1
|
Rezaei Z, Wang N, Yang Y, Govindaraj K, Velasco JJ, Martinez Blanco AD, Bae NH, Lee H, Shin SR. Enhancing organoid technology with carbon-based nanomaterial biosensors: Advancements, challenges, and future directions. Adv Drug Deliv Rev 2025; 222:115592. [PMID: 40324529 DOI: 10.1016/j.addr.2025.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/26/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Various carbon-based nanomaterials (CBNs) have been utilized to develop nano- and microscale biosensors that enable real-time and continuous monitoring of biochemical and biophysical changes in living biological systems. The integration of CBN-based biosensors into organoids has recently provided valuable insights into organoid development, disease modeling, and drug responses, enhancing their functionality and expanding their applications in diverse biomedical fields. These biosensors have been particularly transformative in studying neurological disorders, cardiovascular diseases, cancer progression, and liver toxicity, where precise, non-invasive monitoring is crucial for understanding pathophysiological mechanisms and assessing therapeutic efficacy. This review introduces intra- and extracellular biosensors incorporating CBNs such as graphene, carbon nanotubes (CNTs), graphene oxide (GO), reduced graphene oxide (rGO), carbon dots (CDs), and fullerenes. Additionally, it discusses strategies for improving the biocompatibility of CBN-based biosensors and minimizing their potential toxicity to ensure long-term organoid viability. Key challenges such as biosensor integration, data accuracy, and functional compatibility with specific organoid models are also addressed. Furthermore, this review highlights how CBN-based biosensors enhance the precision and relevance of organoid models in biomedical research, particularly in organ-specific applications such as brain-on-a-chip systems for neurodegenerative disease studies, liver-on-a-chip platforms for hepatotoxicity screening, and cardiac organoids for assessing cardiotoxicity in drug development. Finally, it explores how biosensing technologies could revolutionize personalized medicine by enabling high throughput drug screening, patient-specific disease modeling, and integrated sensing platforms for early diagnostics. By capturing current advancements and future directions, this review underscores the transformative potential of carbon-based nanotechnology in organoid research and its broader impact on medical science.
Collapse
Affiliation(s)
- Zahra Rezaei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Niyou Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Yipei Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Kannan Govindaraj
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Department of Developmental Bioengineering, TechMed Centre, University of Twente, Drienerlolaan 5, Enschede 7522NB, the Netherlands
| | - Jose Joaquin Velasco
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Monterrey Institute of Technology, School of Science and Engineering, Eugenio Garza Sada Avenue 2501 South, Monterrey, Nuevo Leon 64849, Mexico
| | - Alvaro Dario Martinez Blanco
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Monterrey Institute of Technology, School of Science and Engineering, Epigmenio González 500, Fraccionamiento San Pablo, Santiago de Querétaro, Querétaro 76130, Mexico
| | - Nam Ho Bae
- Center for Nano-Bio Developement, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - HeaYeon Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; MARA Nanotech, INC. 4th floor, Hanmir Hall, Yongdang Campus, Pukyung National University, 365 Sinseon-ro, Nam-gu, Busan 48547, Republic of Korea; MARA Nanotech New York, INC. 1 Pennsylvania Plaza, Suite 1423, New York, NY 10119, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Wang J, Guo S, Park E, Lee S, Park Y, Han XX, Zhao B, Jung YM. SERS-Based Aptamer Sensing Strategy for Diabetes Biomarker Detection. Anal Chem 2024; 96:20082-20089. [PMID: 39602324 DOI: 10.1021/acs.analchem.4c05036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Accurate detection of glucose and insulin is crucial for early diagnosis, classification, and timely prevention of diabetes. In this study, we present a novel surface-enhanced Raman scattering (SERS) aptasensor for glucose and insulin detection. The SERS aptasensor is composed of gold bipyramidal nanoparticles (Au BPs), SH-aptamer-methylene blue (MB), and thiolated polyethylene glycol (SH-PEG). As a SERS substrate, the Au BPs provide abundant "hot spots" for the aptasensor to detect target molecules with reasonable sensitivity. One end of the aptamer is modified with a thiol group to facilitate chemical immobilization of SH-aptamer-MB via the Au-S bond, while the other end is functionalized with MB as a probe molecule. SH-PEG is used to block nonspecific adsorption. Glucose and insulin are specifically trapped by SH-aptamer-MB and cause conformational changes in SH-aptamer-MB, which in turn induce changes in the SERS signal of the modified MB, allowing detection of glucose and insulin. Finally, we validated the usefulness of this method on saliva samples and obtained satisfactory results. The proposed aptasensor exhibits strong selectivity and reliable sensitivity and provides an effective strategy for using SERS in disease biomarkers detection.
Collapse
Affiliation(s)
- Jihong Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Eungyeong Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Sujin Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, PR China
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
3
|
Psoma SD, Kanthou C. Wearable Insulin Biosensors for Diabetes Management: Advances and Challenges. BIOSENSORS 2023; 13:719. [PMID: 37504117 PMCID: PMC10377143 DOI: 10.3390/bios13070719] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
We present a critical review of the current progress in wearable insulin biosensors. For over 40 years, glucose biosensors have been used for diabetes management. Measurement of blood glucose is an indirect method for calculating the insulin administration dosage, which is critical for insulin-dependent diabetic patients. Research and development efforts aiming towards continuous-insulin-monitoring biosensors in combination with existing glucose biosensors are expected to offer a more accurate estimation of insulin sensitivity, regulate insulin dosage and facilitate progress towards development of a reliable artificial pancreas, as an ultimate goal in diabetes management and personalised medicine. Conventional laboratory analytical techniques for insulin detection are expensive and time-consuming and lack a real-time monitoring capability. On the other hand, biosensors offer point-of-care testing, continuous monitoring, miniaturisation, high specificity and sensitivity, rapid response time, ease of use and low costs. Current research, future developments and challenges in insulin biosensor technology are reviewed and assessed. Different insulin biosensor categories such as aptamer-based, molecularly imprinted polymer (MIP)-based, label-free and other types are presented among the latest developments in the field. This multidisciplinary field requires engagement between scientists, engineers, clinicians and industry for addressing the challenges for a commercial, reliable, real-time-monitoring wearable insulin biosensor.
Collapse
Affiliation(s)
- Sotiria D Psoma
- School of Engineering & Innovation, The Open University, Milton Keynes MK7 6AA, UK
| | - Chryso Kanthou
- Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
4
|
Guha Ray P, Maity D, Huang J, Zulewski H, Fussenegger M. A versatile bioelectronic interface programmed for hormone sensing. Nat Commun 2023; 14:3151. [PMID: 37258547 DOI: 10.1038/s41467-023-39015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
Precision medicine requires smart, ultrasensitive, real-time profiling of bio-analytes using interconnected miniaturized devices to achieve individually optimized healthcare. Here, we report a versatile bioelectronic interface (VIBE) that senses signaling-cascade-guided receptor-ligand interactions via an electronic interface. We show that VIBE offers a low detection limit down to sub-nanomolar range characterised by an output current that decreases significantly, leading to precise profiling of these peptide hormones throughout the physiologically relevant concentration ranges. In a proof-of-concept application, we demonstrate that the VIBE platform differentiates insulin and GLP-1 levels in serum samples of wild-type mice from type-1 and type-2 diabetic mice. Evaluation of human serum samples shows that the bioelectronic device can differentiate between samples from different individuals and report differences in their metabolic states. As the target analyte can be changed simply by introducing engineered cells overexpressing the appropriate receptor, the VIBE interface has many potential applications for point-of-care diagnostics and personalized medicine via the internet of things.
