous white rot fungi. In addition, horizontal "scratches" were noted, indicating possible bacterial activity.
Collapse
Affiliation(s)
- Yousra Bouramdane
- Laboratory of Microbial Biotechnology and Bioactive Molecules LBM2B, Faculty of Sciences and Techniques of Fez, Sidi Mohammed Ben Abdellah University, B.P. 2202, Imouzar Road, Fez 30007, Morocco
| | - Mustapha Haddad
- Laboratory of Spectrometry of Materials and Archaeomaterials LASMAR, Faculty of Sciences, University Moulay Ismail, Meknes 50100, Morocco
| | - Adil Mazar
- Institut Africain de Recherche en Agriculture Durable (ASARI) Laâyoune, University Mohammed 6 Polytechnic UM6P, Ben Guerir 43150, Morocco
| | - Saadia Aît Lyazidi
- Laboratory of Spectrometry of Materials and Archaeomaterials LASMAR, Faculty of Sciences, University Moulay Ismail, Meknes 50100, Morocco
| | - Hicham Oudghiri Hassani
- Laboratory of Engineering, Organometallic, Molecular Materials and Environment (LIMOME), Faculty of Sciences, Sidi Mohammed Ben Abdellah University, Fes 30000, Morocco
| | - Abdellatif Boukir
- Laboratory of Microbial Biotechnology and Bioactive Molecules LBM2B, Faculty of Sciences and Techniques of Fez, Sidi Mohammed Ben Abdellah University, B.P. 2202, Imouzar Road, Fez 30007, Morocco
| |
Collapse
|
3
|
Ma C, Ni L, Sun M, Hu F, Guo Z, Zeng H, Sun W, Zhang M, Wu M, Zheng B. Enhancing the Hypolipidemic and Functional Properties of Flammulina velutipes Root Dietary Fiber via Steam Explosion. Foods 2024; 13:3621. [PMID: 39594038 PMCID: PMC11593700 DOI: 10.3390/foods13223621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Flammulina velutipes is an edible mushroom widely cultivated in China. As a by-product of Flammulina velutipes, the roots are rich in high-quality dietary fiber (DF). In order to obtain high-quality soluble dietary fiber (SDF), steam explosion (SE) is used as an effective modification method to improve the extraction rate and avoid the loss of active substances. Mounting evidence shows that SDF alleviates lipid metabolism disorders. However, it is not well understood how the influence of SDF with SE pretreatment could benefit lipid metabolism. In this study, we extracted a soluble dietary fiber from Flammulina velutipes root with an SE treatment, named SE-SDF, using enzymatic assisted extraction. The physicochemical and structural properties of the SE-SDF were investigated, and its hypolipidemic effects were also analyzed using oleic-acid-induced HepG2 cells. In addition, the anti-obesity and hypolipidemic effects of SE-SDF were investigated using a high-fat diet (HFD) mouse model. The results indicate that SE treatment (1.0 MPa, 105 s) increased the SDF content to 8.73 ± 0.23%. The SE-SDF was primarily composed of glucose, galactose, and mannose. In HFD-fed mice, SE-SDF significantly reduced weight gain and improved lipid profiles, while restoring liver function and reducing injury. This work provides an effective method for the processing of fungi waste and adds to its economic value. In future studies, the structural characteristics and the anti-obesity and gut microbiota regulation mechanisms of SE-SDF will be explored in depth, supporting its high-value utilization in healthcare products.
Collapse
Affiliation(s)
- Chao Ma
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.M.); (Z.G.); (H.Z.)
- Jinan Fruit Research Institute, All-China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China; (L.N.); (M.S.); (F.H.); (M.Z.)
| | - Liying Ni
- Jinan Fruit Research Institute, All-China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China; (L.N.); (M.S.); (F.H.); (M.Z.)
| | - Mengxue Sun
- Jinan Fruit Research Institute, All-China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China; (L.N.); (M.S.); (F.H.); (M.Z.)
| | - Fuxia Hu
- Jinan Fruit Research Institute, All-China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China; (L.N.); (M.S.); (F.H.); (M.Z.)
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.M.); (Z.G.); (H.Z.)
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.M.); (Z.G.); (H.Z.)
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
| | - Ming Zhang
- Jinan Fruit Research Institute, All-China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China; (L.N.); (M.S.); (F.H.); (M.Z.)
| | - Maoyu Wu
- Jinan Fruit Research Institute, All-China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China; (L.N.); (M.S.); (F.H.); (M.Z.)
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.M.); (Z.G.); (H.Z.)
| |
Collapse
|
4
|
Nicolescu A, Babotă M, Aranda Cañada E, Inês Dias M, Añibarro-Ortega M, Cornea-Cipcigan M, Tanase C, Radu Sisea C, Mocan A, Barros L, Crișan G. Association of enzymatic and optimized ultrasound-assisted aqueous extraction of flavonoid glycosides from dried Hippophae rhamnoides L. (Sea Buckthorn) berries. ULTRASONICS SONOCHEMISTRY 2024; 108:106955. [PMID: 38909597 PMCID: PMC11253688 DOI: 10.1016/j.ultsonch.2024.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
The main purpose of the present study was to determine the effect of associating an optimized ultrasound-assisted extraction (UAE) protocol with enzyme-assisted extraction (EAE) in aqueous media, using the dried berries of Hippophae rhamnoides L. (sea buckthorn) as plant material. A specialized software was used for the determination of potential optimal extraction parameters, leading to the development of four optimized extracts with different characteristics (UAE ± EAE). For these extracts, buffered or non-buffered solutions have been used, with the aim to determine the influence of adjustable pH on extractability. As enzymatic solution, a pectinase, cellulase, and hemicellulase mix (2:1:1) has been applied, acting as pre-treatment for the optimized protocol. The highest extractive yields have been identified for non-buffered extracts, and the E-UAE combination obtained extracts with the highest overall in vitro antioxidant activity. The HPLC-MSn analysis demonstrated a rich composition in different types of isorhamnetin-O-glycosides, as well as some quercetin-O-glycosides, showing a high recovery of specific flavonol-type polyphenolic species. Moreover, we have tentatively identified two flavanols (i.e., catechin and epigallocatechin) and one flavone derivative (i.e., luteolin).
