1
|
Liu C, Liu L, Lin H, Deng S, Zeng H, Shi X, Ling Z, Zhou F, Liu Z, Guo S. New biological strategies for preventing and controlling food contaminants in the supply chain: Smart use of common plant-derived substances. Food Chem 2025; 479:143757. [PMID: 40088659 DOI: 10.1016/j.foodchem.2025.143757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Traditional means of contaminant management that rely on chemical additives and high-temperature processing have raised concerns about long-term safety and environmental issues in the modern food supply chain. Therefore, sustainable, safe, and innovative strategies are urgently needed. Plant-derived substances are known for their biological activity and antifouling potential as natural alternatives for contamination control. This review examines the sources of various contaminants, the categories of plant-derived substances, the action mechanisms, and their feasibility in the food supply chain. The smart use of plant-derived substances to improve microbial, chemical, and metal contamination in the food blockchain is not only a profound fusion of nature and technology, but also a mutual combination of ecological preservation and food safety. However, the realization of its commercialization is subject to multiple sanctions, but as the thorny issues are gradually resolved, the consolidation and market for the new strategies will thrive.
Collapse
Affiliation(s)
- Changwei Liu
- School of Resource & Environment and Safety Engineerng, Hunan University of Science and Technology, Xiangtan 411201, China; School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lu Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haiyan Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Senwen Deng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hongzhe Zeng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xin Shi
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhixiang Ling
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Fang Zhou
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou, Hunan 423000, PR China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Shiyin Guo
- School of Resource & Environment and Safety Engineerng, Hunan University of Science and Technology, Xiangtan 411201, China; School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
2
|
Xin R, Yang F, Zeng Y, Zhang M, Zhang K. Analysis of antibiotic resistance genes in livestock manure and receiving environment reveals non-negligible risk from extracellular genes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1331-1340. [PMID: 40208658 DOI: 10.1039/d4em00570h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Antibiotic resistance genes (ARGs), extracellular and intracellular, collectively constitute the complete resistome within farming environments. However, a systematic analysis of extracellular ARGs (eARGs) and intracellular ARGs (iARGs) remains missing. This study characterized eARGs and iARGs in livestock manure and examined their effects on the agricultural soil receiving them. The findings indicated differences in DNA concentration and the ratios of iDNA and eDNA across various manures, with chicken manure demonstrating the highest eDNA levels (20.7-22.7%). Different ARG subtypes had distinct pollution levels in livestock manure. Generally, except for blaTEM-1 and blaOXA-1, ermC, ermB, and cfr, other ARGs were abundant in eDNA (beyond 104 copies per g DW in each sample) and iDNA (beyond 107 copies per g DW) of animal manure. The copy numbers of eARGs and iARGs differed in different manures, with swine manure having the highest, ranging from 6.08 × 103 to 4.30 × 108 and from 3.21 × 107 to 9.51 × 1010 copies per g DW, respectively. Both iARGs and eARGs were more abundant in soil when manure was applied. The impacts of the various manures varied, with chicken manure having the most significant influence. Interestingly, several eARGs were much more abundant in soil than their intracellular counterparts, highlighting the need to regulate and manage both eARGs and iARGs.
Collapse
Affiliation(s)
- Rui Xin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
- Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
| | - Yuanye Zeng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Meiqi Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
- Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
| |
Collapse
|
3
|
Chen L, Wang X, Li J, Yan C, Yuan M, Xia S, Jianfu Z. Synergistic Oxygen Vacancy and Dual-Electron Centers for Enhancing Peroxymonosulfate Activation by Fe─Mn─Mg LDH/BC: Insights into the Key Roles of Magnesium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502606. [PMID: 40376894 DOI: 10.1002/smll.202502606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 05/07/2025] [Indexed: 05/18/2025]
Abstract
Enhancing singlet oxygen (1O2)-dominated nonradical oxidation with higher selectivity and longer lifetime is crucial for efficient antibiotic degradation. Herein, Fe/Mn/Mg layered double hydroxides (FeMnMg-LDH) modified rice husk biochar composites (BC/FeMMgx-LDH, x = 1, 2, and 3) are prepared to activate peroxymonosulfate (PMS) for sulfamethazine (SMT) removal. Increasing Mg content in FeMnMg-LDH enhances catalytic efficiency, achieving 99.2% SMT removal (50 mg L-1) within 30 min with BC/FeMMg3-LDH/PMS. 1O2 is identified as the primary active species, with its dominance increasing as Mg content rises. High Mg content induces lattice strain and structural disorder in LDH by atom intercalation in the octahedron, creating abundant oxygen vacancies (Vo) and surface M─OH groups. These Vo amplify the Fe─Mg polarization effect and promote the formation of electron-rich Fe centers. Simultaneously, the elevated d-band center at the Mn site develops electron-donating centers, facilitating short-range electron transfer to Vo and the electron-rich Fe center, boosting high local electron density. This process enhances PMS activation and 1O2 regulation. Moreover, the neutral pH microenvironment constructed by Mg, hydroxyl and interlayer carbonates supports stable 1O2 generation and broad pH applicability. This study offers new insights into the Mg-induced structural effects in BC/FeMMgx-LDH and the development of efficient 1O2-dominated PMS catalysts.
Collapse
Affiliation(s)
- Liuyu Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Jing Li
- Shanghai Investigation, Design & Research Institute Co., Ltd, Shanghai, 200124, P.R. China
- China Three Gorges Corporation, National Engineering Research Center of Eco-Environment in the Yangtze River Economic Belt, Wuhan, 430010, P.R. China
| | - Changchun Yan
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Meng Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| | - Zhao Jianfu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P.R. China
| |
Collapse
|
4
|
Lin Z, Li M, Yan P, Zhang J, Xie H, Wu H. Constructed wetlands for wastewater treatment and reuse: Two decades of experience from China. ENVIRONMENTAL RESEARCH 2025; 279:121781. [PMID: 40335010 DOI: 10.1016/j.envres.2025.121781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Constructed wetlands (CWs) can be used for water purification and ecological restoration through the synergistic effects of substrates, aquatic plants, and microorganisms. This study explored a bibliometric approach to quantitatively evaluate the recent research progress and applications of CWs in China by synthetically analyzing publication output characteristics, research hotspots and quantified China's unique contributions to global CW applications. The results indicated that the number of papers published in the field of CWs has shown an overall upward trend in the past two decades, and the research hotspots mainly focus on the nitrogen and phosphorus removal, microbial community. China has actively supported the investigation and application of CWs for wastewater treatment and reuse. More than 40 species of plants and over 30 types of substrates have been employed in CWs for treating different types of wastewater, such as domestic sewage, industrial effluents, river water, and drinking water. Several successful case studies of full-scale CWs have been selected and summarized to highlight the extensive application of CWs in China and provided a CW localized design framework.
Collapse
Affiliation(s)
- Zhiyi Lin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Mingjun Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Peihao Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, PR China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266247, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
5
|
Liu R, Liu L, Liu Y, Wang L. Comprehensive evaluation of antibiotic pollution in a typical tributary of the Yellow River, China: Source-specific partitioning and fate analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137294. [PMID: 39862781 DOI: 10.1016/j.jhazmat.2025.137294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The partitioning and migrating of antibiotic residues pose a considerable pollution to the river environment. However, a source-specific approach for quantifying the fate of antibiotics is lacking. To further elucidate the migration behavior of antibiotics from different pollution sources in aquatic environments, we introduced a source-specific partition coefficient (S-Kp) based on Positive Matrix Factorization (PMF) model to improve the multimedia model. This study identified six sources of antibiotic pollution in the water and sediment of the Fenhe River. Farmland drainage contributed 2.6 times more antibiotics to sediment than to surface water, whereas livestock sources contributed 0.3 times less to sediment than to water. High S-Kp values were primarily obtained from livestock, aquaculture, and farmland drainage pollution sources, with an average S-Kp value exceeding 200 L/kg. Sulfaquinoxaline (SQX) in sulfonamides (SAs) from livestock sources exhibited the highest S-Kp value of 34,740.04 L/kg. The predicted environmental concentrations indicated that almost 99 % of the antibiotics from the six sources remained in the water phase, with the highest contribution (99.9 %) of azithromycin (AZM) from livestock, pharmaceutical wastewater, and domestic sewage. This study provides novel insights into the migration of antibiotics from source-specific partitions in multimedia environments of watersheds.
Collapse
Affiliation(s)
- Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China.
| | - Lu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Yue Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Linfang Wang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong 030600, China
| |
Collapse
|
6
|
Zhang WG, Liang S, Liao Y, Ran G, Ji S, Gao Y, Lei Z. Insights into the impact of different phytoremediation strategies on antibiotic resistance genes at the metagenomic level in real scenarios. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118211. [PMID: 40249976 DOI: 10.1016/j.ecoenv.2025.118211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Engineered phytoremediation strategies provide cost effective options for eliminating antibiotics and antibiotic resistance genes (ARGs) from wastewater. However, there is a knowledge gap in understanding the impact of these phytoremediation strategies on the on the diversity and composition of ARGs as well as the key driving biotic and biological factors of ARGs at the metagenomic level in real scenarios. Through metagenomic sequencing, this study demonstrates that phytoremediation with Iris pseudacorus L., Myriophyllum verticillatum L., Eichhornia crassipes (Mart.) Solms and Oenanthe javanica (Bl. DC) significantly alters the pattern of antibiotic resistome. This study is the first to reveal, at the omics level, that phytoremediation enhances the diversity of ARGs (3.2 %∼11.6 % improvement), despite reducing their absolute abundances. Furthermore, this study highlights that plant varieties have a significant impact on the performance of phytoremediation in mitigating ARGs. The non-dominant bacterial taxa, specifically Verrucomicrobia, Planctomycetes, and Actinobacteria, play a crucial role in shaping the pattern of the antibiotic resistome during the wastewater treatment. The changes in the total organic carbon, total nitrogen and antibiotics robustly influence the environmental behaviors of antibiotic resistome and microbiome. In summary, this study gives insight into the impact of different phytoremediation strategies on mitigating ARGs at the omics level in real scenarios.
Collapse
Affiliation(s)
- Wei-Guo Zhang
- School of Life Science, Jinggangshan University, Ji'an 343009, China; China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Sizhou Liang
- China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yonghui Liao
- School of Life Science, Jinggangshan University, Ji'an 343009, China.
| | - Guangcan Ran
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Shenyang Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Gao
- China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhongfang Lei
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
7
|
Lou Y, Mo K, Shao W, Liu Y, Chong Y, Yu G, Zheng Q, Qiu R. Exploring the Dual Nature of Integrated Crop-Livestock Systems: A Review of Environmental Benefits and Risk Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7019-7033. [PMID: 40072285 DOI: 10.1021/acs.jafc.4c10994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Integrated crop-livestock systems (ICLS) are acknowledged as both productive and environmentally sustainable, with notable potential to optimize resource use, enhance ecosystem services, and boost crop yields. However, manure application, a critical component of ICLS, may amplify negative environmental impacts, particularly the risks associated with emerging pollutants, which remain underexplored and insufficiently understood. This comprehensive review seeks to thoroughly evaluate the environmental benefits of ICLS. It integrates case studies of successful ICLS models implemented across leading agricultural nations to deepen insights into their practical application. Moreover, this review uniquely underscores the environmental challenges posed by emerging pollutants in ICLS and examines mitigation strategies. Additionally, technological advancements, sustainable practices, assessment models, and policy interventions are essential for ICLS development, highlighting the need for further in-depth research.
