1
|
Baniasadi H, Äkräs L, Paganelli Z, Dammann N, Abidnejad R, Lipponen S, Silvenius F, Vahvaselkä M, Ilvesniemi H, Seppälä J, Niskanen J. Can biochar fillers advance the properties of composites? Early-stage characterization and life cycle assessment of novel polyamide/biochar biocomposites. ENVIRONMENTAL RESEARCH 2025; 275:121446. [PMID: 40120747 DOI: 10.1016/j.envres.2025.121446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
In response to growing environmental concerns, this study explores the potential of polyamide 1010 (PA1010) and biochar biocomposites as a sustainable solution in polymer engineering. The research addresses the gap in reinforcing biocomposites with biochar, demonstrating enhanced physical properties and reduced environmental impact. Scanning electron microscopy (SEM) revealed excellent biochar dispersion and strong adhesion with the PA1010 matrix. Mechanical testing showed significant improvements, including a 44 % increase in tensile strength and a 110 % increase in tensile modulus. Thermal stability also improved, increasing decomposition temperature from 460 °C to 474 °C. Additionally, dynamic mechanical analysis (DMA) and rheology tests confirmed increased stiffness and flow resistance. Life cycle assessment (LCA) highlighted a 65 % reduction in carbon footprint, indicating the environmental benefits of these biocomposites. These findings position PA1010/biochar biocomposites as promising materials for sustainable applications in engineering, particularly in industries seeking to reduce environmental impact while enhancing performance.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
| | - Laura Äkräs
- Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Zoe Paganelli
- Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Nele Dammann
- Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Roozbeh Abidnejad
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto, FI-00076, Finland
| | - Sami Lipponen
- Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Frans Silvenius
- Bioeconomy and Environment, Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Marjatta Vahvaselkä
- Production Systems, Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Hannu Ilvesniemi
- Production Systems, Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Jukka Seppälä
- Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Jukka Niskanen
- Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
| |
Collapse
|
2
|
Soyertaş Yapıcıoğlu P. An empirical and statistical investigation on decarbonizing groundwater using industrial waste-based biochar: Trading-off zero-waste management and zero-emission target. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125129. [PMID: 40154255 DOI: 10.1016/j.jenvman.2025.125129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/07/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
This study recommended a trade-off between zero-waste management of a brewery industry and zero-aim target of the drinking water sector. This study mainly aimed to decrease the carbon dioxide (CO2) emissions resulting from groundwater treatment using biochar derived from malt sprout (MS) which is a waste by-product of a brewery industry. Also, CO2 resulting from groundwater treatment was collected and gas adsorption was performed to define the CO2 adsorption capacity of each biochar. Data Envelopment Analysis (DEA) was performed to determine the effect of groundwater quality on CO2 emissions. In the result of experimental and computational analysis, a new carbon capture indicator (CCIB) was derived depending on biochar adsorption process, in this study. The results revealed that averagely 28.98 % of reduction on CO2 emission from groundwater treatment was reported using the mixture of three malt sprout derived biochar. MS1 had the highest carbon capture capacity which was derived at 300 °C. According to (DEA) results, the optimum total organic carbon (TOC) should be 3.2 mg/L for the minimum CO2 emission. Also, optimum biochar dose, contact time and gas flow were 8 g, 10 min and 965 mL/d, respectively for the maximum CO2 adsorption by biochar according to Box-Behnken design method.
Collapse
|
3
|
Chávez J, Li J. Beyond waste in agriculture: Feedstock characterization for thermochemical conversion based on potato above-ground biomass. BIORESOURCE TECHNOLOGY 2025; 418:131943. [PMID: 39643053 DOI: 10.1016/j.biortech.2024.131943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Agricultural residues represent a valuable opportunity to develop circular bioeconomic systems centered on biomass. Characterizing this type of biomass can alleviate the pressure on current biomass sources (e.g., in forests and their biodiversity), enhance agricultural waste management, and reduce crop field emissions. Thus, this study aimed to evaluate the potential of agricultural plant-based residues as feedstock for thermochemical conversion processes, focusing on potato above-ground biomass to enhance herbaceous characterization. The gravimetric characterization of this type of biomass revealed a water content of 89 % for potato above-ground biomass with differences per plant section. Biomass abundance was also measured, showing that well-developed leaves and main stems were more plentiful. After 70 days after planting (DAP), maximum plant development was achieved, differing from heights development at 40 DAP. Hence, identifying specific times for residue recovery can help develop strategies for biomass recovery, thereby reducing pretreatment costs following the selection of suitable conversion technologies.
Collapse
Affiliation(s)
- Jhoan Chávez
- Department of Geography, Earth, and Environmental Sciences, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9, Canada.
| | - Jianbing Li
- Environmental Engineering Program, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9, Canada.
| |
Collapse
|
4
|
Ighalo JO, Ohoro CR, Ojukwu VE, Oniye M, Shaikh WA, Biswas JK, Seth CS, Mohan GBM, Chandran SA, Rangabhashiyam S. Biochar for ameliorating soil fertility and microbial diversity: From production to action of the black gold. iScience 2025; 28:111524. [PMID: 39807171 PMCID: PMC11728978 DOI: 10.1016/j.isci.2024.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
This article evaluated different production strategies, characteristics, and applications of biochar for ameliorating soil fertility and microbial diversity. The biochar production techniques are evolving, indicating that newer methods (including hydrothermal and retort carbonization) operate with minimum temperatures, yet resulting in high yields with significant improvements in different properties, including heating value, oxygen functionality, and carbon content, compared to the traditional methods. It has been found that the temperature, feedstock type, and moisture content play critical roles in the fabrication process. The alkaline nature of biochar is attributed to surface functional groups and addresses soil acidity issues. The porous structure and oxygen-containing functional groups contribute to soil microbial adhesion, affecting soil health and nutrient availability, improving plant root morphology, photosynthetic pigments, enzyme activities, and growth even under salinity stress conditions. The review underscores the potential of biochar to address diverse agricultural challenges, emphasizing the need for further research and application-specific considerations.
Collapse
Affiliation(s)
- Joshua O. Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka P. M. B. 5025, Nigeria
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Chinemerem R. Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa
| | - Victor E. Ojukwu
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka P. M. B. 5025, Nigeria
| | - Mutiat Oniye
- Department of Chemical and Material Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Wasim Akram Shaikh
- Department of Basic Science, School of Science and Technology, The Neotia University, Sarisha, West Bengal 743368, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), International Centre for Ecological Engineering & Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | | | - Ganesh Babu Malli Mohan
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, USA
| | - Sam Aldrin Chandran
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Selvasembian Rangabhashiyam
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| |
Collapse
|
5
|
Li Y, Liu J, Wei B, Zhang X, Liu X, Han L. A comprehensive review of bone char: Fabrication procedures, physicochemical properties, and environmental application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176375. [PMID: 39306141 DOI: 10.1016/j.scitotenv.2024.176375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Bone waste from slaughtering is an abundant but underutilized resource. Promoting its exploitation can reduce the environmental burden and achieve energy recovery. Bone char, a solid material prepared by the thermochemical conversion of animal bone, has a unique and rich mesoporous structure and ionic polarity sites. It has shown great potential for application. This review aims to provide information about the thermochemical conversion method of recycling waste bone to fabricate bone char and, on its basis, to summarize comprehensive data on the physicochemical properties to provide direction and theoretical support for the tailored environmental remediation applications. Therefore, the authors first elucidated the various influencing effects (e.g., bone type, pyrolysis atmosphere and temperature, etc.) and modification treatments (physical and chemical methods) during the fabrication of bone char. Secondly, the physicochemical properties (including but not limited to pore structure, elemental composition, surface functional groups, pH and ash content, etc.) of bone char are comprehensively discussed for the first time. Further, the development process of bone char applied as adsorbents and catalytic supports for environmental remediation (decolorization of sugar liquor, drinking water defluoridation, removal of heavy metals and organic pollutants) is presented, revealing the behaviors and mechanisms of pollutant removal by bone char. Finally, the authors present the prospects and challenges of developing bone char into a green and sustainable environmentally friendly material.
Collapse
Affiliation(s)
- Yuyu Li
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiale Liu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Baoping Wei
- China IPPR International Engineering Co., Ltd., Beijing 100089, PR China
| | - Xuesong Zhang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xian Liu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
6
|
Guo W, Yao X, Chen Z, Liu T, Wang W, Zhang S, Xian J, Wang Y. Recent advance on application of biochar in remediation of heavy metal contaminated soil: Emphasis on reaction factor, immobilization mechanism and functional modification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123212. [PMID: 39531773 DOI: 10.1016/j.jenvman.2024.123212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Soil contamination with heavy metals (HMs) poses a critical environmental challenge that demands immediate attention and resolution. Among the various remediation techniques, biochar emerges as an environmentally friendly option with obvious advantages. Biochar can be obtained by pyrolysis of various biomass and has significant effects in the remediation of heavy metal pollution contaminated soil. In this study, we examined 3489 articles on biochar-based remediation of soil heavy metal contamination published between May 2009 and October 2023, utilizing the Web of Science core collection database. Based on bibliometric methods and big data statistical analysis, CiteSpace visualization software is utilized to create a knowledge map of biochar research, allowing for an analysis of keyword clustering and a summary of the current research hotspots and development trends. Furthermore, this review emphasizes factors influencing the characteristics of biochar, including raw material types, pyrolysis temperature and pyrolysis method. At the same time, the optimal conditions for producing biochar are also presented. Additionally, the mechanisms of biochar remediation for heavy metal contaminated soil are introduced in detail, including electrostatic attraction, ion exchange, physical adsorption, surface complexation and precipitation. Meanwhile, the modification and combined effects of biochar are also reviewed. Finally, the advantages and potential risks of using biochar are explored. It is aims to serve as a reference for subsequent research and promote the application of environmental remediation technologies in polluted soils.
