1
|
Parakh SK, Tong YW. Upcycling food waste digestate into single-cell microalgae protein through a mixotrophic cultivation approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125827. [PMID: 40381310 DOI: 10.1016/j.jenvman.2025.125827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
The effective use of digestate remains a significant challenge in adopting anaerobic digestion technology for sustainable urban food waste management. This study investigates the potential of converting food waste-derived digestate (FWD) into single-cell protein through mixotrophic cultivation of Chlorella sorokiniana UTEX 1230. The liquid fraction of the digestate (LD) was diluted to 10 % to maintain ammonium-nitrogen (NH4+-N) levels within tolerable ranges (up to 250 mg/L) and enriched with macro- and micronutrients such as magnesium, calcium, sulfur, phosphorus, and trace elements to enhance microalgae growth. Glucose and acetate were tested at different organic carbon-to-nitrogen (Organic-C/N) ratios to assess their effects on biomass production, protein content, and NH4+-N removal. Results indicated that increasing the Organic-C/N ratios to 5 (glucose) or 10 (acetate) enhanced biomass concentration and NH4+-N removal rates. Although protein content declined with higher Organic-C/N ratios, total protein production still increased. Glucose at an Organic-C/N ratio of 5 achieved the highest biomass yield (up to 2.5 g/L), while acetate required an Organic-C/N ratio of 10 to reach comparable levels, pointing to its lower metabolic efficiency. Additionally, biomass protein content under glucose supplementation (40-41 %) surpassed that obtained with acetate (34-36 %). Combining acetate with 60-80 % glucose at a constant Organic-C/N ratio of 5 improved biomass production, but did not match the protein levels observed with glucose alone. Overall, the mixotrophic cultivation approach achieved higher biomass, superior NH4+-N removal rates, and over 40 % protein content, confirming its effectiveness in converting FWD into single-cell protein.
Collapse
Affiliation(s)
- Sheetal Kishor Parakh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
2
|
Kim T, Im H, Jang A. High-yield extraction of long-chain fatty acids from Chlorella vulgaris: Comparative analysis of ozone extraction methods. BIORESOURCE TECHNOLOGY 2025; 424:132269. [PMID: 39986630 DOI: 10.1016/j.biortech.2025.132269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
The production of biodiesel using microalgae has emerged as a promising alternative to fossil fuel-derived energy. However, microalgae-based biodiesel still faces challenges in achieving commercial economic feasibility. One of the primary reasons for this challenge is the limited extraction yield of long-chain fatty acids (LCFAs), which are essential for biodiesel synthesis. This study explores an easily accessible ozone-based extraction method to maximize LCFAs yields to address limitations. The experiments were conducted using Chlorella vulgaris, and the extraction efficiency was assessed for single ozone treatment and the combination of ozone treatment with physical (ultrasound) and chemical (pH adjustment) methods. The results indicated that LCFAs yield (33.12 mg/g) was achieved at 5 mg/L ozone concentration for 15 min at neutral pH, which was 3.41 times higher than that of the control (9.71 mg/g). Furthermore, combining ozone treatment with 100 W of ultrasound further enhanced the LCFAs yield to 52.32 mg/g, demonstrating a synergistic effect between ozone and physical treatment. The mechanism behind the increased extraction efficiency was attributed to the weakening of the cell wall, which facilitated LCFAs extraction. Additionally, it was observed that endogenous lipid synthesis was enhanced when the antioxidant 2,4-di-tert-butylphenol (2,4-DTBP) was promoted in response to oxidative stress. The extracted LCFAs in this study were mainly saturated fatty acids, namely palmitic acid (C16:0) and stearic acid (C18:0). This study offers insights into optimizing ozone-based LCFA extraction as a scalable, eco-friendly method for microalgal biodiesel production, emphasizing its potential to reduce carbon dioxide emissions and support carbon-neutral energy solutions.
Collapse
Affiliation(s)
- Taehun Kim
- Department of Global Smart City, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Hongrae Im
- Department of Global Smart City, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
3
|
Flores-Zambrano K, Tapia W, Castillejo P. Microalgae strains isolated from piggery wastewater in Ecuador: Effective nitrogen compound removal and growth potential in extremophile conditions. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00883. [PMID: 40027105 PMCID: PMC11869989 DOI: 10.1016/j.btre.2025.e00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
Effluents generated by anthropogenic activities are a significant source of pollution and eutrophication in natural water bodies. In Ecuador, the increase in pig production has exacerbated this issue due to the untreated discharge of pig effluents. This study focused on the characterization of native microalgae present in pig effluents and the evaluation of their capacity to remove nitrogenous compounds under various conditions, with the aim of identifying efficient strains for phycoremediation. Four microalgal strains were isolated and molecularly identified as Radiococcus polycoccus, Chlorolobion braunii, Micractinium sp., and Desmodesmus multivariabilis. The cultures were exposed to initial concentrations of 100 mg L-1 N-NH₄ and 49.97 mg L-1 N-NO₃ for 12 days to assess their cellular growth and nutrient removal rates. Growth kinetics were analyzed under conditions of 2000 mg L-1 N-NH₄ and extreme pH levels of 3 and 10. Chlorolobion braunii demonstrated the highest productivity, achieving a removal of 67.73 % of N-NH₄ and 30.59 % of N-NO₃, and reached the highest cellular density under extreme ammonium conditions, being the only strain capable of growing at acidic pH. Conversely, Micractinium sp. exhibited the highest growth under alkaline conditions. These results highlight the promising potential of native microalgae from pig effluents for wastewater remediation and their adaptation to environmental conditions.
