1
|
Yang XY, Wei YX, Su YQ, Zhang ZW, Tang XY, Chen YE, Yuan M, Yuan S. The Strategies Microalgae Adopt to Counteract the Toxic Effect of Heavy Metals. Microorganisms 2025; 13:989. [PMID: 40431162 PMCID: PMC12114582 DOI: 10.3390/microorganisms13050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Besides biomass production, some microalgae have been used to treat wastewater contamination. However, in general, high concentrations of heavy metals significantly inhibit algal growth. We thus need to find ways to promote the resistance of microalgae to heavy metals, increase their growth rate under stress, and achieve coupling of heavy metal removal and biomass production simultaneously. In this review, mechanisms for removal of heavy metals by microalgae are proposed. Effects of exogenous chemical additives (dissolved organic matters, formaldehyde, sulphate, phosphate, nitric oxide donors, etc.) on algal biosorption to heavy metals are summarized. Genetic manipulation and microalgal strain selection strategies are also introduced, especially for the acid-tolerant strains with high biosorption efficiencies to Cr(VI) and Cd2+ at low pH conditions. Recent advances in (semi)continuous heavy-metal-bioremediation and biomass-production coupled system with immobilized microalgae, as well as challenges and solutions to the commercialization and industrialization of the coupled system were discussed.
Collapse
Affiliation(s)
- Xin-Yue Yang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (X.-Y.Y.); (Y.-X.W.); (Z.-W.Z.); (X.-Y.T.)
| | - Yu-Xin Wei
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (X.-Y.Y.); (Y.-X.W.); (Z.-W.Z.); (X.-Y.T.)
| | - Yan-Qiu Su
- College of Life Science, Sichuan Normal University, Chengdu 610066, China;
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (X.-Y.Y.); (Y.-X.W.); (Z.-W.Z.); (X.-Y.T.)
| | - Xiao-Yan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (X.-Y.Y.); (Y.-X.W.); (Z.-W.Z.); (X.-Y.T.)
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.-E.C.); (M.Y.)
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China; (Y.-E.C.); (M.Y.)
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (X.-Y.Y.); (Y.-X.W.); (Z.-W.Z.); (X.-Y.T.)
| |
Collapse
|
2
|
Simionov IA, Barbu M, Vasiliev I, Condrachi L, Titica M, Ifrim G, Cristea D, Nuță FM, Petrea ȘM. Prospective technical and technological insights into microalgae production using aquaculture wastewater effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124537. [PMID: 40020375 DOI: 10.1016/j.jenvman.2025.124537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 03/03/2025]
Abstract
Microalgae biomass is a promising resource addressing climate change and play a role in energy transition for generating biofuels. Due to their ability to produce higher yield per year, biofuels obtained from microalgae are considered 3rd generation-advanced biofuels. The industrial production of microalgae mitigates the effects of CO2 emissions and can be used for wastewater bioremediation since most effluents are rich in nutrients. Using wastewater as growth media for microalgae promotes the principles of circular economy and nutrient recovery. The aquaculture wastewater effluent contains high levels of nitrogenous compounds, as well as phosphates and dissolved organic carbon. The current review aims to identify, centralize, and provide extensive information on the decisive technological and technical factors involved in the growth process of different microalgae species in aquaculture wastewater. The study focuses on technological growth performance indicators, as well as specific control strategies applied to achieve pH control, since it has been highlighted to be one of the most important growth-related cofactors. A bibliometric framework was developed to identify future trends in integrated microalgae production. The scientific literature analysis highlighted the great potential of aquaculture wastewater effluents to be used as growth media for microalgae biomass production, due to superior performance in lipid and carbohydrate productivity. Most control strategies developed for microalgae production systems found in the literature aim at controlling the pH in the bioreactor by injecting CO2, while few other papers consider manipulating the dissolved oxygen. The need for higher-level control arises to not only track pH or DO references but also to maximize the treatment efficiency of the bioreactor.