Collapse
Affiliation(s)
- Wenpei Guo
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xin Yao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Zhuo Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Ting Liu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Wei Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Shujun Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Jiuqin Xian
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Yuehu Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
7
|
Marten BM, Cook SM. Exploring resource recovery from diverted organics: Life cycle assessment comparison of options for managing the organic fraction of municipal solid waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:175960. [PMID: 39245371 DOI: 10.1016/j.scitotenv.2024.175960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Diversion of the organic fraction of municipal solid waste (OFMSW) from landfills is increasing. Previous life cycle assessment studies have evaluated subsets of OFMSW management options, but conclusions are inconsistent, and none have evaluated diverse applications of material by-products. The primary objective of this work was to identify sustainability-based improvements to the selection, design, implementation, and operation of organics waste diversion management technologies. Process modeling and life cycle assessment were used to compare OFMSW composting, anaerobic digestion, and pyrolysis, with biochar used as a landfill cover, leachate treatment sorbent, and land applicant. Material and energy flows, calculated by newly developed models for the defined functional unit (1 kg MSW over a 20-year timeframe), were translated to environmental performance using ecoinvent and USLCI databases and TRACI method. Additionally, uncertainty, sensitivity, and scenario analyses were conducted to evaluate the implications of model uncertainties, design decisions, and resource recovery tradeoffs. OFMSW pyrolysis usually (65 % of uncertainty assessment simulations) had the best global warming performance mostly due to energy recovery and biochar's carbon sequestration benefit, which was independent of fate. Pyrolyzing the biosolids from OFMSW anaerobic digestion recovered the most energy and had the best performance in 34 % of uncertainty simulations. Material recovery amounts were large (e.g., more biochar was produced than required for novel uses) and warrant feasibility considerations. Global warming performance was more sensitive to uncertainty in carbon sequestration and primary energy production than in fertilizer offset, energy conversion, or heat offset approach. Practical implications include the potential for biochar supply to outweigh demand, and inconsistent revenue from the sale of recovered energy and carbon credits; future research could focus on evaluating the relative social and economic sustainability of the OFMSW management technologies.
Collapse
Affiliation(s)
- Brooke M Marten
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America
| | - Sherri M Cook
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America.
| |
Collapse
|
8
|
Zhou X, Yang J, Sha A, Zhuang Z, Bai S, Sun H, Zhao X. Enhancing environmental and economic benefits of constructed wetlands through plant recovery: A life cycle perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175784. [PMID: 39187084 DOI: 10.1016/j.scitotenv.2024.175784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Plant recovery plays a vital role in reclaiming bioresources from constructed wetland wastewater treatment systems. A comprehensive understanding of the environmental impacts and economic benefits associated with various wetland plant resourcing methods is critical for advancing both plant resource recovery and the application of wetlands in wastewater treatment. In this study, life cycle assessment was employed to evaluate the environmental impacts and costs of seven wetland plant recovery methods. In addition, the potential benefits of extending plant resource recovery within system boundaries were explored to enhance the overall advantages of constructed wetlands for wastewater treatment. The use of wetland plants for biofertilizer production had the lowest environmental impact (-8.52E-03), whereas the use of wetland plants for biochar production was the most cost-effective approach (-0.80€/kg). The introduction of a plant resource recovery component could significantly reduce the environmental impacts of constructed wetland wastewater treatment systems. The environmental impacts and costs of constructed wetland wastewater treatment systems that incorporate plant resource recovery into the system boundary are better than activated sludge methods and highly efficient algal ponds, except for the global warming potential (GWP). The use of plants for biofertilizer production could cut the environmental impacts of constructed wetland wastewater treatment systems by up to 85 % and the costs by 65 %, making it the most suitable method of plant use. Additionally, prioritizing the reduction of greenhouse gas emissions from constructed wetlands should be a primary optimization goal. The findings of this study provide valuable support for the implementation of wetland plant resourcing in constructed wetland wastewater treatment systems.
Collapse
Affiliation(s)
- Xue Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China.
| | - Aiqi Sha
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhixuan Zhuang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China
| | - Huihang Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China
| | - Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Jiang Z, Liang Y, Guo F, Wang Y, Li R, Tang A, Tu Y, Zhang X, Wang J, Li S, Kong L. Microwave-Assisted Pyrolysis-A New Way for the Sustainable Recycling and Upgrading of Plastic and Biomass: A Review. CHEMSUSCHEM 2024; 17:e202400129. [PMID: 38773732 DOI: 10.1002/cssc.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024]
Abstract
The efficient utilization of organic solid waste resources can help reducing the consumption of conventional fossil fuels, mitigating environmental pollution, and achieving green sustainable development. Due to its dual nature of being both a resource and a source of pollution, it is crucial to implement suitable recycling technologies throughout the recycling and upgrading processes for plastics and biomass, which are organic solid wastes with complex mixture of components. The conventional pyrolysis and hydropyrolysis were summarized for recycling plastics and biomass into high-value fuels, chemicals, and materials. To enhance reaction efficiency and improve product selectivity, microwave-assisted pyrolysis was introduced to the upgrading of plastics and biomass through efficient energy supply especially with the aid of catalysts and microwave absorbers. This review provides a detail summary of microwave-assisted pyrolysis for plastics and biomass from the technical, applied, and mechanistic perspectives. Based on the recent technological advances, the future directions for the development of microwave-assisted pyrolysis technologies are predicted.
Collapse
Affiliation(s)
- Zhicheng Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yuan Liang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Fenfen Guo
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yuxuan Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Ruikai Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Aoyi Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Youjing Tu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Xingyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Junxia Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Lingzhao Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
10
|
Liao X, Miranda Avilés R, Serafin Muñoz AH, Rocha Amador DO, Perez Rodriguez RY, Hernández Anguiano JH, Julia Navarro C, Zha X, Moncada D, de Jesús Puy Alquiza M, Vinod Kshirsagar P, Li Y. Efficient arsenic removal from water using iron-impregnated low-temperature biochar derived from henequen fibers: performance, mechanism, and LCA analysis. Sci Rep 2024; 14:20769. [PMID: 39237582 PMCID: PMC11377532 DOI: 10.1038/s41598-024-69769-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
The present study aims to investigate the low-energy consumption and high-efficiency removal of arsenic from aqueous solutions. The designed adsorbent Fe/TBC was synthesized by impregnating iron on torrefaction henequen fibers. Isothermal adsorption experiments indicated maximum adsorption capacities of 7.30 mg/g and 8.98 mg/g for arsenic(V) at 25.0 °C and 40.0 °C, respectively. The interference testing showed that elevated levels of pH, HCO3- concentration, and humic acid content in the solution could inhibit the adsorption of arsenic by Fe/TBC. Characterization of the adsorbent before and after adsorption using FTIR and SEM-EDS techniques confirmed arsenic adsorption mechanisms, including pore filling, electrostatic interaction, surface complexation, and H-bond adhesion. Column experiments were conducted to treat arsenic-spiked water and natural groundwater, with effective treatment volumes of 550 mL and 8792 mL, respectively. Lastly, the life cycle assessment (LCA) using OpenLCA 2.0.3 software was performed to treat 1 m3 of natural groundwater as the functional unit. The results indicated relatively significant environmental impacts during the Fe/TBC synthesis stage. The global warming potential resulting from the entire life cycle process was determined to be 0.8 kg CO2-eq. The results from batch and column experiments, regeneration studies, and LCA analysis indicate that Fe/TBC could be a promising adsorbent for arsenic(V).
Collapse
Affiliation(s)
- Xu Liao
- Doctoral Program of Water Science and Technology, Engineering Division, University of Guanajuato, 36000, Guanajuato, Guanajuato, Mexico
| | - Raúl Miranda Avilés
- Department of Mining, Metallurgy and Geology Engineering, University of Guanajuato, 36020, Guanajuato, Guanajuato, Mexico.