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Mihai Babotă
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
| | | | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mihaiela Cornea-Cipcigan
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Corneliu Tanase
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
| | - Cristian Radu Sisea
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Andrei Mocan
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Gianina Crișan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania
| |
Collapse
|
5
|
van der Cruijsen K, Al Hassan M, van Erven G, Kollerie N, van Lent B, Dechesne A, Dolstra O, Paulo MJ, Trindade LM. Salt stress alters the cell wall components and structure in Miscanthus sinensis stems. PHYSIOLOGIA PLANTARUM 2024; 176:e14430. [PMID: 38981734 DOI: 10.1111/ppl.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Miscanthus is a perennial grass suitable for the production of lignocellulosic biomass on marginal lands. The effects of salt stress on Miscanthus cell wall composition and its consequences on biomass quality have nonetheless received relatively little attention. In this study, we investigated how exposure to moderate (100 mM NaCl) or severe (200 mM NaCl) saline growing conditions altered the composition of both primary and secondary cell wall components in the stems of 15 Miscanthus sinensis genotypes. The exposure to stress drastically impacted biomass yield and cell wall composition in terms of content and structural features. In general, the observed compositional changes were more pronounced under severe stress conditions and were more apparent in genotypes with a higher sensitivity towards stress. Besides a severely reduced cellulose content, salt stress led to increased pectin content, presumably in the form of highly branched rhamnogalacturonan type I. Although salt stress had a limited effect on the total lignin content, the acid-soluble lignin content was strongly increased in the most sensitive genotypes. This effect was also reflected in substantially altered lignin structures and led to a markedly reduced incorporation of syringyl subunits and p-coumaric acid moieties. Interestingly, plants that were allowed a recovery period after stress ultimately had a reduced lignin content compared to those continuously grown under control conditions. In addition, the salt stress-induced cell wall alterations contributed to an improved enzymatic saccharification efficiency.
Collapse
Affiliation(s)
| | - Mohamad Al Hassan
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Gijs van Erven
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Nicole Kollerie
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas van Lent
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Annemarie Dechesne
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Oene Dolstra
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Maria-João Paulo
- Biometris, Wageningen University & Research, Wageningen, The Netherlands
| | - Luisa M Trindade
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
6
|
Li T, Peng H, He B, Hu C, Zhang H, Li Y, Yang Y, Wang Y, Bakr MMA, Zhou M, Peng L, Kang H. Cellulose de-polymerization is selective for bioethanol refinery and multi-functional biochar assembly using brittle stalk of corn mutant. Int J Biol Macromol 2024; 264:130448. [PMID: 38428756 DOI: 10.1016/j.ijbiomac.2024.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
As lignocellulose recalcitrance principally restricts for a cost-effective conversion into biofuels and bioproducts, this study re-selected the brittle stalk of corn mutant by MuDR-transposon insertion, and detected much reduced cellulose polymerization and crystallinity. Using recyclable CaO chemical for biomass pretreatment, we determined a consistently enhanced enzymatic saccharification of pretreated corn brittle stalk for higher-yield bioethanol conversion. Furthermore, the enzyme-undigestible lignocellulose was treated with two-step thermal-chemical processes via FeCl2 catalysis and KOH activation to generate the biochar with significantly raised adsorption capacities with two industry dyes (methylene blue and Congo red). However, the desirable biochar was attained from one-step KOH treatment with the entire brittle stalk, which was characterized as the highly-porous nanocarbon that is of the largest specific surface area at 1697.34 m2/g and 2-fold higher dyes adsorption. Notably, this nanocarbon enabled to eliminate the most toxic compounds released from CaO pretreatment and enzymatic hydrolysis, and also showed much improved electrochemical performance with specific capacitance at 205 F/g. Hence, this work has raised a mechanism model to interpret how the recalcitrance-reduced lignocellulose is convertible for high-yield bioethanol and multiple-function biochar with high performance.