Collapse
Affiliation(s)
- Ira-Adeline Simionov
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Marian Barbu
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Iulian Vasiliev
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Larisa Condrachi
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Mariana Titica
- GEPEA, CNRS-UMR 6144, Nantes University Saint-Nazaire, France
| | - George Ifrim
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Dragos Cristea
- Department of Business Administration, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Florian Marcel Nuță
- Human and Social Sciences Doctoral School, "Ştefan Cel Mare" University of Suceava, Suceava, Romania.
| | - Ștefan-Mihai Petrea
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Department of Business Administration, "Dunarea de Jos" University Galati, 800008, Galati, Romania.
| |
Collapse
|
3
|
Zhang Y, Wang X, Su D, Zhao L, Leng K, Miao J, Yu Y. Enhancing astaxanthin accumulation in immobilized Haematococcus pluvialis via alginate hydrogel membrane. Int J Biol Macromol 2025; 292:139145. [PMID: 39725098 DOI: 10.1016/j.ijbiomac.2024.139145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Immobilized cultivation is anticipated to be effective for enhancing both biomass and astaxanthin accumulation in Haematococcus pluvialis (H. pluvialis). A novel fabrication method of alginate hydrogel membrane (AHM) was introduced for immobilized cultivation of H. pluvialis. This method incorporates cotton gauze into a hydrogel with a low sodium alginate (SA) concentration of 0.5 %, utilizing endogenous calcification. The optimized culture strategy achieved a peak astaxanthin productivity of 256.3 mg·m-2·d-1 with an inoculum of 16 g·m-2 under light irradiation of 300 μmol·m-2·s-1 on day 4, resulting in a 70.8 % increase in astaxanthin yield over the control group. Furthermore, a recovery method for H. pluvialis and SA from AHM was explored, using Na2CO3 to disintegrate AHM to recover all the microalgal cells and SA with a recovery rate of 88.7 %. Collectively, these findings suggest that immobilized cultivation using AHM is an effective strategy for boosting biomass and astaxanthin accumulation in H. pluvialis.
Collapse
Affiliation(s)
- Yating Zhang
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xixi Wang
- Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Dong Su
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ling Zhao
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Kailiang Leng
- Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Junkui Miao
- Qingdao Engineering Research Center of Polar Fishery Resources Exploitation, Key Laboratory of Sustainable Marine Fishery Development of Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Yueqin Yu
- State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
4
|
El-Sheekh MM, El-Kassas HY, Ali SS. Microalgae-based bioremediation of refractory pollutants: an approach towards environmental sustainability. Microb Cell Fact 2025; 24:19. [PMID: 39810167 PMCID: PMC11734528 DOI: 10.1186/s12934-024-02638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants. This is due to their advantages, such as rapid growth rate, cost-effectiveness, high oil-rich biomass production, and ease of implementation. Moreover, microalgae-based remediation is more environmentally sustainable for not generating additional waste sludge, capturing atmospheric CO2, and being efficient for nutrient recycling and sustainable algal biomass production for biofuels and high-value-added products generation. Hence, microalgae can achieve sustainability's three main pillars (environmental, economic, and social). Microalgal biomass can mediate contaminated wastewater effectively through accumulation, adsorption, and metabolism. These mechanisms enable the microalgae to reduce the concentration of heavy metals and organic contaminants to levels that are considered non-toxic. However, several factors, such as microalgal strain, cultivation technique, and the type of pollutants, limit the understanding of the microalgal removal mechanism and efficiency. Furthermore, adopting novel technological advancements (e.g., nanotechnology) may serve as a viable approach to address the challenge of refractory pollutants and bioremediation process sustainability. Therefore, this review discusses the mechanism and the ability of different microalgal species to mitigate persistent refractory pollutants, such as industrial effluents, dyes, pesticides, and pharmaceuticals. Also, this review paper provided insight into the production of nanomaterials, nanoparticles, and nanoparticle-based biosensors from microalgae and the immobilization of microalgae on nanomaterials to enhance bioremediation process efficiency. This review may open a new avenue for future advancing research regarding a sustainable biodegradation process of refractory pollutants.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Hala Y El-Kassas
- National Institute of Oceanography and Fisheries, NIOF, Alexandria, 21556, Egypt
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Im H, Nguyen HT, Jeong D, Jang A. Wastewater treatment optimization utilizing polyvinyl alcohol cryogel immobilized microalgae for nutrient removal. CHEMOSPHERE 2024; 366:143426. [PMID: 39341394 DOI: 10.1016/j.chemosphere.2024.143426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
This study investigated the use of polyvinyl alcohol (PVA) cryogels to immobilize microalgae for wastewater treatment. Chlorella sorokiniana was successfully entrapped in PVA cryogels via repeated freeze/thaw cycles. The nutrient removal efficiency of these cryogels was tested in a continuously stirred photobioreactor under varying conditions, both with and without the addition of an organic carbon source (sodium acetate). The presence of organic carbon significantly enhanced nutrient removal. Specifically, PVA cryogels with immobilized C. sorokiniana achieved 100% nitrogen removal and 97.2% phosphorus removal under mixotrophic conditions. Furthermore, the maximum nutrient removal capacities of the PVA cryogels were found to be 0.033 mg-N/cube·day for nitrogen and 0.0047 mg-P/cube·day for phosphorus. As the inorganic carbon (bicarbonate) concentration increased from 5 to 100 mg/L, the N/P ratio rose from 6 to 8, with a higher N/P ratio of 10 observed when nitrate nitrogen was used as the nitrogen source, compared to ammonia nitrogen, at 100 mg/L bicarbonate. This study offers an effective method for using microalgae immobilized in PVA cryogels for wastewater treatment. The findings highlight the potential for PVA cryogels to significantly improve nutrient removal efficiency, particularly in the presence of organic carbon sources, thereby enhancing bioreactor performance. High nitrogen and phosphorus removal efficiencies can help reduce eutrophication in water bodies, protect aquatic ecosystems, and enable nutrient recovery and reuse, supporting a circular economy in wastewater treatment practices.