- Laboratory for Research and Characterization of Minerals and Materials, University of Guanajuato, 36020, Guanajuato, Guanajuato, Mexico.
| | | | | | | | | | - Carmen Julia Navarro
- Faculty of Engineering, University Autonomous of Chihuahua, 31000, Chihuahua, Chihuahua, Mexico
| | - Xiaoxiao Zha
- Doctoral Program of Water Science and Technology, Engineering Division, University of Guanajuato, 36000, Guanajuato, Guanajuato, Mexico
| | - Daniela Moncada
- Laboratory for Research and Characterization of Minerals and Materials, University of Guanajuato, 36020, Guanajuato, Guanajuato, Mexico
| | - María de Jesús Puy Alquiza
- Department of Mining, Metallurgy and Geology Engineering, University of Guanajuato, 36020, Guanajuato, Guanajuato, Mexico
| | - Pooja Vinod Kshirsagar
- Department of Mining, Metallurgy and Geology Engineering, University of Guanajuato, 36020, Guanajuato, Guanajuato, Mexico
| | - Yanmei Li
- Department of Mining, Metallurgy and Geology Engineering, University of Guanajuato, 36020, Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
11
|
Chen L, Yang X, Huang F, Zhu X, Wang Z, Sun S, Dong F, Qiu T, Zeng Y, Fang L. Unveiling biochar potential to promote safe crop production in toxic metal(loid) contaminated soil: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124309. [PMID: 38838809 DOI: 10.1016/j.envpol.2024.124309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Biochar application emerges as a promising and sustainable solution for the remediation of soils contaminated with potentially toxic metal (loid)s (PTMs), yet its potential to reduce PTM accumulation in crops remains to be fully elucidated. In our study, a hierarchical meta-analysis based on 276 research articles was conducted to quantify the effects of biochar application on crop growth and PTM accumulation. Meanwhile, a machine learning approach was developed to identify the major contributing features. Our findings revealed that biochar application significantly enhanced crop growth, and reduced PTM concentrations in crop tissues, showing a decrease trend of grains (36.1%, 33.6-38.6%) > shoots (31.1%, 29.3-32.8%) > roots (27.5%, 25.7-29.2%). Furthermore, biochar modifications were found to amplify its remediation potential in PTM-contaminated soils. Biochar application was observed to provide favorable conditions for reducing PTM uptake by crops, primarily through decreasing available PTM concentrations and improving overall soil quality. Employing machine learning techniques, we identified biochar properties, such as surface area and C content as a key factor in decreasing PTM bioavailability in soil-crop systems. Furthermore, our study indicated that biochar application could reduce probabilistic health risks associated with of the presence of PTMs in crop grains, thereby contributing to human health protection. These findings highlighted the essential role of biochar in remediating PTM-contaminated lands and offered guidelines for enhancing safe crop production.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou, 570228, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
12
|
Keller AA, Li W, Floyd Y, Bae J, Clemens KM, Thomas E, Han Z, Adeleye AS. Elimination of microplastics, PFAS, and PPCPs from biosolids via pyrolysis to produce biochar: Feasibility and techno-economic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174773. [PMID: 39013495 DOI: 10.1016/j.scitotenv.2024.174773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Biosolids from municipal wastewater treatment contain many contaminants of emerging concern, including microplastics (MPs), per- and polyfluoroalkyl substances (PFAS), pharmaceuticals and chemicals from personal care products (PPCPs). Many of these contaminants have very slow biotic or abiotic degradation rates and have been shown to have human and ecological health impacts. Application of biosolids to agriculture, a common disposal method, can result in extended environmental contamination. An approach for eliminating the contaminants is pyrolysis, which can also generate biochar, enhancing carbon sequestration as a side-benefit. We pyrolyzed biosolid samples from an operating facility at various temperatures from 400 to 700 °C with a 2-hour residence time. We then evaluated contaminant removal, which in many cases was 100 %, with only a few residuals. No trace of PFAS was detectable even at 400 °C. Overall mass removal of PPCPs, including PFAS, was over 99.9 %. MP removal via pyrolysis ranged from 91 to 97 %. The biochar contains significant amounts of Fe and P, which make it a useful fertilizer amendment. The techno-economic analysis indicates that pyrolysis may generate significant cost savings, and revenue from the sale of biochar, sufficient to more than cover the investment and operating costs of the dryer and pyrolysis unit.
Collapse
Affiliation(s)
- Arturo A Keller
- Bren School of Environmental Science & Management, University of California, Santa Barbara, United States.
| | - Weiwei Li
- Bren School of Environmental Science & Management, University of California, Santa Barbara, United States
| | - Yuki Floyd
- Bren School of Environmental Science & Management, University of California, Santa Barbara, United States
| | - James Bae
- Bren School of Environmental Science & Management, University of California, Santa Barbara, United States
| | - Kayla Marie Clemens
- Bren School of Environmental Science & Management, University of California, Santa Barbara, United States
| | - Eleanor Thomas
- Bren School of Environmental Science & Management, University of California, Santa Barbara, United States
| | - Ziwei Han
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, United States
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, United States; Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027-6623, United States
| |
Collapse
|
13
|
Zhang Q, Jiao Y, He C, Ruan R, Hu J, Ren J, Toniolo S, Jiang D, Lu C, Li Y, Man Y, Zhang H, Zhang Z, Xia C, Wang Y, Jing Y, Zhang X, Lin R, Li G, Yue J, Tahir N. Biological fermentation pilot-scale systems and evaluation for commercial viability towards sustainable biohydrogen production. Nat Commun 2024; 15:4539. [PMID: 38806457 PMCID: PMC11133433 DOI: 10.1038/s41467-024-48790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Featuring high caloric value, clean-burning, and renewability, hydrogen is a fuel believed to be able to change energy structure worldwide. Biohydrogen production technologies effectively utilize waste biomass resources and produce high-purity hydrogen. Improvements have been made in the biohydrogen production process in recent years. However, there is a lack of operational data and sustainability analysis from pilot plants to provide a reference for commercial operations. In this report, based on spectrum coupling, thermal effect, and multiphase flow properties of hydrogen production, continuous pilot-scale biohydrogen production systems (dark and photo-fermentation) are established as a research subject. Then, pilot-scale hydrogen production systems are assessed in terms of sustainability. The system being evaluated, consumes 171,530 MJ of energy and emits 9.37 t of CO2 eq when producing 1 t H2, and has a payback period of 6.86 years. Our analysis also suggests future pathways towards effective biohydrogen production technology development and real-world implementation.
Collapse
Affiliation(s)
- Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, College of Mechanical & Electrical engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou, 450006, China
| | - Youzhou Jiao
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, College of Mechanical & Electrical engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, College of Mechanical & Electrical engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Roger Ruan
- Biorefining Center, University of Minnesota, Minneapolis and St. Paul, MN, 55455, USA
| | - Jianjun Hu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, College of Mechanical & Electrical engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jingzheng Ren
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sara Toniolo
- Department of Management, University of Verona, via Cantarane 24, 37129, Verona, Italy
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, College of Mechanical & Electrical engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou, 450006, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, College of Mechanical & Electrical engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, College of Mechanical & Electrical engineering, Henan Agricultural University, Zhengzhou, 450002, China.
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou, 450006, China.
| | - Yi Man
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, College of Mechanical & Electrical engineering, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, College of Mechanical & Electrical engineering, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Chenxi Xia
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou, 450006, China
| | - Yi Wang
- Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanyan Jing
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, College of Mechanical & Electrical engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xueting Zhang
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou, 450006, China
| | - Ruojue Lin
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gang Li
- Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianzhi Yue
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs of China, College of Mechanical & Electrical engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Nadeem Tahir
- Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
14
|
Saharudin DM, Jeswani HK, Azapagic A. Biochar from agricultural wastes: Environmental sustainability, economic viability and the potential as a negative emissions technology in Malaysia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170266. [PMID: 38253094 DOI: 10.1016/j.scitotenv.2024.170266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Biochar used for soil amendment is considered a viable negative emissions technology as it can be produced easily from a wide range of biomass feedstocks, while offering numerous potential agricultural benefits. This research is the first to present a comprehensive sustainability assessment of large-scale biochar production and application in Malaysia. The five feedstocks considered comprise the country's most abundant agricultural wastes from palm oil (empty fruit bunches, fibres, palm fronds and shells) and rice (straw) plantations. Combined with process simulation, life cycle assessment and life cycle costing are used to assess the sustainability of biochar production via slow pyrolysis at different temperatures (300-600 °C), considering two functional units: i) production and application of 1 t of biochar; and ii) removal of 1 t of CO2from the atmosphere. The cradle-to-grave system boundary comprises all life cycle stages from biomass acquisition to biochar use for soil amendment. The positive impacts of the latter, such as carbon sequestration, fertiliser avoidance and reduction in soil N2O emissions, are also included. The global warming potential (GWP) is net-negative in all scenarios, ranging from -436 to -2,085 kg CO2 eq./t biochar and -660 to -933 kg CO2 eq./t CO2 removed. Per t of biochar, the systems with shells have the lowest GWP and those with straw the highest, all showing better performance if produced at higher pyrolysis temperatures. However, the temperature trend is opposite for all other 17 impacts considered, with fibres being the best option and fronds the worst for most categories. Per t CO2 removed, fronds have the highest impact in eight categories, including GWP, and shells the lowest in most categories. All impacts are lower for biochar production at higher temperatures. The main hotspot is the pyrolysis process, influencing the majority of impact categories and contributing 66-75 % to the life cycle costs. The costs range from US$116-197/t biochar and US$60-204/t CO2 removed. The least expensive systems per t biochar are those with straws and per t CO2 removed those with shells, while fronds are the worst option economically for both functional units. Utilising all available feedstocks could remove 6-12.4 Mt of CO2 annually, reducing the national emissions from the agricultural sector by up to 54 % and saving US$36.05 M annually on fertilisers imports. These results will be of interest to policy makers in Malaysia and other regions with abundant agricultural wastes.
