1
|
Bao Y, Feng S, Yu F, Ye W, Xing H, Zhu X, Bao W, Huang M. Self-Regulating pH Pyrite-Construction waste Biofilter: Denitrification Performance, Metabolic Pathways, and Clogging Alleviation. BIORESOURCE TECHNOLOGY 2025; 429:132500. [PMID: 40204030 DOI: 10.1016/j.biortech.2025.132500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Waste-based denitrification filters face challenges like alkalinity accumulation, low efficiency, and clogging. This study proposes a novel denitrification filter using construction waste and pyrite (WPDF) to address these issues. WPDF's performance, safety, and mechanisms were evaluated by measuring effluent, filler characteristics and metagenomics. Results demonstrated a high total nitrogen removal load (88.65 g N m-3d-1) with minimal biofilm (13 %) and filler accumulation (39 %), effectively mitigating clogging. Phosphorus removal relied on chemical precipitation in construction waste. WPDF was pH self-regulating and promoted the formation and release of fulvic acid. Pyrite promotes bio-metabolism, making WPDF enriched in energy metabolism (6 %) and transporter capacity (6 %). Functional prediction indicated that WPDF was more abundant in genes related to denitrification, glycolysis, and electron transport, which promoted the heterotrophic denitrification process. This study provides a novel, efficient, and eco-friendly possible solution for wastewater and offers new insights into the molecular mechanisms of carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Yinzhou Bao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Suhao Feng
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fan Yu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenpei Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Xing
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiao Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Weibin Bao
- Nantong Huaxin Environmental Protection Technology Co., Nantong 226000, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
2
|
Yin XY, Bonku EM, Yuan JF, Yang ZH. A Novel Nitrite Reductase from Acinetobacter haemolyticus for Efficient Degradation of Nitrite. Biomolecules 2025; 15:63. [PMID: 39858457 PMCID: PMC11764342 DOI: 10.3390/biom15010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Nitrite reductases play a crucial role in the nitrogen cycle, demonstrating significant potential for applications in the food industry and environmental remediation, particularly for nitrite degradation and detection. In this study, we identified a novel nitrite reductase (AhNiR) from a newly isolated denitrifying bacterium, Acinetobacter haemolyticus YD01. We constructed a heterologous expression system using E. coli BL21/pET28a-AhNir, which exhibited remarkable nitrite reductase enzyme activity of 29 U/mL in the culture broth, substantially higher than that reported for other strains. Structural analysis of AhNiR revealed the presence of [Fe-S] clusters, with molecular docking studies identifying Tyr-282 and Ala-289 as key catalytic sites. The enzymatic properties of AhNiR demonstrated an optimal pH of 7.5 and an optimal catalytic temperature of 30 °C. Its kinetic parameters, Km and vmax, were 1.53 mmol/L and 10.18 mmol/min, respectively, fitting with the Michaelis-Menten equation. This study represents the first report of a nitrite reductase from a denitrifying bacterium, providing a new enzyme source for nitrite degradation applications in the food industry and environmental remediation, as well as for biosensing technologies aimed at nitrite detection.
Collapse
Affiliation(s)
- Xiao-Yan Yin
- Xingzhi College, Zhejiang Normal University, Jinhua 321100, China; (X.-Y.Y.); (J.-F.Y.)
| | - Emmanuel Mintah Bonku
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Jian-Feng Yuan
- Xingzhi College, Zhejiang Normal University, Jinhua 321100, China; (X.-Y.Y.); (J.-F.Y.)
| | - Zhong-Hua Yang
- Xingzhi College, Zhejiang Normal University, Jinhua 321100, China; (X.-Y.Y.); (J.-F.Y.)
| |
Collapse
|
3
|
Qi S, Xu L, Su J, Li T, Wei H, Li X. Fe 3+/Fe 2+ cycling drove novel ammonia oxidation and simultaneously removed lead, cadmium, and copper. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136124. [PMID: 39405709 DOI: 10.1016/j.jhazmat.2024.136124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
The discharge of several pollutants, such as ammonia (NH4+-N), nitrate (NO3--N), and heavy metals, from aquaculture wastewater into the aquatic environment can cause severe pollution issues. In this work, microbial techniques were employed to enable concurrent elimination of NH4+-N and NO3--N by Fe3+/Fe2+ cycling. The greatest NH4+-N and NO3--N removal efficiencies of 96.1 % and 97.6 % were gained by Aquabacterium sp. XL4 at NH4+/NO3- ratio of 1:1, carbon to nitrogen ratio of 4.0, pH of 6.5, and Fe3+ dosage of 20.0 mg L-1. Inhibitor and nitrogen balance assays suggested that nitrogen removal process of strain XL4 was a coupled function of anaerobic ammonia oxidation, ferric reduction driven ammonia oxidation, and iron-based denitrification. Furthermore, under the compound influence of strain XL4 metabolic processes and microbial iron oxide adsorption, the removal efficiencies of Pb2+, Cd2+, and Cu2+ reached above 90 %. This work contributes to theoretical grounding for microbial removal of multiple pollutants.
Collapse
Affiliation(s)
- Shangzhe Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tianmeng Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
4
|
Wu T, Li J, Cao R, Chen X, Wang B, Huang T, Wen G. Nitrate removal by a novel aerobic denitrifying Pelomonas puraquae WJ1 in oligotrophic condition: Performance and carbon source metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176614. [PMID: 39357767 DOI: 10.1016/j.scitotenv.2024.176614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Reducing nitrate contamination in drinking water has become a critical issue in urban water resource management. Here a novel oligotrophic aerobic denitrifying bacterium, Pelomonas puraquae WJ1, was isolated and purified from artificial lake sediments. For the first time, excellent aerobic denitrification capabilities were demonstrated. At a carbon-to‑nitrogen ratio of 5.0, strain WJ1 achieved 100.0 % nitrate removal and 84.92 % total nitrogen removal within 24 h, with no nitrite accumulation. PCR amplification and sequencing confirmed the presence of the denitrification genes napA, nirS, and nosZ in the strain. The nitrogen balance demonstrated that approximately 74.95 % of the initial nitrogen was eliminated as gaseous products under aerobic conditions. Furthermore, carbon balance analysis showed that most electron donors from strain WJ1 were directed towards oxygen, with limited availability for nitrate reduction. A combination of bio-ECO analysis and network modeling indicated that strain WJ1 has robust metabolic capabilities for diverse carbon sources and exhibits high adaptability to complex carbon environments. Overall, Pelomonas puraquae WJ1 removed approximately 45.89 % of the nitrates in raw water, demonstrating significant potential for practical applications in oligotrophic denitrification.
Collapse
Affiliation(s)
- Tianhua Wu
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiaxin Li
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruihua Cao
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaojie Chen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Baoshan Wang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
5
|
Kou L, Huang T, Zhang H, Wen G, Li K. Aerobic denitrifying bacterial community with low C/N ratio remove nitrate from micro-polluted water: Metagenomics unravels denitrification pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175457. [PMID: 39137850 DOI: 10.1016/j.scitotenv.2024.175457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
The efficient nitrogen removal from micro-polluted source water is an international challenge to be solved urgently. However, the inner denitrification mechanism of native aerobic denitrifying bacterial communities in response to carbon scarcity remains relatively unclear. Here, the bacterial community XT6, screened from an oligotrophic reservoir, exhibited aerobic denitrifying capacity under low-carbon environments. Up to 76.79-81.64 % of total organic carbon (TOC) and 51.48-67.60 % of NO3--N were removed by XT6 within 48 h at C/N ratios of 2.0-3.0. Additionally, the nitrogen balance experiments further manifested that 26.27-38.13 % of NO3--N was lost in gaseous form. As the C/N ratio decreased, XT6 tended to generate more extracellular polymeric substances (EPS), with the tightly bound EPS showing the largest increase. Pseudomonas and Variovorax were quite abundant in XT6, constituting 59.69 % and 28.65 % of the total sequences, respectively. Furthermore, metagenomics analysis evidenced that XT6 removed TOC and nitrate mainly through the tricarboxylic acid cycle and aerobic denitrification. Overall, the abovementioned results provide a deeper understanding of the nitrogen metabolic pathways of indigenous aerobic denitrifying bacterial communities with low C/N ratios and offer useful guidance for controlling nitrogen pollution in oligotrophic ecosystems.
Collapse
Affiliation(s)
- Liqing Kou
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| | - Haihan Zhang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Kai Li
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| |
Collapse
|
6
|
Wang X, Li X, Su J, Li X, Zhang Q. Multiple effects of microbially induced calcium precipitation on bacteria under different molar volumes of organic pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122591. [PMID: 39299110 DOI: 10.1016/j.jenvman.2024.122591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Microbially induced calcium precipitation (MICP) has been extensively discussed as a water treatment method. However, the impact of MICP on the selective adsorption of different organic contaminants in industrial wastewater and the metabolism and growth of bacteria has not been elucidated in detail. In this study, by comparing the differences in the metabolism and removal of bacteria by phenol, bisphenol A (BPA), and tetracycline (TC), it was found that bioprecipitates had significant differences in the adsorption capacity of organic pollutants with different molar volumes. Concurrently, bacteria produced more extracellular polymeric substances (EPS) under the influence of organic pollutants, and the self-protection mechanism of bacteria would reduce the amount of gaseous nitrogen. However, the points on the surface of EPS promoted the process of MICP, and MICP encapsulated bacteria to form precipitates to regulate bacteria in water and further improve the removal of carbon and nitrogen in water through biomineralization. This experiment provides new insights into the selective adsorption of bioprecipitates and its multiple effects on bacteria.