Collapse
Affiliation(s)
- Karla Flores-Zambrano
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas (UDLA), Quito, Ecuador
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Américas (UDLA), Quito, Ecuador
| | - Wilson Tapia
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Américas (UDLA), Quito, Ecuador
| | - Pablo Castillejo
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de Las Américas (UDLA), Quito, Ecuador
- Carrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de las Américas (UDLA), Quito, Ecuador
| |
Collapse
|
4
|
Tsompanoglou K, Iliopoulou A, Mastoras P, Stasinakis AS. A new approach on the management of landfill leachate reverse osmosis concentrate: Solar distillation coupled with struvite recovery and biological treatment. CHEMOSPHERE 2024; 366:143574. [PMID: 39426749 DOI: 10.1016/j.chemosphere.2024.143574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
The management of reverse osmosis (RO) concentrate remains a challenging task for operators of Landfill Leachates Treatment Plants. In this article we suggest an integrated treatment scheme for RO concentrate that combines solar distillation, struvite precipitation to reduce ammonia content of the distillate and biological treatment of the supernatant either with mixed cultures of bacteria or with microalgae. Experiments in a pilot-scale solar still, equipped with underfloor heating system, showed that the production rate of the distillate ranged up to 3.17 L/d m2. The distillate was characterized by elevated average concentrations of ammonium nitrogen; 2028 mg/L and 1358 mg/L in the two experiments conducted, respectively. A decreasing trend on concentrations of NH4+-N was noticed during these experiments, while the opposite was observed for COD. Struvite recovery experiments showed that the optimum Mg:NH4:PO3 ratio was that of 2:1:5.8. Under these conditions, the NH4+-N removal reached 88%. Further treatment of the process supernatant into a 4-L hybrid sequencing batch reactor with biocarriers and activated sludge achieved NH4+-N removal higher than 98% in Phases C and D, where 450 and 600 mL of supernatant were added, respectively. Similar removal was also observed in a 2-L bioreactor with microalgae Chlorella sorokiniana when 150 mL of struvite supernatant were added (Phase B) while further increase of the amount of added supernatant to 200 mL resulted to a sharp stop of NH4+-N consumption (Phase C). Calculations for a landfill serving 20,000 inhabitants and a daily RO concentrate production of 6 m3/d showed that the required area for the construction of the solar still was 1893 m2 and the volumes of the hybrid and the microalgae reactor were 54 m3 and 60 m3, respectively. The recovered solid material of struvite process, after characterization for heavy metals and organic micropollutants, could be reused to the fertilizers industry.
Collapse
Affiliation(s)
- Konstantinos Tsompanoglou
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece; Regional Association of Solid Waste Management Agencies of Central Macedonia, 54626, Thessaloniki, Greece.
| | | | - Petros Mastoras
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece.
| | | |
Collapse
|
5
|
Mollo L, Petrucciani A, Norici A. Monocultures vs. polyculture of microalgae: unveiling physiological changes to facilitate growth in ammonium rich-medium. PHYSIOLOGIA PLANTARUM 2024; 176:e14574. [PMID: 39400338 DOI: 10.1111/ppl.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Due to the increasing production of wastewater from human activities, the use of algal consortia for phytoremediation has become well-established over the past decade. Understanding how interspecific interactions and cultivation modes (monocultures vs. polyculture) influence algal growth and behaviour is a cutting-edge topic in both fundamental and applied science. Ammonium-rich growth media were used to challenge the monocultures of Auxenochlorella protothecoides, Chlamydomonas reinhardtii and Tetradesmus obliquus, as well as their polyculture; NO3 - was also used as the sole nitrogen chemical form in control cultures. The study primarily compared the growth, carbon and nitrogen metabolisms, and protein content of the green microalgae monocultures to those of their consortium. Overall, the cultivation mode significantly affected all the measured parameters. Notably, at 50 mM NH4 +, the assimilation rates of carbon and nitrogen were at least twice as high as those in the monoculture counterparts, and the protein content was three times more abundant.Additionally, the consortium's response to NH4 + toxicity was investigated by observing a linear relationship between the indicator of tolerance to NH4 + nutrition and the N isotopic signature. The study highlighted a high degree of acclimation through metabolic flexibility and diversity, as well as species abundance plasticity in the consortium, resulting in a functional resilience that would otherwise have been unattainable by the respective monocultures.