Collapse
Affiliation(s)
- Preetam Guha Ray
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Debasis Maity
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Jinbo Huang
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Henryk Zulewski
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland
- Division of Endocrinology and Diabetes, Stadtspital Triemli, Birmensdorferstrasse 497, CH-8063, Zurich, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland.
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland.
| |
Collapse
|
5
|
Kiran Raj G, Singh E, Hani U, Ramesh KVRNS, Talath S, Garg A, Savadatti K, Bhatt T, Madhuchandra K, Osmani RAM. Conductive polymers and composites-based systems: An incipient stride in drug delivery and therapeutics realm. J Control Release 2023; 355:709-729. [PMID: 36805872 DOI: 10.1016/j.jconrel.2023.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Novel therapies and drug delivery systems (DDS) emphasis on localized, personalized, triggered, and regulated drug administration have heavily implicated electrically responsive DDS. An ideal DDS must deliver drugs to the target region at therapeutically effective concentrations to elicit a pharmacological response, resulting in better prophylaxis of the disease and the treatment. Biodegradable polymers are frequently employed for in-vivo long-term release; however, dose dumping can be anticipated. As a result, current DDSs can be tagged as dubbed "Smart Biomaterials" since they only focus on an on-demand cargo release in response to a trigger or stimulation. These organic materials have been recognized for their metal-like conductivity, as well as their mechanical stability and ease of production. These biomaterials can be programmed to respond to both internal and external stimuli. External pulsed triggers are required for extrinsic stimuli-responsive materials, whereas intrinsic stimuli-responsive materials rely on localized changes in the tissue environment. Furthermore, these materials have the ability to deliver active pharmaceutical agents at a varied concentration levels and across a broad spectrum of action. Drug delivery, biomedical implant technology, biosensor technology, and tissue engineering can be listed as a few prominent applications that have sparked immense interest for conductive polymers-based research and advancements in academia as well as in industry. This review comprehensively covers a cutting-edge collection of electrically conductive polymers and composites, and provide detailed insights of recent trends and advancements allied to conductive polymers for their potential applicability in an array of diverse meadows primarily focusing on drug delivery, biosensing and therapeutics. Furthermore, progressions in their synthesis, structural and functional properties have been presented in conjunction with futuristic directions for the smooth clinical translations.
Collapse
Affiliation(s)
- G Kiran Raj
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston TX-77555, United States; Department of Biosciences and Bioengineering (BSBE), Indian Institute of Technology Bombay (IITB), Mumbai 400076, Maharashtra, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Komal Savadatti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - K Madhuchandra
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| |
Collapse
|
6
|
Zidarič T, Majer D, Maver T, Finšgar M, Maver U. The development of an electropolymerized, molecularly imprinted polymer (MIP) sensor for insulin determination using single-drop analysis. Analyst 2023; 148:1102-1115. [PMID: 36723087 DOI: 10.1039/d2an02025d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An electrochemical sensor for the detection of insulin in a single drop (50 μL) was developed based on the concept of molecularly imprinted polymers (MIP). The synthetic MIP receptors were assembled on a screen-printed carbon electrode (SPCE) by the electropolymerization of pyrrole (Py) in the presence of insulin (the protein template) using cyclic voltammetry. After electropolymerization, insulin was removed from the formed polypyrrole (Ppy) matrix to create imprinting cavities for the subsequent analysis of the insulin analyte in test samples. The surface characterization, before and after each electrosynthesis step of the MIP sensors, was performed using atomic force microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The performance of the developed MIP-SPCE sensor was evaluated using a single drop of solution containing K3Fe(CN)6 and the square-wave voltammetry technique. The MIP-SPCE showed a linear concentration range of 20.0-70.0 pM (R2 = 0.9991), a limit of detection of 1.9 pM, and a limit of quantification of 6.2 pM. The rapid response time to the protein target and the portability of the developed sensor, which is considered a disposable MIP-based system, make this MIP-SPCE sensor a promising candidate for point-of-care applications. In addition, the MIP-SPCE sensor was successfully used to detect insulin in a pharmaceutical sample. The sensor was deemed to be accurate (the average recovery was 108.46%) and precise (the relative standard deviation was 7.23%).
Collapse
Affiliation(s)
- Tanja Zidarič
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia
| | - David Majer
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Tina Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.,University of Maribor, Faculty of Medicine, Department of Pharmacology, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Matjaž Finšgar
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Uroš Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.,University of Maribor, Faculty of Medicine, Department of Pharmacology, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
7
|
Mohammadinejad A, Heydari M, Kazemi Oskuee R, Rezayi M. A Critical Systematic Review of Developing Aptasensors for Diagnosis and Detection of Diabetes Biomarkers. Crit Rev Anal Chem 2022; 52:1795-1817. [DOI: 10.1080/10408347.2021.1919986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arash Mohammadinejad
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Heydari
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Lo SC, Wang SH, Chang TW, Lee KL, Chern RL, Wei PK. Dual Gold-Nanoslit Electrodes for Ultrasensitive Detection of Antigen-Antibody Reactions in Electrochemical Surface Plasmon Resonance. ACS Sens 2022; 7:2597-2605. [PMID: 36095281 DOI: 10.1021/acssensors.2c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We present the use of surface charges in dual gold-nanoslit electrodes to improve the surface plasmon resonance (SPR) detection limit by several orders of magnitude. The SPR is directly generated by gold-nanoslit arrays in the two electrodes. The SPR shifts for both nanoslit arrays are measured simultaneously with a simple hyperspectral setup. When biomolecules are captured by specific antibodies on the dual electrodes, the surface charge is changed during the electrochemical process due to the increase in surface impedance. The push-pull-type electrodes generate opposite surface charges. Using the differences in both spectral shifts, the change in surface charge is detected sensitively. We demonstrate that using a [Fe(CN)6]3-/4- redox process after antigen-antibody interactions, the dual nanoslit electrodes show an enhancement of the detection limit from 1 μg/mL to 10 pg/mL.
Collapse
Affiliation(s)
- Shu-Cheng Lo
- Institute of Applied Mechanics, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 106, Taiwan.,Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115-29, Taiwan
| | - Sheng-Hann Wang
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115-29, Taiwan
| | - Ting-Wei Chang
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115-29, Taiwan
| | - Kuang-Li Lee
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115-29, Taiwan
| | - Ruey-Lin Chern
- Institute of Applied Mechanics, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 106, Taiwan
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115-29, Taiwan
| |
Collapse
|
9
|
Kang L, Zhang Y, Gong Q, Das CM, Shao H, Poenar DP, Coquet P, Yong KT. Label-free plasmonic-based biosensing using a gold nanohole array chip coated with a wafer-scale deposited WS 2 monolayer. RSC Adv 2022; 12:33284-33292. [DOI: 10.1039/d2ra03479d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
This paper reports a novel plasmonic sensor chip made up of a gold nanohole array chip coated with a WS2 monolayer, which is then functionalized for the detection of protein–protein interactions.