Collapse
Affiliation(s)
| | - Harish Kumar Jeswani
- Sustainable Industrial Systems, Department of Chemical Engineering, The University of Manchester, UK
| | - Adisa Azapagic
- Sustainable Industrial Systems, Department of Chemical Engineering, The University of Manchester, UK.
| |
Collapse
|
15
|
Li Y, Fu Z, Li J. Assessing the policy benefits of constructing "Zero-waste Cities" in China: From the perspective of hazardous waste lifecycle management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170184. [PMID: 38278270 DOI: 10.1016/j.scitotenv.2024.170184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Based on China's quasi-natural experiment of constructing "Zero-waste Cities", this study assessed its policy benefits on hazardous waste lifecycle management. Utilizing the theory of difference-in-differences analysis, the study quantifies the net benefits of the policy in 10 pilot cities using an average treatment effect formula, and the results indicate a reduction of 162,900 tons/year in waste generation, an increase of 2.3 % in utilization and disposal rate, and a decrease of 28,200 tons/year in end-of-pipe storage. By constructing a regression model and employing robustness tests such as changing control variables, substituting the explained variable, re-matching control groups, and random assignment of pilot sites, the study confirms that the significant policy benefits primarily lie in source reduction, with a reduction intensity of approximately 1.73 tons/100 million yuan of industrial GDP. Additionally, by applying the mixed-effects model and mediation-analysis model, the study finds that the policy benefit of source reduction exhibits a lag effect, and during the pilot period, the main approach to achieving the benefit was through enhancing cleaner production in companies rather than adjusting industrial structures in cites.
Collapse
Affiliation(s)
- Yushuang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhanpeng Fu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, China
| | - Jinhui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Amalina F, Krishnan S, Zularisam AW, Nasrullah M. Pristine and modified biochar applications as multifunctional component towards sustainable future: Recent advances and new insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169608. [PMID: 38157898 DOI: 10.1016/j.scitotenv.2023.169608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Employing biomass for environmental conservation is regarded as a successful and environmentally friendly technique since they are cost-effective, renewable, and abundant. Biochar (BC), a thermochemically converted biomass, has a considerably lower production cost than the other conventional activated carbons. This material's distinctive properties, including a high carbon content, good electrical conductivity (EC), high stability, and a large surface area, can be utilized in various research fields. BC is feasible as a renewable source for potential applications that may achieve a comprehensive economic niche. Despite being an inexpensive and environmentally sustainable product, research has indicated that pristine BC possesses restricted properties that prevent it from fulfilling the intended remediation objectives. Consequently, modifications must be made to BC to strengthen its physicochemical properties and, thereby, its efficacy in decontaminating the environment. Modified BC, an enhanced iteration of BC, has garnered considerable interest within academia. Many modification techniques have been suggested to augment BC's functionality, including its adsorption and immobilization reliability. Modified BC is overviewed in its production, functionality, applications, and regeneration. This work provides a holistic review of the recent advances in synthesizing modified BC through physical, chemical, or biological methods to achieve enhanced performance in a specific application, which has generated considerable research interest. Surface chemistry modifications require the initiation of surface functional groups, which can be accomplished through various techniques. Therefore, the fundamental objective of these modification techniques is to improve the efficacy of BC contaminant removal, typically through adjustments in its physical or chemical characteristics, including surface area or functionality. In addition, this article summarized and discussed the applications and related mechanisms of modified BC in environmental decontamination, focusing on applying it as an ideal adsorbent, soil amendment, catalyst, electrochemical device, and anaerobic digestion (AD) promoter. Current research trends, future directions, and academic demands were available in this study.
Collapse
Affiliation(s)
- Farah Amalina
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
17
|
Xia F, Zhang Z, Zhang Q, Huang H, Zhao X. Life cycle assessment of greenhouse gas emissions for various feedstocks-based biochars as soil amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168734. [PMID: 38007117 DOI: 10.1016/j.scitotenv.2023.168734] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Anthropogenic greenhouse gas (GHG) emissions are a major factor influencing climate change. The application of biochar as a soil amendment may be an effective way to reduce GHG emissions. Life cycle assessment (LCA) is widely used to assess the impact of biochar as a soil amendment on GHG emissions. The methodology is effective in assessing the impacts of the various stages of the biochar life cycle on GHG emissions. However, because of the diversity of biochar types, it is difficult to summarize the regularity of biochar life cycle impacts on GHG emissions. This paper summarizes the pathways of biochar's effect on GHG emissions and in-depth analyzes the mechanism of biochar's influence on GHG emissions from the perspective of biochar properties. Finally, the review comprehensively analyzes the effects of different types of biochar feedstock on GHG emissions at the stages of feedstock pretreatment, preparation, and application of the life cycle. The conclusions are as follows: (1) Biochar affects GHG emissions in three ways: feedstock supply, pyrolysis process, and application process. (2) The impact of biochar on GHG emissions is influenced by a combination of the physicochemical properties of biochar. (3) Biochar has a positive impact (feedstock pretreatment stage and preparation stage) or a negative impact (application stage) on life cycle GHG emissions. (4) The carbon sequestration capacity of biochar varies by feedstock type. The ranking of carbon sequestration capacity is waste wood biochar (WWB) > crop straw biochar (CSB) > livestock manure biochar (LMB) > sewage sludge biochar (SSB).
Collapse
Affiliation(s)
- Fang Xia
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhuo Zhang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China.
| | - Qian Zhang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Haochong Huang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiaohui Zhao
- Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
18
|
Lin J, Xu Z, Zhang Q, Cao Y, Mašek O, Lei H, Tsang DCW. Enhanced adsorption of aromatic VOCs on hydrophobic porous biochar produced via microwave rapid pyrolysis. BIORESOURCE TECHNOLOGY 2024; 393:130085. [PMID: 37993065 DOI: 10.1016/j.biortech.2023.130085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
To customize biochar suitable for efficient adsorption of benzene derivatives, this study presents programmed microwave pyrolysis to produce hydrophobic porous biochar with low-dose ferric chloride. Designated control of the ramping rates in the carbonization stage and the temperatures in the activation stage were conducive to enlarging the specific surface area. Iron species, including amorphous iron minerals, could create small-scale hotspots during microwave pyrolysis to promote microporous structure development. Compared with conventional pyrolysis, programmed microwave pyrolysis could increase the specific surface area from 288.6 m2 g-1 to 455.9 m2 g-1 with a short heating time (15 min vs. 2 h) under 650 °C. Engineered biochar exhibited higher adsorption capacity for benzene and toluene (136.6 and 94.6 mg g-1), and lower adsorption capacity for water vapour (6.2 mg g-1). These findings provide an innovative design of engineered biochar for the adsorption of volatile organic compounds in the environment.
Collapse
Affiliation(s)
- Junhao Lin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354-1671, USA
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
19
|
Tiong YW, Sharma P, Xu S, Bu J, An S, Foo JBL, Wee BK, Wang Y, Lee JTE, Zhang J, He Y, Tong YW. Enhancing sustainable crop cultivation: The impact of renewable soil amendments and digestate fertilizer on crop growth and nutrient composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123132. [PMID: 38081377 DOI: 10.1016/j.envpol.2023.123132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024]
Abstract
Utilizing digestate as a fertilizer enhances soil nutrient content, improves fertility, and minimizes nutrient runoff, mitigating water pollution risks. This alternative approach replaces commercial fertilizers, thereby reducing their environmental impact and lowering greenhouse gas emissions associated with fertilizer production and landfilling. Herein, this study aimed to evaluate the impact of various soil amendments, including carbon fractions from waste materials (biochar, compost, and cocopeat), and food waste anaerobic digestate application methods on tomato plant growth (Solanum lycopersicum) and soil fertility. The results suggested that incorporating soil amendments (biochar, compost, and cocopeat) into the potting mix alongside digestate application significantly enhances crop yields, with increases ranging from 12.8 to 17.3% compared to treatments without digestate. Moreover, the combination of soil-biochar amendment and digestate application suggested notable improvements in nitrogen levels by 20.3% and phosphorus levels by 14%, surpassing the performance of the those without digestate. Microbial analysis revealed that the soil-biochar amendment significantly enhanced biological nitrification processes, leading to higher nitrogen levels compared to soil-compost and soil-cocopeat amendments, suggesting potential nitrogen availability enhancement within the rhizosphere's ecological system. Chlorophyll content analysis suggested a significant 6.91% increase with biochar and digestate inclusion in the soil, compared to the treatments without digestate. These findings underscore the substantial potential of crop cultivation using soil-biochar amendments in conjunction with organic fertilization through food waste anaerobic digestate, establishing a waste-to-food recycling system.