Collapse
Affiliation(s)
- Yueshang Lou
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Kexin Mo
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wankui Shao
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yilun Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yunxiao Chong
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Guangwei Yu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qian Zheng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
8
|
Chen C, Luo Z, Tu H, Lin X, Pang Y, Huang J, Zhang J, Wang X, Cai Q, Wei Z, Zeng J, Qiu J. Response surface methodology and Box-Behnken design optimization of Sulfaquinoxaline removal efficiency and degradation mechanisms by Bacillus sp. strain DLY-11. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136986. [PMID: 39742867 DOI: 10.1016/j.jhazmat.2024.136986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Antibiotic pollution, particularly the persistence of Sulfaquinoxaline (SQ) residues in livestock and poultry farming environments, has emerged as a pressing environmental concern. Despite this, there remains a limited understanding of the optimized conditions and mechanisms for the efficient degradation of SQ by microorganisms. To address this knowledge gap, we isolated Bacillus sp. strain DLY-11 from aerobically composted manure, which exhibits exceptional SQ degradation capability. Using response surface methodology and Box-Behnken design, we optimized the conditions: 5 % inoculum, 60 °C, pH 8.02, and 0.5 g/L MgSO4. Strain DLY-11 achieved 95.5 % SQ degradation in 2 d. We identified 12 degradation products, including one newly reported, and proposed four degradation pathways involving S-N and C-N bond cleavage, hydroxylation, SO2 release, deamination, oxidation, acetylation, and formylation. One of the proposed pathways is entirely new and has not been previously reported in the literature. This work closes important information gaps in the bacterial degradation pathways of SQ by optimizing the degradation conditions and introducing a useful microbial resource for the effective breakdown of SQ. It also provides a solid theoretical foundation for tackling the problem of antibiotic contamination in livestock and poultry production.
Collapse
Affiliation(s)
| | - Zifeng Luo
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou, Guangdong 510655, China.
| | - Hongxing Tu
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou, Guangdong 510655, China
| | - Xiaojun Lin
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou, Guangdong 510655, China
| | - Yuwan Pang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianfeng Huang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jun Zhang
- Zhejiang Lishui Ecological and Environmental Monitoring Center, Lishui, Zhejiang 323000, China
| | - Xiujuan Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou, Guangdong 510655, China
| | - Qianyi Cai
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou, Guangdong 510655, China
| | - Zebin Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingwen Zeng
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou, Guangdong 510655, China
| | - Jinrong Qiu
- South China Institute of Environmental Sciences, MEE, Guangzhou, Guangdong 510655, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou, Guangdong 510655, China.
| |
Collapse
|
9
|
Bolujoko N, Duling A, Shashvatt U, Mangalgiri K. The fate of antibiotics during phosphate recovery processes - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178829. [PMID: 39970556 DOI: 10.1016/j.scitotenv.2025.178829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025]
Abstract
The principles of circular economy encourage the recovery of phosphorus from nutrient-rich waste streams such as animal manure, domestic wastewater, and urine to supplement existing sources of raw phosphorus. However, these waste streams also contain a wide variety of contaminants of emerging concern including antibiotics, and the recovery of phosphorus from these waste streams results in the co-occurrence of antibiotics with the recovered phosphorus products. This paper provides a comprehensive overview of the fate of environmentally relevant antibiotics in three major existing and upcoming phosphorus recovery processes: precipitation-, membrane-, and adsorption-based treatment. In general, the co-occurrence of antibiotics in recovered phosphorus increases with the presence of dissolved organic matter (DOM) and cations due to π-π interaction and cationic bridge formation, respectively. Additionally, antibiotics display pH-based speciation resulting in electrostatic interactions with recovered phosphorus at pH > 7.0. Furthermore, this critical review establishes a new metric, the relative antibiotic-to‑phosphorus (RAP), defined as the ratio of the concentration of antibiotics to phosphorus in recovered phosphorus to that of the phosphorus-rich waste. Precipitation-based methods, particularly struvite, demonstrated the lowest RAP, while the RAP in carbon-based adsorbents was 1.8 × 108 times higher than in membrane-based processes. In reviewing literature on the fate of antibiotics in phosphorus recovery processes, several research needs are also highlighted: the fate of non-tetracycline antibiotics, simultaneous investigation of phosphorus and antibiotic fate in membrane- and adsorption-based methods, treatment methods to mitigate the co-occurrence of antibiotics in recovered phosphorus product, and the release of antibiotics from recovered phosphate products.
Collapse
Affiliation(s)
- Nathaniel Bolujoko
- Environmental Science Graduate Program, Oklahoma State University, 202 Whitehurst, Stillwater, OK 74078, USA
| | - Addison Duling
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, 215A Agricultural Hall, Stillwater, OK 74078, USA
| | - Utsav Shashvatt
- Department of Civil and Environmental Engineering, University of California, Berkeley, 760 Davis Hall, Berkeley, CA 94720, USA
| | - Kiranmayi Mangalgiri
- Environmental Science Graduate Program, Oklahoma State University, 202 Whitehurst, Stillwater, OK 74078, USA; Department of Biosystems and Agricultural Engineering, Oklahoma State University, 215A Agricultural Hall, Stillwater, OK 74078, USA.
| |
Collapse
|
10
|
Li Z, Yang F, Han B, Zhao R, Yang M, Zhang K. Vermicomposting significantly reduced antibiotic resistance genes in cow manure even under high tetracycline concentrations. BIORESOURCE TECHNOLOGY 2025; 419:132002. [PMID: 39716578 DOI: 10.1016/j.biortech.2024.132002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Minimizing antibiotic resistance genes (ARGs) in livestock manure is crucial for curbing ARG dissemination. Vermicomposting can eliminate ARGs, but the effect of residual antibiotics on its reduction efficacy remains unclear. Herein, Eisenia foetida was employed to convert cow manure with varying concentrations of tetracycline (i.e., 0, 10, 100 mg/kg), aiming to explore the impact of tetracycline on ARG fate during vermicomposting for 35 days. Results showed that the total ARG abundance in vermicomposting (0.05 copies/16S rRNA copies) was significantly lower than that in natural composting (0.06 copies/16S rRNA copies) (p < 0.05). Notably, exposure to tetracycline increased total ARG abundance (p < 0.05) and stimulated microbial succession during vermicomposting, with some ARGs increasing and others decreasing. But ARGs removal in vermicomposting was still higher even under tetracycline stress than that in natural composting. Overall, vermicomposting is an effective method for reducing ARGs in cow manure even at high tetracycline levels.
Collapse
Affiliation(s)
- Zhonghan Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, China.
| | - Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Ran Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Ming Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
11
|
Mupindu P, Zhao YG, Pan C, Zhang Y, Liu J. Enhancement of aerobic denitrification process on antibiotics removal: Mechanism and efficiency: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70050. [PMID: 40065507 DOI: 10.1002/wer.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 05/13/2025]
Abstract
Traditionally, the removal of nitrogenous pollutants from wastewater relied on conventional anaerobic denitrification as well as aerobic nitrification and anoxic denitrification. However, anaerobic denitrification is complicated since it requires stringent environmental conditions as well as a large land, therefore, denitrification and nitrification were performed in two separate reactors. Although high pollutant removal efficiency has been achieved via aerobic nitrification and anoxic denitrification, the demerits of this approach include high operational costs. Other traditional nitrogen removal methods include air stripping, reverse osmosis, adsorption, ion exchange, chemical precipitation, advanced oxidation process, and breakpoint chlorination. Traditional nitrogen removal methods are not only complicated but they are also uneconomical due to the high operational costs. Researchers have discovered that denitrification can be carried out by heterotrophic nitrification-aerobic denitrification (HNAD) microorganisms which remove nitrogen in a single aerobic reactor that does not require stringent operating conditions. Despite the significant effort that researchers have put in, there is still little information known about the mechanisms of antibiotic removal during HNAD. This review begins with an update on the current state of knowledge on the removal of nitrogenous pollutants and antibiotics from wastewater by HNAD. The mechanisms of antibiotic removal via HNAD were examined in detail. Followed by, the enhancement of antibiotics removal via co-metabolism and oxidation of sulfamethoxazole (SMX) as well as the response of microbial communities to antibiotic toxicity. Lastly, the conditions favorable for antibiotic biodegradation and mechanisms for nitrogen removal via HNAD were examined. The findings in this review show that co-metabolism and oxidation of SMX were the main antibiotic biodegradation mechanisms, pathways for antibiotic removal by co-metabolism and oxidation of SMX were also proposed in the discussion. This research indicated the potential of aerobic denitrification in the removal of antibiotics from wastewater. Understanding the mechanisms and pathways of antibiotic removal by HNAD helps wastewater engineers and researchers apply the technology more efficiently. PRACTITIONER POINTS: The mechanisms of antibiotic removal via HNAD were examined in detail. Co-metabolism and oxidation of SMX were the main antibiotic biodegradation mechanisms. Pathways for antibiotic removal by co-metabolism and oxidation of SMX were also proposed. Conditions favorable for antibiotic biodegradation were examined. This research indicated the potential of aerobic denitrification in the removal of antibiotics from wastewater.
Collapse
Affiliation(s)
- Progress Mupindu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yang-Guo Zhao
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Lab of Marine Environmental Science and Ecology (Ocean University of China), Ministry of Education, Qingdao, China
| | - Chao Pan
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yanan Zhang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiannan Liu
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
12
|
Zhang L, Yuan L, Ye M, Xiang J, Dong Y, Liao Q, Qiu S, Zhang D, Yu X. Residue depletion and withdrawal time estimation of tilmicosin in black-bone silky fowls after administration via drinking water. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:203-212. [PMID: 39761333 DOI: 10.1080/19440049.2024.2445784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025]
Abstract
In this study, residue depletion and withdrawal time estimation of tilmicosin were examined in Taihe black-bone silky fowls (TBSFs) after oral administration for three consecutive days at a dose of 75 mg/L in water. The tilmicosin concentrations in liver, kidney, muscle, and skin/fat of TBSFs collected from different time points (0.16, 1, 3, 5, 7, 9, 12, 20, 30, 40 days after last administration) were determined by UPLC-MS/MS. The results indicated that the tilmicosin concentrations in TBSFs tissues varied significantly, and kidney had the highest average concentrations (2604.65 ± 4625.20 μg/kg), followed by liver (1125.54 ± 1479.24 μg/kg), skin/fat (372.81 ± 428.33 μg/kg), and muscle (104.52 ± 143.95 μg/kg). Meanwhile, tilmicosin was still detected in all the four studied tissues (liver, kidney, skin/fat, and muscle) of TBSFs at the last time point (40th day after administration), suggesting that tilmicosin in TBSFs depleted slowly. Based on our experiments, the recommended withdrawal time of tilmicosin for TBSFs after oral administration for three consecutive days at a dose of 75 mg/L in water should be 32 days, which is much longer than the duration specified by Chinese regulatory authorities (10 days), and the abundance of melanin in TBSFs might be responsible for this phenomenon. Hence, a special use and withdrawal procedure of veterinary drugs in TBSFs is needed, and it is essential to focus on potential involvement of melanin in tilmicosin accumulation.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Nanchang), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
| | - Lijuan Yuan
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Nanchang), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
| | - Mengjun Ye
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Nanchang), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
| | - Jianjun Xiang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Nanchang), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
| | - Yifan Dong
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Nanchang), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
| | - Qiegen Liao
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Nanchang), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
| | - Suyan Qiu
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Nanchang), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
| | - Dawen Zhang
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Nanchang), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
| | - Xiren Yu
- Institute of Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory for Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
- Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Nanchang), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanchang, China
| |
Collapse
|
13
|
Fang L, Lakshmanan P, Su X, Shi Y, Chen Z, Zhang Y, Sun W, Wu J, Xiao R, Chen X. Impact of residual antibiotics on microbial decomposition of livestock manures in Eutric Regosol: Implications for sustainable nutrient recycling and soil carbon sequestration. J Environ Sci (China) 2025; 147:498-511. [PMID: 39003065 DOI: 10.1016/j.jes.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 07/15/2024]
Abstract
The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, β-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs; Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4067, QLD, Australia
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yujia Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zheng Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wei Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and National Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Junxi Wu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and National Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
14
|
Cetin I, Cetin E, Karakcı D, Ercetin E. Thyme Essential Oil Supplementation in Growing Merino Lambs: Effects on Growth Performance, Blood Metabolites, and Fecal Microbiology. Anim Sci J 2025; 96:e70051. [PMID: 40109266 DOI: 10.1111/asj.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/05/2025] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
The study was conducted to evaluate the effect of thyme essential oil on growth performance, fecal microflora and immune system parameters in growing Merino lambs to investigate its use as safe and natural method. Thirty Merino lambs were used in 45 days in a randomized complete block design. The lambs in control group did not receive thyme essential oil, whereas each lamb in experimental groups supplemented with 250 mg thyme essential oil/d (T250) and 500 mg thyme essential oil/d (T500) throughout the study. The number of coliform bacteria was found to be the lowest in the T250 group compared to the other groups. Moreover, a significant difference was found between the control and experimental groups in the Lactobacillus (p < 0.019) and Bifidobacterium (p < 0.010) counts, and it was determined that the experimental groups contained higher numbers of beneficial bacteria than the control group. Immunoglobulin G plasma levels was highest in the 500 mg/day thyme oil group compared to the other groups. In conclusion, adding thyme essential oil with a high carvacrol content to lamb rations under stress following weaning has demonstrated that it can have antibacterial, immune-supportive, and growth-promoting properties without causing a negative effect on performance parameters.