Collapse
Affiliation(s)
- Lorenzo Mollo
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandra Petrucciani
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandra Norici
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
- CIRCC, Consorzio Interuniversitario Reattività Chimica e Catalisi, Italy
| |
Collapse
|
6
|
Metin U, Altınbaş M. Evaluating Ammonia Toxicity and Growth Kinetics of Four Different Microalgae Species. Microorganisms 2024; 12:1542. [PMID: 39203384 PMCID: PMC11355981 DOI: 10.3390/microorganisms12081542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 09/03/2024] Open
Abstract
Although wastewater with high ammonia concentration is an ideal alternative environment for microalgae cultivation, high ammonia concentrations are toxic to microalgae and inhibit microalgae growth. In this study, the ammonia responses of four widely used microalgae species were investigated. Chlorella vulgaris, Chlorella minutissima, Chlamydomonas reinhardtii and Arthrospira platensis were grown in batch reactors maintained at seven different NH4Cl concentrations at a constant pH of 8. Growth and nitrogen removal kinetics were monitored. IC50 values for the mentioned species were found as 34.82 mg-FA/L, 30.17 mg-FA/L, 27.2 mg-FA/L and 44.44 mg-FA/L, respectively, while specific growth rates for different ammonia concentrations ranged between 0.148 and 1.271 d-1. C. vulgaris demonstrated the highest biomass growth under an ammonia concentration of 1700.95 mg/L. The highest removal of nitrogen was observed for A. platensis with an efficiency of 99.1%. The results showed that all tested species could grow without inhibition in ammonia levels comparable to those found in municipal wastewater. Furthermore, it has been concluded that species C. vulgaris and A. platensis can tolerate high ammonia levels similar to those found in high strength wastewaters.
Collapse
Affiliation(s)
- Umut Metin
- Department of Environmental Engineering, Faculty of Civil Engineering, Yıldız Technical University, 34220 Istanbul, Turkey;
| | - Mahmut Altınbaş
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| |
Collapse
|
7
|
Al-Hammadi M, Güngörmüşler M. New insights into Chlorella vulgaris applications. Biotechnol Bioeng 2024; 121:1486-1502. [PMID: 38343183 DOI: 10.1002/bit.28666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 04/14/2024]
Abstract
Environmental pollution is a big challenge that has been faced by humans in contemporary life. In this context, fossil fuel, cement production, and plastic waste pose a direct threat to the environment and biodiversity. One of the prominent solutions is the use of renewable sources, and different organisms to valorize wastes into green energy and bioplastics such as polylactic acid. Chlorella vulgaris, a microalgae, is a promising candidate to resolve these issues due to its ease of cultivation, fast growth, carbon dioxide uptake, and oxygen production during its growth on wastewater along with biofuels, and other productions. Thus, in this article, we focused on the potential of Chlorella vulgaris to be used in wastewater treatment, biohydrogen, biocement, biopolymer, food additives, and preservation, biodiesel which is seen to be the most promising for industrial scale, and related biorefineries with the most recent applications with a brief review of Chlorella and polylactic acid market size to realize the technical/nontechnical reasons behind the cost and obstacles that hinder the industrial production for the mentioned applications. We believe that our findings are important for those who are interested in scientific/financial research about microalgae.
Collapse
Affiliation(s)
- Mohammed Al-Hammadi
- Division of Bioengineering, Graduate School, Izmir University of Economics, Izmir, Türkiye
| | - Mine Güngörmüşler
- Department of Genetics and Bioengineering, Faculty of Engineering, Izmir University of Economics, Izmir, Türkiye
| |
Collapse
|
8
|
Mkpuma VO, Moheimani NR, Ennaceri H. Biofilm cultivation of chlorella species. MUR 269 to treat anaerobic digestate food effluent (ADFE): Total ammonia nitrogen (TAN) concentrations effect. CHEMOSPHERE 2024; 354:141688. [PMID: 38484996 DOI: 10.1016/j.chemosphere.2024.141688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Microalgal-based treatment of anaerobic digestate food effluent (ADFE) has been found to be efficient and effective. However, turbidity and high total ammonia nitrogen (TAN)) content of ADFE is a major setback, requiring significant dilution. Although the possibility of growing microalgae in a high-strength ADFE with minimal dilution has been demonstrated in suspension cultures, such effluents remain highly turbid and affect the light path in suspension cultures. Here, the feasibility of growing Chlorella sp.MUR 269 in biofilm to treat ADFE with high TAN concentrations was investigated. Six different TAN concentrations in ADFE were evaluated for their effects on biofilm growth and nutrient removal by Chlorella sp. MUR 269 using the perfused biofilm technique. Biomass yields and productivities of this alga at various TAN concentrations (mg N NH3 L-1) were 55a (108 g m-2 and 9.80 g m-2 d-1)>100b > 200c = 300c = 500c > 1000d. Growth was inhibited, resulting in a 28% reduction in yield of Chlorella biofilm when this alga was grown at 1000 mg N NH3 L-1. A survey of the photosynthetic parameters reveals evidence of stress occurring in the following sequence: 55 < 100<200 < 300<1000. A significant nutrient removal was observed across various TAN concentrations. The removal pattern also followed the concentration gradients except COD, where the highest removal occurred at 500 mg N NH3 L-1. Higher removal rates were seen at higher nutrient concentrations and declined gradually over time. In general, our results indicated that the perfused biofilm strategy is efficient, minimizes water consumption, offers easy biomass harvesting, and better exposure to light. Therefore, it can be suitable for treating turbid and concentrated effluent with minimal treatment to reduce the TAN concentration.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia.