Collapse
Affiliation(s)
- Lixing Kang
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117583, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qian Gong
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chandreyee Manas Das
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117583, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Daniel Puiu Poenar
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520 – Université de Lille 1, Villeneuve d’Ascq 59650, France
| | - Ken-Tye Yong
- The University of Sydney Nano Institute, The University of Sydney, Sydney 2006, New South Wales, Australia
| |
Collapse
|
10
|
Yeh CT, Barshilia D, Hsieh CJ, Li HY, Hsieh WH, Chang GE. Rapid and Highly Sensitive Detection of C-Reaction Protein Using Robust Self-Compensated Guided-Mode Resonance BioSensing System for Point-of-Care Applications. BIOSENSORS 2021; 11:523. [PMID: 34940280 PMCID: PMC8699450 DOI: 10.3390/bios11120523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 05/24/2023]
Abstract
The rapid and sensitive detection of human C-reactive protein (CRP) in a point-of-care (POC) may be conducive to the early diagnosis of various diseases. Biosensors have emerged as a new technology for rapid and accurate detection of CRP for POC applications. Here, we propose a rapid and highly stable guided-mode resonance (GMR) optofluidic biosensing system based on intensity detection with self-compensation, which substantially reduces the instability caused by environmental factors for a long detection time. In addition, a low-cost LED serving as the light source and a photodetector are used for intensity detection and real-time biosensing, and the system compactness facilitates POC applications. Self-compensation relies on a polarizing beam splitter to separate the transverse-magnetic-polarized light and transverse-electric-polarized light from the light source. The transverse-electric-polarized light is used as a background signal for compensating noise, while the transverse-magnetic-polarized light is used as the light source for the GMR biosensor. After compensation, noise is drastically reduced, and both the stability and performance of the system are enhanced over a long period. Refractive index experiments revealed a resolution improvement by 181% when using the proposed system with compensation. In addition, the system was successfully applied to CRP detection, and an outstanding limit of detection of 1.95 × 10-8 g/mL was achieved, validating the proposed measurement system for biochemical reaction detection. The proposed GMR biosensing sensing system can provide a low-cost, compact, rapid, sensitive, and highly stable solution for a variety of point-of-care applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo-En Chang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Minxiong Township 62102, Taiwan; (C.-T.Y.); (D.B.); (C.-J.H.); (H.-Y.L.); (W.-H.H.)
| |
Collapse
|
11
|
Çimen D, Bereli N, Kartal F, Denizli A. Molecularly Imprinted Polymer-Based Quartz Crystal Microbalance Sensor for the Clinical Detection of Insulin. Methods Mol Biol 2021; 2359:209-222. [PMID: 34410672 DOI: 10.1007/978-1-0716-1629-1_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, we reported the design of a quartz crystal microbalance (QCM) sensors for selective insulin detection. In the first step, N-methacryloyl-(L) 3-histidine methyl ester (MAH) monomer was formed a complex with insulin. Then, 2-hydroxyethyl methacrylate and ethylene glycol dimethacrylate were mixed with MAH:insulin complex. Insulin-imprinted and non-imprinted QCM sensors were synthesized by ultraviolet polymerization for the insulin detection. Insulin-imprinted QCM sensors was characterized by the contact angle measurements, atomic force microscopy and ellipsometry. Limit of detection (LOD) was found as 0.00158 ng/mL for the insulin-imprinted QCM sensors. Selectivity of insulin-imprinted and non-imprinted QCM sensors was carried in the presence of glucagon and aprotinin. Insulin-imprinted QCM sensor for insulin detection was also examined in the artificial plasma.
Collapse
Affiliation(s)
- Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Nilay Bereli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatma Kartal
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
12
|
Distasio N, Salmon H, Dierick F, Ebrahimian T, Tabrizian M, Lehoux S. VCAM‐1‐Targeted Gene Delivery Nanoparticles Localize to Inflamed Endothelial Cells and Atherosclerotic Plaques. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas Distasio
- Department of Biomedical Engineering McGill University 3773 University Montreal QC H3A 2B6 Canada
| | - Hugo Salmon
- Faculty of Dentistry McGill University 2001 Avenue McGill College #500 Montreal QC H3A 1G1 Canada
| | - France Dierick
- Lady Davis Institute Department of Medicine McGill University 3755 Chemin de la Côte‐Sainte‐Catherine Montreal QC H3T 1E2 Canada
| | - Talin Ebrahimian
- Lady Davis Institute Department of Medicine McGill University 3755 Chemin de la Côte‐Sainte‐Catherine Montreal QC H3T 1E2 Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering McGill University 3773 University Montreal QC H3A 2B6 Canada
- Faculty of Dentistry McGill University 2001 Avenue McGill College #500 Montreal QC H3A 1G1 Canada
| | - Stephanie Lehoux
- Lady Davis Institute Department of Medicine McGill University 3755 Chemin de la Côte‐Sainte‐Catherine Montreal QC H3T 1E2 Canada
| |
Collapse
|
13
|
Liu S, Liu L, Chen Y, Zhao J. Selective polymerization of epoxides from hydroxycarboxylic esters: expediting controlled synthesis of α-carboxyl-ω-hydroxyl polyethers. Chem Commun (Camb) 2020; 56:12186-12189. [PMID: 32914797 DOI: 10.1039/d0cc05632d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective ring-opening polymerization of ethylene/propylene oxide from hydroxyl-functionalized carboxylic esters is achieved by use of metal-free Lewis pair catalysts. Subsequently, quantitative in situ hydrolysis is conducted to afford well-defined α-carboxyl-ω-hydroxyl polyethers which are highly valuable for bioconjugation but usually synthesized by much more tedious and costly routes.
Collapse
Affiliation(s)
- Shan Liu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Lijun Liu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Ye Chen
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China. and Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
14
|
Das CM, Guo Y, Kang L, Ho H, Yong K. Investigation of Plasmonic Detection of Human Respiratory Virus. ADVANCED THEORY AND SIMULATIONS 2020; 3:2000074. [PMID: 32838127 PMCID: PMC7300606 DOI: 10.1002/adts.202000074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Indexed: 01/29/2023]
Abstract
The COVID‐19 virus has been recently identified as a new species of virus that can cause severe infections such as pneumonia. The sudden outbreak of this disease is being considered a pandemic. Given all this, it is essential to develop smart biosensors that can detect pathogens with minimum time delay. Surface plasmon resonance (SPR) biosensors make use of refractive index (RI) changes as the sensing parameter. In this work, based on actual data taken from previous experimental works done on plasmonic detection of viruses, a detailed simulation of the SPR scheme that can be used to detect the COVID‐19 virus is performed and the results are extrapolated from earlier schemes to predict some outcomes of this SPR model. The results indicate that the conventional Kretschmann configuration can have a limit of detection (LOD) of 2E‐05 in terms of RI change and an average sensitivity of 122.4 degRIU−1 at a wavelength of 780 nm.