Collapse
Affiliation(s)
- Hongrae Im
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Hoang Tam Nguyen
- Graduate School of Water Resources, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Dawoon Jeong
- Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon-si, 34057, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
6
|
Cheng S, Liu X, Pastore C, di Bitonto L, Li A. Low-carbon wastewater treatment and resource recovery of recirculating aquaculture system by immobilized chlorella vulgaris based on machine learning optimization. BIORESOURCE TECHNOLOGY 2024; 408:131208. [PMID: 39098355 DOI: 10.1016/j.biortech.2024.131208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Immobilized microalgae biotechnologies can conserve water and space by low-carbon wastewater treatment and resource recovery in a recirculating aquaculture system (RAS). However, technical process parameters have been unoptimized considering the mutual interaction between factors. In this study, machine learning optimized the parameters of alginate-immobilized Chlorella vulgaris (C. vulgaris), that is, 474 μmol/(m2·s) of light intensity, 23 × 106 cells/mL for initial cell number, and 2.07 mm particle size. Importantly, under continuous illumination, the immobilized C. vulgaris and microalgal-bacterial consortium improved water purification and biomass reutilization. Transcriptomics of C. vulgaris showed enhanced nitrogen removal by increasing pyridine nucleotide and lipid accumulation via enhanced triacylglycerol synthesis. Symbiotic bacteria upregulated genes for nitrate reduction and organic matter degradation, which stimulated biomass accumulation through CO2 fixation and starch synthesis. The recoverable microalgae (1.94 g/L biomass, 47 % protein, 26.23 % lipids), struvite (64.79 % phosphorus), and alginate (79.52 %) every two weeks demonstrates a low-carbon resource recovery in RAS.
Collapse
Affiliation(s)
- Shuqian Cheng
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaolei Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Carlo Pastore
- Italian National Research Council, Water Research Institute (IRSA-CNR), Bari, Italy
| | - Luigi di Bitonto
- Italian National Research Council, Water Research Institute (IRSA-CNR), Bari, Italy
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
7
|
Liu Y, Zhang G, Li Y, Wu X, Shang S, Che W. Enhancing immobilized Chlorella vulgaris growth with novel buoyant barium alginate bubble beads. BIORESOURCE TECHNOLOGY 2024; 406:130996. [PMID: 38885729 DOI: 10.1016/j.biortech.2024.130996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Microalgae immobilization in alginate beads shows promise for biomass production and water pollution control. However, carrier instability and mass transfer limitations are challenges. This study introduces buoyant barium alginate bubble beads (BABB), which offer exceptional stability and enhance Chlorella vulgaris growth. In just 12 days, compared to traditional calcium alginate beads, BABB achieved a 20 % biomass increase while minimizing cell leakage and simplifying harvesting. BABB optimization involved co-immobilization with BG-11 medium, enrichment of CO2 in internal bubbles, and the integration of Fe nanoparticles (FeNPs). In the open raceway pond reactor, these optimizations resulted in a 39 % increase in biomass over 7 days compared to the unoptimized setup in closed flasks. Furthermore, enhancements in pigment and organic matter production were observed, along with improved removal of ammonia nitrogen and phosphate. These results highlight the overall advantages of BABB for microalgae immobilization, offering a scientific foundation for their effective utilization.