| |
Collapse
|
9
|
Wang N, Wang X, Chen L, Liu H, Wu Y, Huang M, Fang L. Biological roles of soil microbial consortium on promoting safe crop production in heavy metal(loid) contaminated soil: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168994. [PMID: 38043809 DOI: 10.1016/j.scitotenv.2023.168994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal(loid) (HM) pollution of agricultural soils is a growing global environmental concern that affects planetary health. Numerous studies have shown that soil microbial consortia can inhibit the accumulation of HMs in crops. However, our current understanding of the effects and mechanisms of inhibition is fragmented. In this review, we summarise extant studies and knowledge to provide a comprehensive view of HM toxicity on crop growth and development at the biological, cellular and the molecular levels. In a meta-analysis, we find that microbial consortia can improve crop resistance and reduce HM uptake, which in turn promotes healthy crop growth, demonstrating that microbial consortia are more effective than single microorganisms. We then review three main mechanisms by which microbial consortia reduce the toxicity of HMs to crops and inhibit HMs accumulation in crops: 1) reducing the bioavailability of HMs in soil (e.g. biosorption, bioaccumulation and biotransformation); 2) improving crop resistance to HMs (e.g. facilitating the absorption of nutrients); and 3) synergistic effects between microorganisms. Finally, we discuss the prospects of microbial consortium applications in simultaneous crop safety production and soil remediation, indicating that they play a key role in sustainable agricultural development, and conclude by identifying research challenges and future directions for the microbial consortium to promote safe crop production.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanfang Wu
- Palm Eco-Town Development Co., Ltd., Zhengzhou 450000, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
10
|
Scarponi P, Caminiti V, Bravi M, Izzo FC, Cavinato C. Coupling anaerobic co-digestion of winery waste and waste activated sludge with a microalgae process: Optimization of a semi-continuous system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:300-309. [PMID: 38086294 DOI: 10.1016/j.wasman.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/12/2023] [Accepted: 12/02/2023] [Indexed: 01/16/2024]
Abstract
Wine production represents one of the most important agro-industrial sectors in Italy. Wine lees are the most significant waste in the winery industry and have high disposal and storage costs and few applications within the circular economy. In this study, anaerobic digestion and a microalgae coupled process was studied in order to treat wine lees and waste activated sludge produced within the same facility, with the aim of producing energy and valuable microalgae biomass that could be processed to recover biofuel or biostimulant. Chlorella vulgaris was cultivated on liquid digestate in a semi-continuous system without biomass recirculation. The best growth and phytoremediation performance were achieved applying a hydraulic retention time (HRT) of 20 days with a stable dry weight, lipid and protein storage of 1.85 ± 0.02 g l-1, 33.48 ± 7.54 % and 57.85 ± 10.14 % respectively. Lipid characterization highlighted the potential use in high quality biodiesel production, according to EN14214 (<12 % v/v linolenic acid). The microalgae reactor's liquid output showed high removal of ammonia (95.72 ± 2.10 %), but low organic soluble matter reduction. Further semi-continuous process optimization was carried out by increasing the time between digestate feeding and biomass recovery at HRT 10. These operative changes avoided biomass wash-out and provided a stable phytoremediation of the digestate with 84.58 ± 4.02 % ammonia removal, 33.01 ± 1.44 % sCOD removal, 38.06 ± 2.65 % of polyphenols removal.
Collapse
Affiliation(s)
- P Scarponi
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy.
| | - V Caminiti
- Department of Agronomy, Animals, Food, Natural Resources and Environment, University of Padova, viale dell'Università, 16, 35020 Legnaro, Italy
| | - M Bravi
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, via Eudossiana, 18, 00184 Roma, Italy
| | - F C Izzo
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| | - C Cavinato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| |
Collapse
|
11
|
Saleem S, Sheikh Z, Iftikhar R, Zafar MI. Eco-friendly cultivation of microalgae using a horizontal twin layer system for treatment of real solid waste leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119847. [PMID: 38142597 DOI: 10.1016/j.jenvman.2023.119847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
Solid waste leachate (SWL) requires dilution with water to offset the negative effects of high nutrient concentration and organic compounds for its microalgae-based treatment. Among attached cultivation systems, twin layer is a technology in which limited information is available on treatment of high strength wastewater using microalgae. Moreover, widespread application of twin layer technology is limited due to cost of substrate and source layer used. In the present study, potential of Scenedesmus sp. for the treatment of SWL was assessed on horizontal twin layer system (HTLS). Novel and cost-effective substrate layers were tested as attachment material. Wetland treated municipal wastewater (WMW) was used to prepare SWL dilutions viz, 5%, 10%, 15%, 20% and 25% SWL. Recycled printing paper showed maximum biomass productivity of 5.19 g m-2 d-1. Among all the SWL dilutions, Scenedesmus sp. achieved maximum growth of 103.05 g m-2 in 5% SWL which was 16% higher than WMW alone. The maximum removal rate of NH4+ -N, TKN, and PO43- P was obtained in 20% SWL which was 1371, 1588 and 153 mg m-2 d-1 respectively. Varying concentrations of nutrients in different SWL dilutions significantly affected lipid biosynthesis, with enhanced productivity of 2.28 g m-2 d-1 achieved in 5% SWL compared to 0.97 g m-2 d-1 in 20% SWL. Hence, it can be concluded that 5% SWL dilution was good for biomass and lipid production, while the highest nutrient removal rates were obtained at 20% SWL mainly attributed to biotic and abiotic processes. Based on these results HTLS can be a promising technology for pilot scale to explore industrialized application of wastewater treatment and algal production.