Collapse
Affiliation(s)
- Chandreyee Manas Das
- CINTRA CNRS/NTU/THALES, UMI 3288Research Techno Plaza 50 Nanyang Drive, Border X Block Singapore 637553 Singapore
- School of Electrical and Electronic EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Yan Guo
- School of AutomationHangzhou Dianzi University Hangzhou Zhejiang 310018 China
| | - Lixing Kang
- CINTRA CNRS/NTU/THALES, UMI 3288Research Techno Plaza 50 Nanyang Drive, Border X Block Singapore 637553 Singapore
- School of Electrical and Electronic EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Ho‐pui Ho
- Department of Biomedical EngineeringThe Chinese University of Hong Kong New Territories Hong Kong SAR 999077 China
| | - Ken‐Tye Yong
- CINTRA CNRS/NTU/THALES, UMI 3288Research Techno Plaza 50 Nanyang Drive, Border X Block Singapore 637553 Singapore
- School of Electrical and Electronic EngineeringNanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|
15
|
Chinnadayyala SR, Park J, Kim YH, Choi SH, Lee SM, Cho WW, Lee GY, Pyun JC, Cho S. Electrochemical Detection of C-Reactive Protein in Human Serum Based on Self-Assembled Monolayer-Modified Interdigitated Wave-Shaped Electrode. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5560. [PMID: 31888286 PMCID: PMC6960938 DOI: 10.3390/s19245560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
An electrochemical capacitance immunosensor based on an interdigitated wave-shaped micro electrode array (IDWµE) for direct and label-free detection of C-reactive protein (CRP) was reported. A self-assembled monolayer (SAM) of dithiobis (succinimidyl propionate) (DTSP) was used to modify the electrode array for antibody immobilization. The SAM functionalized electrode array was characterized morphologically by atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDX). The nature of gold-sulfur interactions on SAM-treated electrode array was probed by X-ray photoelectron spectroscopy (XPS). The covalent linking of anti-CRP-antibodies onto the SAM modified electrode array was characterized morphologically through AFM, and electrochemically through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The application of phosphate-buffered saline (PBS) and human serum (HS) samples containing different concentrations of CRP in the electrode array caused changes in the electrode interfacial capacitance upon CRP binding. CRP concentrations in PBS and HS were determined quantitatively by measuring the change in capacitance (ΔC) through EIS. The electrode immobilized with anti-CRP-antibodies showed an increase in ΔC with the addition of CRP concentrations over a range of 0.01-10,000 ng mL-1. The electrode showed detection limits of 0.025 ng mL-1 and 0.23 ng mL-1 (S/N = 3) in PBS and HS, respectively. The biosensor showed a good reproducibility (relative standard deviation (RSD), 1.70%), repeatability (RSD, 1.95%), and adequate selectivity in presence of interferents towards CRP detection. The sensor also exhibited a significant storage stability of 2 weeks at 4 °C in 1× PBS.
Collapse
Affiliation(s)
| | - Jinsoo Park
- Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea;
| | - Young Hyo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Inha University, Incheon 22332, Korea;
| | - Seong Hye Choi
- Department of Neurology, School of Medicine, Inha University, Incheon 22332, Korea;
| | - Sang-Myung Lee
- Department of Chemical Engineering, Kangwon National University, Chuncheon 25341, Korea;
| | - Won Woo Cho
- Cantis Inc., Ansan-si, Gyeonggi-do 15588, Korea;
| | - Ga-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03772, Korea; (G.-Y.L.); (J.-C.P.)
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, Seoul 03772, Korea; (G.-Y.L.); (J.-C.P.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Incheon 13120, Korea;
- Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea;
| |
Collapse
|
16
|
Wang Z, Hu X, Sun N, Deng C. Aptamer-functionalized magnetic metal organic framework as nanoprobe for biomarkers in human serum. Anal Chim Acta 2019; 1087:69-75. [PMID: 31585568 DOI: 10.1016/j.aca.2019.08.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022]
Abstract
Human serum is a huge bioinformatics database of human physiological and pathological state, many proteins/peptides among which can serve as biomarkers for monitoring human's health condition, thereby being worth exploring. The simple and fast capture of biomarkers from human serum is the first key step to realize their accurate detection. In this work, we developed the aptamer functionalized magnetic metal organic framework nanoprobe, and furtherly combined with mass spectrometry technology to establish an efficient method of identifying biomarkers. Taking insulin as example of biomarker in human serum, we developed sulfhydryl human insulin aptamer functionalized magnetic metal organic framework (denoted as Mag MOF@Au@HIA) through the post-synthetic modification of MIL-101(Cr)-NH2 for testing the applicability of the established method. Depending on the strong magnetic responsiveness and high specific area as well as high-loaded human insulin aptamers, the limit of detection of insulin was down to 1 ng/mL and 2 ng/mL in the standard insulin solution and human serum, respectively. Moreover, a good linear relationship (R2 = 0.998) was obtained by using standard insulin solution with concentration range from 100 ng/mL to 5 ng/mL, based on which the capture recovery of insulin with Mag MOF@Au@HIA from human serum was demonstrated to be excellent. All of the results indicate that the aptamer-functionalized magnetic metal organic framework is a promising nanoprobe for biomarkers capture in human serum.
Collapse
Affiliation(s)
- Zidan Wang
- Department of Chemistry and the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200433, China
| | - Xufang Hu
- Department of Chemistry and the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200433, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| | - Chunhui Deng
- Department of Chemistry and the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200433, China; Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
17
|
Castiello FR, Tabrizian M. Gold nanoparticle amplification strategies for multiplex SPRi-based immunosensing of human pancreatic islet hormones. Analyst 2019; 144:2541-2549. [PMID: 30864587 DOI: 10.1039/c9an00140a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, we demonstrate the potential use of SPRi for secretion-monitoring of pancreatic islets, small micro-organs that regulate glucose homeostasis in the body. In the islets, somatostatin works as a paracrine inhibitor of insulin and glucagon secretion. However, this inhibitory effect is lost in diabetic individuals and little is known about its contribution to the pathology of diabetes. Thus, the simultaneous detection of insulin, glucagon and somatostatin could help understand such communications. Previously, the authors introduced an SPRi biosensor to simultaneously monitor insulin, glucagon and somatostatin using an indirect competitive immunoassay. However, our sensor achieved a relatively high LOD for somatostatin detection (246 nM), the smallest of the three hormones. For this reason, the present work aimed to improve the performance of our SPRi biosensor using gold nanoparticles (GNPs) as a means of ensuring somatostatin detection from a small group of islets. Although GNP amplification is frequently reported in the literature for individual detection of analytes using SPR, studies regarding the optimal strategy in a multiplexed SPR setup are missing. Therefore, with the aim of finding the optimal GNP amplification strategies for multiplex sensing we compared three architectures: (1) GNPs immobilized on the sensor surface, (2) GNPs conjugated with primary antibodies (GNP-Ab1) and (3) GNPs conjugated with a secondary antibody (GNP-Ab2). Among these strategies an immunoassay using GNP-Ab2 conjugates was able to achieve multiplex detection of the three hormones without cross-reactivity and with 9-fold LOD improvement for insulin, 10-fold for glucagon and 200-fold for somatostatin when compared to the SPRi biosensor without GNPs. The present work denotes the first report of the simultaneous detection of such hormones with a sensitivity level comparable to ELISA assays, particularly for somatostatin.
Collapse
Affiliation(s)
- F Rafael Castiello
- Biomedical and Biological Engineering Department, McGill University, Montreal, QC, Canada.
| | | |
Collapse
|
18
|
Wang Y, Han X, Li Z, Xie J. Rapid detection of insulin by immune-enrichment with silicon-nanoparticle-assisted MALDI-TOF MS. Anal Biochem 2019; 577:14-20. [PMID: 30991018 DOI: 10.1016/j.ab.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Insulin is central to regulating fat and carbohydrate metabolism in the body. However, it is difficult to detect insulin using mass spectrometry (MS). The integration of nanotechnology with mass spectrometry for selective and sensitive detection is an important research area. Our aim was to establish a method to detect insulin using silicon nanoparticle-assisted high-throughput MS. METHODS Different nanomaterials with the potential for use as MALDI components to enhance the MS signal by increasing peptide ionization were investigated in the present study. Insulin in samples was enriched with antibody-coated silicon nanoparticles and then analyzed by MALDI-TOF MS. Method validation was performed in the present study. RESULTS A platform for insulin detection with small sample volumes (100 μL) and a simplified procedure was successfully developed. The silicon nanoparticle-MS assay exhibited high sensitivity (LOQ, 0.1 nM) and good linear correlation of MS intensity with insulin concentration (R2 = 0.99). Intra-assay precision (% coefficient of variation) ranged from 1.81 to 4.53%, and interassay precision ranged from 2.71 to 8.09%. In addition, a correlation between the MALDI assay and a chemiluminescence immunoassay (CIA) was completed in patient samples, and the resulting Deming regression revealed good agreement (R2 = 0.981). CONCLUSIONS In our study, we found that the insulin signal could be enhanced with silicon nanoparticles. A new insulin determination method, immunoaffinity-based mass spectrometry, that saves time and involves simple processes, has been successfully established. The present assay was validated to detect insulin with low limits of detection.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Clinical Laboratory Medicine, TaiZhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang, 318000, China.