Collapse
Affiliation(s)
- Ismail Cetin
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, Tekirdag, Türkiye
| | - Ece Cetin
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, Tekirdag, Türkiye
| | - Deniz Karakcı
- Department of Biochemistry, Faculty of Veterinary Medicine, Tekirdag Namik Kemal University, Tekirdag, Türkiye
| | - Egemen Ercetin
- Department of Animal Nutrition and Nutritional Diseases, Institute of Health Science, Bursa Uludag University, Bursa, Türkiye
| |
Collapse
|
15
|
Žaltauskaitė J, Miškelytė D, Sujetovienė G, Dikšaitytė A, Kacienė G, Januškaitienė I, Dagiliūtė R. Comprehensive tetracycline, ciprofloxacin and sulfamethoxazole toxicity evaluation to earthworm Dendrobaena veneta through life-cycle, behavioral and biochemical parameters. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104609. [PMID: 39667546 DOI: 10.1016/j.etap.2024.104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Veterinary antibiotics are widely spread in the environment, however, the knowledge about their impact on soil key species is still limited. This study evaluated the short-term and long-term effects of tetracycline (TC), ciprofloxacin (CIP) and sulfamethoxazole (SMX) (1-500 mg kg) on earthworm Dendrobaena veneta by measuring multiple parameters (survival, growth, reproduction, behavior and biochemical responses). Neither antibiotic induced acute toxicity and low mortality was observed after chronic exposure. TC and CIP had a negligible effect on the earthworm's weight from the 6th week of exposure, SMX inhibited the earthworm growth when was present in the range of 50-500 mg kg-1. In parallel, SMX reduced earthworm reproduction at environmentally relevant concentrations. Antibiotics altered superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and gluthathione-S-transferase (GST) activities and induced lipid peroxidation. Overall, earthworms showed no apparent acute response at environmentally relevant concentrations except for avoidance behavior; after long-term exposure earthworms experienced biochemical, physiological, and reproductive impairments and reduced survival at high soil contamination.
Collapse
Affiliation(s)
- Jūratė Žaltauskaitė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania.
| | - Diana Miškelytė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Gintarė Sujetovienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Austra Dikšaitytė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Giedrė Kacienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Irena Januškaitienė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| | - Renata Dagiliūtė
- Vytautas Magnus university, Department of Environmental Sciences, Universiteto 10-307, Kaunas district, Akademija LT-53361, Lithuania
| |
Collapse
|
16
|
Fu J, Wu X, Zhang C, Tang Y, Zhou F, Zhang X, Fan S. Genomic Analysis of Talaromyces verruculosus SJ9: An Efficient Tetracycline-, Enrofloxacin-, and Tylosin-Degrading Fungus. Genes (Basel) 2024; 15:1643. [PMID: 39766911 PMCID: PMC11675779 DOI: 10.3390/genes15121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Many fungi related to Talaromyces verruculosus can degrade a wide range of pollutants and are widely distributed globally. T. verruculosus SJ9 was enriched from fresh strawberry inter-root soil to yield fungi capable of degrading tetracycline, enrofloxacin, and tylosin. METHODS T. verruculosus SJ9 genome was sequenced, assembled, and annotated in this study utilizing bioinformatics software, PacBio, and the Illumina NovaSeq PE150 technology. RESULTS The genome size is 40.6 Mb, the N50 scaffold size is 4,534,389 bp, and the predicted number of coding genes is 8171. The T. verruculosus TS63-9 genome has the highest resemblance to the T. verruculosus SJ9 genome, according to a comparative genomic analysis of seven species. In addition, we annotated many genes encoding antibiotic-degrading enzymes in T. verruculosus SJ9 through genomic databases, which also provided strong evidence for its ability to degrade antibiotics. CONCLUSIONS Through the correlation analysis of the whole-genome data of T. verruculosus SJ9, we identified a number of genes capable of encoding antibiotic-degrading enzymes in its gene function annotation database. These antibiotic-related enzymes provide some evidence that T. verruculosus SJ9 can degrade fluoroquinolone antibiotics, tetracycline antibiotics, and macrolide antibiotics. In summary, the complete genome sequence of T. verruculosus SJ9 has now been published, and this resource constitutes a significant dataset that will inform forthcoming transcriptomic, proteomic, and metabolic investigations of this fungal species. In addition, genomic studies of other filamentous fungi can utilize it as a reference. Thanks to the discoveries made in this study, the future application of this fungus in industrial production will be more rapid.
Collapse
Affiliation(s)
- Jing Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.F.); (C.Z.); (Y.T.)
| | - Xiaoqing Wu
- Institute of Ecology, Shandong Academy of Sciences, Jinan 250103, China; (X.W.); (F.Z.)
| | - Chi Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.F.); (C.Z.); (Y.T.)
| | - Yuhan Tang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.F.); (C.Z.); (Y.T.)
| | - Fangyuan Zhou
- Institute of Ecology, Shandong Academy of Sciences, Jinan 250103, China; (X.W.); (F.Z.)
| | - Xinjian Zhang
- Institute of Ecology, Shandong Academy of Sciences, Jinan 250103, China; (X.W.); (F.Z.)
| | - Susu Fan
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.F.); (C.Z.); (Y.T.)
| |
Collapse
|
17
|
Sobhi M, Elsamahy T, Zakaria E, Gaballah MS, Zhu F, Hu X, Zhou C, Guo J, Huo S, Dong R. Characteristics, limitations and global regulations in the use of biogas digestate as fertilizer: A comprehensive overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177855. [PMID: 39631337 DOI: 10.1016/j.scitotenv.2024.177855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The utilization of biogas digestate, the effluent of anaerobic digestion (AD), as an organic fertilizer offers promising advances for sustainable agriculture, but it also presents critical challenges that require careful regulatory oversight. This review explores the wide characteristics range of digestate, key limitations, and regulatory frameworks shaping the use of biogas digestate as fertilizer. While digestate is a rich source of essential macro and micronutrients required for promoting plants growth, its application risks leading to nutrient overload, contamination from heavy metals, pathogens, antibiotics, microplastics, and emerging contaminants. By exploring the current regulations managing the utilization of biogas digestate as fertilizer, the EU limits digestate application to 170 kg N/ha/year, with a higher allowance in the UK (up to 250 kg N/ha/year). In other major biogas-producing countries, there is no specific limit for digestate application, as it varies depending on individual cases. Heavy metals and pathogens are satisfactorily regulated in the policies of these countries. However, no specific limits exist for antibiotics and microplastics, despite their significant impact on human health and the environment. Moreover, regulations concerning other potential chemicals are limited. Expanding these regulations is recommended to mitigate associated health and environmental risks.
Collapse
Affiliation(s)
- Mostafa Sobhi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Eman Zakaria
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Mohamed S Gaballah
- School of Engineering and Technology & Institute for Great Lakes Research, Central Michigan University, ET 140, Mt. Pleasant, MI 48859, USA
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, PR China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Renjie Dong
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
18
|
Chen K, Li J, Lin L, Qin W, Gao Y, Hu E, Jiang J. Occurrence, fate and control strategies of heavy metals and antibiotics in livestock manure compost land application: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177381. [PMID: 39521087 DOI: 10.1016/j.scitotenv.2024.177381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Composting is a sustainable method for managing livestock manure, but the residual heavy metals and antibiotics in the compost pose can pose environmental risks when applied to land. Although many studies focus on occurrence and risk mitigation of heavy metals and antibiotics in manure compost land application, there is a lack of systematic analysis covering the entire chain from source to process and final disposal. Given this, this article provides a comprehensive review of the sources, migration, fate, risk assessment, and risk reduction of heavy metals and antibiotics contamination in land application of livestock manure compost for the first time. The main pollutants of concern are heavy metals, particularly Cu and Zn, and antibiotics such as quinolones, tetracyclines, and sulfonamides. The coexistence of these contaminants can easily trigger co-contamination, threatening soil ecosystems and human health. Risk reduction strategies, emphasizing the use of additives during composting and phytoremediation after land application, are discussed. Challenges remain in understanding the interactions between heavy metals and antibiotics and developing effective strategies for mitigating co-contamination. Furthermore, the paper proposes the future prospects on the interactions study and the simultaneous control strategy of heavy metals and antibiotics contamination. It is expected to promote the whole process management of livestock manure and the control of heavy metal-antibiotic co-contamination in the future.
Collapse
Affiliation(s)
- Kailun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinglin Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Li Lin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Weikai Qin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Endian Hu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Zhao F, Song G, Li H, Wu Y, Dong W. A near-zero-discharge recirculating aquaculture system with 3D-printed poly (lactic acid) honeycomb as solid carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176097. [PMID: 39245379 DOI: 10.1016/j.scitotenv.2024.176097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
A novel near-zero-discharge recirculating aquaculture system was successfully set up and ran for six months or above. A uniquely designed and 3D printed poly (lactic acid) (PLA) structure was applied as carbon source. The system achieved over 50 % daily nitrogen removal capability and maintained a low NO3-N level of <0.5 mg/L. Steady water quality was observed throughout the experiment period. Microbial distribution was studied and top abundant microorganisms and their general functions in carbon and nitrogen utilization were discussed. Denitrification and L-glutamate formation were identified as two main nitrogen pathways. The cooccurrence network connecting various genera and multiple functions was revealed. Subtilisin was one important PLA degrading enzymes in the system.
Collapse
Affiliation(s)
- Feng Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Guoxin Song
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hongjing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Yanlin Wu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China.
| |
Collapse
|
20
|
Yan C, Sun Z, Liu Y, Wang X, Zhang Y, Xia S, Zhao J. Enhanced removal of antibiotic-resistant bacteria and resistance genes by three-dimensional electrochemical process using MgFe 2O 4-loaded biochar as both particle electrode and catalyst for peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135668. [PMID: 39197284 DOI: 10.1016/j.jhazmat.2024.135668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
In this study, MgFe2O4-loaded biochar (MFBC) was used as a three-dimensional particle electrode to active peroxymonosulfate (EC/MFBC/PMS) for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The results demonstrated that, under the conditions of 1.0 mM PMS concentration, 0.4 g/L material dosage, 5 V voltage intensity, and MFBC preparation temperature of 600 °C, the EC/MFBC600/PMS system achieved complete inactivation of E. coli DH5α within 5 min and the intracellular sul1 was reduced by 81.5 % after 30 min of the treatment. Compared to EC and PMS alone treatments, the conjugation transfer frequency of sul1 rapidly declined by 92.9 % within 2 min. The cell membrane, proteins, lipids, as well as intracellular and extracellular ARGs in E. coli DH5α were severely damaged by free radicals in solution and intracellular reactive oxygen species (ROS). Furthermore, up-regulation was observed in genes associated with oxidative stress, SOS response and cell membrane permeability in E. coli DH5α, however, no significant changes were observed in functional genes related to gene conjugation and transfer mechanisms. This study would contribute to the underlying of PMS activation by three-dimensional particle electrode, and provide novel insights into the mechanism of ARB inactivation and ARGs degradation under PMS advanced oxidation treatment.