Collapse
Affiliation(s)
- Sahar Saleem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Zeshan Sheikh
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Rashid Iftikhar
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
12
|
Tseng YS, Patel AK, Haldar D, Chen CW, Dong CD, Singhania RR. Microalgae and nano-cellulose composite produced via a co-culturing strategy for ammonia removal from the aqueous phase. BIORESOURCE TECHNOLOGY 2023; 389:129801. [PMID: 37813315 DOI: 10.1016/j.biortech.2023.129801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
This study addresses the pressing need for sustainable bioremediation solutions to combat increasing pollution challenges in alignment with sustainability development goals. The research focuses on developing a co-culture approach involving microalgae and Komagataeibacter europaeus BCRC 14148 bacterium to create a biocomposite for efficient ammonia removal. Nanocellulose, produced by the bacterium, serves as a substrate for microalgae attachment. Optimization using specific growth media ratios resulted in biocomposite yields of 4.05 ± 0.16 g/L and 3.83 ± 0.13 g/L in HS medium with fructose and glucose, respectively. The optimal conditions include a 40:60 ratio of HS-F to TAP medium, 25 ℃ incubation, 6000 Lux light intensity, pH 5.5, and a 48-hour incubation period. When applied to wastewater treatment, the biocomposite demonstrated exceptional ammonium removal efficiency at 91.64 ± 1.27 %. This co-culture-derived biocomposite offers an eco-friendly, recyclable, and effective solution for sustainable environmental bioremediation.
Collapse
Affiliation(s)
- Yi-Sheng Tseng
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India; The College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; The College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; The College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India.
| |
Collapse
|
13
|
Dai J, Zheng M, He Y, Zhou Y, Wang M, Chen B. Real-time response counterattack strategy of tolerant microalgae Chlorella vulgaris MBFJNU-1 in original swine wastewater and free ammonia. BIORESOURCE TECHNOLOGY 2023; 377:128945. [PMID: 36958682 DOI: 10.1016/j.biortech.2023.128945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
This work was the first time to systematically clarify the potential tolerance mechanism of an indigenous Chlorella vulgaris MBFJNU-1 towards the free ammonia (FA) during the original swine wastewater (OSW) treatment by transcriptome analysis using C. vulgaris UETX395 as the control group. The obtained results showed that C. vulgaris MBFJNU-1 was found to be more resistant to the high levels of FA (115 mg/L) and OSW in comparison to C. vulgaris UETX395 (38 mg/L). Moreover, the transcriptomic results stated that some key pathways from arginine biosynthesis, electron generation and transmission, ATP synthesis in chloroplasts, and glutathione synthesis of C. vulgaris MBFJNU-1 were greatly related with the OSW and FA. Additionally, C. vulgaris MBFJNU-1 in OSW and FA performed similar results in the common differentially expressed genes from these mentioned pathways. Overall, these obtained results deliver essential details in microalgal biotechnology to treat swine wastewater and high free ammonia wastewater.
Collapse
Affiliation(s)
- Jingxuan Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Youcai Zhou
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
14
|
Zhu S, Jiang R, Qin L, Huang D, Yao C, Xu J, Wang Z. Integrated strategies for robust growth of Chlorella vulgaris on undiluted dairy farm liquid digestate and pollutant removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158518. [PMID: 36063926 DOI: 10.1016/j.scitotenv.2022.158518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Undiluted dairy farm liquid digestate contains high levels of organic matters, chromaticity and total ammonia nitrogen (TAN), resulting in inhibition to microalgal growth. In this study, a novel cascade pretreatment with ozonation and ammonia stripping (O + S) was employed to remove these inhibitors, and was compared with single pretreatment approach. The optimum parameters for ozonation and ammonia stripping were obtained and the mechanisms of inhibition elimination were investigated. The results show that ozonation contributed to the degradation of non-fluorescent chromophoric organics through the direct molecular ozone attack, which mitigated the inhibition of chromaticity to microalgae, while ammonia stripping relieved the inhibition of high TAN to microalgae. After cascade pretreatment, TAN, total nitrogen (TN), COD and chromaticity were reduced by 80.2 %, 75.4 %, 20.6 % and 75.8 % respectively. When C. vulgaris was cultured on different pretreated digestate, it was found that cascade pretreatment was beneficial for retaining high PSII activity and synergistically improved microalgal growth. The highest biomass increment and productivity achieved 5.40 g L-1 and 900 mg L-1 d-1 respectively in the integration system of cascade pretreatment with microalgae cultivation (O + S + M). After O + S + M treatment, the removal efficiencies of TAN, TN, COD and total phosphorus (TP) were 100 %, 92.8 %, 46.7 % and 99.6 %, respectively. This work provided a promising strategy (O + S + M) for sustainable liquid digestate treatment, along with nutrient recovery and value-added biomass production.