| | - Xinwei Han
- Marine college, Shandong University (Weihai), No.180 Wenhua West Road, Huancui District, Weihai, Shandong, 264209, China
| | - Zhaoyun Li
- Department of Clinical Laboratory Medicine, TaiZhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang, 318000, China.
| | - Jiaogui Xie
- Department of Urology, The Fifteenth Military Hospital of China, Wusu, Xinjiang, 833000, China.
| |
Collapse
|
19
|
Kartal F, Çimen D, Bereli N, Denizli A. Molecularly imprinted polymer based quartz crystal microbalance sensor for the clinical detection of insulin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:730-737. [DOI: 10.1016/j.msec.2018.12.086] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 10/27/2022]
|
20
|
Álvarez-Martos I, Møller A, Ferapontova EE. Dopamine Binding and Analysis in Undiluted Human Serum and Blood by the RNA-Aptamer Electrode. ACS Chem Neurosci 2019; 10:1706-1715. [PMID: 30605601 DOI: 10.1021/acschemneuro.8b00616] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Specific analysis of such neurotransmitters as dopamine by the aptamer electrodes in biological fluids is detrimentally affected by nonspecific adsorption of media, particularly pronounced at positive charges of the electrode surface at which dopamine oxidizes. Here, we show that dopamine analysis at the RNA-aptamer/cysteamine-modified electrodes is strongly inhibited in undiluted human serum and blood due to nonspecific interfacial adsorption of serum and blood components. We demonstrate that nonspecific adsorption of serum proteins (but not of blood components) could be minimized when analysis is performed in a flow and injections of serum samples are followed by washing steps in a phosphate buffer solution (PBS) carrier. Under those conditions, the dopamine-aptamer binding affinity in whole human serum of (1.9 ± 0.3) × 104 M-1 s-1 was comparable to the (3.7 ± 0.3) × 104 M-1 s-1 found in PBS, and the dopamine oxidation signal linearly depended on the dopamine concentration, providing a sensitivity of analysis of 73 ± 3 nA μM-1 cm-2 and a LOD of 114 ± 8 nM. The flow-injection apatmer-electrode system was used for direct analysis of basal levels of dopamine in undiluted human serum samples, without using any physical separators (membranes) or filtration procedures. The results suggest a simple strategy for combatting biosurface fouling, otherwise most pronounced at positive electrode potentials used for dopamine detection, and assist in designing more efficient antifouling strategies for biomedical applications.
Collapse
Affiliation(s)
- Isabel Álvarez-Martos
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Arne Møller
- PET-Centre, Aarhus University Hospital, Aarhus, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Abstract
Good glucose management through an insulin dose regime based on the metabolism of glucose helps millions of people worldwide manage their diabetes. Since Banting and Best extracted insulin, glucose management has improved due to the introduction of insulin analogues that act from 30 minutes to 28 days, improved insulin dose regimes, and portable glucose meters, with a current focus on alternative sampling sites that are less invasive. However, a piece of the puzzle is still missing-the ability to measure insulin directly in a Point-of-Care device. The ability to measure both glucose and insulin concurrently will enable better glucose control by providing an improved estimate for insulin sensitivity, minimizing variability in control, and maximizing safety from hypoglycaemia. However, direct detection of free insulin has provided a challenge due to the size of the molecule, the low concentration of insulin in blood, and the selectivity against interferants in blood. This review summarizes current insulin detection methods from immunoassays to analytical chemistry, and sensors. We also discuss the challenges and potential of each of the methods towards Point-of-Care insulin detection.
Collapse
|
22
|
Prabowo BA, Purwidyantri A, Liu KC. Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. BIOSENSORS 2018; 8:E80. [PMID: 30149679 PMCID: PMC6163427 DOI: 10.3390/bios8030080] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/19/2023]
Abstract
The notion of surface plasmon resonance (SPR) sensor research emerged more than eight decades ago from the first observed phenomena in 1902 until the first introduced principles for gas sensing and biosensing in 1983. The sensing platform has been hand-in-hand with the plethora of sensing technology advancement including nanostructuring, optical technology, fluidic technology, and light source technology, which contribute to substantial progress in SPR sensor evolution. Nevertheless, the commercial products of SPR sensors in the market still require high-cost investment, component, and operation, leading to unaffordability for their implementation in a low-cost point of care (PoC) or laboratories. In this article, we present a comprehensive review of SPR sensor development including the state of the art from a perspective of light source technology trends. Based on our review, the trend of SPR sensor configurations, as well as its methodology and optical designs are strongly influenced by the development of light source technology as a critical component. These simultaneously offer new underlying principles of SPR sensor towards miniaturization, portability, and disposability features. The low-cost solid-state light source technology, such as laser diode, light-emitting diode (LED), organic light emitting diode (OLED) and smartphone display have been reported as proof of concept for the future of low-cost SPR sensor platforms. Finally, this review provides a comprehensive overview, particularly for SPR sensor designers, including emerging engineers or experts in this field.
Collapse
Affiliation(s)
- Briliant Adhi Prabowo
- Research Center for Electronics and Telecommunications, Indonesian Institute of Sciences, Bandung 40135, Indonesia.
- Department of Electronics Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Agnes Purwidyantri
- Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung 40135, Indonesia.
| | - Kou-Chen Liu
- Department of Electronics Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
23
|
Li J, Yang C, Wang WL, Yan XP. Functionalized gold and persistent luminescence nanoparticle-based ratiometric absorption and TR-FRET nanoplatform for high-throughput sequential detection of l-cysteine and insulin. NANOSCALE 2018; 10:14931-14937. [PMID: 30046773 DOI: 10.1039/c8nr04414g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro diagnostic is a crucial component of healthcare systems for early diagnosis of diseases and follow-up therapy, which generally makes clinical diagnosis faster, easier, and painless for patients. Herein, we report a dual-signaling nanoplatform for ratiometric absorption and time-resolved fluorescence resonance energy transfer based on l-cysteine-mediated aggregated gold nanoparticles and long afterglow nature of persistent luminescence nanoparticles. With this nanoplatform, we have achieved high-throughput sequential detection of l-cysteine and insulin in human serum without matrix interference. The proposed nanoplatform shows excellent linearity and precision for the determination of l-cysteine in the range of 10 nM to 5.5 μM with the limit of detection (LOD) of 2.2 nM and for the detection of insulin in the range of 12 pM to 3.44 nM with LOD of 2.06 pM. The developed dual-signaling nanoplatform has been successfully applied for the sequential determination of l-cysteine and insulin in human serum.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | | | | |
Collapse
|
24
|
Abstract
Diabetes is a complex immune disorder that requires extensive medical care beyond glycemic control. Recently, the prevalence of diabetes, particularly type 1 diabetes (T1D), has significantly increased from 5% to 10%, and this has affected the health-associated complication incidences in children and adults. The 2012 statistics by the American Diabetes Association reported that 29.1 million Americans (9.3% of the population) had diabetes, and 86 million Americans (age ≥20 years, an increase from 79 million in 2010) had prediabetes. Personalized glucometers allow diabetes management by easy monitoring of the high millimolar blood glucose levels. In contrast, non-glucose diabetes biomarkers, which have gained considerable attention for early prediction and provide insights about diabetes metabolic pathways, are difficult to measure because of their ultra-low levels in blood. Similarly, insulin pumps, sensors, and insulin monitoring systems are of considerable biomedical significance due to their ever-increasing need for managing diabetic, prediabetic, and pancreatic disorders. Our laboratory focuses on developing electrochemical immunosensors and surface plasmon microarrays for minimally invasive insulin measurements in clinical sample matrices. By utilizing antibodies or aptamers as the insulin-selective biorecognition elements in combination with nanomaterials, we demonstrated a series of selective and clinically sensitive electrochemical and surface plasmon immunoassays. This review provides an overview of different electrochemical and surface plasmon immunoassays for insulin. Considering the paramount importance of diabetes diagnosis, treatment, and management and insulin pumps and monitoring devices with focus on both T1D (insulin-deficient condition) and type 2 diabetes (insulin-resistant condition), this review on insulin bioassays is timely and significant.