Collapse
Affiliation(s)
- Changchun Yan
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhenhua Sun
- Laboratory of Solid Waste Environmental Risk Control, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Yiyang Liu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Xuejiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yanan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
21
|
Mei Z, Wang F, Fu Y, Liu Y, Hashsham SA, Wang Y, Harindintwali JD, Dou Q, Virta M, Jiang X, Deng Y, Zhang T, Tiedje JM. Biofilm enhanced the mitigations of antibiotics and resistome in sulfadiazine and trimethoprim co-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135721. [PMID: 39255667 PMCID: PMC11479672 DOI: 10.1016/j.jhazmat.2024.135721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
Reducing antibiotic levels in soil ecosystems is vital to curb the dissemination of antimicrobial resistance genes (ARGs) and mitigate global health threats. However, gaps persist in understanding how antibiotic resistome can be suppressed during antibiotic degradation. Herein, we investigate the efficacy of a biochar biofilm incorporating antibiotics-degrading bacterial strain (Arthrobacter sp. D2) to mitigate antibiotic resistome in non-manured and manure-amended soils with sulfadiazine (SDZ) and trimethoprim (TMP) contamination. Results show that biofilm enhanced SDZ degradation by 83.0% within three days and increased TMP attenuation by 55.4% over 60 days in non-manured soils. In the non-manured black soil, the relative abundance of ARGs increased initially after biofilm inoculation. However, by day 30, it decreased by 20.5% compared to the controls. Moreover, after 7 days, biofilm reduced TMP by 38.5% in manured soils and decreased the total ARG abundance by 19.0%. Thus, while SDZ degradation did not increase sulfonamide resistance genes, TMP dissipation led to a proliferation of insertion sequences and related TMP resistance genes. This study underscores the importance of antibiotic degradation in reducing related ARGs while cautioning against the potential proliferation and various ARGs transfer by resistant microorganisms.
Collapse
Affiliation(s)
- Zhi Mei
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Faculty of Agriculture and Forestry Department of Microbiology, University of Helsinki, 00014, Finland
| | - Fang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuhao Fu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Syed A Hashsham
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA
| | - Yu Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyuan Dou
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Marko Virta
- Faculty of Agriculture and Forestry Department of Microbiology, University of Helsinki, 00014, Finland
| | - Xin Jiang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA
| |
Collapse
|
22
|
Fang L, Deng Y, Lakshmanan P, Liu W, Tang X, Zou W, Zhang T, Wang X, Xiao R, Zhang J, Chen X, Su X. Selective increase of antibiotic-resistant denitrifiers drives N 2O production in ciprofloxacin-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135673. [PMID: 39217949 DOI: 10.1016/j.jhazmat.2024.135673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Agricultural systems significantly contribute to global N2O emissions, which is intensified by excessive fertilization and antibiotic residues, attracting global concerns. However, the dynamics and pathways of antibiotics-induced soil N2O production coupled with microbial metabolism remain controversial. Here, we explored the pathways of N2O production in agricultural soils exposed to ciprofloxacin (CIP), and revealed the underlying mechanisms of CIP degradation and the associated microbial metabolisms using 15N-isotope labeling and molecular techniques. CIP exposure significantly increases the total soil N2O production rate. This is attributed to an unexpected shift from heterotrophic and autotrophic nitrification to denitrification and an increased abundance of denitrifiers Methylobacillus members under CIP exposure. The most striking strain M. flagellatus KT is further discovered to harbor N2O-producing genes but lacks a N2O-reducing gene, thereby stimulating denitrification-based N2O production. Moreover, this denitrifying strain is probably capable of utilizing the byproducts of CIP as carbon sources, evidenced by genes associated with CIP resistance and degradation. Molecular docking further shows that CIP is well ordered in the catalytic active site of CotA laccase, thus affirming the potential for this strain to degrade CIP. These findings advance the mechanistic insights into N2O production within terrestrial ecosystems coupled with the organic contaminants degradation.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yue Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD 4067, Australia
| | - Weibing Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Wenxin Zou
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Tong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaozhong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
23
|
Lin X, Zhang J, Luo Z, Li J, Xiao X, Wang X, Cai Q, Yu W, Tao J, Zeng J, Tu H, Qiu J. Optimization of degradation conditions for sulfachlorpyridazine by Bacillus sp. DLY-11 and analysis of biodegradation mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135755. [PMID: 39244986 DOI: 10.1016/j.jhazmat.2024.135755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Sulfachloropyridazine (SCP) is a common sulfonamide antibiotic pollutant found in animal excreta. Finding highly efficient degrading bacterial strains is an important measure to reduce SCP antibiotic pollution. Although some strains with degradation capabilities have been screened, the degradation pathways and biotransformation mechanisms of SCP during bacterial growth are still unclear. In this study, a strain capable of efficiently degrading SCP, named Bacillus sp. DLY-11, was isolated from pig manure aerobic compost. Under optimized conditions (5 % Vaccination dose, 51.5 ℃ reaction temperature, pH=7.92 and 0.5 g/L MgSO4), this strain was able to degrade 97.7 % of 20 mg/L SCP within 48 h. Through the analysis of nine possible degradation products (including a new product of 1,4-benzoquinone with increased toxicity), three potential biodegradation pathways were proposed. The biodegradation reactions include S-N bond cleavage, dechlorination, hydroxylation, deamination, methylation, sulfur dioxide release, and oxidation reactions. This discovery not only provides a new efficient SCP-degrading bacterial strain but also expands our understanding of the mechanisms of bacterial degradation of SCP, filling a knowledge gap. It offers important reference for the bioremediation of antibiotic pollutants in livestock and poultry farming.
Collapse
Affiliation(s)
- Xiaojun Lin
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Jun Zhang
- Zhejiang Lishui Ecological and Environmental Monitoring Center, Lishui 323000, Zhejiang, China
| | - Zifeng Luo
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China.
| | - Jingtong Li
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xue Xiao
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China
| | - Xiujuan Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Qianyi Cai
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Weida Yu
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Junshi Tao
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Jingwen Zeng
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Hongxing Tu
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China
| | - Jinrong Qiu
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, Guangdong, China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, Guangzhou 510655, Guangdong, China.
| |
Collapse
|
24
|
Wang Z, Li Y, Wang J, Li S. Tetracycline antibiotics in agricultural soil: Dissipation kinetics, transformation pathways, and structure-related toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175126. [PMID: 39084385 DOI: 10.1016/j.scitotenv.2024.175126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Tetracyclines (TCs) are the most common antibiotics in agricultural soil, due to their widespread usage and strong persistence. Biotic and abiotic degradation of TCs may generate toxic transformation products (TPs), further threatening soil ecological safety. Despite the increasing attention on the environmental behavior of TCs, a systematic review on the dissipation of TCs, evolution of TPs, and structure-toxicity relationship of TCs in agricultural soil remains lacking. This review aimed to provide a comprehensive overview of the environmental fate of TCs in agricultural soil. We first introduced the development history and structural features of different generations of TCs. Then, we comparatively evaluated the dissipation kinetics, transportation pathways, and ecological impacts of three representative TCs, namely tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC), in agricultural soil. The results showed that the dissipation kinetics of TCs generally followed the first-order kinetic model, with the median dissipation half-lives ranging from 20.0 to 38.8 days. Among the three TCs, OTC displayed the lowest dissipation rates due to its structural stability. The typical degradation pathways of TCs in soil included epimerization/isomerization, demethylation, and dehydration. Isomerization and dehydration reactions may lead to the formation of more toxic TPs, while demethylation was accompanied by the alteration of the minimal pharmacophore of TCs thus potentially reducing the toxicity. Toxicological experiments are urgently needed in future to comprehensively evaluate the ecological risks of TCs in agricultural soil.
Collapse
Affiliation(s)
- Zhu Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Trincado L, Cortés P, Pokrant E, Navarrete MJ, Lapierre L, Maturana M, Flores A, Maddaleno A, Cornejo J. Simultaneous analysis of antimicrobial residues and contaminants in poultry droppings by HPLC-MS/MS: a tool for environmental and food safety monitoring. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1430-1442. [PMID: 39177665 DOI: 10.1080/19440049.2024.2393334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Animal waste is a potential pollution hazard as it can harbour contaminants, such as antimicrobial residues, mycotoxins, and pesticides, becoming a risk to the public, animal, and environmental health. To assess this risk, 15 experimental broiler chickens orally received contaminants to evaluate excretion levels. An analytical method was previously developed to detect 18 substances in poultry droppings using high-performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS). Contaminants including tetracycline, 4-epi-tetracycline, oxytetracycline, 4-epi-oxytetracycline, chlortetracycline, 4-epi-chlortetracycline, tylosin, erythromycin, enrofloxacin, ciprofloxacin, flumequine, florfenicol, sulfachloropyridazine, sulfadiazine, 2,4-dichlorophenoxyacetic acid, zearalenone, alpha- and beta-zearalenol, were extracted with EDTA-McIlvain and acetonitrile. This method showed a p-value < 0.05, RSD < 25%, and R2 > 0.95 in the calibration curves linearity for all analytes. The limit of quantification, selectivity, decision limit for confirmation, matrix effect, precision, and recovery parameters were validated according to European Union document 2021/808/EC, technical report CEN/TR 16059, SANTE/11813/2017 and according to the Veterinary International Conference on Harmonization: VICH GL2 and GL49. This method confirmed the detection of most analytes 12-36 h post-administration and simultaneously detected and quantified mixed contaminants. Thereby, poultry droppings are a potential matrix for spreading contaminants in animal production before slaughter and their control will minimize environmental impacts and mitigate antimicrobial resistance.
Collapse
Affiliation(s)
- Lina Trincado
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Paula Cortés
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Ekaterina Pokrant
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - María José Navarrete
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Lisette Lapierre
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Matías Maturana
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Andrés Flores
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Aldo Maddaleno
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | - Javiera Cornejo
- Laboratory of Veterinary Pharmacology (FARMAVET), Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
- Laboratory of Food Safety, Department of Preventive Animal Medicine, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
26
|
Kuppusamy S, Venkateswarlu K, Megharaj M. Tetracycline and fluoroquinolone antibiotics contamination in agricultural soils fertilized long-term with chicken litter: Trends and ravages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174286. [PMID: 38942301 DOI: 10.1016/j.scitotenv.2024.174286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
We investigated the potential accumulation of tetracyclines (TCs) such as chlortetracycline (CTC), oxytetracycline (OTC) and doxycycline (DC), and fluoroquinolones (FQs) like enrofloxacin (ENR) and ciprofloxacin (CIP) in chicken litter and agricultural soils fertilized over short-term to long-term (<1-30 yrs) with chicken litter in a poultry hub for the first time from Tamil Nadu, India. CTC, OTC, DC, CIP, and ENR were detected in 46-92 % of the selected chicken litter samples, with mean levels ranging from 2.90 to 23.30 μg kg-1. Higher concentrations of TCs and FQs were observed in freshly collected chicken litter from poultry sheds than in those stockpiled in cultivated lands. CTC was the prevalent antibiotic in chicken litter. The overall occurrence, as well as the ecological risks of TCs and FQs, changed over a 30-yr period. The accumulation of veterinary antibiotics (VAs) (in μg kg-1) in short-term (>1 yr) to medium-term (1-3 yrs) chicken litter-fertilized soils reached a maximum of 11.60 for CTC, 6.50 for OTC, 0.80 for DC, 3.70 for CIP, and 3.60 for ENR, but decreased in long-term (10-30 yrs) fertilized soils. Ecological risk assessment revealed a Risk Quotient (RQ) of ≤0.10 for CTC, OTC, and DC in all soils, while an average risk (RQ >0.10-<1.0) was evident with CIP and ENR in short-term and medium-term fertilized soils. Antibiotic resistance genes (ARGs), including tetA, tetB, qnrA, qnrB and qnrS were detected in most of the chicken litter samples and litter-fertilized soils. Thus, it is critical to develop and adopt effective mitigation strategies before applying chicken litter in farmlands to decrease VAs and ARGs, reducing their associated risks to public health and ecosystems in India considering 'One Health' approach. Future investigations on the occurrence of other VAs and ARGs in soils fertilized with poultry litter at regional scale are required for effective risk mitigation of the widely used VAs.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai 600 025, India.