Collapse
Affiliation(s)
- Tianqi Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China
| | - Boyang He
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuiyun Hu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyi Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunong Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujing Yang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mahmoud M A Bakr
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt
| | - Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Heng Kang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Biomass & Bioenergy Research Centre, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Guo K. Changes in the Main Physicochemical Properties and Electrochemical Fingerprints in the Production of Sea Buckthorn Juice by Pectinase Treatment. Molecules 2024; 29:1035. [PMID: 38474547 DOI: 10.3390/molecules29051035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Enzymatic hydrolysis using pectinase is critical for producing high-yield and quality sea buckthorn juice. This study determined the optimal temperature, time, and enzyme dosage combinations to guide manufacturers. A temperature of 60 °C, hydrolysis time of 3 h, and 0.3% enzyme dosage gave 64.1% juice yield-25% higher than without enzymes. Furthermore, monitoring physicochemical properties reveals enzyme impacts on composition. Higher dosages increase soluble solids up to 15% and soluble fiber content by 35% through cell wall breakdown. However, excessive amounts over 0.3% decrease yields. Pectin concentration also declines dose-dependently, falling by 91% at 0.4%, improving juice stability but needing modulation to retain viscosity. Electrochemical fingerprinting successfully differentiates process conditions, offering a rapid quality control tool. Its potential for commercial inline use during enzymatic treatment requires exploration. Overall, connecting optimized parameters to measured effects provides actionable insights for manufacturers to boost yields, determine enzyme impacts on nutrition/functionality, and introduce novel process analytical technology. Further investigations of health properties using these conditions could expand sea buckthorn juice functionality.
Collapse
Affiliation(s)
- Kaihua Guo
- Department of Biology and Food Engineering, LyuLiang University, Lvliang 033000, China
| |
Collapse
|
8
|
Liu J, Wang S, Wang Z, Shen C, Liu D, Shen X, Weng L, He Y, Wang S, Wang J, Zhuang W, Cai Y, Xu J, Ying H. Pretreatment of Luzhou distiller's grains for feed protein production using crude enzymes produced by a synthetic microbial consortium. BIORESOURCE TECHNOLOGY 2023; 390:129852. [PMID: 37839649 DOI: 10.1016/j.biortech.2023.129852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Chinese distillers' grains (CDGs) have low fermentation efficiency due to the presence of lignocellulosic components, such as rice husk. In this study, a microbial consortium synthesized was used based on the "functional complementarity" principle to produce lignocellulolytic crude enzyme. The crude enzyme was used to hydrolyze CDGs. After enzymatic hydrolysis, lignocellulose was damaged to varying degrees and the crystallinity decreased. Subsequently, the feed protein was produced using yeast through two pathways. The results showed that the crude enzyme produced by the microbial consortium (comprising Trichoderma reesei, Aspergillus niger, and Penicillium) exhibited excellent enzymatic efficiency, yielding 27.88%, 19.64%, and 10.88% of reducing sugar, cellulose, and hemicellulose. The true protein content of CDGs increased by 53.49% and 48.35% through the first and second pathways, respectively. Notably, the second pathway demonstrated higher economic benefits to produce feed protein. This study provides a pathway for high-quality utilization of CDGs.
Collapse
Affiliation(s)
- Jixiang Liu
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | | | - Dong Liu
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | | | - Longfei Weng
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Yun He
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Simin Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Jiaxin Wang
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Wei Zhuang
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China.
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, 100 Ke Xue Dadao, Zhengzhou 450001, China
| | - Hanjie Ying
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
9
|
Hoang AT, Nguyen XP, Duong XQ, Ağbulut Ü, Len C, Nguyen PQP, Kchaou M, Chen WH. Steam explosion as sustainable biomass pretreatment technique for biofuel production: Characteristics and challenges. BIORESOURCE TECHNOLOGY 2023; 385:129398. [PMID: 37385558 DOI: 10.1016/j.biortech.2023.129398] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
The biorefining process of lignocellulosic biomass has recently emerged as one of the most profitable biofuel production options. However, pretreatment is required to improve the recalcitrant lignocellulose's enzymatic conversion efficiency. Among biomass pretreatment methods, the steam explosion is an eco-friendly, inexpensive, and effective approach to pretreating biomass, significantly promoting biofuel production efficiency and yield. This review paper critically presents the steam explosion's reaction mechanism and technological characteristics for lignocellulosic biomass pretreatment. Indeed, the principles of steam explosion technology for lignocellulosic biomass pretreatment were scrutinized. Moreover, the impacts of process factors on pretreatment efficiency and sugar recovery for the following biofuel production were also discussed in detail. Finally, the limitations and prospects of steam explosion pretreatment were mentioned. Generally, steam explosion technology applications could bring great potential in pretreating biomass, although deeper studies are needed to deploy this method on industrial scales.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Quang Duong
- Institute of Mechanical Engineering, Vietnam Maritime University, Haiphong, Viet Nam
| | - Ümit Ağbulut
- Department of Mechanical Engineering, Faculty of Engineering, Duzce University, 81620, Düzce, Türkiye
| | - Christophe Len
- PSL Research University, Chimie ParisTech, CNRS, Paris Cedex 05, France
| | - Phuoc Quy Phong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Mohamed Kchaou
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 1, Bisha, Saudi Arabia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
10
|
Wang C, Lin M, Yang Q, Fu C, Guo Z. The Principle of Steam Explosion Technology and Its Application in Food Processing By-Products. Foods 2023; 12:3307. [PMID: 37685239 PMCID: PMC10486971 DOI: 10.3390/foods12173307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Steam explosion technology is an emerging pretreatment method that has shown great promise for food processing due to its ability to efficiently destroy the natural barrier structure of materials. This narrative review summarizes the principle of steam explosion technology, its similarities and differences with traditional screw extrusion technology, and the factors that affect the technology. In addition, we reviewed the applications in food processing by-products in recent years. The results of the current study indicate that moderate steam explosion treatment can improve the quality and extraction rate of the target products. Finally, we provided an outlook on the development of steam explosion technology with a reference for a wider application of this technology in the food processing field.