Collapse
Affiliation(s)
- Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Pooja Sharma
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Shuai Xu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Engineering Research Center of Edible and Medicinal Fungi of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Jie Bu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Soobin An
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Jordan Bao Luo Foo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Bryan Kangjie Wee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Yueyang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Jonathan Tian En Lee
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
20
|
Bolan S, Padhye LP, Jasemizad T, Govarthanan M, Karmegam N, Wijesekara H, Amarasiri D, Hou D, Zhou P, Biswal BK, Balasubramanian R, Wang H, Siddique KHM, Rinklebe J, Kirkham MB, Bolan N. Impacts of climate change on the fate of contaminants through extreme weather events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168388. [PMID: 37956854 DOI: 10.1016/j.scitotenv.2023.168388] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/14/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
The direct impacts of climate change involve a multitude of phenomena, including rising sea levels, intensified severe weather events such as droughts and flooding, increased temperatures leading to wildfires, and unpredictable fluctuations in rainfall. This comprehensive review intends to examine firstly the probable consequences of climate change on extreme weather events such as drought, flood and wildfire. This review subsequently examines the release and transformation of contaminants in terrestrial, aquatic, and atmospheric environments in response to extreme weather events driven by climate change. While drought and flood influence the dynamics of inorganic and organic contaminants in terrestrial and aquatic environments, thereby influencing their mobility and transport, wildfire results in the release and spread of organic contaminants in the atmosphere. There is a nascent awareness of climate change's influence of climate change-induced extreme weather events on the dynamics of environmental contaminants in the scientific community and decision-making processes. The remediation industry, in particular, lags behind in adopting adaptive measures for managing contaminated environments affected by climate change-induced extreme weather events. However, recognizing the need for assessment measures represents a pivotal first step towards fostering more adaptive practices in the management of contaminated environments. We highlight the urgency of collaboration between environmental chemists and climate change experts, emphasizing the importance of jointly assessing the fate of contaminants and rigorous action to augment risk assessment and remediation strategies to safeguard the health of our environment.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Muthusamy Govarthanan
- Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Dhulmy Amarasiri
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Pingfan Zhou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
21
|
Jayakumar M, Hamda AS, Abo LD, Daba BJ, Venkatesa Prabhu S, Rangaraju M, Jabesa A, Periyasamy S, Suresh S, Baskar G. Comprehensive review on lignocellulosic biomass derived biochar production, characterization, utilization and applications. CHEMOSPHERE 2023; 345:140515. [PMID: 37871877 DOI: 10.1016/j.chemosphere.2023.140515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Biochar is an ample source of organic carbon prepared by the thermal breakdown of biomass. Lignocellulosic biomass is a promising precursor for biochar production, and has several applications in various industries. In addition, biochar can be applied for environmental revitalization by reducing the negative impacts through intrinsic mechanisms. In addition to its environmentally friendly nature, biochar has several recyclable and inexpensive benefits. Nourishing and detoxification of the environment can be undertaken using biochar by different investigators on account of its excellent contaminant removal capacity. Studies have shown that biochar can be improved by activation to remove toxic pollutants. In general, biochar is produced by closed-loop systems; however, decentralized methods have been proven to be more efficient for increasing resource efficiency in view of circular bio-economy and lignocellulosic waste management. In the last decade, several studies have been conducted to reveal the unexplored potential and to understand the knowledge gaps in different biochar-based applications. However, there is still a crucial need for research to acquire sufficient data regarding biochar modification and management, the utilization of lignocellulosic biomass, and achieving a sustainable paradigm. The present review has been articulated to provide a summary of information on different aspects of biochar, such as production, characterization, modification for improvisation, issues, and remediation have been addressed.
Collapse
Affiliation(s)
- Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia.
| | - Abas Siraj Hamda
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia
| | - Lata Deso Abo
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia
| | - Bulcha Jifara Daba
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia
| | - Sundramurthy Venkatesa Prabhu
- Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Ethiopia
| | - Magesh Rangaraju
- Department of Chemical Engineering, Wachemo University, Hossana, Ethiopia
| | - Abdisa Jabesa
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - Sagadevan Suresh
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta, Indonesia
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, India; School of Engineering, Lebanese American University, Byblos, 1102, 2801, Lebanon.
| |
Collapse
|
22
|
Thakur BK, Sharma S, Sharma A, Shivani, Singh KK, Pal PK. Integration of biochar with nitrogen in acidic soil: A strategy to sequester carbon and improve the yield of stevia via altering soil properties and nutrient recycling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118872. [PMID: 37683384 DOI: 10.1016/j.jenvman.2023.118872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/05/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
The health of agroecosystems is subsiding unremittingly, and the over-use of chemical fertilizers is one of the key reasons. It is hypothesized that integrating biochar, a carbon (C)-rich product, would be an effective approach to reducing the uses of synthetic fertilizers and securing crop productivity through improving soil properties and nutrient cycling. The bamboo biochar at different quantities (4-12 Mg ha-1) and combinations with chemical fertilizers were tested in stevia (Stevia rebaudiana) farming in silty clay acidic soil. The integration of biochar at 8 Mg ha-1 with 100% nitrogen (N), phosphorus (P), and potassium (K) produced statistically (p ≤ 0.05) higher leaf area index, dry leaf yield, and steviol glycosides yield by about 18.0-33.0, 25.8-44.9, and 20.5-59.4%, respectively, compared with the 100% NPK via improving soil physicochemical properties. Soil bulk density was reduced by 5-8% with biochar at ≥ 8 Mg ha-1, indicating the soil porosity was increased by altering the soil macrostructure. The soil pH was significantly (p ≤ 0.05) augmented with the addition of biochar alone or in the combination of N because of the alkaline nature of the used biochar (pH = 9.65). Furthermore, integrating biochar at 8 Mg ha-1 with 100% NPK increased 22.7% soil organic C compared with the sole 100% NPK. The priming effect of applied N activates soil microorganisms to mineralize the stable C. Our results satisfy the hypothesis that adding bamboo biochar would be a novel strategy for sustaining productivity by altering soil physicochemical properties.
Collapse
Affiliation(s)
- Babit Kumar Thakur
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Surbhi Sharma
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176061, India
| | - Aditi Sharma
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176061, India
| | - Shivani
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krishna Kumar Singh
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176061, India
| | - Probir Kumar Pal
- Division of Agrotechnology, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Post Box No. 6, Palampur, HP, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
23
|
Manikandan S, Vickram S, Subbaiya R, Karmegam N, Woong Chang S, Ravindran B, Kumar Awasthi M. Comprehensive review on recent production trends and applications of biochar for greener environment. BIORESOURCE TECHNOLOGY 2023; 388:129725. [PMID: 37683709 DOI: 10.1016/j.biortech.2023.129725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The suitability of biochar as a supplement for environmental restoration varies significantly based on the type of feedstocks used and the parameters of the pyrolysis process. This study comprehensively examines several aspects of biochar's potential benefits, its capacity to enhance crop yields, improve nutrient availability, support the co-composting, water restoration and enhance overall usage efficiency. The supporting mechanistic evidence for these claims is also evaluated. Additionally, the analysis identifies various gaps in research and proposes potential directions for further exploration to enhance the understanding of biochar application. As a mutually advantageous approach, the integration of biochar into agricultural contexts not only contributes to environmental restoration but also advances ecological sustainability. The in-depth review underscores the diverse suitability of biochar as a supplement for environmental restoration, contingent upon the specific feedstock sources and pyrolysis conditions used. However, concerns have been raised regarding potential impacts on human health within agricultural sectors.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692 Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India; Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
24
|
Li R, Zhang C, Chen WH, Kwon EE, Rajendran S, Zhang Y. Multistage utilization of soybean straw-derived P-doped biochar for aquatic pollutant removal and biofuel usage. BIORESOURCE TECHNOLOGY 2023; 387:129657. [PMID: 37595806 DOI: 10.1016/j.biortech.2023.129657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
Biochar is of great importance to realizing solid biowastes reduction and environmental remediation. Modifying biochar for better performance is also of great concern to achieve property improvement. P-doped biochar from soybean straw is prepared for multistage utilization to realize water pollutant removal and biofuel usage. The results suggest that the prepared biochar is adequate for sulfadiazine adsorption and has stable performance under coexisting ions and aquatic pH. Furthermore, the higher heating value of the biochar is close to coal and thus can be an alternative to fossil fuel. The maximum sulfadiazine adsorption amount of P-doped biochar is 252.24 mg·g-1, and the P-doped biochar HHV is 24 MJ·kg-1 which can be an alternative to coal. The greenhouse gas and pollutant emission potential are also considered to explore the environmental impact of P-doped biochar production and usage. Overall, the optimal ratio of soybean straw: K3PO4 is 3:1.
Collapse
Affiliation(s)
- Ruizhen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Congyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Saravanan Rajendran
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
25
|
Sakheta A, Nayak R, O'Hara I, Ramirez J. A review on modelling of thermochemical processing of biomass for biofuels and prospects of artificial intelligence-enhanced approaches. BIORESOURCE TECHNOLOGY 2023; 386:129490. [PMID: 37460019 DOI: 10.1016/j.biortech.2023.129490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Biofuels from lignocellulosic biomass converted via thermochemical technologies can be renewable and sustainable, which makes them promising as alternatives to conventional fossil fuels. Prior to building industrial-scale thermochemical conversion plants, computational models are used to simulate process flows and conditions, conduct feasibility studies, and analyse process and business risk. This paper aims to provide an overview of the current state of the art in modelling thermochemical conversion of lignocellulosic biomass. Emphasis is given to the recent advances in artificial intelligence (AI)-based modelling that plays an increasingly important role in enhancing the performance of the models. This review shows that AI-based models offer prominent accuracy compared to thermodynamic equilibrium modelling implemented in some models. It is also evident that gasification and pyrolysis models are more matured than thermal liquefaction for lignocelluloses. Additionally, the knowledge gained and future directions in the applications of simulation and AI in process modelling are explored.