Collapse
Affiliation(s)
- Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Renyuan Jiang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Dalong Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Chongzhi Yao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Jin Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
15
|
Chen Z, Qiu S, Li M, Xu S, Ge S. Effect of free ammonia shock on Chlorella sp. in wastewater: Concentration-dependent activity response and enhanced settleability. WATER RESEARCH 2022; 226:119305. [PMID: 36332297 DOI: 10.1016/j.watres.2022.119305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The unstable microbial activity and unsatisfactory settling performance impede the development and implementation of microalgal wastewater treatment, especially in high-ammonium wastewater in the presence of free ammonia (FA). The shock of FA due to the nutrient fluctuation in wastewater was demonstrated as the primary stress factor suppressing microalgal activities. Recent study has clearly revealed the inhibition mechanism of FA at a specific high level (110.97 mg/L) by inhibiting the genetic information processing, photosynthesis, and nutrient metabolism. However, the effects of various FA shock concentrations on microalgal activities and settling performance remain unknown, limiting the wastewater bioremediation efficiencies improvement and the process development. Herein, a concentration-dependent shock FA (that was employed on microalgae during their exponential growth stages) effect on microalgal growth and photosynthesis was observed. Results showed that the studied five FA shock concentrations ranging from 25 to 125 mg/L significantly inhibited biomass production by 14.7-57.0%, but sharp reductions in photosynthesis with the 36.0-49.0% decreased Fv/Fm values were only observed when FA concentration was above 75.0 mg/L. On the other hand, FA shock enhanced microalgal settling efficiency by 12.8-fold, which was believed to be due to the stimulated intra- and extracellular protein contents and thereby the enhanced extracellular polymer substances (EPS) secretion. Specifically, FA shock induced 40.2 ± 2.3% higher cellular protein content at the cost of the decreased carbohydrates (22.6 ± 1.3%) and fatty acid (39.0 ± 0.8%) contents, further improving the protein secretion by 1.21-fold and the EPS production by 40.2 ± 2.3%. These FA shock-induced variations in intra- and extracellular biomolecules were supported by the up-regulated protein processing and export at the assistance of excessive energy generated from fatty acid degradation and carbohydrates consumption. In addition, FA shock significantly decreased the biomass nutritional value as indicated by the 1.86-fold lower essential amino acid score and nearly 50% reduced essential to non-essential amino acids ratio, while slightly decreased the biodiesel quality. This study is expected to enrich the knowledge of microalgal activities and settling performance in response to fluctuant ammonium concentrations in wastewater and to promote the development of microalgal wastewater treatment.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shiling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
16
|
Sekine M, Yoshida A, Kishi M, Furuya K, Toda T. Free ammonia tolerance of cyanobacteria depends on intracellular pH. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Mahmoud RH, Wang Z, He Z. Production of algal biomass on electrochemically recovered nutrients from anaerobic digestion centrate. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Chen Z, Qiu S, Li M, Zhou D, Ge S. Instant Inhibition and Subsequent Self-Adaptation of Chlorella sp. Toward Free Ammonia Shock in Wastewater: Physiological and Genetic Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9641-9650. [PMID: 35737736 DOI: 10.1021/acs.est.1c08001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Free ammonia (FA) has been recently demonstrated as the primary stress factor suppressing microalgal activities in high-ammonium wastewater. However, its inhibition mechanism and microalgal self-adaptive regulations remain unknown. This study revealed an initial inhibition and subsequent self-adaptation of a wastewater-indigenous Chlorella sp. exposed to FA shock. Mutual physiological and transcriptome analysis indicated that genetic information processing, photosynthesis, and nutrient metabolism were the most influenced metabolic processes. Specifically, for the inhibition behavior, DNA damage was indicated by the significantly up-regulated related genes, leading to the activation of cell cycle checkpoints, programmed apoptosis, and suppressed microalgal growth; FA shock inhibited the photosynthetic activities including both light and dark reactions and photoprotection through non-photochemical quenching; ammonium uptake was also suppressed with the inhibited glutamine synthetase/glutamine α-oxoglutarate aminotransferase cycle and the inactivated glutamate dehydrogenase pathway. With respect to microalgal self-adaptation, DNA damage possibly enhanced overall cell viability through reprogramming the cell fate; recovered nutrient uptake provided substances for self-adaptation activities including amino acid biosynthesis, energy production and storage, and genetic information processing; elevated light reactions further promoted self-adaptation through photodamage repair, photoprotection, and antioxidant systems. These findings enrich our knowledge of microalgal molecular responses to FA shock, facilitating the development of engineering optimization strategies for the microalgal wastewater bioremediation system.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Di Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094 Jiangsu, China
| |
Collapse
|
19
|
Microalgae Cultivation on Nutrient Rich Digestate: The Importance of Strain and Digestate Tailoring under PH Control. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The bioremediation of digestate using microalgae presents a solution to the current eutrophication issue in Northwest Europe, where the use of digestate as soil fertiliser is limited, thus resulting in an excess of digestate. Ammonium is the main nutrient of interest in digestate for microalgal cultivation, and improving its availability and consequent uptake is crucial for optimal bioremediation. This work aimed to determine the influence of pH on ammonium availability in cultures of two green microalgae, additionally screened for their growth performances on three digestates produced from different feedstocks, demonstrating the importance of tailoring a microalgal strain and digestate for bioremediation purposes. Results showed that an acidic pH of 6–6.5 resulted in a better ammonium availability in the digestate media, translated into better growth yields for both S. obliquus (GR: 0.099 ± 0.001 day−1; DW: 0.23 ± 0.02 g L−1) and C. vulgaris (GR: 0.09 ± 0.001 day−1; DW: 0.49 ± 0.012 g L−1). This result was especially true when considering larger-scale applications where ammonium loss via evaporation should be avoided. The results also demonstrated that digestates from different feedstocks resulted in different growth yields and biomass composition, especially fatty acids, for which, a digestate produced from pig manure resulted in acid contents of 6.94 ± 0.033% DW and 4.91 ± 0.3% DW in S. obliquus and C. vulgaris, respectively. Finally, this work demonstrated that the acclimation of microalgae to novel nutrient sources should be carefully considered, as it could convey significant advantages in terms of biomass composition, especially fatty acids and carbohydrate, for which, this study also demonstrated the importance of harvesting time.