Collapse
Affiliation(s)
- Changrong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Mengfan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Qingyu Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Chenying Fu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
11
|
Zhu J, Li F, Wang Z, Shi H, Wang X, Huang Y, Li S. Effect of Anaerobic Calcium Oxide Alkalization on the Carbohydrate Molecular Structures, Chemical Profiles, and Ruminal Degradability of Rape Straw. Animals (Basel) 2023; 13:2421. [PMID: 37570230 PMCID: PMC10417835 DOI: 10.3390/ani13152421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
To improve the utilization efficiency of rape straw, anaerobic calcium oxide (CaO) alkalization was conducted, and advanced molecular spectroscopy was applied, to detect the internal molecular structural changes. Rape straw was treated with different combinations of CaO (3%, 5%, and 7%) and moisture levels (50% and 60%) and stored under anaerobic conditions. We investigated the carbohydrate chemical constituents, the ruminal neutral detergent fiber (aNDF) and acid detergent fiber (ADF) degradation kinetics, and the carbohydrate molecular structural features. CaO-treated groups were higher (p < 0.05) for ash, Ca, non-fiber carbohydrate, soluble fiber, and the ruminal degradability of aNDF and ADF. In contrast, they were lower (p < 0.05) for the contents of aNDF, ADF, and indigestible fiber. With CaO levels rising from 3% to 7%, the content of aNDF and ADF linearly decreased (p < 0.05). CaO treatment and anaerobic storage changed the molecular characteristics, including structural parameters related to total carbohydrates (TC), cellulosic compounds (CEC), and structural carbohydrates (STC). Alterations in cellulosic compounds' spectral regions were highly correlated with the differences in carbohydrate chemical constituents and the ruminal digestibility of rape straw. In summary, CaO treatment and anaerobic storage altered the molecular structural parameters of carbohydrates, leading to an enhancement in the effective degradability (ED) of aNDF and ADF in rape straw. From the perspective of processing cost and effectiveness, 5% CaO + 60% moisture could be suggested as a recommended treatment combination.
Collapse
Affiliation(s)
- Jiayi Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Fucan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Zeling Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Haitao Shi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Xi Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Yanling Huang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Liu H, Ainiwan D, Liu Y, Dong X, Fan H, Sun T, Huang P, Zhang S, Wang D, Liu T, Zhang Y. Adsorption and controlled release performances of flavor compounds by rice bran insoluble dietary fiber improved through steam explosion method. Curr Res Food Sci 2023; 7:100550. [PMID: 37534307 PMCID: PMC10391727 DOI: 10.1016/j.crfs.2023.100550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023] Open
Abstract
In this study, steam explosion was employed as a modification process for rice bran insoluble dietary fiber (RBIDF) to improve the flavor adsorption and controlled release capacities of RBIDF. Results showed that the flavor adsorption ability of RBIDF was effectively improved due to the unfolding structure, increased specific surface area and pore volume and exposure of more functional groups after steam explosion treatment. The mechanism of the flavor adsorption behavior of modified RBIDF was preliminarily explored using adsorption kinetics and isotherms combined with SEM and DSC analysis. Results showed that the Langmuir isotherm model and pseudo-second-order kinetic model yielded the best fit to the adsorption data, indicating monolayer adsorption of flavor onto the modified RBIDF, and the adsorption was mainly driven by chemisorption process. The flavor release profile of modified RBIDF was investigated by HS-SPME/GC-MS and E-nose. After long-time storage, the flavor compounds were retained at a higher concentration in the modified RBIDF compared with the untreated RBIDF, indicating that the steam explosion treatment prolonged the retention time and enhanced the retention and controlled release capacities of RBIDF for flavor compounds. This study provides indications for potential applications of steam explosion-modified RBIDF as a novel flavor delivery system and functional ingredient.
Collapse
Affiliation(s)
- Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| | - Dilinuer Ainiwan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Yingxu Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| | - Xiaolan Dong
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| | - Tong Sun
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Key Laboratory of Technological Innovations for Grain Deep-processing and High-Efficiency Utilization of By-Products of Jilin Province, Changchun, 130118, China
| | - Pingyun Huang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Key Laboratory of Technological Innovations for Grain Deep-processing and High-Efficiency Utilization of By-Products of Jilin Province, Changchun, 130118, China
| | - Shanshan Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Key Laboratory of Technological Innovations for Grain Deep-processing and High-Efficiency Utilization of By-Products of Jilin Province, Changchun, 130118, China
| | - Dawei Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Yanrong Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| |
Collapse
|
13
|