Collapse
Affiliation(s)
- Xinjie Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xue Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qingli Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
7
|
Wei H, Xu L, Su J, Liu S, Zhou Z, Li X. Simultaneous removal of nitrogen, phosphorus, and organic matter from oligotrophic water in a system containing biochar and construction waste iron: Performances and biotic community analysis. ENVIRONMENTAL RESEARCH 2024; 255:119187. [PMID: 38777295 DOI: 10.1016/j.envres.2024.119187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/27/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The issue of combined pollution in oligotrophic water has garnered increasing attention in recent years. To enhance the pollutant removal efficiency in oligotrophic water, the system containing Zoogloea sp. FY6 was constructed using polyester fiber wrapped sugarcane biochar and construction waste iron (PWSI), and the denitrification test of simulated water and actual oligotrophic water was carried out for 35 days. The experimental findings from the systems indicated that the removal efficiencies of nitrate (NO3--N), total nitrogen (TN), chemical oxygen demand (COD), and total phosphorus (TP) in simulated water were 88.61%, 85.23%, 94.28%, and 98.90%, respectively. The removal efficiencies of actual oligotrophic water were 83.06%, 81.39%, 81.66%, and 97.82%, respectively. Furthermore, the high-throughput sequencing data demonstrated that strain FY6 was successfully loaded onto the biological carrier. According to functional gene predictions derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the introduction of PWSI enhanced intracellular iron cycling and nitrogen metabolism.
Collapse
Affiliation(s)
- Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Zhennan Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
8
|
Zhu Y, Li Z, Ren Z, Zhang M, Huo Y, Li Z. A novel simultaneous short-course nitrification, denitrification and fermentation process: bio-enhanced phenol degradation and denitrification in a single reactor. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:726. [PMID: 38995468 DOI: 10.1007/s10661-024-12846-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024]
Abstract
The feasibility of a simultaneous nitrification, denitrification and fermentation process (SNDF) under electric stirrer agitation conditions was verified in a single reactor. Enhanced activated sludge for phenol degradation and denitrification in pharmaceutical phenol-containing wastewater under low dissolved oxygen conditions, additional inoculation with Comamonas sp. BGH and optimisation of co-metabolites were investigated. At a hydraulic residence time (HRT) of 28 h, 15 mg/L of substrate as strain BGH co-metabolised substrate degraded 650 ± 50 mg/L phenol almost completely and was accompanied by an incremental increase in the quantity of strain BGH. Strain BGH showed enhanced phenol degradation. Under trisodium citrate co-metabolism, strain BGH combined with activated sludge treated phenol wastewater and degraded NO2--N from 50 ± 5 to 0 mg/L in only 7 h. The removal efficiency of this group for phenol, chemical oxygen demand (COD) and TN was 99.67%, 90.25% and 98.71%, respectively, at an HRT of 32 h. The bioaugmentation effect not only promotes the degradation of pollutants, but also increases the abundance of dominant bacteria in activated sludge. Illumina MiSeq sequencing research showed that strain BGH promoted the growth of dominant genera (Acidaminobacter, Raineyella, Pseudarcobacter) and increased their relative abundance in the activated sludge system. These genera are resistant to toxicity and organic matter degradation. This paper provides some reference for the activated sludge to degrade high phenol pharmaceutical wastewater under the action of biological enhancement.
Collapse
Affiliation(s)
- Yongqiang Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Zhiling Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Zichun Ren
- Shanghai Fengxian District Environmental Monitoring Station, Shanghai, China
| | - Minli Zhang
- Shanghai Sustainable Accele-Tech Co., Ltd, Shanghai, China
| | - Yaoqiang Huo
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Zhenxin Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|
9
|
Priyadarshanee M, Das S. Spectra metrology for interaction of heavy metals with extracellular polymeric substances (EPS) of Pseudomonas aeruginosa OMCS-1 reveals static quenching and complexation dynamics of EPS with heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133617. [PMID: 38306836 DOI: 10.1016/j.jhazmat.2024.133617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
The adsorption behavior and interaction mechanisms of extracellular polymeric substances (EPS) of Pseudomonas aeruginosa OMCS-1 towards chromium (Cr), lead (Pb), and cadmium (Cd) were investigated. EPS-covered (EPS-C) cells exhibited significantly higher (p < 0.0001; two-way ANOVA) removal of Cr (85.58 ± 0.39%), Pb (81.98 ± 1.02%), and Cd (73.88 ± 1%) than EPS-removed (EPS-R) cells. Interactions between EPS-heavy metals were spontaneous (ΔG<0). EPS-Cr(VI) and EPS-Pb(II) binding were exothermic (ΔH<0), while EPS-Cd(II) binding was endothermic (ΔH>0) process. EPS bonded to Pb(II) via inner-sphere complexation by displacement of surrounding water molecules, while EPS-Cr(VI) and EPS-Cd(II) binding occurred through outer-sphere complexation via electrostatic interactions. Increased zeta potential of Cr (29.75%), Pb (41.46%), and Cd (46.83%) treated EPS and unchanged crystallinity (CIXRD=0.13), inferred EPS-metal binding via both electrostatic interactions and complexation mechanism. EPS-metal interaction was predominantly promoted through hydroxyl, amide, carboxyl, and phosphate groups. Metal adsorption deviated EPS protein secondary structures. Strong static quenching mechanism between tryptophan protein-like substances in EPS and heavy metals was evidenced. EPS sequestered heavy metals via complexation with C-O, C-OH, CO/O-C-O, and NH/NH2 groups and ion exchange with -COOH group. This study unveils the fate of Cr, Pb, and Cd on EPS surface and provides insight into the interactions among EPS and metal ions for metal sequestration.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
10
|
Patel RJ, Nerurkar AS. Thauera sp. for efficient nitrate removal in continuous denitrifying moving bed biofilm reactor. Bioprocess Biosyst Eng 2024; 47:429-442. [PMID: 38441647 DOI: 10.1007/s00449-024-02977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/22/2024] [Indexed: 03/16/2024]
Abstract
Thauera is the most widely found dominant denitrifying genus in wastewater. In earlier study, MBBR augmented with a specially developed denitrifying five-membered bacterial consortium (DC5) where Thauera was found to be the most abundant and persistent genus. Therefore, to check the functional potential of Thauera in the removal of nitrate-containing wastewater in the present study Thauera sp.V14 one of the member of the consortium DC5 was used as the model organism. Thauera sp.V14 exhibited strong hydrophobicity, auto-aggregation ability, biofilm formation and denitrification ability, which indicated its robust adaptability short colonization and nitrate removal efficiency. Continuous reactor studies with Thauera sp.V14 in 10 L dMBBR showed 91% of denitrification efficiency with an initial nitrate concentration of 620 mg L-1 within 3 h of HRT. Thus, it revealed that Thauera can be employed as an effective microorganism for nitrate removal from wastewater based on its performance in the present studies.
Collapse
Affiliation(s)
- Roshni J Patel
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Anuradha S Nerurkar
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
11
|
Yan H, Jin S, Sun X, Han Z, Wang H, Woo J, Meng L, Chi X, Han C, Zhao Y, Tucker ME, Wei L, Zhao Y, Zhao H. Mn 2+ recycling in hypersaline wastewater: unnoticed intracellular biomineralization and pre-cultivation of immobilized bacteria. World J Microbiol Biotechnol 2024; 40:57. [PMID: 38165509 DOI: 10.1007/s11274-023-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Microbially induced manganese carbonate precipitation has been utilized for the treatment of wastewater containing manganese. In this study, Virgibacillus dokdonensis was used to remove manganese ions from an environment containing 5% NaCl. The results showed a significant decrease in carbonic anhydrase activity and concentrations of carbonate and bicarbonate ions with increasing manganese ion concentrations. However, the levels of humic acid analogues, polysaccharides, proteins, and DNA in EPS were significantly elevated compared to those in a manganese-free environment. The rhodochrosite exhibited a preferred growth orientation, abundant morphological features, organic elements including nitrogen, phosphorus, and sulfur, diverse protein secondary structures, as well as stable carbon isotopes displaying a stronger negative bias. The presence of manganese ions was found to enhance the levels of chemical bonds O-C=O and N-C=O in rhodochrosite. Additionally, manganese in rhodochrosite exhibited both + 2 and + 3 valence states. Rhodochrosite forms not only on the cell surface but also intracellularly. After being treated with free bacteria for 20 days, the removal efficiency of manganese ions ranged from 88.4 to 93.2%, and reached a remarkable 100% on the 10th day when using bacteria immobilized on activated carbon fiber that had been pre-cultured for three days. The removal efficiency of manganese ions was significantly enhanced under the action of pre-cultured immobilized bacteria compared to non-pre-cultured immobilized bacteria. This study contributes to a comprehensive understanding of the mineralization mechanism of rhodochrosite, thereby providing an economically and environmentally sustainable biological approach for treating wastewater containing manganese.