Collapse
Affiliation(s)
- Aban Sakheta
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia
| | - Richi Nayak
- School of Computer Science, Faculty of Science, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; Centre for Data Science, Queensland University of Technology, 2 George Street, Brisbane, 4000, QLD, Australia
| | - Ian O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), 2 George Street, Brisbane, Australia
| | - Jerome Ramirez
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), 2 George Street, Brisbane, Australia.
| |
Collapse
|
26
|
Gallego-Ramírez C, Chica E, Rubio-Clemente A. Life Cycle Assessment of Raw and Fe-Modified Biochars: Contributing to Circular Economy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6059. [PMID: 37687752 PMCID: PMC10488353 DOI: 10.3390/ma16176059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Biochar is a carbonaceous material, which can be decorated with metals, that has been garnering attention to be used in the treatment of water due to its contribution to waste management and circular economy. This study presents the life cycle assessment (LCA) regarding the generation of Pinus patula raw biochar and its modification with iron (Fe-modified biochar). SimaPro 9.3.0.3 software was used to simulate the environmental impacts of both carbonaceous materials. The potential environmental effects obtained from the production of Pinus patula raw biochar were mainly ascribed to the source of energy utilized during this process. The potential impacts demonstrated that the generation of gases and polycyclic aromatic hydrocarbons are the main concern. In the case of Fe-modified biochar, the potential environmental effects differed only in the stage of the biomass modification with the metal. These effects are associated with the extraction of Fe and the generation of wastewater. These findings provide an insight into the environmental effects linked to the production of raw and Fe-modified biochar. However, further LCA research should be performed concerning other materials and compounds than can be generated during the biomass thermochemical conversion.
Collapse
Affiliation(s)
- Carolina Gallego-Ramírez
- Grupo de Investigación Energía Alternativa (GEA), Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín 050010, Colombia;
| | - Edwin Chica
- Grupo de Investigación Energía Alternativa (GEA), Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín 050010, Colombia;
| | - Ainhoa Rubio-Clemente
- Grupo de Investigación Energía Alternativa (GEA), Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín 050010, Colombia;
- Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín 050010, Colombia
| |
Collapse
|
27
|
Li Y, Kumar Awasthi M, Sindhu R, Binod P, Zhang Z, Taherzadeh MJ. Biochar preparation and evaluation of its effect in composting mechanism: A review. BIORESOURCE TECHNOLOGY 2023; 384:129329. [PMID: 37329992 DOI: 10.1016/j.biortech.2023.129329] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
This article provides an overview of biochar application for organic waste co-composting and its biochemical transformation mechanism. As a composting amendment, biochar work in the adsorption of nutrients, the retention of oxygen and water, and the promotion of electron transfer. These functions serve the micro-organisms (physical support of niche) and determine changes in community structure beyond the succession of composing primary microorganisms. Biochar mediates resistance genes, mobile gene elements, and biochemical metabolic activities of organic matter degrading. The participation of biochar enriched the α-diversity of microbial communities at all stages of composting, and ultimately reflects the high γ-diversity. Finally, easy and convincing biochar preparation methods and characteristic need to be explored, in turn, the mechanism of biochar on composting microbes at the microscopic level can be studied in depth.
Collapse
Affiliation(s)
- Yue Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | | |
Collapse
|
28
|
Chen S, Yu L, Zhang C, Wu Y, Li T. Environmental impact assessment of multi-source solid waste based on a life cycle assessment, principal component analysis, and random forest algorithm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117942. [PMID: 37080101 DOI: 10.1016/j.jenvman.2023.117942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
As a national pilot city for solid waste disposal and resource reuse, Dongguan in Guangdong Province aims to vigorously promote the high-value utilization of solid waste and contribute to the sustainable development of the Greater Bay Area. In this study, life cycle assessment (LCA) coupled with principal component analysis (PCA) and the random forest (RF) algorithm was applied to assess the environmental impact of multi-source solid waste disposal technologies to guide the environmental protection direction. In order to improve the technical efficiency and reduce pollution emissions, some advanced technologies including carbothermal reduction‒oxygen-enriched side blowing, directional depolymerization‒flocculation demulsification, anaerobic digestion and incineration power generation, were applied for treating inorganic waste, organic waste, kitchen waste and household waste in the park. Based on the improved techniques, we proposed a cyclic model for multi-source solid waste disposal. Results of the combined LCA-PCA-RF calculation indicated that the key environmental load type was human toxicity potential (HTP), came from the technical units of carbothermal reduction and oxygen-enriched side blowing. Compared to the improved one, the cyclic model was proved to reduce material and energy inputs by 66%-85% and the pollution emissions by 15%-88%. To sum up, the environmental impact assessment and systematic comparison suggest a cyclic mode for multi-source solid waste treatments in the park, which could be promoted and contributed to the green and low-carbon development of the city.
Collapse
Affiliation(s)
- Sichen Chen
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Lu Yu
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China.
| | - Chenmu Zhang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yufeng Wu
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| | - Tianyou Li
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, China
| |
Collapse
|
29
|
Cudjoe D, Brahim T, Zhu B. Assessing the economic and ecological viability of generating electricity from oil derived from pyrolysis of plastic waste in China. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:354-365. [PMID: 37343442 DOI: 10.1016/j.wasman.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
The increased plastic waste generation worldwide poses ponderous issues for public health and the environment. China is the highest generator of plastic waste around the world. The current treatment process (incineration) of the increased plastic waste causes dangerous environmental consequences. Pyrolysis has recently surfaced as an ecologically friendly technique for energy and material recovery from plastic waste. The present study assesses the financial and ecological viability of power production from oil derived from the pyrolysis of mixed plastic wastes in China from 2009 to 2028. The prominent findings show that the amount of plastic waste collected in 2020 (24.16 Mt) increased by 53.19% in 2028.The pyrolysis of mixed plastic wastes during the project period yielded 359.29 Mt oil, which has a power potential of 1,060.86 GWh. The economic analysis indicated the project is viable and profitable with a positive net present value (US$8.80 million) and profitability index (1.26) greater than 1. The project has 10.6 y payback period, US$0.0752/kWh levelized cost of energy, 22.5% return on investment, and 13.0% internal rate of return. The life cycle assessment results show that conversion of mixed plastic waste to pyrolysis oil for electricity generation during the project period has a total global warming potential (GWP) of 1,311.4 kt CO2eq. The GWP is mainly from conversion of pyrolysis oil to electricity (73.42%), pyrolysis oil production (15.01%) and upgrading of pyrolysis oil (11.38%). The consumption of power from the project could avoid the combustion of 2,659.0 t coal, minimizing global warming by 11,278.8 kt CO2eq. Sensitivity analysis, which examines the influence of variation in sensitive factors on the success of the project, is presented. This paper provides scientific strategies for optimal investment and decision-making on the environmental sustainability of plastic waste-to-energy pyrolysis projects.
Collapse
Affiliation(s)
- Dan Cudjoe
- School of Business, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Taouahria Brahim
- School of Business, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Bangzhu Zhu
- School of Business, Guangxi University, Nanning 530004, China.
| |
Collapse
|
30
|
Piccirillo C. Preparation, characterisation and applications of bone char, a food waste-derived sustainable material: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117896. [PMID: 37080100 DOI: 10.1016/j.jenvman.2023.117896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The production of increasing quantities of by-products is a key challenge for modern society; their valorisation - turning them into valuable compounds with technological applications - is the way forward, in line with circular economy principles. In this review, the conversion of bones (by-products of the agro-food industry) into bone char is described. Bone char is obtained with a process of pyrolysis, which converts the organic carbon into an inorganic graphitic one. Differently from standard biochar of plant origin, however, bone char also contains calcium phosphates, the main component of bone (often hydroxyapatite). The combination of calcium phosphate and graphitic carbon makes bone char a unique material, with different possible uses. Here bone chars' applications in environmental remediation, sustainable agriculture, catalysis and electrochemistry are discussed; several aspects are considered, including the bones used to prepare bone char, the preparation conditions, how these affect the properties of the materials (i.e. porosity, surface area) and its functional properties. The advantages and limitations of bone chars in comparison to traditional biochar are discussed, highlighting the directions the research should take for bone chars' performances to improve. Moreover, an analysis on the sustainability of bone chars' preparation and use is also included.
Collapse
Affiliation(s)
- Clara Piccirillo
- CNR NANOTEC, Institute of Nanotechnology, Campus Ecoteckne, Via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
31
|
Guo G, He Y, Jin F, Mašek O, Huang Q. Application of life cycle assessment and machine learning for the production and environmental sustainability assessment of hydrothermal bio-oil. BIORESOURCE TECHNOLOGY 2023; 379:129027. [PMID: 37030420 DOI: 10.1016/j.biortech.2023.129027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
The hydrothermal bio-oil (HBO) production from biomass conversion can achieve sustainable and low-carbon development. It is always time-consuming and labor-intensive to quantitative relationship between influential variables and bio-oil yield and environmental sustainability impact in the hydrothermal conditions. Machine learning was used to predict bio-oil yield. Life cycle assessment (LCA) is further conducted to assess its environmental sustainability effect. The results demonstrated that gradient boosting decision tree regression (GBDT) have the most optimal prediction performance for the HBO yield (Training R2 = 0.97, Testing R2 = 0.92, RMSE = 0.05, MAE = 0.03). Lipid content is the most significant influential factor for HBO yield. LCA result further suggested that 1 kg of bio-oil production can cause 0.02 kg ep of SO2, 2.05 kg ep of CO2, and 0.01 kg ep of NOx emission, and environmental sustainability assessment of HBO is exhibited. This study provides meaningful insights to ML model prediction performance improvement and carbon footprint of HBO.