Collapse
|
20
|
Co-culturing of microalgae and bacteria in real wastewaters alters indigenous bacterial communities enhancing effluent bioremediation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M. Impact of Nitrate and Ammonium Concentrations on Co-Culturing of Tetradesmus obliquus IS2 with Variovorax paradoxus IS1 as Revealed by Phenotypic Responses. MICROBIAL ECOLOGY 2022; 83:951-959. [PMID: 34363515 DOI: 10.1007/s00248-021-01832-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Mutual interactions in co-cultures of microalgae and bacteria are well known for establishing consortia and nutrient uptake in aquatic habitats, but the phenotypic changes in terms of morphological, physiological, and biochemical attributes that drive these interactions have not been clearly understood. In this novel study, we demonstrated the phenotypic response in a co-culture involving a microalga, Tetradesmus obliquus IS2, and a bacterium, Variovorax paradoxus IS1, grown with varying concentrations of two inorganic nitrogen sources. Modified Bold's basal medium was supplemented with five ratios (%) of NO3-N:NH4-N (100:0, 75:25, 50:50, 25:75, and 0:100), and by maintaining N:P Redfield ratio of 16:1. The observed morphological changes in microalga included an increase in granularity and a broad range of cell sizes under the influence of increased ammonium levels. Co-culturing in presence of NO3-N alone or combination with NH4-N up to equimolar concentrations resulted in complete nitrogen uptake, increased growth in both the microbial strains, and enhanced accumulation of carbohydrates, proteins, and lipids. Total chlorophyll content in microalga was also significantly higher when it was grown as a co-culture with NO3-N and NH4-N up to a ratio of 50:50. Significant upregulation in the synthesis of amino acids and sugars and downregulation of organic acids were evident with higher ammonium uptake in the co-culture, indicating the regulation of carbon and nitrogen assimilation pathways and energy synthesis. Our data suggest that the co-culture of strains IS1 and IS2 could be exploited for effluent treatment by considering the concentrations of inorganic sources, particularly ammonium, in the wastewaters.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia
| | - Sudharsanam Abinandan
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, Andhra Pradesh, India
| | - Ravi Naidu
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
22
|
Sobhi M, Guo J, Gaballah MS, Li B, Zheng J, Cui X, Sun H, Dong R. Selecting the optimal nutrients recovery application for a biogas slurry based on its characteristics and the local environmental conditions: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152700. [PMID: 34973327 DOI: 10.1016/j.scitotenv.2021.152700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Digestate (effluent of biogas plants) became the main bottleneck for biogas industry expansion because it often exceeds the capacity of surrounding croplands as fertilizer. Nutrients recovery from digestate is a promising solution for closing nutrients cycles and generating high value-added byproducts. In fact, numerous nutrients recovery technologies were reported and utilized for that purpose. However, each technology has optimum working conditions, while digestates have different characteristics due to the different substrates, digestion conditions, and handling methods. On the other hand, no protocol has been reported yet for selecting the optimal nutrients recovery technology or sequenced technologies for different digestates regarding their characteristics and the surrounding environmental conditions. In this study, an interactive flowchart was suggested and discussed for selecting the most appropriate technology or sequential techniques among the different alternatives. The whole digestate utilization technologies, solid-liquid separation technologies, liquid and solid processing technologies were included.
Collapse
Affiliation(s)
- Mostafa Sobhi
- College of Engineering, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, PR China; Agricultural and Bio-systems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Jianbin Guo
- College of Engineering, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, PR China.
| | - Mohamed S Gaballah
- College of Engineering, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, PR China
| | - Bowen Li
- College of Engineering, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, PR China
| | - Jiabao Zheng
- College of Engineering, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, PR China
| | - Xian Cui
- College of Engineering, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, PR China
| | - Hui Sun
- College of Engineering, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, PR China
| | - Renjie Dong
- College of Engineering, Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture, China Agricultural University, Beijing 100083, PR China; Yantai Institute, China Agricultural University, Yantai 264032, Shandong, PR China
| |
Collapse
|
23
|
Al-Mallahi J, Ishii K. Attempts to alleviate inhibitory factors of anaerobic digestate for enhanced microalgae cultivation and nutrients removal: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114266. [PMID: 34906810 DOI: 10.1016/j.jenvman.2021.114266] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion is a well-established process that is applied to treat organic wastes and convert the carbon to valuable methane gas as a source of energy. The digestate that comes out as a by-product is of a great challenge due to its high nutrient content that can be toxic in case of improper disposal to the environment. Several attempts have been done to valorize this digestate. Digestate has been considered as an interesting medium to cultivate microalgae. The nutrients available in the digestate, mainly nitrogen and phosphorus, can be an interesting supplement for microalgae growth requirement. The main obstacles of using digestate as a medium to cultivate microalgae are the dark color and the high ammonium-nitrogen concentration. The focus of this review is to discuss in detail the major attempts in research to overcome inhibition and enhance microalgae cultivation in digestate. This review initially discussed the obstacles of digestate as a medium for microalgae cultivation. Different processes to overcome inhibition were discussed including dilution, supplying additional carbon source, favoring mixotrophic cultivation and pretreatment. More emphasis in this review was given to digestate pretreatment. Among the pretreatment methods, filtration, and centrifugation were of the most applied ones. These strategies were found to be effective for turbidity and chromaticity reduction. For ammonium nitrogen removal, ammonia stripping and biological pretreatment methods were found to play a vital role. Adsorption could work both ways depending on the material used. Combining different pretreatment methods as well as including selected microalgae stains were found interesting strategies to facilitate microalgae cultivation with no dilution. This study recommend that more study should investigate the optimization of microalgae cultivation in anaerobic digestate without the need for dilution.