Collapse
Affiliation(s)
- Huaxiao Yan
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shengping Jin
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiaolei Sun
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zuozhen Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Jusun Woo
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Korea
| | - Long Meng
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiangqun Chi
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Chao Han
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
- Laboratory for Marine Mineral Resources, Center for Isotope Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yanyang Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Maurice E Tucker
- School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
- Cabot Institute, University of Bristol, Cantock's Close, Bristol, BS8 1UJ, UK
| | - Lirong Wei
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yueming Zhao
- Qingdao West Coast New District First High School, Qingdao, 266555, China
| | - Hui Zhao
- College of Chemical and Biological Engineering, College of Earth Science and Engineering, Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
12
|
Xue ZF, Cheng WC, Wang L, Qin P, Xie YX, Hu W. Applying the first microcapsule-based self-healing microbial-induced calcium carbonate materials to prevent the migration of Pb ions. ENVIRONMENTAL RESEARCH 2023; 239:117423. [PMID: 37858687 DOI: 10.1016/j.envres.2023.117423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Lead (Pb) accumulation can lead to serious threats to surrounding environments and damage to the liver and kidneys. In the past few years, microbial-induced carbonate precipitation (MICP) technology has been widely applied to achieve Pb immobilization due to its environmentally friendly nature. However, harsh pH conditions can cause the instability of the carbonate precipitation to degrade or dissolve, increasing the potential of Pb2+ migration into nearby environments. In this study, microcapsule-based self-healing microbial-induced calcium carbonate (MICC) materials were applied to prevent Pb migration. The highest sporulation rate of 95.8% was attained at 7 g/L yeast extract, 10 g/L NH4Cl, and 3.6 g/L Mn2+. In the germination phase, the microcapsule not only prevented the bacterial spores from being threatened by the acid treatment but secured their growth and reproduction. Micro analysis also revealed that cerussite, calcite, and aragonite minerals were present, while extracellular polymeric substances (EPSs) were identified via Fourier transform infrared spectroscopy (FTIR). These results confirm their involvement in combining Pb2+ and Ca2+. The immobilization efficiency of above 90% applied to MICC materials was attained, while it of below 5% applied to no MICC use was attained. The findings explore the potential of applying microcapsule-based self-healing MICC materials to prevent Pb ion migration when the calcium carbonate degrades under harsh pH conditions.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Peng Qin
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
13
|
Gao Y, Zhu J, Wang K, Ma Y, Fang J, Liu G. Discovery of a heterotrophic aerobic denitrification Pseudomonas sp. G16 and its unconventional nitrogen metabolic pathway. BIORESOURCE TECHNOLOGY 2023; 387:129670. [PMID: 37591467 DOI: 10.1016/j.biortech.2023.129670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
From the aerobic pond of the farm, the Pseudomonas sp. G16 was screened and isolated, which was confirmed to exhibit heterotrophic nitrification and aerobic denitrification. The removal rates of Ammonia (100 mg/L), nitrate (120 mg/L), and nitrite (100 mg/L) by the strain were 94.13%, 92.62%, and 85.67%, and the nitrogen metabolism pathway of strain G16 was analyzed by whole genome sequencing combined with its nitrification-denitrification intermediate products, it was found that the strain had independent nitrification-denitrification ability and no nitrite accumulation. Under the conditions of carbon source of sodium succinate hexahydrate, C/N ratio of 15, pH of 7.5, temperature of 15 °C, and DO of 210 rpm, strain G16 showed excellent denitrification performance. Strain G16 was prepared into biochar-based immobilized bacterial particles, which successfully improved its nitrogen removal efficiency and stability. Therefore, the application of strain G16 in the field of real wastewater treatment has very necessary research value.
Collapse
Affiliation(s)
- Yu Gao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| | - Junwen Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| | - Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha 410128, China
| |
Collapse
|
14
|
Shitu A, Chen W, Tadda MA, Zhang Y, Ye Z, Liu D, Zhu S, Zhao J. Enhanced aquaculture wastewater treatment in a biofilm reactor filled with sponge/ferrous oxalate/biochar composite (Sponge-C 2FeO 4@NBC) biocarriers: Performance and mechanism. CHEMOSPHERE 2023; 330:138772. [PMID: 37098362 DOI: 10.1016/j.chemosphere.2023.138772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/14/2023] [Accepted: 04/22/2023] [Indexed: 05/14/2023]
Abstract
Fabricating low-cost and efficient biofilm carriers for moving bed biofilm reactors in wastewater treatment is crucial for achieving environmental sustainability. Herein, a novel sponge biocarrier doped with NaOH-loaded biochar and nano ferrous oxalate (sponge-C2FeO4@NBC) was prepared and evaluated for nitrogenous compounds removal from recirculating aquaculture systems (RAS) wastewater by stepwise increasing ammonium nitrogen (NH4+-N) loading rates. The prepared NBC, sponge-C2FeO4@NBC, and matured biofilms were characterized using SEM, FTIR, BET, and N2 adsorption-desorption techniques. The results reveal that the highest removal rates of NH4+-N reached 99.28 ± 1.3% was yielded by the bioreactor filled with sponge-C2FeO4@NBC, with no obvious nitrite (NO2--N) accumulation in the final phase. The reactor packed with sponge-C2FeO4@NBC biocarrier had the highest relative abundance of functional microorganisms responsible for nitrogen metabolism than in the control reactor, confirmed from 16S rRNA gene sequencing analysis. Our study provides new insights into the newly developed biocarriers for enhancing RAS biofilters treatment performance in keeping water quality within the acceptable level for the rearing of aquatic species.
Collapse
Affiliation(s)
- Abubakar Shitu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria.
| | - Wei Chen
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Musa Abubakar Tadda
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Yadong Zhang
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhangying Ye
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ocean Academy, Zhejiang University, Zhoushan, 316021, China
| | - Dezhao Liu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Songming Zhu
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ocean Academy, Zhejiang University, Zhoushan, 316021, China.
| | - Jian Zhao
- College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
15
|
Zhou Z, Ali A, Su J, Wang Z, Huang T, Li T. In-situ modified biosynthetic crystals with lanthanum for fluoride removal based on microbially induced calcium precipitation: Characterization, kinetics, and mechanism. CHEMOSPHERE 2023; 327:138472. [PMID: 36963578 DOI: 10.1016/j.chemosphere.2023.138472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
In this research, in-situ modified biosynthetic crystals with lanthanum (BC-La) were synthesized based on anaerobic microbially induced calcium precipitation (MICP) and investigated its capacity for groundwater defluoridation under various operational conditions. The kinetic and thermodynamic models were simulated to explore the effect of the material on the removal of fluoride ion (F-) under various parameters (pH, initial concentration of F-, and temperature). BC-La had the maximum F- adsorption capacity of 10.92 mg g-1 and 96.66% removal efficiency. The pseudo-second-order kinetic model and Langmuir isotherm model were the best kinetic and isotherm models for F- removal from BC-La, which indicated that F- were mainly spontaneously removed through chemisorption and adsorption processes. The specific surface area was 54.26 m2 g-1 and the average pore size was 9.0670 nm. BC-La mainly contained LaCO3OH, LaPO4, CaCO3, Ca5 (PO4)3OH, and F- was mainly removed through ion exchange with the material surface. Moreover, OH-, PO43-, and CO32- significantly influenced the F- removal. This work suggested a novel method for in-situ modification of anaerobic biosynthetic crystals, which improved the defluoridation effect of traditional biosynthetic crystals, increased the stability of the BC-La and allowed to remove F- from groundwater consistently.
Collapse
Affiliation(s)
- Zhennan Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tianmeng Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
16
|
Nguyen HT, Nguyen LD, Le CP, Hoang ND, Dinh HT. Nitrogen and carbon removal from anaerobic digester effluents with low carbon to nitrogen ratios under feammox conditions. BIORESOURCE TECHNOLOGY 2023; 371:128585. [PMID: 36623576 DOI: 10.1016/j.biortech.2023.128585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Removal of nitrogen and carbon from anaerobic digester (AD) effluents is challenging for currently available technologies. Herein, effective treatment for real AD effluents was achieved via the feammox process by using a Multistage Feammox Bioreactor (MSFB). The reactor achieved the best performance with AD effluent of a low carbon to nitrogen (C/N) ratio of 2.5. A 6-day retention time reached removal efficiencies for NH4+ and COD at 99 % and 97 %, respectively, with a thorough conversion of NH4+ to N2. Accordingly, the MSFB achieved removal rates for N and C of 14 and 34 mg L-1 d-1, respectively. The C/N ratio of 2.5 is regarded to be the critical point above which the feammox is shifted to conventional iron reduction with organic carbon. Iron-reducing bacteria of the γ- Proteobacteria (Pseudomonas and Acinetobacter), and δ- Proteobacteria (Geobacter) were dominant in the MSFB and were supposed to drive the feammox process.
Collapse
Affiliation(s)
- Hai T Nguyen
- VNU-Institute of Microbiology and Biotechnology, 144 Xuan Thuy Str., Hanoi, Viet Nam
| | - Luu D Nguyen
- VNU-Institute of Microbiology and Biotechnology, 144 Xuan Thuy Str., Hanoi, Viet Nam
| | - Chung P Le
- Nha Trang University, 02 Nguyen Dinh Chieu Str., Nha Trang, Khanh Hoa, Viet Nam
| | - Nam D Hoang
- Technical University HCM City, 268 Ly Thuong Kiet Str., Ho Chi Minh City, Viet Nam
| | - Hang T Dinh
- VNU-Institute of Microbiology and Biotechnology, 144 Xuan Thuy Str., Hanoi, Viet Nam.
| |
Collapse
|
17
|
Li J, Ali A, Su J, Huang T, Zhai Z, Xu L. Synergistic removal of nitrate by a cellulose-degrading and denitrifying strain through iron loaded corn cobs filled biofilm reactor at low C/N ratio: Capability, enhancement and microbiome analysis. BIORESOURCE TECHNOLOGY 2023; 369:128433. [PMID: 36473584 DOI: 10.1016/j.biortech.2022.128433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Optimization of nitrate removal rate under low carbon-to-nitrogen ratio has always been one of the research hotspots. Biofilm reactor based on functional carrier and using interspecific synergic effect of strains provides an insight. In this study, iron-loaded corn cob was used as a functional carrier that can contribute to the cellulose degradation, iron cycling, and collaborative denitrification process of microorganisms. During biofilm reactor operation, the maximum nitrate removal efficiency was 99.30% and could reach 81.73% at no carbon source. Dissolved organic carbon and carrier characterization showed that strain ZY7 promoted the release of carbon source. The crystallinity of cellulose I and II in carrier of experimental group increased by 31.26% and decreased by 21.83%, respectively, in comparison to the control group. Microbial community showed the synergistic effect among different strains. The vitality and metabolic activity of the target microorganisms in bioreactor were increased through interspecific bacterial cooperation.