Collapse
Affiliation(s)
- Genmao Guo
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/ Center for Eco-Environmental Restoration Engineering of Hainan Province/ State Key Laboratory of Marine Resource Utilization in South China Sea/ College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Yuan He
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/ Center for Eco-Environmental Restoration Engineering of Hainan Province/ State Key Laboratory of Marine Resource Utilization in South China Sea/ College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Fangming Jin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/ Center for Eco-Environmental Restoration Engineering of Hainan Province/ State Key Laboratory of Marine Resource Utilization in South China Sea/ College of Ecology and Environment, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Qing Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province/ Center for Eco-Environmental Restoration Engineering of Hainan Province/ State Key Laboratory of Marine Resource Utilization in South China Sea/ College of Ecology and Environment, Hainan University, Haikou 570228, China.
| |
Collapse
|
32
|
Tagade A, Sawarkar AN. Valorization of millet agro-residues for bioenergy production through pyrolysis: Recent inroads, technological bottlenecks, possible remedies, and future directions. BIORESOURCE TECHNOLOGY 2023:129335. [PMID: 37343798 DOI: 10.1016/j.biortech.2023.129335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Millets are receiving increasing attention, lately, in view of their preeminent agronomic traits, nutritional significance, and renewed emphasis on highlighting their health benefits through national and international programs. As a consequence, a variety of millets are being cultivated in different parts of the world resulting in significant amount of millet agro-residues. Present study comprehends critical analysis of reported investigations on pyrolysis of different millet agro-residues encompassing (i) physico-chemical characterization (ii) kinetics and thermodynamic parameters (iii) reactors employed and (iv) relationship between the reaction conditions and characteristics of millets-derived biochar and its prospective applications. Based on the analysis of reported investigations, specific research gaps have been figured out. Finally, future directions for leveraging the energy potential of millet agro-residues are also discussed. The analysis elucidated is expected to be useful for the researchers for making further inroads pertaining to sustainable utilization of millet agro-residues in tandem with other commonly employed agro-residues.
Collapse
Affiliation(s)
- Ankita Tagade
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Ashish N Sawarkar
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
33
|
François M, Lin KS, Rachmadona N, Khoo KS. Advancement of biochar-aided with iron chloride for contaminants removal from wastewater and biogas production: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162437. [PMID: 36858210 DOI: 10.1016/j.scitotenv.2023.162437] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The use of fossil fuels, emission of greenhouse gases (GHG) into the atmosphere, and waste pose a problem to the environment and public health that urgently needs to be dealt with. Among numerous chemical activating agents that can be added to anaerobic digestion (AD) to enhance nutrient removal and increase the quality and quantity of biomethane, iron chloride (FeCl3) is the one that has the lowest cost and is the most environmentally friendly. This state-of-the-art review aims to revise the influence of FeCl3 on the Brunauer-Emmett-Teller (BET) surface area of biochar and its ability to increase methane (CH4) yield and remove contaminants from biogas and wastewater. The novelty of the study is that FeCl3, an activating agent, can increase the BET surface area of biochar, and its efficacy increases when combined with zinc chloride or phosphoric acid. Regarding the removal of contaminants from wastewater and biogas, FeCl3 has proven to be an effective coagulant, reducing the chemical oxygen demand (COD) of wastewater and hydrogen sulfide in biogas. The performance of FeCl3 depends on the dosage, pH, and feedstock used. Therefore, FeCl3 can increase the BET surface area of biochar and CH4 yield and remove contaminants from wastewater and biogas. More research is needed to investigate the ability of FeCl3 to remove water vapor and carbon dioxide during biogas production while accounting for a set of other parameters, including FeCl3 size.
Collapse
Affiliation(s)
- Mathurin François
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan; Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan; Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City 32003, Taiwan.
| | - Nova Rachmadona
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan..
| |
Collapse
|
34
|
He ZH, Han XD, Jin JX, Li JS, Tang W, Shi JY. Recycling of water treatment sludge in concrete: The role of water-binder ratio from a nanoscale perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162456. [PMID: 36842600 DOI: 10.1016/j.scitotenv.2023.162456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
For eutrophic water bodies, potassium permanganate is an effective pre-oxidant to remove algae and its residue in water treatment sludge. Recycling water treatment sludge in concrete is an environmentally friendly and high-value utilization measure. However, little research has been done on the effect of manganese-rich drinking water sludge ash (DWSA) on concrete. The effect of water-binder ratio (w/b) on strength, shrinkage and microstructural characteristics of concrete containing DWSA was investigated, and the structural behavior was explained from a nanoscale perspective. The results show that recycling 10 % DWSA in concrete improved the strength and shrinkage resistance of the samples. Reducing the w/b effectively increased the strength of DWSA-modified concrete and reduced the shrinkage deformation. The paste with high w/b had higher contents of non-evaporated water and calcium hydroxide, as well as higher reaction degree of DWSA. Nanoscale characterization shows that reducing the w/b reduced the volume fraction of pore and unhydrated phases in the matrix and increased the proportion of high-density C-S-H. Meanwhile, reducing the w/b also reduced the interfacial transition zone width of DWSA-modified concrete. Recycling DWSA in concrete effectively reduced the total carbon footprint and cost of the mixture. The combined application of reducing the w/b and incorporating DWSA effectively improved the economic and environmental benefits of concrete material. For the concrete modified with 10 % DWSA (w/b = 0.3), its cost and carbon emissions are reduced by 14 %-21 % and 19 %-25 % compared with the reference sample, respectively. Overall, this study reveals the action mechanism of DWSA in cement system at different w/b from nanoscale perspective, and gives a new insight on determining the optimal w/b in full-scale application of DWSA concrete.
Collapse
Affiliation(s)
- Zhi-Hai He
- College of Civil Engineering, Shaoxing University, Shaoxing 312000, China; Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, Shaoxing 312000, China
| | - Xu-Dong Han
- College of Civil Engineering, Shaoxing University, Shaoxing 312000, China
| | - Jia-Xu Jin
- School of Civil Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China
| | - Jiang-Shan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wei Tang
- Department of Architecture and Design Art, Shaoxing Vocational and Technical College, Shaoxing 312000, China
| | - Jin-Yan Shi
- School of Civil Engineering, Central South University, Changsha 410075, China.
| |
Collapse
|
35
|
Zhang F, Wang J, Tian Y, Liu C, Zhang S, Cao L, Zhou Y, Zhang S. Effective removal of tetracycline antibiotics from water by magnetic functionalized biochar derived from rice waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121681. [PMID: 37087086 DOI: 10.1016/j.envpol.2023.121681] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
The effective removal of tetracycline antibiotics (TCs) from water is of great significance and remains a big challenge. In this work, a novel magnetized biochar (magnetic functionalized carbon microsphere, MF-CMS) was prepared by the coupling hydrothermal carbonization and pyrolysis activation of starch-rich rice waste using ZnCl2 and FeCl3 as activators. As the MF-CMS dose was 2.0 g/L, the initial concentration of TCs was 100 mg/L, the removal rates of tetracycline, doxycycline, oxytetracycline, and chlortetracycline were 96.02%, 96.10%, 96.52%, and 85.88%, respectively. The best modeled on pseudo second order, Langmuir adsorption model, and intraparticle diffusion kinetic models suggested that both chemisorption and physisorption occurred in all removal processes, in which chemisorption dominated. TCs were efficiently adsorbed through the combined effects of pore filling, electrostatic attraction, π-π interactions, and complexation reactions of surface functional groups (such as γ-Fe2O3 and FeOOH). The removal rates of TCs after five cycles approximately decreased by 20%. And the cycling and metal ion release experiments of MF-CMS indicated that MF-CMS had good reusability, stability, and safety. The estimated cost of preparing MF-CMS is 5.91 USD per kg, and 1 kg of MF-CMS (consuming 8 kg of waste rice) can approximately treat 0.55 tons of TCs wastewater. Overall, the magnetic biochar derived from starch-rich rice waste as an adsorbent has promising and effective for the removal of TCs from water, but also provides a new idea for the resourceful treatment of solid waste.