Collapse
Affiliation(s)
- Jumana Al-Mallahi
- Faculty of Engineering, Hokkaido University, N13, W18, Kita-ku, Sapporo, 060-8628, Japan.
| | - Kazuei Ishii
- Faculty of Engineering, Hokkaido University, N13, W18, Kita-ku, Sapporo, 060-8628, Japan
| |
Collapse
|
24
|
Ding Y, Wang S, Ma H, Ma B, Guo Z, You H, Mei J, Hou X, Liang Z, Li Z. Effect of Different Influent Conditions on Biomass Production and Nutrient Removal by Aeration Microalgae Membrane Bioreactor (ICFB-MMBR) System for Mariculture Wastewater Treatment. MEMBRANES 2021; 11:membranes11110874. [PMID: 34832103 PMCID: PMC8625849 DOI: 10.3390/membranes11110874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
The nutrient removal and biomass production of the internal circulating fluidized bed microalgae membrane bioreactor (ICFB-MMBR) was studied under different cultivation modes, influent TOC, influent pH, and influent N/P. Platymonas helgolandica tsingtaoensis was used as the biological source. The growth of P. helgolandica tsingtaoensis and the removal efficiency of pollutants in the mixotrophy culture mode were improved compared with other culture modes. With the increased influent TOC, the average growth rate of P. helgolandica tsingtaoensis increased, and ammonia nitrogen and total phosphorus removal rate were improved. The P. helgolandica tsingtaoensis growth rate and nutrient removal efficiencies at the influent pH of 8 were the best among the different influent pH values. As the influent N/P ratio increased from 5 to 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate increased gradually. When the influent N/P ratio was higher than 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate tended to be stable and did not significantly change with the increase of influent N/P ratio. At the proper influent conditions, the high P. helgolandica tsingtaoensis biomass and nutrient removal efficiency could be obtained in the microalgae membrane bioreactor, which could provide a theoretical basis for the application of the system for wastewater treatment.
Collapse
Affiliation(s)
- Yi Ding
- Marine College, Shandong University, Weihai 264209, China; (Y.D.); (Z.G.); (J.M.); (X.H.); (Z.L.)
| | - Shiyuan Wang
- State Key Laboratory of Urban Water Resources and Water Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264200, China; (S.W.); (H.M.); (B.M.); (H.Y.)
| | - Hang Ma
- State Key Laboratory of Urban Water Resources and Water Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264200, China; (S.W.); (H.M.); (B.M.); (H.Y.)
| | - Binyu Ma
- State Key Laboratory of Urban Water Resources and Water Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264200, China; (S.W.); (H.M.); (B.M.); (H.Y.)
| | - Zhansheng Guo
- Marine College, Shandong University, Weihai 264209, China; (Y.D.); (Z.G.); (J.M.); (X.H.); (Z.L.)
| | - Hong You
- State Key Laboratory of Urban Water Resources and Water Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264200, China; (S.W.); (H.M.); (B.M.); (H.Y.)
| | - Junxue Mei
- Marine College, Shandong University, Weihai 264209, China; (Y.D.); (Z.G.); (J.M.); (X.H.); (Z.L.)
| | - Xuguang Hou
- Marine College, Shandong University, Weihai 264209, China; (Y.D.); (Z.G.); (J.M.); (X.H.); (Z.L.)
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai 264209, China; (Y.D.); (Z.G.); (J.M.); (X.H.); (Z.L.)
| | - Zhipeng Li
- State Key Laboratory of Urban Water Resources and Water Environment, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264200, China; (S.W.); (H.M.); (B.M.); (H.Y.)
- Correspondence:
| |
Collapse
|
25
|
Xie D, Gao M, Yang M, Xu M, Meng J, Wu C, Wang Q, Liu S. Re-using ammonium-rich wastewater as a moisture conditioning agent during composting thermophilic period improves composting performance. BIORESOURCE TECHNOLOGY 2021; 332:125084. [PMID: 33819855 DOI: 10.1016/j.biortech.2021.125084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
A weakly acidic ammonium-rich wastewater (STL) was intended to reuse as a moisture conditioning agent for composting to increase nitrogen content of compost. The influence of adding STL in the mesophilic period (MP), thermophilic period (TP), and cooling period (CP) on composting performance was investigated. Results revealed that organic degradation was strongly suppressed in MP, whereas no difference (p > 0.05) was observed between CP and control group (using tap water as moisture conditioning agent). The hydrolysis and mineralization of organic matter in TP were partly stimulated because reusing STL reduced free ammonia concentrations (<400 mg/L) of windrows. Additionally, the ammonium and nitrate nitrogen content of compost in TP increased by 71% and 425% without additional greenhouse gas emissions compared with control group. Therefore, ammonium-rich wastewater like STL could substitute tap water to condition compost moisture content and increase the nitrogen content of compost during the thermophilic composting period.
Collapse
Affiliation(s)
- Dong Xie
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Min Yang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Mingyue Xu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jie Meng
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 10083, China.
| | - Qunhui Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 10083, China
| | - Shu Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 10191, China
| |
Collapse
|