Collapse
Affiliation(s)
- Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhenyu Zhai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
18
|
Yu F, Zhang W, Hou X, Li Y, Tong J. How nutrient loads influence microbial-derived carbon accumulation in wetlands: A new insight from microbial metabolic investment strategies. ENVIRONMENTAL RESEARCH 2023; 217:114981. [PMID: 36460070 DOI: 10.1016/j.envres.2022.114981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Excessive anthropogenic nutrient inputs often lead to the degradation of wetland ecosystems and a decrease in carbon sink capacity. Microbial-derived carbon is increasingly recognized as an important precursor for organic carbon formation, which is controlled by the balance between microbial anabolic and catabolic processes. Shifts in microbial metabolic investment under nutrient load disturbance are key, but understudied, components of microbial-derived carbon turnover. Here, the roles of the distinct life-history traits and cooperation degree of key microbial assemblies in regulating microbial-derived carbon accumulation in a wetland receiving treated wastewater were firstly assessed by combining microbial biomarkers and genomic approaches. It was found that microbial-derived carbon was an important source of organic carbon in wetlands, and strongly associated with several microbial assemblies with specific trait strategies. Further analysis demonstrated that high growth yield strategists were mainly associated with microbial necromass accrual, while microbial biomass was more dominated by resource acquisition strategies in nutrient-imbalanced wetlands. A significant positive relationship between positive cohesion and microbial-derived carbon indicated that cooperative behavior among taxa promoted the production and accumulation of microbial-derived carbon. Moreover, resource stoichiometric balance, including C:N and C:P, was identified as an important driver of shifts in microbial metabolic investment strategies. The decreased C:N ratio led to a shift from resource acquisition strategies to high growth yield strategies for the microbial community, which facilitated microbial necromass accrual along the N-limited wetland, while the increased C:P ratio caused by excessive P deposition in sediments limits microbial cooperative growth to some extent. This study highlighted the importance of stoichiometric balance in mediating microbial growth metabolism and, in turn, enhancing the carbon sink capacity of wetlands.
Collapse
Affiliation(s)
- Feng Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Xing Hou
- Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Jiaxin Tong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
19
|
Han S, Tao Y, Cui Y, Xu J, Ju H, Fan L, Zhang L, Zhang Y. Lanthanum-modified polydopamine loaded Acinetobacter lwoffii DNS32 for phosphate and atrazine removal: Insights into co-adsorption and biodegradation mechanisms. BIORESOURCE TECHNOLOGY 2023; 368:128266. [PMID: 36351531 DOI: 10.1016/j.biortech.2022.128266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
A novel biobased composite was developed for the removal of phosphate (P) and atrazine from agricultural wastewater. A composite with strong P affinity and good biocompatibility, synthesized from La3+ and polydopamine (PDA), was immobilized onto an atrazine-degrading bacterium Acinetobacter lwoffii DNS32 (La/PDA/DNS32). Following Box-Behnken design optimization, the maximum removal rate of P (500 mg L-1) and atrazine (100 mg L-1) by La/PDA/DNS32 reached 28 % and 100 %, respectively. Density functional theory calculations revealed that La/PDA had more negative adsorption energy (-5.90 eV) than PDA alone and exhibited prominent electrophilic sites. Additionally, La/PDA-induced sorption of atrazine improved transmembrane transport and enhanced expression of degradation-associated genes in strain DNS32. La/PDA nanoparticles surrounding strain DNS32 provided a shielding effect and exhibited desirable biostability, thermal stability, and acid-alkaline resistance under contamination stress. This study demonstrates the promising potential of La/PDA/DNS32 in reducing the P and atrazine pollution caused by agricultural production.
Collapse
Affiliation(s)
- Siyue Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yunhe Cui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiaming Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Hanxun Ju
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Linlin Fan
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lin Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
20
|
Characterization of Achromobacter denitrificans QHR-5 for heterotrophic nitrification-aerobic denitrification with iron oxidation function isolated from BSIS:Nitrogen removal performance and enhanced SND capability of BSIS. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Zhang R, Wang X, Ali A, Su J, Wang Z, Li J, Liu Y. Single-step removal of calcium, fluoride, and phenol from contaminated water by Aquabacterium sp. CZ3 via facultative anaerobic microbially induced calcium precipitation: Kinetics, mechanism, and characterization. BIORESOURCE TECHNOLOGY 2022; 361:127707. [PMID: 35905871 DOI: 10.1016/j.biortech.2022.127707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Confronting the complex contaminated water, Aquabacterium sp. CZ3 could perform microbially induced calcium precipitation (MICP) under facultative anaerobic condition using phenol as supplementary carbon source. Strain CZ3 exhibited a remarkable ability to remove nitrate, fluoride, calcium and phenol with removal rates of 100.00, 87.50, 66.24 and 100.00%, respectively. The Modified Gompertz model was used for kinetic analysis to determine the optimum conditions for denitrification and degradation of phenol. The mechanism of anaerobic MICP was enhanced by measuring the self-aggregation properties of the isolates. The mechanism of fluoride removal was identified as co-precipitation and adsorption by characterization analysis of the bioprecipitation. Furthermore, the changes in soluble metabolites under phenol stress explained the utilization of phenol as a co-substrate by microorganisms. This is a novel report on phenol degradation by anaerobic MICP, which provides a theoretical basis for expanding its practical application.
Collapse
Affiliation(s)
- Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xumian Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
22
|
Wei B, Luo X, Ma W, Lv P. Biological nitrogen removal and metabolic characteristics of a novel cold-resistant heterotrophic nitrification and aerobic denitrification Rhizobium sp. WS7. BIORESOURCE TECHNOLOGY 2022; 362:127756. [PMID: 35952861 DOI: 10.1016/j.biortech.2022.127756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
For improving the poor de-nitrogen efficiency and effluent quality faced by wastewater treatment plants in winter, a novel cold-resistant strain, Rhizobium sp. WS7 was isolated. Strain WS7 presented dramatic de-nitrogen efficiencies including 98.73 % of NH4+-N, 99.98 % of NO3--N, 100 % of NO2--N and approximately 100 % of mixed nitrogen (NH4+-N and NO3--N) at 15 °C. Optimum parameters of WS7 for aerobic denitrification were determined. Additionally, functional genes (amoA, napA, nirK, norB, and nosZ) and key enzymes (nitrate reductase and nitrite reductase) activities were determined. Nitrogen balance analysis suggested that assimilation played a dominant role in de-nitrogen by WS7, the NH4+-N metabolic pathway was deduced as NH4+-N → NH2OH → NO → N2O → N2, and the NO3--N/NO2--N metabolic pathway was deduced as NO3--N → NO2--N → NO → N2O → N2. The cold-resistant Rhizobium sp. WS7 has great application feasibility in cold sewage treatment.
Collapse
Affiliation(s)
- Bohui Wei
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiao Luo
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Wenkai Ma
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Pengyi Lv
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
23
|
Zhang H, Shi Y, Ma B, Huang T, Zhang H, Niu L, Liu X, Liu H. Mix-cultured aerobic denitrifying bacteria augmented carbon and nitrogen removal for micro-polluted water: Metabolic activity, coexistence and interactions, and immobilized bacteria for reservoir raw water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156475. [PMID: 35660604 DOI: 10.1016/j.scitotenv.2022.156475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Less attention has been paid on the oligotrophic water body nitrogen treatment with mix-cultured aerobic denitrifying bacteria (Mix-CADB). In this study, three Mix-CADB communities were screened from the sediments of reservoirs. The nitrate and dissolved organic carbon (DOC) removal efficiencies of Mix-CADB communities were higher than 92 % and 91 %, respectively. Biolog results suggested that Mix-CADB communities displayed excellent carbon source metabolic activity. The nirS gene sequencing indicated that Pseudomonas sp. and Pseudomonas stutzeri accounted for more proportions in the core species of three Mix-CADB communities. The network model revealed that Pseudomonas sp. and Pseudomonas stutzeri mainly drove the total nitrogen and DOC removal of Mix-CADB communities. More importantly, the immobilized Mix-CADB communities could reduce >91 % nitrate in the adjusted reservoir raw water. Overall, this study showed that the three Mix-CADB communities could be regarded as potential candidates for the nitrogen treatment in oligotrophic water body ecosystems.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yinjie Shi
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
24
|
Zheng Z, Ali A, Su J, Zhang S, Su L, Qi Z. Biochar fungal pellet based biological immobilization reactor efficiently removed nitrate and cadmium. CHEMOSPHERE 2022; 296:134011. [PMID: 35181434 DOI: 10.1016/j.chemosphere.2022.134011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
To efficiently and simultaneously remove nitrate (NO3--N) and Cd(II) from aqueous solution, a novel type of biochar fungal pellet (BFP) immobilized denitrification bacteria (Cupriavidus sp. H29) composite was used in a bioreactor. The removal performance of the bioreactor R1 for the initial concentration of 27.7 mg L-1 nitrate and 10.0 mg L-1 Cd(II) reached 98.1 and 93.9% respectively, and the inoculation of strain H29 in bioreactor R1 significantly enhanced the removal efficiency of contaminants. The 3D-EEM spectra analysis showed that the activity of microorganisms in the bioreactor was higher at a lower concentration of Cd(II). FTIR indicated the effect of functional groups in BFP in bioadsorption of Cd(II). In addition, high-throughput analysis of species composition of the microbial community in the bioreactors at different levels demonstrated that strain H29 played a significant part in the bioreactor. This research provided a perspective for simultaneous restoration of nitrate and heavy metals in wastewater, and also enriched the application of fungal pellet (FP) in reactors.