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515 003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, Callaghan, NSW 2308, Australia
| |
Collapse
|
27
|
Song B, Wang R, Li W, Zhan Z, Luo J, Lei Y. Fate of micropollutants in struvite production from swine wastewater with sacrificial magnesium anode. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135505. [PMID: 39146587 DOI: 10.1016/j.jhazmat.2024.135505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Struvite recovery shows significant potential for simultaneously recovering nitrogen (N) and phosphorus (P) from swine wastewater but is challenged by the occurrence and transformation of antibiotic residuals. Electrochemically mediated struvite precipitation with sacrificial magnesium anode (EMSP-Mg) is promising due to its automation and chemical-free merits. However, the fate of antibiotics remains underexplored. We investigated the behavior of sulfadiazine (SD), an antibiotic frequently detected but less studied than others within the EMSP-Mg system. Significantly less SD (≤ 5%) was co-precipitated with recovered struvite in EMSP-Mg than conventional chemical struvite precipitation (CSP) processes (15.0 to 50.0%). The reduced SD accumulation in struvite recovered via EMSP was associated with increased pH and electric potential differences, which likely enhanced the electrostatic repulsion between SD and struvite. In contrast, the typical strategies used in enhancing P removal in the EMSP-Mg system, including increasing the Mg/P ratio or the Mg-release rates, have shown negligible effects on SD adsorption. Furthermore, typical coexisting ions (Ca2+, Cl-, and HCO3-) inhibited SD adsorption onto recovered products. These results provide new insights into the interactions between antibiotics and struvite within the EMSP-Mg system, enhancing our understanding of antibiotic migration pathways and aiding the development of novel EMSP processes for cleaner struvite recovery.
Collapse
Affiliation(s)
- Bingnan Song
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Runhua Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiquan Li
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhengshuo Zhan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiayu Luo
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang Lei
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
28
|
Yoon K, Kwon G, Kim E, Lee H, Lee DJ, Song H. Pyrolytic conversion of cattle manure into value-added products and application of biochar for adsorption of sulfamethoxazole. CHEMOSPHERE 2024; 366:143493. [PMID: 39374673 DOI: 10.1016/j.chemosphere.2024.143493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/09/2024]
Abstract
This study investigated the thermochemical conversion of cattle manure (CM) to propose a sustainable platform for its valorization, and explored the applicability of CM-derived biochar (CMB) as an environmental medium for the adsorptive removal of sulfamethoxazole (SMZ). CM pyrolysis was conducted under two atmospheric conditions (N2 and CO2), and the pyrogenic products were quantified and characterized. Real-time syngas monitoring revealed that CO2 enhanced CO generation from the CM, leading to the formation of a highly porous carbon structure in the produced biochar (CMBCO2). The adsorptive removal of SMZ by CMBCO2 was highly dependent on the pH conditions. The adsorption kinetics of SMZ onto CMBCO2 reached equilibrium within 540 min, following a pseudo-second-order model. The SMZ adsorption isotherms fit the Langmuir-Freundlich model, highlighting the importance of chemisorption in the adsorption process. X-ray photoelectron spectroscopy revealed that SMZ was adsorbed by non-electrostatic mechanisms, including hydrogen bonding, Lewis acid-base interactions, surface complexation, and π-π electron-donor acceptor interactions. This study presents an exemplary strategy for converting livestock waste into valuable resources, enabling the harvesting of energy resources and the production of treatment media for environmental remediation.
Collapse
Affiliation(s)
- Kwangsuk Yoon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Gihoon Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunji Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Heuiyun Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Dong-Jun Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea; Department of Animal Environment, National Institute of Animal Science (NIAS), Wanju 55365, Republic of Korea
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
29
|
Zhao S, Li X, Yao X, Wan W, Xu L, Guo L, Bai J, Hu C, Yu H. Transformation of antibiotics to non-toxic and non-bactericidal products by laccases ensure the safety of Stropharia rugosoannulata. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135099. [PMID: 38981236 DOI: 10.1016/j.jhazmat.2024.135099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The substantial use of antibiotics contributes to the spread and evolution of antibiotic resistance, posing potential risks to food production systems, including mushroom production. In this study, the potential risk of antibiotics to Stropharia rugosoannulata, the third most productive straw-rotting mushroom in China, was assessed, and the underlying mechanisms were investigated. Tetracycline exposure at environmentally relevant concentrations (<500 μg/L) did not influence the growth of S. rugosoannulata mycelia, while high concentrations of tetracycline (>500 mg/L) slightly inhibited its growth. Biodegradation was identified as the main antibiotic removal mechanism in S. rugosoannulata, with a degradation rate reaching 98.31 % at 200 mg/L tetracycline. High antibiotic removal efficiency was observed with secreted proteins of S. rugosoannulata, showing removal efficiency in the order of tetracyclines > sulfadiazines > quinolones. Antibiotic degradation products lost the ability to inhibit the growth of Escherichia coli, and tetracycline degradation products could not confer a growth advantage to antibiotic-resistant strains. Two laccases, SrLAC1 and SrLAC9, responsible for antibiotic degradation were identified based on proteomic analysis. Eleven antibiotics from tetracyclines, sulfonamides, and quinolones families could be transformed by these two laccases with degradation rates of 95.54-99.95 %, 54.43-100 %, and 5.68-57.12 %, respectively. The biosafety of the antibiotic degradation products was evaluated using the Toxicity Estimation Software Tool (TEST), revealing a decreased toxicity or no toxic effect. None of the S. rugosoannulata fruiting bodies from seven provinces in China contained detectable antibiotic-resistance genes (ARGs). This study demonstrated that S. rugosoannulata can degrade antibiotics into non-toxic and non-bactericidal products that do not accelerate the spread of antibiotic resistance, ensuring the safety of S. rugosoannulata production.
Collapse
Affiliation(s)
- Shuxue Zhao
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Xiaohang Li
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Xingdong Yao
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Wei Wan
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Lili Xu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Chunhui Hu
- Instrumental analysis center of Qingdao Agricultural University, Qingdao 266109, Shandong Province, China.
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China.
| |
Collapse
|
30
|
Pan Y, Zeng J, Zhang L, Hu J, Hao H, Zeng Z, Li Y. The fate of antibiotics and antibiotic resistance genes in Large-Scale chicken farm Environments: Preliminary view of the performance of National veterinary Antimicrobial use reduction Action in Guangdong, China. ENVIRONMENT INTERNATIONAL 2024; 191:108974. [PMID: 39186902 DOI: 10.1016/j.envint.2024.108974] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
In 2018, China implemented the Veterinary Antimicrobial Use Reduction Action to curb the rapid development of antibiotic resistance (AR). However, the AR-related pollutions in animal farms after the reduction policy has been poorly investigated. Here, we performed a comprehensive investigation combining UPLC-MS/MS, metagenomic, and bacterial genomic analyses in eight representative large-scale chicken farms in Guangdong, China. Our results showed that antibiotics and ARGs contaminations were more severe in broiler farms than in layer farms. Notably, diverse tet(X) variants were prevalent in the chicken farms. These tet(X)s was carried by diverse E. coli lineages and obviously correlated with ISCR2 and IS1B transposases. The resistomes in chicken farms was significantly correlated with microbial community, and multiple factor analyses indicated that the joint effect of antibiotics-microbial community-MGEs was the most dominant driver of ARGs. Host tracking identified a variety of ARG bacterial hosts and the co-occurrence of ARGs-MRGs-MGEs. Source tracking indicated that the inherent component represented the main feature of resistomes in different hosts, while ARG transfer between the chicken gut and farm environments were frequent. A multiperspective evaluation of AR risk revealed that the early effect of antibiotic reduction was exhibited by the mitigation of maximum level of risky ARGs, prevalence of environmental AR pathogens, and HGT potential of ARGs mediated by phage structures. Overall, our findings provide insights into the antibiotic and ARG profiles in large-scale chicken farms with different rearing strategies and demonstrate a preliminary view of the performance of antibiotic reduction actions in China.
Collapse
Affiliation(s)
- Yu Pan
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and Technology, State International Joint Research Center for Animal Health Breeding, Shihezi University, Shihezi 832003, China
| | - Jiaxiong Zeng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Lingxuan Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jianxin Hu
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Haihong Hao
- College of Animal Science and Technology, State International Joint Research Center for Animal Health Breeding, Shihezi University, Shihezi 832003, China; National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenling Zeng
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China.
| | - Yafei Li
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
31
|
Sun X, Su L, Zhen J, Wang Z, Panhwar KA, Ni SQ. The contribution of swine wastewater on environmental pathogens and antibiotic resistance genes: Antibiotic residues and beyond. CHEMOSPHERE 2024; 364:143263. [PMID: 39236924 DOI: 10.1016/j.chemosphere.2024.143263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Swine wastewater application can introduce antibiotics, antibiotic resistance genes (ARGs) into environments. Herein, the full-scale transmission of antibiotics, ARGs and their potential carriers from an intensive swine feedlot to its surroundings were explored. Results showed that lincomycin and doxycycline hydrochloride were dominant antibiotics in this ecosystem. Lincomycin concentration were strongly associated with soil bacterial communities. According to the risk quotient (RQ), lincomycin was identified as posing higher ecological risk in aquatic environments. ARGs and mobile genetic elements (MGEs) abundance in wastewater were reduced after anaerobic treatment. Notably, ARGs composition of environmental samples were clustered into two groups based on if they were directly affected by the wastewater. However, there were no remarkable difference of ARGs abundance among environmental samples. The total abundance of ARGs was positively related to that of MGEs. Pathogens Escherichia coli and Enterococcus revealed strong connection with qnrS, tet and sul. Overall, this study highlights the importance of responsible antibiotics use in livestock production and appropriate treatment technology before agricultural application and discharge.
Collapse
Affiliation(s)
- Xiaojie Sun
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Lei Su
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Jianyuan Zhen
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhibin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Kashif Ali Panhwar
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
32
|
Liu Y, Zhang J, Cheng D, Guo W, Liu X, Chen Z, Zhang Z, Ngo HH. Fate and mitigation of antibiotics and antibiotic resistance genes in microbial fuel cell and coupled systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173530. [PMID: 38815818 DOI: 10.1016/j.scitotenv.2024.173530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Microbial fuel cells (MFCs), known for their low energy consumption, high efficiency, and environmental friendliness, have been widely utilized for removing antibiotics from wastewater. Compared to conventional wastewater treatment methods, MFCs produce less sludge while exhibiting superior antibiotic removal capacity, effectively reducing the spread of antibiotic resistance genes (ARGs). This study investigates 1) the mechanisms of ARGs generation and proliferation in MFCs; 2) the influencing factors on the fate and removal of antibiotics and ARGs; and 3) the fate and mitigation of ARGs in MFC and MFC-coupled systems. It is indicated that high removal efficiency of antibiotics and minimal amount of sludge production contribute the mitigation of ARGs in MFCs. Influencing factors, such as cathode potential, electrode materials, salinity, initial antibiotic concentration, and additional additives, can lead to the selection of tolerant microbial communities, thereby affecting the abundance of ARGs carried by various microbial hosts. Integrating MFCs with other wastewater treatment systems can synergistically enhance their performance, thereby improving the overall removal efficiency of ARGs. Moreover, challenges and future directions for mitigating the spread of ARGs using MFCs are suggested.