Collapse
Affiliation(s)
- Yi Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, PR China
| | - Gaoshan Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, PR China
| | - Yanpeng Li
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, PR China.
| | - Xuexue Wu
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, PR China
| | - Shuo Shang
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, PR China
| | - Wenlu Che
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, PR China
| |
Collapse
|
8
|
Li J, Li T, Sun D, Guan Y, Zhang Z. Treatment of agricultural wastewater using microalgae: A review. ADVANCES IN APPLIED MICROBIOLOGY 2024; 128:41-82. [PMID: 39059843 DOI: 10.1016/bs.aambs.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The rapid development of agriculture has led to a large amount of wastewater, which poses a great threat to environmental safety. Microalgae, with diverse species, nutritional modes and cellular status, can adapt well in agricultural wastewater and absorb nutrients and remove pollutants effectively. Besides, after treatment of agricultural wastewater, the accumulated biomass of microalgae has broad applications, such as fertilizer and animal feed. This paper reviewed the current progresses and further perspectives of microalgae-based agricultural wastewater treatment. The characteristics of agricultural wastewater have been firstly introduced; Then the microalgal strains, cultivation modes, cellular status, contaminant metabolism, cultivation systems and biomass applications of microalgae for wastewater treatment have been summarized; At last, the bottlenecks in the development of the microalgae treatment methods, as well as recommendations for optimizing the adaptability of microalgae to wastewater in terms of wastewater pretreatment, microalgae breeding, and microalgae-bacterial symbiosis systems were discussed. This review would provide references for the future developments of microalgae-based agricultural wastewater treatment.
Collapse
Affiliation(s)
- Jiayi Li
- School of Life Sciences, Hebei University, Baoding, P.R. China
| | - Tong Li
- School of Life Sciences, Hebei University, Baoding, P.R. China
| | - Dongzhe Sun
- College of Life Sciences, Hebei Normal University, Shijiazhuang, P.R. China
| | - Yueqiang Guan
- School of Life Sciences, Hebei University, Baoding, P.R. China.
| | - Zhao Zhang
- School of Life Sciences, Hebei University, Baoding, P.R. China; College of Life Sciences, Hebei Normal University, Shijiazhuang, P.R. China.
| |
Collapse
|
9
|
Zhang H, Li L, Ding W, Cheng Z, Lin Z, Zhu L, Zhang X. Effect mechanism of metal cations on the interface interaction of cell-collector-bubble for microalgal foam flotation. CHEMOSPHERE 2024; 349:140899. [PMID: 38065264 DOI: 10.1016/j.chemosphere.2023.140899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/12/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Foam flotation is generally recognized as a low-cost and efficient technology for the harvesting of microalgae for food, feed and fuel production, as well as environmental remediation. However, the harvesting efficiency of microalgae using foam flotation is restricted by the residual metal cations in the medium, and the corresponding inhibition mechanism has not yet been revealed. This study investigated the effects of metal cations in the medium on the harvesting efficiency and concentration factor during the foam flotation of Scenedesmus acuminatus. The interface interaction of cell-collector-bubble effected by metal cations was revealed by quantifying the amount of collector (cetyl trimethylammonium bromide, CTAB) between cells and bubbles, as well as the response of bubble interface characteristics. Results showed that the harvesting efficiency dropped linearly as the increase of cationic concentrations. Under the CTAB dose of 20 mg L-1, the harvesting efficiency decreased from 98.65% to 56.77% with a decrease of concentration factor from 25.41 to 9.05 in the presence of metal cations. The Na+ and Mg2+ in the medium were the major inhibitors. The inhibitory mechanisms revealed that metal cations obviously impeded the adsorption of CTAB onto the cells by competing adsorption site, resulting in a low harvesting efficiency. The presence of metal cations also inhibited the bubble coalescence and slowed down drainage velocity in the plateau channel of foam layer, forming foam with higher water content, thus reducing the concentration factor. A schematic illustration is proposed to better understand the effect mechanism of metal cations on microalgal foam flotation. This study might facilitate the process development in an effort to overcome the inhibition of cations during microalgal foam flotation.
Collapse
Affiliation(s)
- Haiyang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lili Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wenting Ding
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Ziqian Cheng
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Zhe Lin
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Liandong Zhu
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, China.
| | - Xuezhi Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
10
|
Huang KX, Vadiveloo A, Zhou JL, Yang L, Chen DZ, Gao F. Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 376:128941. [PMID: 36948428 DOI: 10.1016/j.biortech.2023.128941] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation in wastewater has received much attention as an environmentally sustainable approach. However, commercial application of this technique is challenging due to the low biomass output and high harvesting costs. Recently, integrated culture and harvest systems including microalgae biofilm, membrane photobioreactor, microalgae-fungi co-culture, microalgae-activated sludge co-culture, and microalgae auto-flocculation have been explored for efficiently coupling microalgal biomass production with wastewater purification. In such systems, the cultivation of microalgae and the separation of algal cells from wastewater are performed in the same reactor, enabling microalgae grown in the cultivation system to reach higher concentration, thus greatly improving the efficiency of biomass production and wastewater purification. Additionally, the design of such innovative systems also allows for microalgae cells to be harvested more efficiently. This review summarizes the mechanisms, characteristics, applications, and development trends of the various integrated systems and discusses their potential for broad applications, which worth further research.