Collapse
Affiliation(s)
- Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lindong Su
- Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an, 710055, China
| | - Zening Qi
- Xi'an Yiwei Putai Environmental Protection Co., LTD, Xi'an, 710055, China
| |
Collapse
|
25
|
Zhang M, Li A, Yao Q, Xiao B, Zhu H. Pseudomonas oligotrophica sp. nov., a Novel Denitrifying Bacterium Possessing Nitrogen Removal Capability Under Low Carbon–Nitrogen Ratio Condition. Front Microbiol 2022; 13:882890. [PMID: 35668762 PMCID: PMC9164167 DOI: 10.3389/fmicb.2022.882890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas is a large and diverse genus within the Gammaproteobacteria known for its important ecological role in the environment. These bacteria exhibit versatile features of which the ability of heterotrophic nitrification and aerobic denitrification can be applied for nitrogen removal from the wastewater. A novel denitrifying bacterium, designated JM10B5aT, was isolated from the pond water for juvenile Litopenaeus vannamei. The phylogenetic, genomic, physiological, and biochemical analyses illustrated that strain JM10B5aT represented a novel species of the genus Pseudomonas, for which the name Pseudomonas oligotrophica sp. nov. was proposed. The effects of carbon sources and C/N ratios on denitrification performance of strain JM10B5aT were investigated. In addition, the results revealed that sodium acetate was selected as the optimum carbon source for denitrification of this strain. Besides, strain JM10B5aT could exhibit complete nitrate removal at the low C/N ratio of 3. Genomic analyses revealed that JM10B5aT possessed the functional genes including napA, narG, nirS, norB, and nosZ, which might participate in the complete denitrification process. Comparative genomic analyses indicated that many genes related to aggregation, utilization of alkylphosphonate and tricarballylate, biosynthesis of cofactors, and vitamins were contained in the genome of strain JM10B5aT. These genomic features were indicative of its adaption to various niches. Moreover, strain JM10B5aT harbored the complete operons required for the biosynthesis of vibrioferrin, a siderophore, which might be conducive to the high denitrification efficiency of denitrifying bacterium at low C/N ratio. Our findings demonstrated that the strain JM10B5aT could be a promising candidate for treating wastewater with a low C/N ratio.
Collapse
Affiliation(s)
- Mingxia Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Anzhang Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong BOWOTE BioSciTech, Co., Ltd., Zhaoqing, China
| | - Qing Yao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Botao Xiao
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, School Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Botao Xiao
| | - Honghui Zhu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Honghui Zhu
| |
Collapse
|
26
|
Yang Y, Ali A, Su J, Chang Q, Xu L, Su L, Qi Z. Phenol and 17β-estradiol removal by Zoogloea sp. MFQ7 and in-situ generated biogenic manganese oxides: Performance, kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128281. [PMID: 35066225 DOI: 10.1016/j.jhazmat.2022.128281] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The pollution of multifarious pollutants such as heavy metal, organic compounds, and nitrate are a hot research topic at present. In this study, the functions of Zoogloea sp. MFQ7 and its biological precipitation formed during bacterial manganese oxidation on the removal of phenol and 17β-estradiol (E2) were investigated. Strain MFQ7, a manganese-oxidizing bacteria, can remove 98.34% of phenol under pH of 7.1, a temperature of 30 ℃ and Mn2+ concentration of 24.34 mg L-1, additionally, the optimum E2 removal by strain MFQ7 was 100.00% at pH of 7.1, temperature of 28 ℃ and Mn2+ concentration of 28.45 mg L-1 by using response surface methodology (RSM) based on Box-Behnken design (BBD) model. The maximum adsorption capacity of bio-precipitation for phenol and E2 was 201.15 mg g-1 and 65.90 mg g-1, respectively. Furthermore, adsorption kinetics and isotherms analysis, XPS, FTIR spectra, Mn(III) trapping experiments elucidated chemical adsorption and Mn(III) oxidation contribute to the removal of phenol and E2 by biogenic manganese oxides. These findings indicated that the adsorption and oxidation of manganese are expected to be one of the effective means to remove these typical organic pollutants containing phenol and E2.
Collapse
Affiliation(s)
- Yuzhu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lindong Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an 710055, China
| | - Zening Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an 710055, China
| |
Collapse
|
27
|
Yang W, Ali A, Su J, Liu J, Wang Z, Zhang L. Microbial induced calcium precipitation based anaerobic immobilized biofilm reactor for fluoride, calcium, and nitrate removal from groundwater. CHEMOSPHERE 2022; 295:133955. [PMID: 35157876 DOI: 10.1016/j.chemosphere.2022.133955] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
In this study, the anaerobic quartz sand fixed biofilm reactor containing Cupriavidus sp. W12 was established to simultaneously remove calcium (Ca2+), fluoride (F-) and nitrate (NO3-N) from groundwater. After 84 days of continuous operation, the optimum operating parameters and defluoridation mechanism were explored, and the microbial community structure under different pH environments were compared and analyzed. Under the optimal operation conditions (HRT of 6 h, initial Ca2+ concentration of 180 mg L-1, and pH of 7.0), the removal efficiencies of Ca2+, F-, and NO3-N were 58.97%, 91.93%, and 100%, respectively. Gas chromatography (GC) results indicate that N2 is the main gas produced by the bioreactor. Three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM) showed that extracellular polymers (EPS) are produced during bacterial growth and metabolism. The results of Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FTIR) demonstrated that the defluoridation mechanism is attributed to the synergetic effects of ion exchange, co-precipitation, and chemisorption. The comparative analysis of the microbial community structure under different pH conditions show that Cupriavidus is the dominant bacteria in the bioreactor throughout the experiment, and it shows a prominent advantage at pH of 7.0. This research provides an application foundation for anaerobic microbial induced calcium precipitation (MICP) bioremediation of Ca2+, F-, and NO3-N from groundwater.
Collapse
Affiliation(s)
- Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Jiaran Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lingfei Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
28
|
Nitrogen Removal Characteristics of a Cold-Tolerant Aerobic Denitrification Bacterium, Pseudomonas sp. 41. Catalysts 2022. [DOI: 10.3390/catal12040412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nitrogen pollution of surface water is the main cause of water eutrophication, and is considered a worldwide challenge in surface water treatment. Currently, the total nitrogen (TN) content in the effluent of wastewater treatment plants (WWTPs) is still high at low winter temperatures, mainly as a result of the incomplete removal of nitrate (NO3−-N). In this research, a novel aerobic denitrifier identified as Pseudomonas sp. 41 was isolated from municipal activated sludge; this strain could rapidly degrade a high concentration of NO3−-N at low temperature. Strain 41 completely converted 100 mg/L NO3−-N in 48 h at 15 °C, and the maximum removal rate reached 4.0 mg/L/h. The functional genes napA, nirS, norB and nosZ were successfully amplified, which provided a theoretical support for the aerobic denitrification capacity of strain 41. In particular, the results of denitrification experiments showed that strain 41 could perform aerobic denitrification under the catalysis of NAP. Nitrogen balance analysis revealed that strain 41 degraded NO3−-N mainly through assimilation (52.35%) and aerobic denitrification (44.02%), and combined with the gene amplification results, the nitrate metabolism pathway of strain 41 was proposed. Single-factor experiments confirmed that strain 41 possessed the best nitrogen removal performance under the conditions of sodium citrate as carbon source, C/N ratio 10, pH 8, temperature 15–30 °C and rotation speed 120 rpm. Meanwhile, the bioaugmentation test manifested that the immobilized strain 41 remarkably improved the denitrification efficiency and shortened the reaction time in the treatment of synthetic wastewater.
Collapse
|
29
|
Shi J, Su J, Ali A, Chen C, Xu L, Yan H, Su L, Qi Z. Nitrate removal under low carbon to nitrogen ratio by modified corn straw bioreactor: Optimization and possible mechanism. ENVIRONMENTAL TECHNOLOGY 2022:1-11. [PMID: 35200110 DOI: 10.1080/09593330.2022.2046649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
ABSTRACTThe removal of nitrate (NO3--N) from water bodies under the conditions of poor nutrition and low carbon to nitrogen (C/N) ratio is a widespread problem. In this study, modified corn stalk (CS) was used to immobilize Burkholderia sp. CF6 with cellulose-degrading and denitrifying abilities. The optimal operating parameters of the bioreactor were explored. The results showed that under the hydraulic retention time (HRT) of 3 h and the C/N ratio of 2.0, the maximum nitrate removal efficiency was 96.75%. In addition, the organic substances in the bioreactor under different C/N ratios and HRT were analyzed by three-dimensional fluorescence excitation-emission mass spectrometry (3D-EEM), and it was found that the microorganisms have high metabolic activity. Scanning electron microscope (SEM) showed that the new material has excellent immobilization effects. Fourier transform infrared spectrometer (FTIR) showed that it has potential as a solid carbon source. Through high-throughput sequencing analysis, Burkholderia sp. CF6 was observed as the main bacteria present in the bioreactor. These research results showed that the use of waste corn stalks waste provides a theoretical basis for the advanced treatment of low C/N ratio wastewater.