Collapse
Affiliation(s)
- Vini Singh
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| | | |
Collapse
|
25
|
Malekzad H, Zangabad PS, Mohammadi H, Sadroddini M, Jafari Z, Mahlooji N, Abbaspour S, Gholami S, Ghanbarpoor M, Pashazadeh R, Beyzavi A, Karimi M, Hamblin MR. Noble metal nanostructures in optical biosensors: Basics, and their introduction to anti-doping detection. Trends Analyt Chem 2018; 100:116-135. [PMID: 29731530 PMCID: PMC5933885 DOI: 10.1016/j.trac.2017.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanotechnology has illustrated significant potentials in biomolecular-sensing applications; particularly its introduction to anti-doping detection is of great importance. Illicit recreational drugs, substances that can be potentially abused, and drugs with dosage limitations according to the prohibited lists announced by the World Antidoping Agency (WADA) are becoming of increasing interest to forensic chemists. In this review, the theoretical principles of optical biosensors based on noble metal nanoparticles, and the transduction mechanism of commonly-applied plasmonic biosensors are covered. We review different classes of recently-developed plasmonic biosensors for analytic determination and quantification of illicit drugs in anti-doping applications. The important classes of illicit drugs include anabolic steroids, opioids, stimulants, and peptide hormones. The main emphasis is on the advantages that noble metal nano-particles bring to optical biosensors for signal enhancement and the development of highly sensitive (label-free) biosensors. In the near future, such optical biosensors may be an invaluable substitute for conventional anti-doping detection methods such as chromatography-based approaches, and may even be commercialized for routine anti-doping tests.
Collapse
Affiliation(s)
- Hedieh Malekzad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Mohammadi
- Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Mohsen Sadroddini
- Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Zahra Jafari
- Department of Food Science and Technology, College of Agriculture and Food Science, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Niloofar Mahlooji
- Department of Chemistry, Semnan University, Semnan 35351-19111, Iran
| | - Somaye Abbaspour
- School of Science and Engineering, Sharif University of Technology, International Campus, Iran
| | | | | | - Rahim Pashazadeh
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran
| | - Ali Beyzavi
- Koch Institute of MIT, 500 Main Street, Cambridge MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Applied Biotechnology Research Center, Teheran Medical Sciences Branch, Islamic Azad University, Tehran Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael R. Hamblin
- Applied Biotechnology Research Center, Teheran Medical Sciences Branch, Islamic Azad University, Tehran Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
26
|
Castiello FR, Tabrizian M. Multiplex Surface Plasmon Resonance Imaging-Based Biosensor for Human Pancreatic Islets Hormones Quantification. Anal Chem 2018; 90:3132-3139. [DOI: 10.1021/acs.analchem.7b04288] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Cho H, Kumar S, Yang D, Vaidyanathan S, Woo K, Garcia I, Shue HJ, Yoon Y, Ferreri K, Choo H. Surface-Enhanced Raman Spectroscopy-Based Label-Free Insulin Detection at Physiological Concentrations for Analysis of Islet Performance. ACS Sens 2018; 3:65-71. [PMID: 29322773 DOI: 10.1021/acssensors.7b00864] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Label-free optical detection of insulin would allow in vitro assessment of pancreatic cell functions in their natural state and expedite diabetes-related clinical research and treatment; however, no existing method has met these criteria at physiological concentrations. Using spatially uniform 3D gold-nanoparticle sensors, we have demonstrated surface-enhanced Raman sensing of insulin in the secretions from human pancreatic islets under low and high glucose environments without the use of labels such as antibodies or aptamers. Label-free measurements of the islet secretions showed excellent correlation among the ambient glucose levels, secreted insulin concentrations, and measured Raman-emission intensities. When excited at 785 nm, plasmonic hotspots of the densely arranged 3D gold-nanoparticle pillars as well as strong interaction between sulfide linkages of the insulin molecules and the gold nanoparticles produced highly sensitive and reliable insulin measurements down to 100 pM. The sensors exhibited a dynamic range of 100 pM to 50 nM with an estimated detection limit of 35 pM, which covers the reported concentration range of insulin observed in pancreatic cell secretions. The sensitivity of this approach is approximately 4 orders of magnitude greater than previously reported results using label-free optical approaches, and it is much more cost-effective than immunoassay-based insulin detection widely used in clinics and laboratories. These promising results may open up new opportunities for insulin sensing in research and clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Youngzoon Yoon
- Device Lab, Device & System Research Center, Samsung Advanced Institute of Technology(SAIT), Suwon, 16678, Republic of Korea
| | - Kevin Ferreri
- Department
of Translational Research and Cellular Therapeutics, Diabetes and
Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, California 91010, United States
| | | |
Collapse
|
28
|
Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S, Besharati M. An electrochemical aptamer-based assay for femtomolar determination of insulin using a screen printed electrode modified with mesoporous carbon and 1,3,6,8-pyrenetetrasulfonate. Mikrochim Acta 2017; 185:59. [PMID: 29594593 DOI: 10.1007/s00604-017-2570-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
The authors describe an electrochemical method for aptamer-based determination of insulin at femtomolar concentrations. The surface of a screen printed electrode was modified with ordered mesoporous carbon that was chemically modified with 1,3,6,8-pyrenetetrasulfonate (TPS). The amino-terminated aptamer was then covalently linked to TPS via reactive sulfonyl chloride groups. Subsequently, the redox probe Methylene Blue (MB) was interacted into the aptamer. The MB-modified binds to insulin and this results in the release of MB and a decreased signal as obtained by differential pulse voltammetry, best at a working voltage of -0.3 V (versus silver pseudo-reference electrode). Insulin can be quantified by this method in the 1.0 fM to 10.0 pM concentration range, with a 0.18 fM limit of detection (at 3σ/slope). The assay was applied to the determination of insulin in spiked human serum samples. The method is highly sensitive, selective, stable, and has a wide analytical range. Graphical abstract The surface of a screen printed electrode was modified with ordered mesoporous carbon-1,3,6,8-pyrenetetrasulfonate. The amino-terminated aptamer was then linked to the 1,3,6,8-pyrenetetrasulfonate. Then, the Methylene Blue was interacted into the aptamer. The modified electrode was applied to the determination of insulin.
Collapse
Affiliation(s)
- Mahmoud Amouzadeh Tabrizi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, P.O. Box 6714967346, Kermanshah, Iran.