Zhao ZM, Yu W, Huang C, Xue H, Li J, Zhang D, Li G. Steam explosion pretreatment enhancing enzymatic digestibility of overground tubers of tiger nut ( Cyperus esculentus L.). Front Nutr 2023; 9:1093277. [PMID: 36687667 PMCID: PMC9852858 DOI: 10.3389/fnut.2022.1093277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Tiger nut (TN) is recognized as a high potential plant which can grow in well-drained sandy or loamy soils and provide food nutrients. However, the overground tubers of TN remain unutilized currently, which limits the value-added utilization and large-area cultivation of this plant. Methods In the present study, the overground tubers of TN were subjected to enzymatic hydrolysis to produce fermentable sugars for biofuels production. Steam explosion (SE) was applied to modify the physical-chemical properties of the overground tubers of TN for enhancing its saccharification. Results and discussion Results showed that SE broke the linkages of hemicellulose and lignin in the TN substrates and increased cellulose content through removal of hemicellulose. Meanwhile, SE cleaved inner linkages within cellulose molecules, reducing the degree of polymerization by 32.13-77.84%. Cellulose accessibility was significantly improved after SE, which was revealed visibly by the confocal laser scanning microscopy imaging techniques. As a result, enzymatic digestibility of the overground tubers of TN was dramatically enhanced. The cellulose conversion of the SE treated TN substrates reached 38.18-63.97%, which was 2.5-4.2 times higher than that without a SE treatment. Conclusion Therefore, SE pretreatment promoted saccharification of the overground tubers of TN, which paves the way for value-added valorization of the TN plants.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China,Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wenqing Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Caitong Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Juan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Dejian Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China,Dejian Zhang ✉
| | - Guanhua Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China,*Correspondence: Guanhua Li ✉
| |
Collapse
|
14
|
Andrade Cruz I, Andrade LRS, Jesus AAD, Vasconcelos BRD, Bharagava RN, Bilal M, Figueiredo RT, Souza RLD, Romanholo Ferreira LF. Potential of eggshell waste derived calcium for sustainable production of biogas from cassava wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:116000. [PMID: 35987054 DOI: 10.1016/j.jenvman.2022.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Cassava is a staple crop that plays a significant role in the food security of many countries. However, its processing produces a liquid by-product known as cassava wastewater (CW), which can have adverse environmental consequences if discarded without treatment. Despite its cyanide content, CW has a high organic content and may be profitable when used to produce biogas. In this study, the influence of calcium particles from eggshell residues was investigated on the anaerobic digestion of CW. Moreover, the performance of the bioreactor was remotely monitored. Calcium particles from milled-calcined chicken eggshells were added to the bioreactor, and biogas production was investigated for 21 days. Adding 1 g/L and 3 g/L of calcium particles increased biogas (Bio H2 + Bio CH4) production by 195% and 338%, respectively. Finally, the requirement for digestate post-treatment before use in agriculture was observed after assessing its phytotoxicity through the germination and root growth of L. sativa seeds.
Collapse
Affiliation(s)
- Ianny Andrade Cruz
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Biomass Technology Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, J1K 2R1, Québec, Canada.
| | - Larissa Renata Santos Andrade
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Biomass Technology Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, J1K 2R1, Québec, Canada
| | | | - Bruna Rego de Vasconcelos
- Biomass Technology Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, J1K 2R1, Québec, Canada
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Renan Tavares Figueiredo
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Waste and Effluent Treatment Laboratory, Institute of Technology and Research, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Ranyere Lucena de Souza
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Waste and Effluent Treatment Laboratory, Institute of Technology and Research, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Waste and Effluent Treatment Laboratory, Institute of Technology and Research, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil.
| |
Collapse
|
15
|
He L, Huang Y, Shi L, Zhou Z, Wu H. Steam explosion processing intensifies the nutritional values of most crop byproducts: Morphological structure, carbohydrate-protein fractions, and rumen fermentation profile. Front Nutr 2022; 9:979609. [DOI: 10.3389/fnut.2022.979609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate the feasibility of steam explosion on the exploitation of ruminant feedstuff, the morphological structure, carbohydrate-protein fractions, and rumen fermentation profile of five typical crop byproducts (corn cob, rice straw, peanut shell, millet stalk, and sugarcane tip) were analyzed before and after steam explosion processing. The results showed that these crop byproducts had different physicochemical properties and rumen fermentation profiles, most of which could be improved by steam explosion processing, i.e., more rough morphological surface, much-broken structure, more digestible carbohydrate fraction (non-NDF +49.92–452.24%), faster gas production rate (c +9.72–68.75%), higher dry matter digestibility (DMD48 +11.38–47.36%), more available energy (ME −3.69–+42.13%, except for peanut shell), along with more unavailable protein fraction (ADICP +27.16–102.70%). It is suggested that steam explosion processing could intensify the feeding value of most crop byproducts for ruminants, but with a caution of heat damage to proteins.