Collapse
Affiliation(s)
- Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Changlun Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Lindong Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an, People's Republic of China
| | - Zening Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Xi'an Yiwei Putai Environmental Protection Company Limited, Xi'an, People's Republic of China
| |
Collapse
|
30
|
Liu J, Su J, Ali A, Wang Z, Zhang R. Potential of a novel facultative anaerobic denitrifying Cupriavidus sp. W12 to remove fluoride and calcium through calcium bioprecipitation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126976. [PMID: 34461530 DOI: 10.1016/j.jhazmat.2021.126976] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
This study focused on a novel denitrifying Cupriavidus sp. W12, which can perform microbial induced calcium precipitation (MICP) to remove fluoride (F-) under aerobic and anaerobic conditions. Under anaerobic condition, the removal ratios of F-, calcium (Ca2+), and nitrate (NO3--N) reached 87.52%, 65.03%, and 96.06%, respectively, which were higher than that under aerobic condition (50.17%, 88.21%, and 67.33%, respectively). Higher pH of 8.26 was obtained after 120 h of the strain W12 growth under anaerobic condition than that under aerobic condition (7.77). The F- removal ratio of 98.20% was predicted by the response surface methodology (RSM). Scanning electron microscopy (SEM) images of anaerobic precipitation were dense and porous. CaCO3, Ca5(PO4)3OH, Ca5(PO4)3F, and CaF2 were determined by X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Self-aggregation of bacteria and adsorption of biological crystal seeds were the determinant of the precipitates formation. The results of infrared spectrometer (FTIR) and excitation-emission matrix (EEM) showed that anaerobic extracellular polymeric substances (EPS) expression led the proportion of hydroxylapatite in the precipitates increased. As the first report on the anaerobic MICP to remove F-, it provides a theoretical basis for the remediation of F-, Ca2+, and NO3--N in groundwater.
Collapse
Affiliation(s)
- Jiaran Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
31
|
Ren J, Cheng X, Ma H, Ma X. Characteristics of a novel heterotrophic nitrification and aerobic denitrification bacterium and its bioaugmentation performance in a membrane bioreactor. BIORESOURCE TECHNOLOGY 2021; 342:125908. [PMID: 34534943 DOI: 10.1016/j.biortech.2021.125908] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
A novel bacteria with heterotrophic nitrification and aerobic denitrification ability was obtained from a membrane bioreactor (MBR) and identified as Acinetobacter sp. TSH1. The nitrogen removal characteristics, nitrogen balance analysis, kinetic characteristics, and enhanced biological treatment in MBR of the novel isolated strain TSH1 were determined. Results showed that strain TSH1 could remove approximately 96.6% of NH4+-N, 82.9% of NO2--N and 98.7% of NO3--N in 24 h, and the corresponding maximum removal rates were 3.64 mg-N/(L·h), 1.77 mg-N/(L·h) and 3.94 mg-N/(L·h). The nitrogen balance analysis indicated that most of NH4+-N (62.6%) and NO3--N (71.9%) were transformed to gaseous nitrogen. The kinetic experiments showed that strain TSH1 had a high Km of 151.64 mg-NH4+-N/L and 203.25 mg-NO3--N/L. The enhanced biological treatment of synthetic wastewater in MBR showed that the strain TSH1 can significantly improve the nitrogen removal efficiency.
Collapse
Affiliation(s)
- Jilong Ren
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, PR China
| | - Xuewen Cheng
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, PR China; School of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Hongjing Ma
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, PR China; School of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Xiaona Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, PR China; The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| |
Collapse
|
32
|
Zheng Z, Ali A, Su J, Zhang S, Fan Y, Sun Y. Self-immobilized biochar fungal pellet combined with bacterial strain H29 enhanced the removal performance of cadmium and nitrate. BIORESOURCE TECHNOLOGY 2021; 341:125803. [PMID: 34455245 DOI: 10.1016/j.biortech.2021.125803] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
A newly isolated strain Phoma sp. ZJ6, which could form fungal pellet (FP) by self-immobilization, was identified. A novel longan seed biochar embedded in FP (BFP) combined with strain H29 (BFP-H29) effectively improved the Cd(II) removal efficiency and simultaneously removed nitrate. The adsorption process of BFP was well fitted with the pseudo-second-order kinetics model and Langmuir isotherm model, which demonstrated that the adsorption process was favorable and mainly dominated by chemisorption. Compared with single FP, biochar, and strain H29, BFP-H29 significantly enhanced the Cd(II) removal and the removal ratio reached 90.47%. Meanwhile, the simultaneous removal efficiency of the BFP-H29 for nitrate could reach 93.80%. Characterization analysis demonstrated that the primary removal mechanisms of BFP-H29 were precipitation and surface complexation. BFP-H29 had excellent performance in simultaneous removal of Cd(II) and nitrate, indicating its potential as a promising composite in the removal of cadmium and nitrate in wastewater.
Collapse
Affiliation(s)
- Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuanyuan Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
33
|
Ren T, Chi Y, Wang Y, Shi X, Jin X, Jin P. Diversified metabolism makes novel Thauera strain highly competitive in low carbon wastewater treatment. WATER RESEARCH 2021; 206:117742. [PMID: 34653797 DOI: 10.1016/j.watres.2021.117742] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/01/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Thauera, as one of the core members of wastewater biological treatment systems, plays an important role in the process of nitrogen and phosphorus removal from low-carbon source sewage. However, there is a lack of systematic understanding of Thauera's metabolic pathway and genomics. Here we report on the newly isolated Thauera sp. RT1901, which is capable of denitrification using variety carbon sources including aromatic compounds. By comparing the denitrification processes under the conditions of insufficient, adequate and surplus carbon sources, it was found that strain RT1901 could simultaneously use soluble microbial products (SMP) and extracellular polymeric substances (EPS) as electron donors for denitrification. Strain RT1901 was also found to be a denitrifying phosphate accumulating bacterium, able to use nitrate, nitrite, or oxygen as electron acceptors during poly-β-hydroxybutyrate (PHB) catabolism. The annotated genome was used to reconstruct the complete nitrogen and phosphorus metabolism pathways of RT1901. In the process of denitrifying phosphorus accumulation, glycolysis was the only pathway for glycogen metabolism, and the glyoxylic acid cycle replaced the tricarboxylic acid cycle (TCA) to supplement the reduced energy. In addition, the abundance of conventional phosphorus accumulating bacteria decreased significantly and the removal rates of total nitrogen (TN) and chemical oxygen demand (COD) increased after the addition of RT1901 in the low carbon/nitrogen (C/N) ratio of anaerobic aerobic anoxic-sequencing batch reactor (AOA-SBR). This research indicated that the diverse metabolic capabilities of Thauera made it more competitive than other bacteria in the wastewater treatment system.
Collapse
Affiliation(s)
- Tong Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Yulei Chi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Yu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Xuan Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Xin Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China.
| |
Collapse
|
34
|
Ren J, Bai X, Liu Y, Huang X. Simultaneous nitrification and aerobic denitrification by a novel isolated Ochrobactrum anthropi HND19. BIORESOURCE TECHNOLOGY 2021; 340:125582. [PMID: 34332445 DOI: 10.1016/j.biortech.2021.125582] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The study aimed to isolate a novel strain with heterotrophic nitrification and aerobic denitrification ability and evaluate the nitrogen removal characteristics. Results showed that Ochrobactrum anthropi HND19 could remove approximately 98.6% of NH4+-N (104.3 mg·L-1) and 97.6% of NO3--N (98.6 mg·L-1), and the removal rates achieved 4.28 and 4.01 mg-N/(L·h) by heterotrophic nitrification and aerobic denitrification. The optimal incubate conditions of strain HND19 were 120 rpm (shaking speed), 5 ‰ (salinity), 30 °C (temperature), 7.5 (C/N ratio) with sodium acetate as carbon resource. And the removal efficiency of the total nitrogen (TN) realized 73.4% under the optimal conditions. Functional genes (hao, napA, nirK, norB, and nosZ) involved in the nitrogen removal processes were successfully amplified from strain HND19. These findings indicate that the strain HND19 possesses great application feasibility in treating wastewater with high-intensity nitrogen.