Collapse
Affiliation(s)
- Kai-Xuan Huang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; National Engineering Research Center for Marine Aquaculture, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Jin-Long Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Lei Yang
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Dong-Zhi Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan 316000, China.
| |
Collapse
|
11
|
Han M, Zhang C, Ho SH. Immobilized microalgal system: An achievable idea for upgrading current microalgal wastewater treatment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 14:100227. [PMID: 36560958 PMCID: PMC9763361 DOI: 10.1016/j.ese.2022.100227] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 05/26/2023]
Abstract
Efficient wastewater treatment accompanied by sustainable "nutrients/pollutants waste-wastewater-resources/energy nexus" management is acting as a prominent and urgent global issue since severe pollution has occurred increasingly. Diverting wastes from wastewater into the value-added microalgal-biomass stream is a promising goal using biological wastewater treatment technologies. This review proposed an idea of upgrading the current microalgal wastewater treatment by using immobilized microalgal system. Firstly, a systematic analysis of microalgal immobilization technology is displayed through an in-depth discussion on why using immobilized microalgae for wastewater treatment. Subsequently, the main technical approaches employed for microalgal immobilization and pollutant removal mechanisms by immobilized microalgae are summarized. Furthermore, from high-tech technologies to promote large-scale production and application potentials in diverse wastewater and bioreactors to downstream applications lead upgradation closer, the feasibility of upgrading existing microalgal wastewater treatment into immobilized microalgal systems is thoroughly discussed. Eventually, several research directions are proposed toward the future immobilized microalgal system for microalgal wastewater treatment upgrading. Together, it appears that using immobilization for further upgrading the microalgae-based wastewater treatment can be recognized as an achievable alternative to make microalgal wastewater treatment more realistic. The information and perspectives provided in this review also offer a feasible reference for upgrading conventional microalgae-based wastewater treatment.
Collapse
|
12
|
Leon-Vaz A, Cubero-Cardoso J, Trujillo-Reyes Á, Fermoso FG, León R, Funk C, Vigara J, Urbano J. Enhanced wastewater bioremediation by a sulfur-based copolymer as scaffold for microalgae immobilization (AlgaPol). CHEMOSPHERE 2023; 315:137761. [PMID: 36610507 DOI: 10.1016/j.chemosphere.2023.137761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In recent years, there has been an increasing concern related to the contamination of aqueous ecosystems by heavy metals, highlighting the need to improve the current techniques for remediation. This work intends to address the problem of removing heavy metals from waterbodies by combining two complementary methodologies: adsorption to a copolymer synthesized by inverse vulcanization of sulfur and vegetable oils and phytoremediation by the microalga Chlorella sorokiniana to enhance the metal adsorption. After studying the tolerance and growth of Chlorella sorokiniana in the presence of the copolymer, the adsorption of highly concentrated Cd2+ (50 mg L-1) by the copolymer and microalgae on their own and the combined immobilized system (AlgaPol) was compared. Additionally, adsorption studies have been performed on mixtures of the heavy metals Cd2+ and Cu2+ at a concentration of 8 mg L-1 each. AlgaPol biofilm is able to remove these metals from the growth medium by more than 90%. The excellent metal adsorption capacity of this biofilm can be kinetically described by a pseudo-second-order model.
Collapse
Affiliation(s)
- Antonio Leon-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences. Marine International Campus of Excellence and REMSMA. University of Huelva, 210071, Huelva, Spain; Department of Chemistry, Umeå University, 901 87, Umeå, Sweden.
| | - Juan Cubero-Cardoso
- Laboratory of Sustainable and Circular Technology, CIDERTA and Chemistry Department, Faculty of Experimental Sciences, Campus de "El Carmen", University of Huelva, 21071, Huelva, Spain; Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, km. 1, 41013, Seville, Spain.
| | - Ángeles Trujillo-Reyes
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, km. 1, 41013, Seville, Spain.
| | - Fernando G Fermoso
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, km. 1, 41013, Seville, Spain.