Collapse
|
16
|
Pérez‐Ramírez EE, Ramos‐Galicia L, de la Luz‐Asunción M, Saucedo‐Rivalcoba V, Martínez‐Hernández AL, Rubio‐Rosas E, Velasco‐Santos C. A Green and Easy Large Scale Method for Obtaining Graphene Nanoplatelets by Steam Explosion and Ultrasonic Exfoliation. ChemistrySelect 2022. [DOI: 10.1002/slct.202202425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eduardo E. Pérez‐Ramírez
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| | - Lourdes Ramos‐Galicia
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| | - Miguel de la Luz‐Asunción
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| | - Verónica Saucedo‐Rivalcoba
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México – Instituto Tecnológico Superior de Tierra Blanca Av. Veracruz s/n Esq. Calle Héroes de Puebla 95180 Tierra Blanca Veracruz México
| | - Ana L. Martínez‐Hernández
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| | - Efraín Rubio‐Rosas
- Centro Universitario de Vinculación y Transferencia de Tecnología Benemérita Universidad Autónoma de Puebla Prolongación 24 sur S/N CU San Manuel, C.P. 72570 Puebla México
| | - Carlos Velasco‐Santos
- División de Estudios de Posgrado e Investigación Tecnológico Nacional de México Campus Querétaro Av. Tecnológico s/n Esq. Gral. Mariano Escobedo Col. Centro Histórico, C.P. 76000 Santiago de Querétaro México
| |
Collapse
|
17
|
Ma Y, Chen X, Zahoor Khan M, Xiao J, Liu S, Wang J, Alugongo GM, Cao Z. Biodegradation and hydrolysis of rice straw with corn steep liquor and urea-alkali pretreatment. Front Nutr 2022; 9:989239. [PMID: 35990351 PMCID: PMC9387106 DOI: 10.3389/fnut.2022.989239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
The current study evaluated the corn steep liquor (CSL) and urea-alkali pretreatment effect to enhance biodegradation and hydrolysis of rice straw (RS) by ruminal microbiome. The first used RS (1) without (Con) or with additives of (2) 4% CaO (Ca), (3) 2.5% urea plus 4% CaO (UCa) and (4) 9% corn steep liquor + 2.5% urea + 4% CaO (CUCa), and then the efficacy of CSL plus urea-alkali pretreatment was evaluated both in vitro and in vivo. The Scanning electron microscopy, X-ray diffraction analysis, cellulose degree of polymerization and Fourier-transform infrared spectroscopy, respectively, results showed that Ca, UCa, and CUCa pretreatment altered the physical and chemical structure of RS. CSL plus Urea-alkali pretreated enhanced microbial colonization by improving the enzymolysis efficiency of RS, and specially induced adhesion of Carnobacterium and Staphylococcus. The CUCa pretreatment could be developed to improve RS nutritional value as forage for ruminants, or as feedstock for biofuel production.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Ma Y, Chen X, Khan MZ, Xiao J, Alugongo GM, Liu S, Wang J, Cao Z. Effect of the Combining Corn Steep Liquor and Urea Pre-treatment on Biodegradation and Hydrolysis of Rice Straw. Front Microbiol 2022; 13:916195. [PMID: 35910632 PMCID: PMC9326473 DOI: 10.3389/fmicb.2022.916195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
A novel pre-treatment using corn steep liquor (CSL) and urea was developed to enhance the enzymatic saccharification and degradability of rice straw (RS). We used RS (1) without (Con) or with additives of (2) 5% urea (U), (3) 9% CSL and 2.5% urea (CU), and (4) 9% CSL and 5% urea (C5U). The result showed that the water-soluble carbohydrate (WSC) conversion of RS reached 69.32% after C5U pre-treatment. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction analysis (XRD) confirmed that the surface of pre-treated RS exposed more cellulose and hemicellulose due to the disruption of the resistant structure of lignocellulose. Pre-treated RS significantly decreased neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents and increased crude protein (CP) content, microbial colonization, and induction of Carnobacterium and Staphylococcus attachment. Altogether, we concluded that pre-treatment of a combination of CSL and urea has the potential to improve the nutritive value of RS.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhijun Cao
| |
Collapse
|
19
|
Physicochemical and structural properties of dietary fiber from Rosa roxburghii pomace by steam explosion. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2381-2391. [PMID: 35602434 DOI: 10.1007/s13197-021-05254-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 01/18/2023]
Abstract
Rosa roxburghii pomace was treated by steam explosion (SE) at 0.87 MPa for 97 s. After SE treatment, the Insoluble dietary fiber (IDF) content of Rosa roxburghii pomace decreased from 45.13 ± 0.23 to 30.01 ± 0.15%, and the soluble dietary fiber (SDF) content increased from 9.31 ± 0.07 to 15.82 ± 0.31%. The structure of IDF and SDF after SE showed that the original compact structures were destroyed, and the specific surface areas increased. Thermal analysis showed that the thermal stability of the modified SDF was improved. However, SE did not change the crystal structure and functional group composition of IDF and SDF. Physicochemical analysis indicated that IDF had better hydration capacity after SE treatment, and the oil-holding capacities of IDF and SDF were also significantly improved. SE is an effective method to improve the utilization of Rosa roxburghii pomace and a feasible method for modification of dietary fiber.
Collapse
|
20
|
Zhou J, Ping R, Wu H, Liu H, Wang X, Ren A, Tian S, Ma Y. Recycling of neomycin fermentation residue using SEA-CBS technology: Growth performance and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150860. [PMID: 34626630 DOI: 10.1016/j.scitotenv.2021.150860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic fermentation residue (AFR) is a form of bioavailable matter, that represents a typical category of hazardous waste associated with drug production in China. The disposal of these residues seriously restricts the sustainable development of the pharmaceutical industry. In this study, the steam explosion and aerobic composting (SEA-CBS) system was developed to thoroughly convert neomycin fermentation residue to organic fertilizer. The results implied that the ultimate removal rate of antibiotics was as high as 99.9% in all cases, including macrolide (kitasamycin and spiramycin), lincosamide (lincomycin), and beta-lactam (cephalosporin and penicillin) antibiotic biowastes. Pot experiments were also conducted to study the attenuation rule of antibiotic residues in the soil, and the distribution of antibiotic resistant genes from trace antibiotics. The produced fertilizer presented the better performance on mustard growth than conventional fertilizers. The average plant height and biomass were increased by 14.33%-55.83% and 136.71%-326.83%, respectively, after SEA-CBS pretreatment. Moreover, neomycin was the primary selective pressure, and six antibiotic resistance genes (ARGs) correlated with neomycin were screened. The acc(6')ib gene was identified as the target ARGs, the main resistance mechanism was antibiotic inactivation, and the absolute and relative abundances were 1.06 × 105 ± 3.80 × 104 copies/g and 6.23 × 10-4 ± 1.75 × 10-4 copies/16 s in the NFR-amended soils. The microbial community analysis showed that the variation of the soil microbial community was not dominated by neomycin fermentation residue (NFR) at initial concentrations below 0.42 μg/kg soil. This work demonstrated that the SEA-CBS system not only functioned as an efficient technology for concurrent neomycin sulfate removal and NFR composting, but also applied to a wide range of other antibiotic bio-wastes, which may benefit the recycling of AFR, as well as the data provide a theoretical basis for future agricultural utilization and safe evaluation.