Collapse
Affiliation(s)
- Jilong Ren
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xianyu Bai
- Beijing Enterprise of Technology Service (Guangdong) Co.LTD., Guangzhou 510360, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Zhang S, Ali A, Su J, Huang T, Zheng Z, Wang Y, Li M. Lower C/N ratio induces prior utilization of soluble microbial products with more dramatic variability and higher biodegradability in denitrification by strain YSF15. BIORESOURCE TECHNOLOGY 2021; 335:125281. [PMID: 34015568 DOI: 10.1016/j.biortech.2021.125281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
The emphasis of this study lies in how strain SYF15 regulates molecular weight (MW) fractions of soluble microbial products (SMPs) in response to low carbon to nitrogen (C/N) ratio, with high denitrification performance (over 99%). Results indicated SMPs with MW >100 and <50 kDa undoubtedly participated in denitrification before 12.0 h in C/N = 2.0, while sodium acetate was preferred in C/N = 5.0, indicating strain YSF15 was induced to degrade SMPs as a carbon source in low C/N. Additionally, lower C/N activated the extracellular metabolism, with increased fluorescence regional integration (FRI) volume amplitude by 48.08 and 53.43% (versus C/N = 5.0) in MW = 50-10 and 10-3 kDa, respectively. The FRI volume of proteins yielded greater with more degradable components than higher C/N in MW = 100-3 kDa, whereas polysaccharide and protein concentrations differed little with considerable biodegradability, implying components inside protein changed dramatically. This pioneering work contributed to the understanding of denitrification with carbon source deficiency.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
36
|
Wang Z, Su J, Ali A, Zhang R, Yang W, Xu L, Zhao T. Microbially induced calcium precipitation based simultaneous removal of fluoride, nitrate, and calcium by Pseudomonas sp. WZ39: Mechanisms and nucleation pathways. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125914. [PMID: 34492848 DOI: 10.1016/j.jhazmat.2021.125914] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
A simultaneous denitrifying and mineralizing bacterium, Pseudomonas sp. WZ39 was isolated for fluoride (F-), nitrate (NO3--N), and calcium (Ca2+) removal. Strain WZ39 exhibited a remarkable defluoridation efficiency of 87.49% under a pH of 6.90, F- and Ca2+ concentration of 1.99 and 201.88 mg L-1, respectively. EEM, SEM-EDS, XRD, and FTIR analyses elucidated the chemical adsorption and co-precipitation with calcium salt contributed to the removal of F-. The mechanisms of biomineralization were also investigated by determining the role of bound and unbound extracellular polymeric substances (EPS), cell wall, and calcium channel in nucleation. The results showed that bacteria can promote nucleation on the templates of cell walls or EPS through the electrostatic effect. The presence of the calcium channel blocker inhibited the transport of intracellular Ca2+ to the extracellular environment. The outcome of the present research can provide a theoretical basis for the understanding of MICP phenomenon and the efficient treatment of F- containing groundwater.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tingbao Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
37
|
Suspended membrane bioreactor with extracellular polymeric substances as reserve carbon source for low carbon to nitrogen ratio wastewater: Performance and microbial community composition. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0841-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Liu J, Ali A, Su J, Wu Z, Zhang R, Xiong R. Simultaneous removal of calcium, fluoride, nickel, and nitrate using microbial induced calcium precipitation in a biological immobilization reactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125776. [PMID: 33836330 DOI: 10.1016/j.jhazmat.2021.125776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
In this research, an immobilized biofilm reactor was established for the simultaneous removal of calcium (Ca2+), fluoride (F-), nickel (Ni2+), and nitrate (NO3--N) by microbial induced calcium precipitation (MICP). The operating parameters of the reactor, hydraulic retention time (HRT: 4, 8, and 12 h), influent Ca2+ concentration (36.0, 108.0, and 180.0 mg L-1), and influent Ni2+ concentration (0.0, 3.0, and 6.0 mg L-1) were discussed. Under the HRT of 12 h, influent Ca2+ concentration of 180.0 mg L-1, and influent Ni2+ concentration of 3.0 mg L-1, the removal ratios of Ca2+, F-, Ni2+, and NO3--N reached 45.31%, 79.55%, 85.11%, and 55.29%, respectively, which was the reactor stable operation performance. The SEM revealed the morphology of calcium-precipitated bio-crystals. XPS showed the Ca2+ and Ni2+ precipitate components and XRD further revealed the formation of CaCO3, Ca5(PO4)3OH, and NiCO3 precipitation. Nitrogen (N2) was the main gas produced in the reactor. Fluorescence spectroscopy manifested that extracellular polymers played an important role in the organism nucleation. High-throughput sequencing exhibited that Acinetobacter sp. H12 was the dominant bacterial group. This study provided a new insight for simultaneous remediation of Ca2+, F-, Ni2+, and NO3--N in water bodies.
Collapse
Affiliation(s)
- Jiaran Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zizhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Renbo Xiong
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
39
|
Ali A, Wu Z, Li M, Su J. Carbon to nitrogen ratios influence the removal performance of calcium, fluoride, and nitrate by Acinetobacter H12 in a quartz sand-filled biofilm reactor. BIORESOURCE TECHNOLOGY 2021; 333:125154. [PMID: 33895669 DOI: 10.1016/j.biortech.2021.125154] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the influence of different carbon to nitrogen (C/N) ratios on the bio-removal efficiency of aquatic pollutants like calcium (Ca2+), fluoride (F-), and nitrate (NO3-N) in a quartz sand-filled biofilm reactor (QSBR) to treat the low C/N wastewater using Acinetobacter sp. H12 at pH 6.50. The simultaneous bio-removal rate of Ca2+, F-, and NO3- reached 56.31%, 96.33, and 96.95 respectively. Nitrogen gas (N2) was produced with no evidence of N2O emission. Moreover, the morphological study of strain H12 and biological precipitates through SEM revealed that strain H12 provides the nucleation sites for microbially induced calcium precipitation to remove Ca2+ and F-. Besides, XPS and XRD peak spectra implicated that Ca2+ and F- were removed as CaF2 and Ca5(PO4)3F co-precipitates. The 16S rRNA sequencing analyses revealed that H12 belongs to Acinetobacter and has stronger MICP and denitrification potential as compared with other strains under low C/N conditions.
Collapse
Affiliation(s)
- Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zizhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
40
|
Shitu A, Liu G, Zhang Y, Ye Z, Zhao J, Zhu S, Liu D. Enhancement of mariculture wastewater treatment using moving bed biofilm reactors filled with modified biocarriers: Characterisation, process performance and microbial community evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112724. [PMID: 33962286 DOI: 10.1016/j.jenvman.2021.112724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
This research investigated two proposed modified biofilm carriers' performances in treating recirculating aquaculture systems (RAS) wastewater under different salinities (12‰, 26‰, and 35‰) for about 92 days. Three moving bed biofilm reactors (MBBRs; R1, R2, and R3) were filled with unmodified novel sponge biocarriers (SB) served as a control, modified novel SB with ferrous oxalate (C2FeO4@SB), and modified novel SB with combined ferrous oxalate and activated carbon (C2FeO4-AC@SB), respectively. Under the highest saline condition, a significantly higher ammonia removal efficiency of 98.86 ± 0.7% (p ˃ 0.05) was obtained in R3, whereas R2 and R1 yielded 95.18 ± 2.8% and 91.66 ± 1.5%, respectively. Microbial analysis showed that Vibrio, Ruegeria, Formosa, Thalassospira, and Denitromonas were predominant genera, strictly halophilic heterotrophic nitrifying bacteria involved in nitrogen removal. In conclusion, the synergistic effects of novel sponge, C2FeO4 and AC accelerated biofilm formations and stability, subsequently enhanced the removal of ammonia from the mariculture RAS wastewater by the C2FeO4-AC@SB carriers in R3.
Collapse
Affiliation(s)
- Abubakar Shitu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China; Department of Agricultural and Environmental Engineering, Faculty of Engineering, Bayero University, Kano, Nigeria
| | - Gang Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| | - Yadong Zhang
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| | - Zhangying Ye
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| | - Jian Zhao
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| | - Songming Zhu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China.
| | - Dezhao Liu
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 310058, China
| |
Collapse
|
41
|
Xu L, Su J, Huang T, Li G, Ali A, Shi J. Simultaneous removal of nitrate and diethyl phthalate using a novel sponge-based biocarrier combined modified walnut shell biochar with Fe 3O 4 in the immobilized bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125578. [PMID: 34030419 DOI: 10.1016/j.jhazmat.2021.125578] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 05/17/2023]
Abstract
A novel biological carrier combining sponge and modified walnut shell biochar with Fe3O4 (MWSB@Fe3O4) was fabricated to achieve simultaneous removal of nitrate and diethyl phthalate (DEP). The optimal reaction conditions of the immobilized bioreactor were: carbon to nitrogen (C/N) ratio of 1.5, Fe2+ concentration of 20 mg L-1, and hydraulic retention time (HRT) of 8 h. Under the optimal conditions and DEP concentration of 800 μg L-1, the highest removal efficiency of DEP and nitrate in the immobilized bioreactor with the novel biological carrier were 67.87% and 83.97% (68.43 μg L-1 h-1 and 1.71 mg L-1 h-1), respectively. Scanning electron microscopy (SEM) showed that the novel biological carrier in this study carried more bio-sediments which is closely related to the denitrification efficiency. The gas chromatography (GC) data showed that the nitrogen production of the immobilized bioreactor (99.85%) was higher than that of another experimental group (97.84%). Fluorescence excitation-emission matrix (EEM) and Fourier transform infrared spectrometer (FTIR) indicated the immobilized bioreactor emerged more extracellular polymeric substances (EPS) which was related to favourable biological stability under the DEP environment. Moreover, according to high-throughput sequencing data, the Zoogloea sp. L2 responsible for iron-reduction and denitrification was the main strain in this immobilized bioreactor.