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences. Marine International Campus of Excellence and REMSMA. University of Huelva, 210071, Huelva, Spain.
| | - Christiane Funk
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden.
| | - Javier Vigara
- Laboratory of Biochemistry, Faculty of Experimental Sciences. Marine International Campus of Excellence and REMSMA. University of Huelva, 210071, Huelva, Spain.
| | - Juan Urbano
- Laboratory of Sustainable and Circular Technology, CIDERTA and Chemistry Department, Faculty of Experimental Sciences, Campus de "El Carmen", University of Huelva, 21071, Huelva, Spain.
| |
Collapse
|
13
|
Han F, Zhou W. Nitrogen recovery from wastewater by microbial assimilation - A review. BIORESOURCE TECHNOLOGY 2022; 363:127933. [PMID: 36100188 DOI: 10.1016/j.biortech.2022.127933] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The increased nitrogen (N) input with low utilization rate in artificial N management has led to massive reactive N (Nr) flows, putting the Earth in a high-risk state. It is essential to recover and recycle Nr during or after Nr removal from wastewater to reduce N input while simultaneously mitigate Nr pollution in addressing the N stress. However, mechanisms for efficient Nr recovery during or after Nr removal remain unclear. Here, the occurrence of N risk and progress in wastewater treatment in recent years as well as challenges of the current technologies for N recovery from wastewater were reviewed. Through analyzing N conversion fluxes in biogeochemical N-cycling networks, microbial N assimilation through photosynthetic and heterotrophic microorganisms was highlighted as promising alternative for synergistic N removal and recovery in wastewater treatment. In addition, the prospects and gaps of Nr recovery from wastewater through microbial assimilation are discussed.
Collapse
Affiliation(s)
- Fei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China.
| |
Collapse
|
14
|
Sun Y, Lu T, Pan Y, Shi M, Ding D, Ma Z, Liu J, Yuan Y, Fei L, Sun Y. Recovering rare earth elements via immobilized red algae from ammonium-rich wastewater. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 12:100204. [PMID: 36157340 PMCID: PMC9500351 DOI: 10.1016/j.ese.2022.100204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 05/31/2023]
Abstract
Biotreatment of acidic rare earth mining wastewater via acidophilic living organisms is a promising approach owing to their high tolerance to high concentrations of rare earth elements (REEs); however, simultaneous removal of both REEs and ammonium is generally hindered since most acidophilic organisms are positively charged. Accordingly, immobilization of acidophilic Galdieria sulphuraria (G. sulphuraria) by calcium alginate to improve its affinity to positively charged REEs has been used for simultaneous bioremoval of REEs and ammonium. The results indicate that 97.19%, 96.19%, and 98.87% of La, Y, and Sm, respectively, are removed by G. sulphuraria beads (GS-BDs). The adsorption of REEs by calcium alginate beads (BDs) and GS-BDs is well fitted by both pseudo first-order (PFO) and pseudo second-order (PSO) kinetic models, implying that adsorption of REEs involves both physical adsorption caused by affinity of functional groups such as -COO- and -OH and chemical adsorption based on ion exchange of Ca2+ with REEs. Notably, GS-BDs exhibit high tolerance to La, Y, and Sm with maximum removal efficiencies of 97.9%, 96.6%, and 99.1%, respectively. Furthermore, the ammonium removal efficiency of GS-BDs is higher than that of free G. sulphuraria cells at an initial ammonium concentration of 100 mg L-1, while the efficiency decreases when initial concentration of ammonium is higher than 150 mg L-1. Last, small size of GS-BDs favors ammonium removal because of their lower mass transfer resistance. This study achieves simultaneous removal of REEs and ammonium from acidic mining drainage, providing a potential strategy for biotreatment of REE tailing wastewater.
Collapse
Affiliation(s)
- Yabo Sun
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, PR China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, Anhui, 230601, PR China
| | - Tao Lu
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Yali Pan
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Menghan Shi
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Dan Ding
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Zhiwen Ma
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Jiuyi Liu
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Yupeng Yuan
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
| | - Ling Fei
- Chemical Engineering Department, University of Louisiana at Lafayette, Lafayette, LA, 70504, United States
| | - Yingqiang Sun
- School of Chemistry & Chemical Engineering, School of Material Science & Engineering, Anhui University, Jiulong Rd 111, Hefei, Anhui, 230039, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, Anhui, 230601, PR China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, Anhui, 230601, PR China
| |
Collapse
|