Collapse
Affiliation(s)
- Fangfang Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Jieni Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Yijun Tian
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Chenxiao Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Shuqin Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China; Miami College, Henan University, Kaifeng, 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng, 475004, China; Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
36
|
Jia H, Ye J, Wu Y, Zhang M, Peng W, Wang H, Tang D. Evaluation and characterization of biochar on the biogeochemical behavior of polycyclic aromatic hydrocarbons in mangrove wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161039. [PMID: 36549525 DOI: 10.1016/j.scitotenv.2022.161039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
As the inter-tidal regions between land and ocean, mangrove ecosystems have high polycyclic aromatic hydrocarbons (PAHs) content, and the over accumulation of PAHs in mangrove wetland poses a serious ecological risk to the health of plant and living creatures. Comparison to the agricultural sources -biochar, biochar produced from wetland plant has lower O/C (molar ratio), larger N contents, higher stability and more benefits. However, whether the rhizosphere action occurs in biochar- amended sediment and how to influence the biogeochemical behavior of PAH have rarely been reported. In this context, a leaching procedure and pot experiment (60-d) were performed on migration and transformation of PAH at the sediment, and toxicity and their bioavailability in plant affected by the presence of Kandelia obovate-derived biochar in Southeast China. Root exudates amendments significantly increased the cumulative leaching-loss of pyrene by 36-51 % with or without biochar amendment via continuous diffusion and partition process, and biochar amendments decreased the bioavailability of pyrene (16.8-25.8 %) probably due to a faster pyrene sorption on inter-phase transport against desorption. The regression analysis indicated a significant relationship (p < 0.05) between leachate pH and pyrene concentrations. Notably, the bioaccumulation of pyrene on K. obovate parts had significant negative correlation (p < 0.05) to biochar. The activities of four key antioxidizes (phenylalanine ammonia-lyase, dismutases, peroxidases and catalases) were significantly decreased with the application of biochar. Moreover, biochar plays a positive role in cytochrome C release and phosphatidylserine secretion, and a combined biochar-rhizosphere approach can improve the stress tolerance and resistance of K. obovate with an enhanced synergetic effect, which could be a feasible remediation strategy for alleviating the mangrove sediment contaminated by PAH.
Collapse
Affiliation(s)
- Hui Jia
- Institute of Environment and Ecology, School of Emergency Management, Jiangsu University, Jiangsu University, Zhenjiang 212013, China; School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinhui Ye
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
| | - Yifan Wu
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
| | - Mengqi Zhang
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
| | - Weihua Peng
- Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - He Wang
- Xuzhou Medical University, Affiliated Hospital, Xuzhou 221004, China.
| | - Dehao Tang
- Guangzhou Marine Geological Survey, China Geology Survey, Guangzhou 511458, China.
| |
Collapse
|
37
|
Zhang Q, Sun Y, Xu W, Cao Y, Wu C, Wang CH, Tsang DCW. Efficient microwave-assisted mineralization of oxytetracycline driven by persulfate and hypochlorite over Cu-biochar catalyst. BIORESOURCE TECHNOLOGY 2023; 372:128698. [PMID: 36731614 DOI: 10.1016/j.biortech.2023.128698] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Microwave (MW)-assisted catalytic degradation of organic pollutants draws increasing attention owing to its high efficiency in wastewater treatment. This work developed Cu-loaded biochar (CuBC) catalysts for time-efficient mineralization of refractory and high-concentration oxytetracycline (OTC). With only 1 min at 80 °C, Na2S2O8 achieved 100% total organic carbon (TOC) removal over the Cu5BC, while NaClO mineralized 73.3% TOC over the metal-free BC, in contrast to a relatively low mineralization efficiency (< 35%) achieved by H2O2. The high efficiency in MW-assisted oxidation systems could be ascribed to reactive oxidizing species (•SO4- or •ClO), which otherwise were barely detectable in a conventional heating system. The interactions between CuBC and MW were revealed by correlating the physiochemical characteristics to the MW absorption ability. The proposed catalytic systems can contribute to the development of a high-throughput and low-carbon wastewater treatment technology.
Collapse
Affiliation(s)
- Qiaozhi Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuqing Sun
- School of Agriculture, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Weijian Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, 39 Stranmillis Road, David Keir Building, BT9 5AG Belfast, United Kingdom
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
38
|
Prasertpong P, Onsree T, Khuenkaeo N, Tippayawong N, Lauterbach J. Exposing and understanding synergistic effects in co-pyrolysis of biomass and plastic waste via machine learning. BIORESOURCE TECHNOLOGY 2023; 369:128419. [PMID: 36462765 DOI: 10.1016/j.biortech.2022.128419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
During co-pyrolysis of biomass with plastic waste, bio-oil yields (BOY) could be either induced or reduced significantly via synergistic effects (SE). However, investigating/ interpreting the SE and BOY in multidimensional domains is complicated and limited. This work applied XGBoost machine-learning and Shapley additive explanation (SHAP) to develop interpretable/ explainable models for predicting BOY and SE from co-pyrolysis of biomass and plastic waste using 26 input features. Imbalanced training datasets were improved by synthetic minority over-sampling technique. The prediction accuracy of XGBoost models was nearly 0.90 R2 for BOY while greater than 0.85 R2 for SE. By SHAP, individual impact and interaction of input features on the XGBoost models can be achieved. Although reaction temperature and biomass-to-plastic ratio were the top two important features, overall contributions of feedstock characteristics were more than 60 % in the system of co-pyrolysis. The finding provides a better understanding of co-pyrolysis and a way of further improvements.
Collapse
Affiliation(s)
- Prapaporn Prasertpong
- Department of Mechanical Engineering, Rajamangala University of Technology Thanyaburi 12120, Thailand
| | - Thossaporn Onsree
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29201, USA
| | - Nattawut Khuenkaeo
- Graduate Program in Energy Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakorn Tippayawong
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Jochen Lauterbach
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29201, USA
| |
Collapse
|
39
|
Li Y, Gupta R, Zhang Q, You S. Review of biochar production via crop residue pyrolysis: Development and perspectives. BIORESOURCE TECHNOLOGY 2023; 369:128423. [PMID: 36462767 DOI: 10.1016/j.biortech.2022.128423] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Worldwide surge in crop residue generation has necessitated developing strategies for their sustainable disposal. Pyrolysis has been widely adopted to convert crop residue into biochar with bio-oil and gas being two co-products. The review adopts a whole system philosophy and systematically summarises up-to-date knowledge of crop residue pyrolysis processes, influential factors, and biochar applications. Essential process design tools for biochar production e.g., cost-benefit analysis, life cycle assessment, and machine learning methods are also reviewed, which has often been overlooked in prior reviews. Important aspects include (a) correlating techno-economics of biochar production with crop residue compositions, (b) process operating conditions and management strategies, (c) biochar applications including soil amendment, fuel displacement, catalytic usage, etc., (d) data-driven modelling techniques, (e) properties of biochar, and (f) climate change mitigation. Overall, the review will support the development of application-oriented process pipelines for crop residue-based biochar.
Collapse
Affiliation(s)
- Yize Li
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rohit Gupta
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Nanoengineered Systems Laboratory, UCL Mechanical Engineering, University College London, London WC1E 7JE, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
40
|
Foong SY, Chan YH, Lock SSM, Chin BLF, Yiin CL, Cheah KW, Loy ACM, Yek PNY, Chong WWF, Lam SS. Microwave processing of oil palm wastes for bioenergy production and circular economy: Recent advancements, challenges, and future prospects. BIORESOURCE TECHNOLOGY 2023; 369:128478. [PMID: 36513306 DOI: 10.1016/j.biortech.2022.128478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The valorization and conversion of biomass into various value-added products and bioenergy play an important role in the realization of sustainable circular bioeconomy and net zero carbon emission goals. To that end, microwave technology has been perceived as a promising solution to process and manage oil palm waste due to its unique and efficient heating mechanism. This review presents an in-depth analysis focusing on microwave-assisted torrefaction, gasification, pyrolysis and advanced pyrolysis of various oil palm wastes. In particular, the products from these thermochemical conversion processes are energy-dense biochar (that could be used as solid fuel, adsorbents for contaminants removal and bio-fertilizer), phenolic-rich bio-oil, and H2-rich syngas. However, several challenges, including (1) the lack of detailed study on life cycle assessment and techno-economic analysis, (2) limited insights on the specific foreknowledge of microwave interaction with the oil palm wastes for continuous operation, and (3) effects of tunable parameters and catalyst's behavior/influence on the products' selectivity and overall process's efficiency, remain to be addressed in the context of large-scale biomass valorization via microwave technology.
Collapse
Affiliation(s)
- Shin Ying Foong
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Kin Wai Cheah
- Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
| | | | - Peter Nai Yuh Yek
- Centre for Research of Innovation and Sustainable Development, University of Technology Sarawak, No.1, Jalan Universiti, Sibu, Sarawak, Malaysia
| | - William Woei Fong Chong
- Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 Johor, Malaysia
| | - Su Shiung Lam
- Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 Johor, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
41
|
Life Cycle Assessment (LCA) of Biochar Production from a Circular Economy Perspective. Processes (Basel) 2022. [DOI: 10.3390/pr10122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Climate change and environmental sustainability are among the most prominent issues of today. It is increasingly fundamental and urgent to develop a sustainable economy, capable of change the linear paradigm, actively promoting the efficient use of resources, highlighting product, component and material reuse. Among the many approaches to circular economy and zero-waste concepts, biochar is a great example and might be a way to push the economy to neutralize carbon balance. Biochar is a solid material produced during thermochemical decomposition of biomass in an oxygen-limited environment. Several authors have used life cycle assessment (LCA) method to evaluate the environmental impact of biochar production. Based on these studies, this work intends to critically analyze the LCA of biochar production from different sources using different technologies. Although these studies reveal differences in the contexts and characteristics of production, preventing direct comparison of results, a clear trend appears. It was proven, through combining life cycle assessment and circular economy modelling, that the application of biochar is a very promising way of contributing to carbon-efficient resource circulation, mitigation of climate change, and economic sustainability.
Collapse
|