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 1419733131, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, P.O. Box 6714967346, Kermanshah, Iran.
| | - Reza Saber
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 1419733131, Tehran, Iran
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, P.O. Box 1417755469, Tehran, Iran
| | - Saeed Sarkar
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 1419733131, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, P.O. Box 1417613151, Tehran, Iran
| | - Maryam Besharati
- Department of Microbial Biotechnology, School of Biology and center of excellence in phylogeny living organisms, College of Science, University of Tehran, P.O. Box 41556455, Tehran, Iran
- Microbial technology and products (MTP) research center, University of Tehran, P.O. Box 1417466191, Tehran, Iran
| |
Collapse
|
29
|
Wang J, Lin W, Cao E, Xu X, Liang W, Zhang X. Surface Plasmon Resonance Sensors on Raman and Fluorescence Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2719. [PMID: 29212139 PMCID: PMC5751530 DOI: 10.3390/s17122719] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/08/2017] [Accepted: 11/20/2017] [Indexed: 01/03/2023]
Abstract
The performance of chemical reactions has been enhanced immensely with surface plasmon resonance (SPR)-based sensors. In this review, the principle and application of SPR sensors are introduced and summarized thoroughly. We introduce the mechanism of the SPR sensors and present a thorough summary about the optical design, including the substrate and excitation modes of the surface plasmons. Additionally, the applications based on SPR sensors are described by the Raman and fluorescence spectroscopy in plasmon-driven surface catalytic reactions and the measurement of refractive index sensing, especially.
Collapse
Affiliation(s)
- Jiangcai Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China.
| | - Weihua Lin
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China.
| | - En Cao
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China.
| | - Xuefeng Xu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Wenjie Liang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China.
| | - Xiaofang Zhang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
30
|
Fan D, Wang H, Khan MS, Bao C, Wang H, Wu D, Wei Q, Du B. An ultrasensitive photoelectrochemical immunosensor for insulin detection based on BiOBr/Ag 2 S composite by in-situ growth method with high visible-light activity. Biosens Bioelectron 2017; 97:253-259. [DOI: 10.1016/j.bios.2017.05.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 01/16/2023]
|
31
|
Greco G, Agostini M, Shilton R, Travagliati M, Signore G, Cecchini M. Surface Acoustic Wave (SAW)-Enhanced Chemical Functionalization of Gold Films. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2452. [PMID: 29072590 PMCID: PMC5713185 DOI: 10.3390/s17112452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022]
Abstract
Surface chemical and biochemical functionalization is a fundamental process that is widely applied in many fields to add new functions, features, or capabilities to a material's surface. Here, we demonstrate that surface acoustic waves (SAWs) can enhance the chemical functionalization of gold films. This is shown by using an integrated biochip composed by a microfluidic channel coupled to a surface plasmon resonance (SPR) readout system and by monitoring the adhesion of biotin-thiol on the gold SPR areas in different conditions. In the case of SAW-induced streaming, the functionalization efficiency is improved ≈ 5 times with respect to the case without SAWs. The technology here proposed can be easily applied to a wide variety of biological systems (e.g., proteins, nucleic acids) and devices (e.g., sensors, devices for cell cultures).
Collapse
Affiliation(s)
- Gina Greco
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Matteo Agostini
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Richie Shilton
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Marco Travagliati
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Giovanni Signore
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Marco Cecchini
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
| |
Collapse
|
32
|
Electrochemical immunoassay for amyloid-beta 1–42 peptide in biological fluids interfacing with a gold nanoparticle modified carbon surface. Catal Today 2017. [DOI: 10.1016/j.cattod.2017.02.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Liang K, Wu H, Li Y. Immune-enrichment of insulin in bio-fluids on gold-nanoparticle decorated target plate and in situ detection by MALDI MS. Clin Proteomics 2017; 14:5. [PMID: 28115918 PMCID: PMC5244591 DOI: 10.1186/s12014-017-9139-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/06/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Detection of low-abundance biomarkers using mass spectrometry (MS) is often hampered by non-target molecules in biological fluids. In addition, current procedures for sample preparation increase sample consumption and limit analysis throughput. Here, a simple strategy is proposed to construct an antibody-modified target plate for high-sensitivity MS detection of target markers such as insulin, in biological fluids. METHODS The target plate was first modified with gold nanoparticle, and then functionalized with corresponding antibody through chemical conjugation. Clinical specimens were incubated onto these antibody-functionalized target plates, and then subjected to matrix assisted laser desorption ionization mass spectrometry analysis. RESULTS Insulin in samples was enriched specifically on this functional plate. The detection just required low-volume samples (lower than 5 µL) and simplified handling process (within 40 min). This method exhibited high sensitivity (limit of detection in standard samples, 0.8 nM) and good linear correlation of MS intensity with insulin concentration (R2 = 0.994). More importantly, insulin present in real biological fluids such as human serum and cell lysate could be detected directly by using this functional target plate without additional sample preparations. CONCLUSIONS Our method is easy to manipulate, cost-effective, and with a potential to be applied in the field of clinical biomarker detection.
Collapse
Affiliation(s)
- Kai Liang
- Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Wu
- Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,GuangDong Bio-healtech Advanced Co., Ltd, Foshan City, 52800 GuangDong Province China
| | - Yan Li
- Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
34
|
Ma DL, Wang M, Liu C, Miao X, Kang TS, Leung CH. Metal complexes for the detection of disease-related protein biomarkers. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Liu B, Liu X, Shi S, Huang R, Su R, Qi W, He Z. Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomater 2016; 40:100-118. [PMID: 26921775 DOI: 10.1016/j.actbio.2016.02.035] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED Surface plasmon resonance (SPR) biosensors have many possible applications, but are limited by sensor chip surface fouling, which blocks immobilization and specific binding by the recognizer elements. Therefore, there is a pressing need for the development of antifouling surfaces. In this paper, the mechanisms of antifouling materials were firstly discussed, including both theories (hydration and steric hindrance) and factors influencing antifouling effects (molecular structures and self-assembled monolayer (SAM) architectures, surface charges, molecular hydrophilicity, and grafting thickness and density). Then, the most recent advances in antifouling materials applied on SPR biosensors were systematically reviewed, together with the grafting strategies, antifouling capacity, as well as their merits and demerits. These materials included, but not limited to, zwitterionic compounds, polyethylene glycol-based, and polysaccharide-based materials. Finally, the prospective research directions in the development of SPR antifouling materials were discussed. STATEMENT OF SIGNIFICANCE Surface plasmon resonance (SPR) is a powerful tool in monitoring biomolecular interactions. The principle of SPR biosensors is the conversion of refractive index change caused by molecular binding into resonant spectral shifts. However, the fouling on the surface of SPR gold chips is ubiquitous and troublesome. It limits the application of SPR biosensors by blocking recognition element immobilization and specific binding. Hence, we write this paper to review the antifouling mechanisms and the recent advances of the design of antifouling materials that can improve the accuracy and sensitivity of SPR biosensors. To our knowledge, this is the first review focusing on the antifouling materials that were applied or had potential to be applied on SPR biosensors.