Collapse
Affiliation(s)
- Yufei Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Zhijie Chen
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University New South Wales, Sydney, NSW 2052, Australia
| | - Zehao Zhang
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huu Hao Ngo
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| |
Collapse
|
33
|
Lu C, Qin C, Zhao L, Ye H, Bai M, Sun Y, Li X, Weng L, Li Y. Overlooked interconversion between tetracyclines and their 4-epimers in soil and effects on soil resistome and bacterial community. ENVIRONMENT INTERNATIONAL 2024; 190:108941. [PMID: 39128374 DOI: 10.1016/j.envint.2024.108941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
With the widespread use of tetracycline antibiotics (TCs) and the application of manure fertilizer in farmland, TCs and their metabolites especially 4-epimers have been heavily detected in agricultural soil. However, existing studies have focused on the residual and environmental behavior of maternal TCs, and few studies have looked at the ecotoxicity of their 4-epimers in soil. In this study, the degradation and interconversion of tetracycline (TC), oxytetracycline (OTC) and their 4-epimers (4-epitetracycline, ETC; 4-epioxytetracycline, OTC) were revealed. Their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and bacterial community in soil were also investigated in comparison. The results showed that the 4-epimers could be substantially transformed to their parents and degraded as a whole. The degradation rates of four selected pollutants are followed: TC > OTC > ETC > EOTC. This indicated that when TCs entered the soil, part of TCs transformed into slower-degraded 4-epimers, and these 4-epimers could also be converted back to their antibiotic parents, causing the long-term residue of TCs in soil. When added to the soil alone, TC and OTC significantly promoted the proliferation of most ARGs and MGEs, among them, trb-C, IS1247 and IS1111 were the top three genes in abundance. ETC and EOTC had little effect at the beginning. However, as the 4-epimers continuously converted into their parents after one month of cultivation, ETC and EOTC treatments showed similar promoting effect on ARGs and MGEs, indicating that the effect of ETC and EOTC on soil resistome was lagged and mainly caused by their transformed parents. Nocardioides, unclassified_Rhizobiaceae, norank_Sericytochromatia, Microlunatus, Solirubrobacter and norank_67-14 were the most frequent hosts of ARGs, Most of which belong to the phylum Actinobacteria. Due to their large transformation to TCs, slow degradation rate and potential effects on soil microbes and ARGs, the harm of TCs' 4-epimers on soil ecosystem cannot be ignored.
Collapse
Affiliation(s)
- Chenxi Lu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Cheng Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen 6700 HB, The Netherlands
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
34
|
Vaghar Seyedin SM, Mojtahedi M, Farhangfar SH, Ghiasi SE. Non-thermal technologies for broiler litter processing: Microbial safety, chemical composition, nutritional value, and fermentation parameters in vitro. Vet Med Sci 2024; 10:e1497. [PMID: 38952252 PMCID: PMC11217599 DOI: 10.1002/vms3.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/05/2024] [Accepted: 05/17/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Annually, a massive amount of broiler litter (BL) is produced in the world, which causes soil and surface water pollution due to its high nitrogen content and microbial count. While ruminants can use this non-protein nitrogen (NPN) source for microbial protein synthesis. This issue becomes more critical when protein sources are unavailable or very expensive. One of the sources of NPN is BL which is produced at a considerable amount in the world yearly. OBJECTIVES This aim of this research was to conduct a survey of non-thermal technologies such as electrocoagulation (EC), ultraviolet (UV) radiation, and ultrasound (US) waves on the microbial safety and nutritional value of BL samples as a protein source in ruminant diets. MATERIALS AND METHODS The methodology of this study was based on the use of an EC device with 24 V for 60 min, UV-C light radiation (249 nm) for 1 and 10 min, and US waves with a frequency of 28 kHz for 5, 10 and 15 min to process BL samples compared with shade-dried samples. Chemical composition and nutritional values of processed samples were determined by gas production technique and measurement of fermentation parameters in vitro. RESULTS Based on the results, microbial safety increased in the samples processed with the US (15 min). The EC method had the best performance in reducing the number of fungi and mould. However, none of the methods could remove total bacteria and fungi. Digestibility of BL was similar in shade-dried, EC, and US (10 min) treatments. In general, the use of EC and US15 without having adverse effects on gas production caused a decrease in the concentration of ammonia nitrogen. In contrast, it caused a decrease in neutral detergent fibre (NDF) in the investigated substrate. CONCLUSIONS In general, it can be concluded that the use of US5 and EC methods without having a negative effect on the parameters of gas production and fermentation in vitro, while reducing NDF, causes a significant reduction in the microbial load, pathogens, yeast, and mould. Therefore, it is suggested to use these two methods to improve feed digestibility for other protein and feed sources.
Collapse
Affiliation(s)
| | - Mohsen Mojtahedi
- Department of Animal ScienceFaculty of AgricultureUniversity of BirjandBirjandIran
| | | | - Seyed Ehsan Ghiasi
- Department of Animal ScienceFaculty of AgricultureUniversity of BirjandBirjandIran
| |
Collapse
|
35
|
Gehlot P, P H. Unveiling the ecological landscape of bacterial β-lactam resistance in Delhi-national capital region, India: An emerging health concern. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121288. [PMID: 38850900 DOI: 10.1016/j.jenvman.2024.121288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Inappropriate antibiotic use not only amplifies the threat of antimicrobial resistance (AMR), moreover exacerbates the spread of resistant bacterial strains and genes in the environment, underscoring the critical need for effective research and interventions. Our aim is to assess the prevalence and resistance characteristics of β-lactam resistant bacteria (BLRB) and β-lactamase resistant bacterial genes (BLRBGs) under various environmental conditions within Delhi NCR, India. Using a culture-dependent method, we isolated 130 BLRB from 75 different environmental samples, including lakes, ponds, the Yamuna River, agricultural soil, aquatic weeds, drains, dumping yards, STPs, and gaushalas. Tests for antibiotic susceptibility were conducted in addition to phenotypic and genotypic identification of BLs and integron genes. The water and sediment samples recorded an average bacterial abundance of 3.6 × 106 CFU/mL and an average ampicillin-resistant bacterial count of 2.2 × 106 CFU/mL, which can be considered a potent reservoir of BLRB and BLRBGs. The majority of the BLRB discovered are opportunistic pathogens from the Bacillus, Aeromonas, Pseudomonas, Enterobacter, Escherichia, and Klebsiella genera, with Multiple Antibiotic Resistance (MAR) index ≥0.2 against a wide variety of β-lactams and β-lactamase (BLs) inhibitor combinations. The antibiotic resistance pattern was similar in the case of bacteria isolated from STPs. Meanwhile, bacteria isolated from other sources were diverse in their antibiotic resistance profile. Interestingly, we discovered that 10 isolates of various origins produce both Extended Spectrum BLs and Metallo BLs, as well as found harboring blaTEM, blaCTX, blaOXA, blaSHV, int-1, and int-3 genes. Enterobacter cloacae (S50/A), a common nosocomial pathogen isolated from Yamuna River sediment samples at Nizamuddin point, possesses three BLRBGs (blaTEM, blaCTX, and blaOXA) and a MAR index of 1.0, which is a major cause for concern. Therefore, identifying the source, origin and dissemination of BLRB and BLRGs in the environment is of the utmost importance for designing effective mitigation approaches to reduce a load of antimicrobial resistance factors in the environmental settings.
Collapse
Affiliation(s)
- Priyanka Gehlot
- Environmental Biotechnology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Hariprasad P
- Environmental Biotechnology Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
36
|
Gaballah MS, Yousefyani H, Karami M, Lammers RW. Free water surface constructed wetlands: review of pollutant removal performance and modeling approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44649-44668. [PMID: 38963627 DOI: 10.1007/s11356-024-34151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Free water surface constructed wetlands (FWSCWs) for the treatment of various wastewater types have evolved significantly over the last few decades. With an increasing need and interest in FWSCWs applications worldwide due to their cost-effectiveness and other benefits, this paper reviews recent literature on FWSCWs' ability to remove different types of pollutants such as nutrients (i.e., TN, TP, NH4-N), heavy metals (i.e., Fe, Zn, and Ni), antibiotics (i.e., oxytetracycline, ciprofloxacin, doxycycline, sulfamethazine, and ofloxacin), and pesticides (i.e., Atrazine, S-Metolachlor, imidacloprid, lambda-cyhalothrin, diuron 3,4-dichloroanilin, Simazine, and Atrazine) that may co-exist in wetland inflow, and discusses approaches for simulating hydraulic and pollutant removal processes. A bibliometric analysis of recent literature reveals that China has the highest number of publications, followed by the USA. The collected data show that FWSCWs can remove an average of 61.6%, 67.8%, 54.7%, and 72.85% of inflowing nutrients, heavy metals, antibiotics, and pesticides, respectively. Optimizing each pollutant removal process requires specific design parameters. Removing heavy metal requires the lowest hydraulic retention time (HRT) (average of 4.78 days), removing pesticides requires the lowest water depth (average of 0.34 m), and nutrient removal requires the largest system size. Vegetation, especially Typha spp. and Phragmites spp., play an important role in FWSCWs' system performance, making significant contributions to the removal process. Various modeling approaches (i.e., black-box and process-based) were comprehensively reviewed, revealing the need for including the internal process mechanisms related to the biological processes along with plants spp., that supported by a further research with field study validations. This work presents a state-of-the-art, systematic, and comparative discussion on the efficiency of FWSCWs in removing different pollutants, main design factors, the vegetation, and well-described models for performance prediction.
Collapse
Affiliation(s)
- Mohamed S Gaballah
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, 48859, USA.
- National Institute of Oceanography and Fisheries, Cairo, Egypt.
| | - Hooshyar Yousefyani
- Earth & Ecosystem Science PhD Program, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Mohammadjavad Karami
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Roderick W Lammers
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, 48859, USA
| |
Collapse
|
37
|
Farooq S, Xu L, Ullah S, Li J, Nie J, Ping J, Ying Y. Advancements and greenification potential of magnetic molecularly imprinted polymers for chromatographic analysis of veterinary drug residues in milk. Compr Rev Food Sci Food Saf 2024; 23:e13399. [PMID: 39072953 DOI: 10.1111/1541-4337.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
Milk, as a widely consumed nutrient-rich food, is crucial for bone health, growth, and overall nutrition. The persistent application of veterinary drugs for controlling diseases and heightening milk yield has imparted substantial repercussions on human health and environmental ecosystems. Due to the high demand, fresh consumption, complex composition of milk, and the potential adverse impacts of drug residues, advanced greener analytical methods are necessitated. Among them, functional materials-based analytical methods attract wide concerns. The magnetic molecularly imprinted polymers (MMIPs), as a kind of typical functional material, possess excellent greenification characteristics and potencies, and they are easily integrated into various detection technologies, which have offered green approaches toward analytes such as veterinary drugs in milk. Despite their increasing applications and great potential, MMIPs' use in dairy matrices remains underexplored, especially regarding ecological sustainability. This work reviews recent advances in MMIPs' synthesis and application as efficient sorbents for veterinary drug extraction in milk followed by chromatographic analysis. The uniqueness and effectiveness of MMIPs in real milk samples are evaluated, current limitations are addressed, and greenification opportunities are proposed. MMIPs show promise in revolutionizing green analytical procedures for veterinary drug detection, aligning with the environmental goals of modern food production systems.