Collapse
Affiliation(s)
- Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tingling Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Guoqing Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
42
|
Zheng Z, Ali A, Su J, Huang T, Wang Y, Zhang S. Fungal pellets immobilized bacterial bioreactor for efficient nitrate removal at low C/N wastewater. BIORESOURCE TECHNOLOGY 2021; 332:125113. [PMID: 33853027 DOI: 10.1016/j.biortech.2021.125113] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
In this study, fungal pellets immobilized denitrifying Pseudomonas stutzeri sp. GF3 was cultivated to establish a bioreactor. The denitrification effect of fixed bacteria with fungal pellets was tested by response surface methodology (RSM). Analysis of the bioreactor showed that the denitrification efficiency reached 100% under the optimal conditions and the denitrification efficiency of the actual wastewater treatment in the stable phase reached 95.91%. Moreover, the organic matter and functional groups in the bioreactor under different C/N conditions were analyzed by fluorescence excitation-emission matrix (EEM) spectra and Fourier transform infrared spectroscopy (FTIR), which revealed that metabolic activities of denitrifying bacteria were enhanced with the increase of C/N. The morphology and structure of bacteria immobilized by fungal pellets explored by scanning electron microscope (SEM) showed the filamentous porous fungal pellets loaded with bacteria. Community structure analysis by high-throughput sequencing demonstrated that strain GF3 might was the dominant strain in bioreactor.
Collapse
Affiliation(s)
- Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
43
|
Chang Q, Ali A, Su J, Wen Q, Bai Y, Gao Z, Xiong R. Efficient removal of nitrate, manganese, and tetracycline by a polyvinyl alcohol/sodium alginate with sponge cube immobilized bioreactor. BIORESOURCE TECHNOLOGY 2021; 331:125065. [PMID: 33819908 DOI: 10.1016/j.biortech.2021.125065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The co-existence of nitrate, manganese (Mn), and antibiotics are of a wide concern. In this study, a denitrifying and manganese-oxidizing Zoogloea Q7 bacterium was immobilized using polyvinyl alcohol/sodium alginate with sponge cube (PVA/SA@sponge cube) in the reactor. The optimal operation parameters of the bioreactor were explored. Maximum nitrate, Mn(II), and tetracycline (TC) removal efficiencies of 93.00, 72.34, and 57.32% were achieved with HRT of 10 h, pH of 6.5, Mn(II) concentration of 20 mg L-1, and TC of 1 mg L-1, respectively. Fluorescence excitation-emission matrix (EEM) proved that the microorganism in the bioreactor was greatly active. Scanning electron microscope (SEM) images demonstrated that Zoogloea Q7 was commendably immobilized on the novel material. X-ray diffraction (XRD) analysis suggested that the bioprecipitate was mainly composed of MnO2 and MnCO3. Through high-throughput analysis, Zoogloea sp. Q7 was considered to be the dominant bacteria present in the bioreactor.
Collapse
Affiliation(s)
- Qiao Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qiong Wen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Renbo Xiong
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
44
|
Fan Y, Su J, Wang Z, Deng L, Zhang H. Impact of C/N ratio on the fate of simultaneous Ca 2+ precipitation, F - removal, and denitrification in quartz sand biofilm reactor. CHEMOSPHERE 2021; 273:129667. [PMID: 33485132 DOI: 10.1016/j.chemosphere.2021.129667] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/25/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The coexistence of F-, Ca2+, nitrates, and other pollutants in water body has aroused widespread concern. In this research, a novel quartz sand biofilm reactor was established, aiming to study the key factors of different carbon to nitrogen (C/N) ratios (5:1, 4:1, and 3:1), initial Ca2+ concentration (180 mg L-1, 144 mg L-1, and 108 mg L-1), and hydraulic retention time (HRT) (4 h, 6 h, and 8 h) on simultaneous Ca2+ precipitation, F- removal, and denitrification. Results showed that the removal efficiencies of Ca2+, F-, and nitrate were 55.04%, 82.64%, and 97.69% under the low C/N ratio of 3:1, initial Ca2+ concentration of 180 mg L-1, and HRT of 8 h. 3-D Excitation-Emission Fluorescence Spectroscopy (3-D EEM) demonstrates that extracellular polymeric substances (EPS) was generated during the growth metabolism. Scanning Electron Microscopy (SEM) and X-ray diffractometer images showed that Ca2+, F- removed in the form of CaCO3, Ca5(PO4)3F and CaF2 under Acinetobacter sp. H12 induction. Moreover, high-throughput sequencing results display that the biomineralized bacteria Acinetobacter sp. H12 exerted great influence in the bioreactor. This research will underpin the practical use of multiple pollutants such as F- and Ca2+ wastewater under the different C/N ratios.
Collapse
Affiliation(s)
- Yuanyuan Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Linyu Deng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Han Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
45
|
Zhang S, Su J, Ali A, Zheng Z, Sun Y. Enhanced denitrification performance of strain YSF15 by different molecular weight of humic acid: Mechanism based on the biological products and activity. BIORESOURCE TECHNOLOGY 2021; 325:124709. [PMID: 33482476 DOI: 10.1016/j.biortech.2021.124709] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to clarify the facilitation by humic acid (HA) fractions (>100, 100-50, 50-30, 30-10, 10-3 and < 3 kDa), as well as their variable effect on denitrification of strain YSF15 under low carbon-nitrogen ratio and nitrate conditions. All HA fractions with 7 mg L-1 were able to accelerate nitrate removal by strain YSF15 and the role of carbon source was inconspicuous. The molecular weight (MW) < 3 kDa was the best promoter for denitrification, with the efficiency (91.32%) far exceeding the control (43.27%), resulting in more stable oxidation-reduction potential, higher nutrients utilization and electron transport activity, more compact protein structure in extracellular polymeric substances and the production of endogenous HA. Each HA fraction could change the bio-products and denitrification activity of strain YSF15. This study sheds light on the facilitation of HA in denitrification from the perspective of MW, implying the potential effect of HA on denitrifying bacteria in community.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
46
|
Wang Z, Su J, Hu X, Ali A, Wu Z. Isolation of biosynthetic crystals by microbially induced calcium carbonate precipitation and their utilization for fluoride removal from groundwater. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124748. [PMID: 33310318 DOI: 10.1016/j.jhazmat.2020.124748] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Biosynthetic crystals (BC) were prepared through microbially induced calcium carbonate precipitation (MICP) for fluoride (F-) removal from the groundwater. Batch experiments were conducted to evaluate the fluoride adsorption capacity and the impacts of critical factors (organic matter, pH, initial fluoride concentration and BC dosage) on defluorination efficiency of BC. The maximum adsorption amount and defluorination efficiency were recorded as 5.10 mg g-1 and 98.24%, respectively. The adsorption kinetics and isotherms studies showed that pseudo-second-order kinetic model and Freundlich isotherm model were best fitting to the reaction. Adsorption thermodynamic parameters indicated a spontaneous, endothermic and thermodynamically favorable adsorption process. Moreover, the mechanism of F- removal by BC was further analyzed by SEM, XPS, XRD and FTIR. The method can cope with the problem of applying the external organic substances in MICP, and avoid the microbial safety risk in the effluent. As an economically and environmentally friendly adsorbent, BC can be used for F- removal from groundwater.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xiaofen Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zizhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
47
|
Hu X, Su J, Ali A, Wang Z, Wu Z. Heterotrophic nitrification and biomineralization potential of Pseudomonas sp. HXF1 for the simultaneous removal of ammonia nitrogen and fluoride from groundwater. BIORESOURCE TECHNOLOGY 2021; 323:124608. [PMID: 33421833 DOI: 10.1016/j.biortech.2020.124608] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Pseudomonas sp. HXF1, a strain capable of heterotrophic nitrification, aerobic denitrification (HNAD), and biomineralization was identified and employed for the simultaneous removal of ammonia nitrogen (NH4+-N) and fluoride (F-). It removed 99.2% of NH4+-N without accumulation of nitrous nitrogen (NO2--N) and nitrate nitrogen (NO3--N), while removed 87.3% of F-. Response surface methodology (RSM) was used to study the best removal conditions for NH4+-N and F-. The results of nitrogen balance experiments with NH4Cl, NaNO2, and NaNO3 as single nitrogen sources and amplification experiments of denitrification genes proved that the bacterial strains may remove NH4+-N through HNAD. The experimental results of Scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffractometer (XRD) indicated that the way of F- removal may be adsorption and co-precipitation. The results demonstrated that the strain HXF1 has great potential in the biological denitrification and F- removal of groundwater.
Collapse
Affiliation(s)
- Xiaofen Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zizhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
48
|
Zheng Z, Ali A, Su J, Fan Y, Zhang S. Layered double hydroxide modified biochar combined with sodium alginate: A powerful biomaterial for enhancing bioreactor performance to remove nitrate. BIORESOURCE TECHNOLOGY 2021; 323:124630. [PMID: 33418348 DOI: 10.1016/j.biortech.2020.124630] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
A novel layered double hydroxide (LDH)-orange peel (OP) biochar/sodium alginate (SA) (LBSA) synthetic material was prepared as an immobilized carrier for Acinetobacter sp. FYF8 to improve the removal of nitrogen and phosphorus in the bioreactor. Results demonstrated that under optimum conditions, the nitrate and phosphate removal efficiency reached 95.32 and 86.11%, respectively. The response surface methodology was used to illustrate the adsorption properties of the material and obtained optimal conditions for the removal of nitrate. The adsorption kinetics and isotherm were well fitted with the pseudo-second-order and Langmuir isotherm model, respectively, indicating that the adsorption process was mainly controlled by chemical adsorption and was favorable. Moreover, the morphology and composition of LBSA immobilized bacteria were analyzed and the mechanism of removing nitrate and phosphate was the synergistic effect of biological metabolism and adsorption. Community structure analysis and microbial distribution showed that FYF8 might was the dominant strain in bioreactors.
Collapse
Affiliation(s)
- Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yuanyuan Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|