Collapse
Affiliation(s)
- Jieya Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050080, China
| | - Ran Ping
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050080, China
| | - Hao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuming Wang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - AiLing Ren
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050080, China
| | - Shulei Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yingqun Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China.
| |
Collapse
|
21
|
Uthirakrishnan U, Godvin Sharmila V, Merrylin J, Adish Kumar S, Dharmadhas JS, Varjani S, Rajesh Banu J. Current advances and future outlook on pretreatment techniques to enhance biosolids disintegration and anaerobic digestion: A critical review. CHEMOSPHERE 2022; 288:132553. [PMID: 34653493 DOI: 10.1016/j.chemosphere.2021.132553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Waste activated sludge (biosolids) treatment is intensely a major problem around the globe. Anaerobic treatment is indeed a fundamental and most popular approach to convert organic wastes into bioenergy, which could be used as a carbon-neutral renewable and clean energy thus eradicating pathogens and eliminating odor. Due to the sheer intricate biosolid matrix (such as exopolymeric substances) and rigid cell structure, hydrolysis becomes a rate-limiting phase. Numerous different pretreatment strategies were proposed to hasten this rate-limiting hydrolysis and enhance the productivity of anaerobic digestion. This study discusses an overview of previous scientific advances in pretreatment options for enhancing biogas production. In addition, the limitations addressed along with the effects of inhibitors in biosolids towards biogas production and strategies to overcome discussed. This review elaborated the cost analysis of various pretreatment methods towards the scale-up process. This review abridges the existing research on augmenting AD efficacy by recognizing the associated knowledge gaps and suggesting future research.
Collapse
Affiliation(s)
- Ushani Uthirakrishnan
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Chinnakolambakkam, Chengalpattu, 603308, Tamil Nadu, India
| | - V Godvin Sharmila
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamil Nadu, India
| | - J Merrylin
- Department of Food Science and Nutrition, Sarah Tucker College, Tirunelveli, 627002, Tamil Nadu, India
| | - S Adish Kumar
- Department of Civil Engineering, University V.O.C College of Engineering, Anna University Thoothukudi Campus, Tamil Nadu, India
| | - Jeba Sweetly Dharmadhas
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641-021, Tamil Nadu, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, 610005, India.
| |
Collapse
|
22
|
He L, Li S, Wang C, Chen X, Zhang Q. Effects of Vanillic Acid on Dynamic Fermentation Parameter, Nitrogen Distribution, Bacterial Community, and Enzymatic Hydrolysis of Stylo Silage. Front Microbiol 2021; 12:690801. [PMID: 34512568 PMCID: PMC8424185 DOI: 10.3389/fmicb.2021.690801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Vanillic acid (VA) is a phenolic acid derivative commonly found in plants and foods, with a pleasant creamy odor and pharmacologic activities, which is hypothesized to help improve silage fermentation. The silage profile of stylo silage ensiled with addition of VA was evaluated. The results showed that VA addition resulted in the decrease of pH value (5.22 vs. 4.33), dry matter loss (5.37 vs. 2.51% DM), and ammonia-N proportion (14.57 vs. 1.51% CP) of stylo silage as well as the increase of lactic acid concentration (0.51 vs. 1.17% DM), true protein proportion (51.18 vs. 58.47% CP), and saccharification yield (113.64 vs. 126.40 mg/g DM). Meanwhile, bacterial community of stylo silage was altered, where the relative abundance of Enterobacter, Clostridium, and Kosakonia decreased and that of Commensalibacter and Methylobacterium increased. In conclusion, it is suggested that VA could be used as a novel silage additive to improve silage fermentation and nutrient preservation of stylo silage.
Collapse
Affiliation(s)
- Liwen He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Sen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cheng Wang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Use of Machine Learning Methods for Predicting Amount of Bioethanol Obtained from Lignocellulosic Biomass with the Use of Ionic Liquids for Pretreatment. ENERGIES 2021. [DOI: 10.3390/en14010243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The study objective was to model and predict the bioethanol production process from lignocellulosic biomass based on an example of empirical study results. Two types of algorithms were used in machine learning: artificial neural network (ANN) and random forest algorithm (RF). Data for the model included results of studying bioethanol production with the use of ionic liquids (ILs) and different enzymatic preparations from the following biomass types: buckwheat straw and biomass from four wastelands, including a mixture of various plants: stems of giant miscanthus, common nettle, goldenrod, common broom, fireweed, and hay (a mix of grasses). The input variables consisted of different ionic liquids (imidazolium and ammonium), enzymatic preparations, enzyme doses, time and temperature of pretreatment, and type of yeast for alcoholic fermentation. The output value was the bioethanol concentration. The multilayer perceptron (MLP) was used in the artificial neural networks. Two model types were created; the training dataset comprised 120 vectors (14 elements for Model 1 and 11 elements for Model 2). Assessment of the optimum random forest was carried out using the same division of experimental points (two random datasets, containing 2/3 for training and 1/3 for testing) and the same criteria used for the artificial neural network models. Data for mugwort and hemp were used for validation. In both models, the coefficient of determination for neural networks was <0.9, while for RF it oscillated around 0.95. Considering the fairly large spread of the determination coefficient, two hybrid models were generated. The use of the hybrid approach in creating models describing the present bioethanol production process resulted in an increase in the fit of the model to R2 = 0.961. The hybrid model can be used for the initial classification of plants without the necessity to perform lengthy and expensive research related to IL-based pretreatment and further hydrolysis; only their lignocellulosic composition results are needed.