Collapse
Affiliation(s)
- Saqib Farooq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Lizhou Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Safat Ullah
- School of Medicine, Keele University, Keele, Staffordshire, UK
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agriculture University/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Li S, Li F, Bao Y, Peng A, Lyu B. Polyethylene and sulfa antibiotic remediation in soil using a multifunctional degrading bacterium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172619. [PMID: 38649045 DOI: 10.1016/j.scitotenv.2024.172619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
To obtain a multifunctional bacterium that can effectively degrade polyethylene (PE) and sulfonamide antibiotics (SAs), PE and SAs were selected as the primary research objects. Multifunctional degrading bacteria were isolated and screened from an environment in which plastics and antibiotics have existed for a long time. An efficient degrading strain, Raoultella sp., was screened by measuring the degradation performance of PE and SAs. We analyzed the changes in the microbial community of indigenous bacteria using 16S rRNA. After 60 d of degradation at 28 °C, the Raoultella strain to PE degradation rate was 4.20 %. The SA degradation rates were 96 % (sulfonathiazole, (ST)), 86 % (sulfamerazine, (SM)), 72 % (sulfamethazine, (SM2)) and 64 % (sulfamethoxazole, (SMX)), respectively. This bacterium increases the surface roughness of PE plastic films and produces numerous gullies, pits, and folds. In addition, after 60 d, the contact angle of the plastic film decreased from 92.965° to 70.205°, indicating a decrease in hydrophobicity. High-throughput sequencing analysis of the degrading bacteria revealed that the Raoultella strain encodes enzymes involved in PE and SA degradation. The results of this study not only provide a theoretical basis for further study of the degradation mechanism of multifunctional and efficient degrading bacteria but also provide potential strain resources for the biodegradation of waste plastics and antibiotics in the environment.
Collapse
Affiliation(s)
- Shuo Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China.
| | - Fachao Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Yanwei Bao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Ankai Peng
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| | - Boya Lyu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China
| |
Collapse
|
39
|
Zhou R, Huang X, Xie Z, Ding Z, Wei H, Jin Q. A review focusing on mechanisms and ecological risks of enrichment and propagation of antibiotic resistance genes and mobile genetic elements by microplastic biofilms. ENVIRONMENTAL RESEARCH 2024; 251:118737. [PMID: 38493850 DOI: 10.1016/j.envres.2024.118737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Microplastics (MPs) are emerging ubiquitous pollutants in aquatic environment and have received extensive global attention. In addition to the traditional studies related to the toxicity of MPs and their carrier effects, their unique surface-induced biofilm formation also increases the ecotoxicity potential of MPs from multiple perspectives. In this review, the ecological risks of MPs biofilms were summarized and assessed in detail from several aspects, including the formation and factors affecting the development of MPs biofilms, the selective enrichment and propagation mechanisms of current pollution status of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in MPs biofilms, the dominant bacterial communities in MPs biofilms, as well as the potential risks of ARGs and MGEs transferring from MPs biofilms to aquatic organisms. On this basis, this paper also put forward the inadequacy and prospects of the current research and revealed that the MGEs-mediated ARG propagation on MPs under actual environmental conditions and the ecological risk of the transmission of ARGs and MGEs to aquatic organisms and human beings are hot spots for future research. Relevant research from the perspective of MPs biofilm should be carried out as soon as possible to provide support for the ecological pollution prevention and control of MPs.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Xirong Huang
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Zhongtang Xie
- College of Urban and Environmental Sciences, MOE Laboratory for Earth Surface Process, Peking University, Beijing, 100871, China.
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Hengchen Wei
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| |
Collapse
|
40
|
Xu Y, Gao H, Li R, Lou Y, Li B, Cheng G, Na G. Occurrence and distribution of antibiotics and antibiotic resistance genes from the land to ocean in Daliao River-Liaodong Bay, China. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106470. [PMID: 38574497 DOI: 10.1016/j.marenvres.2024.106470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
In this study, the pollution status of antibiotics and ARGs in sediments from the land-sea intersection of Liaodong Bay was analyzed. The results showed that the level of antibiotic pollution ranged from ND to 433.27 ng/kg, with quinolones and tetracycline as the dominant antibiotics. The relative abundance of ARGs ranged from 3.62 × 10-3 to 1.32 × 10-1 copies/16SrRNA copies, with aminoglycoside and MLSB resistance genes being dominant. Regarding spatial distribution, the land and estuary areas showed higher antibiotic pollution levels than the offshore areas. Similarly, the land and estuary areas exhibited higher antibiotic diversity than the offshore areas. The ARGs were widely distributed on land, and their abundance gradually decreased to the downstream estuary area. Land and coastal areas exhibited higher ARG diversity than estuary areas. Analysis of environmental factors revealed a significant correlation between ARGs and non-corresponding antibiotics, and some ARGs were affected by heavy metals Cu and Pb.
Collapse
Affiliation(s)
- Yunfeng Xu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Hui Gao
- National Marine Environmental Monitoring Center, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China.
| | - Ruijing Li
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yingbin Lou
- Dalian Ecological Environment Monitoring Center, Liaoning Province, Dalian, 116023, China
| | - Bing Li
- National Marine Environmental Monitoring Center, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Guanjie Cheng
- National Marine Environmental Monitoring Center, Dalian, 116023, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Guangshui Na
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; National Marine Environmental Monitoring Center, Dalian, 116023, China; Hainan Key Laboratory for Coastal Marine Eco-environment and Carbon Sink/Yazhou Bay Innovation Institute/College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, 572022, China.
| |
Collapse
|
41
|
Carter LJ, Dennis S, Allen K, McKenna P, Chen X, Daniell TJ, Evans B, Guest JS, Guo H, Kirk S, Zhu YG, Anik AR, Zuhra N, Banwart SA. Mitigating Contaminant-Driven Risks for the Safe Expansion of the Agricultural-Sanitation Circular Economy in an Urbanizing World. ACS ES&T WATER 2024; 4:1166-1176. [PMID: 38633372 PMCID: PMC11019536 DOI: 10.1021/acsestwater.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 04/19/2024]
Abstract
The widespread adoption of an agricultural circular economy requires the recovery of resources such as water, organic matter, and nutrients from livestock manure and sanitation. While this approach offers many benefits, we argue this is not without potential risks to human and environmental health that largely stem from the presence of contaminants in the recycled resources (e.g., pharmaceuticals, pathogens). We discuss context specific challenges and solutions across the three themes: (1) contaminant monitoring; (2) collection transport and treatment; and (3) regulation and policy. We advocate for the redesign of sanitary and agricultural management practices to enable safe resource reuse in a proportionate and effective way. In populous urban regions with access to sanitation provision, processes can be optimized using emergent technologies to maximize removal of contaminant from excreta prior to reuse. Comparatively, in regions with limited existing capacity for conveyance of excreta to centralized treatment facilities, we suggest efforts should focus on creation of collection facilities (e.g., pit latrines) and decentralized treatment options such as composting systems. Overall, circular economy approaches to sanitation and resource management offer a potential solution to a pressing challenge; however, to ensure this is done in a safe manner, contaminant risks must be mitigated.
Collapse
Affiliation(s)
- Laura J. Carter
- School of
Geography, University of Leeds, Leeds, LS2 9JT, U.K.
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
| | - Sarah Dennis
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
- School of
Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K.
| | - Katie Allen
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
- School of
Civil Engineering, University of Leeds, Leeds LS2 9JT, U.K.
| | - Patrick McKenna
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
- School of
Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K.
| | - Xiaohui Chen
- School of
Civil Engineering, University of Leeds, Leeds LS2 9JT, U.K.
| | - Tim J. Daniell
- Molecular
Microbiology: Biochemistry to Disease, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, U.K.
| | - Barbara Evans
- School of
Civil Engineering, University of Leeds, Leeds LS2 9JT, U.K.
| | - Jeremy S. Guest
- Department
of Civil & Environmental Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hongyan Guo
- State
Key
Laboratory of Pollution Control and Resource Reuse, School of the
Environment, Nanjing University, Nanjing 210023, China
| | - Stuart Kirk
- The Schumacher
Institute, The Create Centre, Bristol BS1 6XN, U.K.
| | - Yong-Guan Zhu
- Research
Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Asif Reza Anik
- Department
of Agricultural Economics, Bangabandhu Sheikh
Mujibur Rahman Agricultural University, Salna, Gazipur 1706, Bangladesh
| | - Naqshe Zuhra
- Institute
of Soil and Environmental Sciences, University
of Agriculture, Faisalabad 38000, Pakistan
| | - Steven A. Banwart
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
- School of
Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
42
|
Wang Q, Higgins B, Fallahi A, Wilson AE. Engineered algal systems for the treatment of anaerobic digestate: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120669. [PMID: 38520852 DOI: 10.1016/j.jenvman.2024.120669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
The objective of this review was to provide quantitative insights into algal growth and nutrient removal in anaerobic digestate. To synthesize the relevant literature, a meta-analysis was conducted using data from 58 articles to elucidate key factors that impact algal biomass productivity and nutrient removal from anaerobic digestate. On average, algal biomass productivity in anaerobic digestate was significantly lower than that in synthetic control media (p < 0.05) but large variation in productivity was observed. A mixed-effects multiple regression model across study revealed that biological or chemical pretreatment of digestate significantly increase productivity (p < 0.001). In contrast, the commonly used practice of digestate dilution was not a significant factor in the model. High initial total ammonia nitrogen suppressed algal growth (p = 0.036) whereas initial total phosphorus concentration, digestate sterilization, CO2 supplementation, and temperature were not statistically significant factors. Higher growth corresponded with significantly higher NH4-N and phosphorus removal with a linear relationship of 6.4 mg NH4-N and 0.73 mg P removed per 100 mg of algal biomass growth (p < 0.001). The literature suggests that suboptimal algal growth in anaerobic digestate could be due to factors such as turbidity, high free ammonia, and residual organic compounds. This analysis shows that non-dilution approaches, such as biological or chemical pretreatment, for alleviating algal inhibition are recommended for algal digestate treatment systems.
Collapse
Affiliation(s)
- Qichen Wang
- Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Brendan Higgins
- Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Alireza Fallahi
- Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
43
|
Wen X, Chen M, Ma B, Xu J, Zhu T, Zou Y, Liao X, Wang Y, Worrich A, Wu Y. Removal of antibiotic resistance genes during swine manure composting is strongly impaired by high levels of doxycycline residues. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:76-85. [PMID: 38290350 DOI: 10.1016/j.wasman.2024.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging pollutants that enter the farm and surrounding environment via the manure of antibiotic-treated animals. Pretreatment of livestock manure by composting decreases ARGs abundance, but how antibiotic residues affect ARGs removal efficiency remains poorly understood. Here, we explored the fate of the resistome under different doxycycline residue levels during aerobic swine manure composting. Metagenomic sequencing showed that the presence of high levels of doxycycline generally had a higher abundance of tetracycline ARGs, and their dominant host bacteria of Firmicutes, especially Clostridium and Streptococcus, also had limited elimination in composting under high levels of doxycycline stress. Moreover, high levels of doxycycline impaired the removal of the total ARGs number in finished composts, with a removal rate of 51.74 % compared to 63.70 % and 71.52 % for the control and low-level doxycycline manure, respectively. Horizontal gene transfer and strengthened correlations among the bacterial community fostered ARGs preservation at high doxycycline levels during composting. In addition, ARGs carried by both plasmids and chromosomes, such as multidrug ARGs, showed wide host characteristics and rebound during compost maturation. Compared with chromosomes, a greater variety of ARGs on plasmids suggested that the majority of ARGs were characterized by horizontal mobility during composting, and the cross-host characteristics of ARGs during composting deserve further attention. This study provided deep insight into the fate of ARGs under residual antibiotic stress during manure composting and reminded the associated risk for environmental and public health.
Collapse
Affiliation(s)
- Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Majian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Anja Worrich
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
44
|
Zheng S, Han B, Wang Y, Ding Y, Zhao R, Yang F. Occurrence and dissemination of antibiotic resistance genes in the Yellow River basin: focused on family farms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16328-16341. [PMID: 38316741 DOI: 10.1007/s11356-024-32290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
As an emerging contaminant, antibiotic resistance genes (ARGs) have attracted growing attention, owing to their widespread dissemination and potential risk in the farming environment. However, ARG pollution from family livestock farms in the Yellow River basin, one of the main irrigation water sources in the North China Plain, remains unclear. Herein, we targeted 21 typical family farms to assess the occurrence patterns of ARGs in livestock waste and its influence on ARGs in receiving environment by real-time quantitative PCR (qPCR). Results showed that common ARGs were highly prevalent in family livestock waste, and tet-ARGs and sul-ARGs were the most abundant in these family farms. Most ARG levels in fresh feces of different animals varied, as the trend of chicken farms (broilers > laying hens) > swine farms (piglets > fattening pigs > boars and sows) > cattle farms (dairy cattle > beef cattle). The effect of natural composting on removing ARGs for chicken manure was better than that for cattle manure, while lagoon storage was not effective in removing ARGs from family livestock wastewater. More troublesomely, considerable amounts of ARGs were discharged with manure application, further leading to the ARG increase in farmland soil (up to 58-119 times), which would exert adverse impacts on human health and ecological safety.
Collapse
Affiliation(s)
- Shimei Zheng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang, 261061, China
| | - Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yandong Wang
- Department of Pediatrics, Weifang People's Hospital, Weifang, 261041, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Ran Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
45
|
Huo M, Xu X, Mi K, Ma W, Zhou Q, Lin X, Cheng G, Huang L. Co-selection mechanism for bacterial resistance to major chemical pollutants in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169223. [PMID: 38101638 DOI: 10.1016/j.scitotenv.2023.169223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Bacterial resistance is an emerging global public health problem, posing a significant threat to animal and human health. Chemical pollutants present in the environment exert selective pressure on bacteria, which acquire resistance through co-resistance, cross-resistance, co-regulation, and biofilm resistance. Resistance genes are horizontally transmitted in the environment through four mechanisms including conjugation transfer, bacterial transformation, bacteriophage transduction, and membrane vesicle transport, and even enter human bodies through the food chain, endangering human health. Although the co-selection effects of bacterial resistance to chemical pollutants has attracted widespread attention, the co-screening mechanism and co-transmission mechanisms remain unclear. Therefore, this article summarises the current research status of the co-selection effects and mechanism of environmental pollutants resistance, emphasising the necessity of studying the co-selection mechanism of bacteria against major chemical pollutants, and lays a solid theoretical foundation for conducting risk assessment of bacterial resistance.
Collapse
Affiliation(s)
- Meixia Huo
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiangyue Xu
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Wenjin Ma
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Qin Zhou
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xudong Lin
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Guyue Cheng
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
46
|
Kim JW, Hong YK, Kwon OK, Kim SC. Difference of Microbial Community in the Stream Adjacent to the Mixed Antibiotic Effluent Source. TOXICS 2024; 12:135. [PMID: 38393230 PMCID: PMC10891948 DOI: 10.3390/toxics12020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024]
Abstract
Released antibiotics from source to stream can influence bacterial communities and potentially alter the ecosystem. This research provides a comprehensive examination of the sources, distribution, and bacterial community dynamics associated with varied antibiotic release sources adjacent to the stream. The residual of antibiotics from different sources was determined, and the bacterial community structure was examined to reveal the differences in the bacteria community in the stream. The residual of antibiotics was quantified with liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the Illumina MiSeq platform was utilized to sequence bacterial 16S rRNA genes, providing comprehensive insights into the bacterial community structure in the sediment across five different sites. Results indicated that the presence and distribution of antibiotics were significantly influenced by released sources. In the case of the bacterial community, the Proteobacteria and Firmicutes were the most dominant phyla in the sediment, and especially, the Firmicutes showed higher abundance in sites mostly affected by livestock sources. Additionally, livestock gut bacteria such as Clostridium saudiense, Proteiniclasticum ruminis, and Turicibacter sanguinis were prevalent in antibiotic-contaminated sites adjacent to livestock facilities. Overall, this study provides critical insights into the effect of antibiotic contamination by verifying the relationship between the occurrence of antibiotic residuals and the alteration in the bacterial community in the stream.
Collapse
Affiliation(s)
- Jin-Wook Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Kyu Hong
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Oh-Kyung Kwon
- Biogas Research Center, Hankyung National University, Anseong 17579, Republic of Korea
| | - Sung-Chul Kim
- Department of Bio-Environmental Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
47
|
Wu D, Dai S, Feng H, Karunaratne SHPP, Yang M, Zhang Y. Persistence and potential risks of tetracyclines and their transformation products in two typical different animal manure composting treatments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122904. [PMID: 37951528 DOI: 10.1016/j.envpol.2023.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Abundant residues of tetracyclines in animal manures and manure-derived organic fertilizers can pose a substantial risk to environments. However, our knowledge on the residual levels and potential risk of tetracyclines and their transformation products (TPs) in manure and manure-derived organic fertilizers produced by different composting treatments is still limited. Herein, the occurrence and distribution of four veterinary tetracyclines (tetracycline, oxytetracycline, chlortetracycline, and doxycycline) and ten of their TPs were investigated in paired samples of fresh manure and manure-derived organic fertilizers. Tetracyclines and TPs were frequently detected in manure and manure-derived organic fertilizer samples in ranging from 130 to 118,137 μg·kg-1 and 54.6 to 104,891 μg·kg-1, respectively. Notably, the TPs concentrations of tetracycline and chlortetracycline were comparable to those of the parent compounds, with 4-epimers being always dominant and retained antibacterial potency. Based on paired-sampling strategy, the removal efficiency of tetracyclines and TPs in thermophilic composting was higher than that in manure storage. Toxicological data in the soil environment and the data derived from equilibrium partitioning method, indicated that tetracyclines and some TPs like 4-epitetracycline, 4-epichlortetracycline and isochlortetracycline could pose median to high ecological risk to terrestrial organisms. Total concentrations of TPs in manure-derived organic fertilizers were significantly correlated with the absolute abundance of tet(X) family genes, which provide evidence to evaluate the effects of TPs on the levels of antibiotic resistance in the environment. Among them, the 4-epitetracycline could pose ecological risk and retain antibacterial potency. Our findings emphasize the importance of monitoring and controlling the prevalence of tetracyclines and their TPs in livestock-related environments.
Collapse
Affiliation(s)
- Danni Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Shiting Dai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haodi Feng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | | | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
48
|
Zhang S, Han W, Liu T, Feng C, Jiang Q, Zhang B, Chen Y, Zhang Y. Tetracycline inhibits the nitrogen fixation ability of soybean (Glycine max (L.) Merr.) nodules in black soil by altering the root and rhizosphere bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168047. [PMID: 37918730 DOI: 10.1016/j.scitotenv.2023.168047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Tetracycline is a widely used antibiotic and may thus also be an environmental contaminant with an influence on plant growth. The aim of this study was to investigate the inhibition mechanisms of tetracycline in relation to soybean growth and ecological networks in the roots and rhizosphere. To this end, we conducted a pot experiment in which soybean seedlings were grown in soil treated with 0, 10, or 25 mg/kg tetracycline. The effects of tetracycline pollution on growth, productivity, oxidative stress, and nitrogenase activity were evaluated. We further identified the changes in microbial taxa composition and structure at the genus and species levels by sequencing the 16S rRNA gene region. The results showed that tetracycline activates the antioxidant defense system in soybeans, which reduces the abundance of Bradyrhizobiaceae, inhibits the nitrogen-fixing ability, and decreases the nitrogen content in the root system. Tetracycline was also found to suppress the formation of the rhizospheric environment and decrease the complexity and stability of bacterial networks. Beta diversity analysis showed that the community structure of the root was markedly changed by the addition of tetracycline, which predominantly affected stochastic processes. These findings demonstrate that the influence of tetracycline on soybean roots could be attributed to the decreased stability of the bacterial community structure, which limits the number of rhizobium nodules and inhibits the nitrogen-fixing capacity. This exploration of the inhibitory mechanisms of tetracycline in relation to soybean root development emphasises the potential risks of tetracycline pollution to plant growth in an agricultural setting. Furthermore, this study provides a theoretical foundation from which to improve our understanding of the physiological toxicity of antibiotics in farmland.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tianqi Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chengcheng Feng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qun Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yukun Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
49
|
Wang JX, Li P, Chen CZ, Liu L, Li ZH. Biodegradation of sulfadiazine by ryegrass (Lolium perenne L.) in a soil system: Analysis of detoxification mechanisms, transcriptome, and bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132811. [PMID: 37866149 DOI: 10.1016/j.jhazmat.2023.132811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
The indiscriminate use of sulfadiazine has caused severe harm to the environment, and biodegradation is a viable method for the removal of sulfadiazine. However, there are few studies that consider sulfadiazine biodegradation mechanisms. To comprehensively investigate the process of sulfadiazine biodegradation by plants in a soil system, a potted system that included ryegrass and soil was constructed in this study. The removal of sulfadiazine from the system was found to be greater than 95% by determining the sulfadiazine residue. During the sulfadiazine removal process, a significant decrease in ryegrass growth and a significant increase in antioxidant enzyme activity were observed, which indicates the toxic response and detoxification mechanism of sulfadiazine on ryegrass. The ryegrass transcriptome and soil bacterial communities were further investigated. These results revealed that most of the differentially expressed genes (DEGs) were enriched in the CYP450 enzyme family and phenylpropanoid biosynthesis pathway after sulfadiazine exposure. The expression of these genes was significantly upregulated. Sulfadiazine significantly increased the abundance of Vicinamibacteraceae, RB41, Ramlibacter, and Microvirga in the soil. These key genes and bacteria play an important role in sulfadiazine biodegradation. Through network analysis of the relationship between the DEGs and soil bacteria, it was found that many soil bacteria promote the expression of plant metabolic genes. This mutual promotion enhanced the sulfadiazine biodegradation in the soil system. This study demonstrated that this pot system could substantially remove sulfadiazine and elucidated the biodegradation mechanism through changes in plants and soil bacteria.
Collapse
Affiliation(s)
- Jin-Xin Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | | | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
50
|
Zhao S, Zhang C, Zhang Q, Huang Q. Small microplastic particles promote tetracycline and aureomycin adsorption by biochar in an aqueous solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119332. [PMID: 37907026 DOI: 10.1016/j.jenvman.2023.119332] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
Biochar (BC) has been used to remove antibiotics from wastewater. Microplastics are emerging contaminants of wastewater. The capacities of microplastics for adsorbing antibiotics and the effects of microplastics of different types and particle sizes on antibiotic adsorption by BC have not been studied. Here, adsorption isotherm and kinetics experiments were performed to investigate tetracycline and aureomycin adsorption to polyvinyl chloride particles with diameters of 10, 100, 500, and 2000 μm, polylactic acid particles with diameters of 30, 100, 500, and 2000 μm (PLA30, PLA100, PLA500, and PLA2000, respectively), and wheat straw BC. The highest tetracycline adsorption capacity (25.00 mg g-1) was found for a PLA30 + BC. The tetracycline adsorption capacities of the other microplastic particles were 20.44-24.57 mg g-1. The highest aureomycin adsorption capacity (39.50 mg g-1) was found for 10 μm polyvinyl chloride particles and BC. The aureomycin adsorption capacities of the other microplastic particles were 32.21-38.42 mg g-1. The tetracycline adsorption capacities were 13.69%, 6.28%, 5.49%, and 4.54% higher for PLA30 + BC, PLA100 + BC, PLA500 + BC, and PLA2000 + BC, respectively, than for only BC. This may have been because there were more sites available per unit mass of microplastic for adsorbing tetracycline and dissolved organic carbon on small microplastic particles than large microplastic particles. The results indicated that microplastics can adsorb antibiotics and increase the amounts of antibiotics adsorbed by BC. Therefore, it is essential to consider potential interactions between BC and microplastics when BC is used to remove antibiotics from wastewater.
Collapse
Affiliation(s)
- Shuwen Zhao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Chuchen Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Qianru Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| | - Qilan Huang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| |
Collapse
|