Collapse
|
24
|
Zhao J, Tao X, Li J, Jia Y, Shao T. Enhancement of biomass conservation and enzymatic hydrolysis of rice straw by dilute acid-assisted ensiling pretreatment. BIORESOURCE TECHNOLOGY 2021; 320:124341. [PMID: 33217694 DOI: 10.1016/j.biortech.2020.124341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
To reduce the cost of lignocellulosic pretreatment, rice straw was ensiled with dilute formic acid (FA, 0, 0.2, 0.4, and 0.6%) for 3, 6, 9, 15 and 30 days, and evaluated its effects on fermentation dynamics, lignocellulosic degradation and enzymatic hydrolysis. The results showed that the application of FA, especially at 0.6% level, reduced total fermentation losses of the resulting silages, as evidenced by low dry matter loss, ammonia nitrogen and ethanol content. Meanwhile, the 0.6% FA application promoted hemicellulose removal (232.41 vs 187.52 g/kg DM) and xylose production (0.35 vs 2.80 g/kg DM). The glucose yield and cellulose convertibility of rice straw increased after 30 days of ensiling, and further enhanced by the 0.6% FA application. In conclusion, the 0.6% FA-assisted ensiling pretreatment improved both biomass preservation, hemicellulose removal and enzymatic hydrolysis of rice straw, which is beneficial to the subsequent biofuel production chain.
Collapse
Affiliation(s)
- Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuxiong Tao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
Acid soaking followed by steam flash-explosion pretreatment to enhance saccharification of rice husk for poly(3-hydroxybutyrate) production. Int J Biol Macromol 2020; 160:446-455. [DOI: 10.1016/j.ijbiomac.2020.05.218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 01/22/2023]
|
26
|
Novel Single-step Pretreatment of Steam Explosion and Choline Chloride to De-lignify Corn Stover for Enhancing Enzymatic Edibility. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
He L, Lv H, Wang C, Zhou W, Pian R, Zhang Q, Chen X. Dynamics of fermentation quality, physiochemical property and enzymatic hydrolysis of high-moisture corn stover ensiled with sulfuric acid or sodium hydroxide. BIORESOURCE TECHNOLOGY 2020; 298:122510. [PMID: 31837582 DOI: 10.1016/j.biortech.2019.122510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
A better understanding of biomass usability during storage would offer basis for management decisions in production. High-moisture corn stover was ensiled with sulfuric acid (H2SO4, 0.3% and 0.6%) or sodium hydroxide (NaOH, 0.5% and 1.0%) and ensiling characteristics, lignocellulosic profile and enzymatic saccharification were investigated on day 3, 7, 15, 30 and 60 of ensiling. The results showed that 0.6% H2SO4 reduced dry matter loss (9.81% to 6.34%) and ammonia-N content (3.89 to 1.04 g/kg DM) during ensiling, whereas it was converse for NaOH treatment (19.89%, 5.74 g/kg DM). Hemicellulose was reduced (27.98% to 22.61%, 16.81% DM) by 0.6% H2SO4 or 1.0% NaOH. Saccharification yield was decreased (306 to 229 mg/g DM) during ensiling, which was improved (229 to 356, 277 mg/g DM) by H2SO4 and NaOH treatments. This study suggests that ensiling with addition of 0.6% H2SO4 could improve nutrient preservation and saccharification yield of high-moisture corn stover.
Collapse
Affiliation(s)
- Liwen He
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Hongjian Lv
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Cheng Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Ruiqi Pian
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China.
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Research and Development Centre of Modern Agriculture (Woody Forage) Industrial Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
28
|
He L, Chen N, Lv H, Wang C, Zhou W, Zhang Q, Chen X. Ensiling characteristics, physicochemical structure and enzymatic hydrolysis of steam-exploded hippophae: Effects of calcium oxide, cellulase and Tween. BIORESOURCE TECHNOLOGY 2020; 295:122268. [PMID: 31675519 DOI: 10.1016/j.biortech.2019.122268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
To find a comprehensive way to enhance the utilizability of steam-exploded hippophae, calcium oxide (CaO) preimpregnation, cellulase-added storage and saccharification with addition of Tween 20 were investigated in this study. Both CaO preimpregnation and cellulase addition promoted the ensiling fermentation of anaerobically stored steam-exploded hippophae indicated by lower cellulose proportion and higher organic acids content, but led to the decrease of saccharification yield by 11.83% and 46.77-51.22%, respectively. When taking into account of organic acids being utilizable energy source, storing with addition of cellulase enhanced the utilizability of the materials in whole. Moreover, the addition of Tween 20 enhanced saccharification yield of the steam-exploded hippophae by 26.69-45.25%. Additionally, FTIR and XRD spectra clearly illustrated the structural alteration during storage. It is concluded that storing with addition of cellulase and hydrolyzing with addition of Tween 20 can enhance the utilizability of steam-exploded hippophae.
Collapse
Affiliation(s)
- Liwen He
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Na Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongjian Lv
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|