Collapse
|
36
|
Silver nanoflower–reduced graphene oxide composite based micro-disk electrode for insulin detection in serum. Biosens Bioelectron 2016; 80:307-314. [DOI: 10.1016/j.bios.2016.01.086] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 11/23/2022]
|
37
|
Singh V, Rodenbaugh C, Krishnan S. Magnetic Optical Microarray Imager for Diagnosing Type of Diabetes in Clinical Blood Serum Samples. ACS Sens 2016; 1:437-443. [PMID: 27231720 DOI: 10.1021/acssensors.5b00273] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Due to rapidly rising rates of diabetes and prediabetic conditions worldwide and the associated lethal complications, it is imperative to devise new diagnostic tools that reliably and directly measure insulin levels in clinical samples. Herein, we report a simple and sensitive direct imaging of insulin levels in diabetic patient samples using a surface plasmon resonance microarray imager (SPRi). To enhance sensitivity, we utilized magnetic nanoparticles (MNPs) to capture insulin from serum samples either directly or via a capture antibody immobilized on MNPs. The insulin-captured nanoparticles were allowed to bind surface insulin-antibody for detection from pixel intensity increase using a charge coupled device (CCD) built-in with the SPRi. We have compared the analytical figures-of-merit of the SPRi immunoarray on detecting insulin prepared in various percentages of serum solutions. A four parameter logistic model was used to obtain the best fit of microarray responses with insulin concentration and indicated the cooperative binding of insulin-nanoparticle conjugates to surface antibody in both the buffer insulin and the serum insulin conjugates with MNPs. The cooperativity effect is attributed to the greater association of magnetic nanoparticle-bound insulin molecules with increasing concentration of insulin binding to surface antibody. This is the first report of an SPRi immunoarray to accomplish clinical diagnosis of diabetic and prediabetic conditions based on insulin levels with serum matrix effect analysis and comparison between direct and sandwich insulin assay formats.
Collapse
Affiliation(s)
- Vini Singh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Cassandra Rodenbaugh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Sadagopan Krishnan
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
38
|
Yagati AK, Park J, Cho S. Reduced Graphene Oxide Modified the Interdigitated Chain Electrode for an Insulin Sensor. SENSORS (BASEL, SWITZERLAND) 2016; 16:E109. [PMID: 26784202 PMCID: PMC4732142 DOI: 10.3390/s16010109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 02/02/2023]
Abstract
Insulin is a key regulator in glucose homeostasis and its deficiency or alternations in the human body causes various types of diabetic disorders. In this paper, we present the development of a reduced graphene oxide (rGO) modified interdigitated chain electrode (ICE) for direct capacitive detection of insulin. The impedance properties of rGO-ICE were characterized by equivalent circuit modeling. After an electrochemical deposition of rGO on ICE, the electrode was modified with self-assembled monolayers and insulin antibodies in order to achieve insulin binding reactions. The impedance spectra and capacitances were measured with respect to the concentrations of insulin and the capacitance change (ΔC) was analyzed to quantify insulin concentration. The antibody immobilized electrode showed an increment of ΔC according to the insulin concentration in human serum ranging from 1 ng/mL to 10 µg/mL. The proposed sensor is feasible for label-free and real-time measuring of the biomarker and for point-of-care diagnosis.
Collapse
Affiliation(s)
- Ajay Kumar Yagati
- Department of Biomedical Engineering, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
- Gachon Advanced Institute for Health Science & Technology, Gachon University, 155 Get-Pearl-ro, Yeonsu-gu, Incheon 21999, Korea.
| | - Jinsoo Park
- Gachon Advanced Institute for Health Science & Technology, Gachon University, 155 Get-Pearl-ro, Yeonsu-gu, Incheon 21999, Korea.
| | - Sungbo Cho
- Department of Biomedical Engineering, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
- Gachon Advanced Institute for Health Science & Technology, Gachon University, 155 Get-Pearl-ro, Yeonsu-gu, Incheon 21999, Korea.
| |
Collapse
|
39
|
Li T, Liu Z, Wang L, Guo Y. Gold nanoparticles/Orange II functionalized graphene nanohybrid based electrochemical aptasensor for label-free determination of insulin. RSC Adv 2016. [DOI: 10.1039/c6ra00329j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nanocomposites, gold nanoparticles on Orange II functionalized graphene (AuNPs/O-GNs), were developed to modify the electrode surface for anchoring an insulin binding aptamer.
Collapse
Affiliation(s)
- Tingting Li
- Institute of Environmental Science
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Zhiguang Liu
- Institute of Environmental Science
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Li Wang
- Institute of Environmental Science
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Yujing Guo
- Institute of Environmental Science
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
40
|
Wang M, Wang W, Kang TS, Leung CH, Ma DL. Development of an Iridium(III) Complex as a G-Quadruplex Probe and Its Application for the G-Quadruplex-Based Luminescent Detection of Picomolar Insulin. Anal Chem 2015; 88:981-7. [DOI: 10.1021/acs.analchem.5b04064] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Modi Wang
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wanhe Wang
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Tian-Shu Kang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chung-Hang Leung
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Partner
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
41
|
Debela AM, Ortiz M, Beni V, O'Sullivan CK. Surface functionalisation of carbon for low cost fabrication of highly stable electrochemical DNA sensors. Biosens Bioelectron 2015; 71:25-29. [PMID: 25880835 DOI: 10.1016/j.bios.2015.03.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
An alternative strategy for surface tethering of DNA probes, where highly reactive glassy carbon (GC) substrates are prepared via electrochemical hydrogenation and electrochemical/chemical chlorination is reported. Thiolated DNA probes and alkanethiols were stably immobilised on the halogenated carbon, with electrochemical chlorination being milder, thus producing less damage to the surface. Electrochemical DNA sensors prepared using this surface chemistry on carbon with electrochemical chlorination providing an improved performance, producing a highly ordered surface and the use of lateral spacers to improve steric accessibility to immobilised probes was not required.
Collapse
Affiliation(s)
- Ahmed M Debela
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans, 26, 43007 Tarragona, Spain
| | - Mayreli Ortiz
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans, 26, 43007 Tarragona, Spain.
| | - Valerio Beni
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans, 26, 43007 Tarragona, Spain
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Països Catalans, 26, 43007 Tarragona, Spain; ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
42
|
Lakshmipriya T, Horiguchi Y, Nagasaki Y. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst 2015; 139:3977-85. [PMID: 24922332 DOI: 10.1039/c4an00168k] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In order to detect an extremely low amount of human coagulation factor IX (FIX), poly(ethylene glycol) (PEG)/aptamer co-immobilized surface was constructed using original PEG-polyamine surface modification agents on surface plasmon resonance (SPR) sensor chip. Initially, a gold (Au) sensor chip of SPR was modified using poly(ethylene glycol)-b-poly[2-(N,N-dimethylamino)ethyl methacrylate] (PEG-b-PAMA) followed by treatment with SH-dT20 and was duplexed with anti-FIX aptamer extended using A24. Furthermore, the co-immobilization of pentaethylenehexamine-terminated poly(ethylene glycol) (N6-PEG) on the sensing surface completely quenched bio-fouling. On this dual tethered PEG-surface, we determined that the dissociation constant for FIX-aptamer interaction was 37 ± 10 pM, and the sensitivity of detection could reach up to 800 fM on using aptamer-FIX-antibody sandwich pattern detected by gold nanoparticle-conjugated anti-mouse antibody. We could detect FIX in the presence of abundant albumin. Furthermore, to mimic the actual detection of FIX in clinical samples, we demonstrated our experimental results with human blood plasma instead of FIX. Higher-sensitivity was attained because of dual polymers immobilized on Au surface, and this can emerge as a common strategy for any aptamer-protein interactions. The selective binding of aptamer in human blood plasma described here indicates the suitability of the present strategy for detection in clinically relevant samples.
Collapse
Affiliation(s)
- Thangavel Lakshmipriya
- Department of Material Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.
| | | | | |
Collapse
|
43
|
Grover Shah V, Ray S, Karlsson R, Srivastava S. Calibration-free concentration analysis of protein biomarkers in human serum using surface plasmon resonance. Talanta 2015; 144:801-8. [PMID: 26452893 DOI: 10.1016/j.talanta.2015.06.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Abstract
In complex biological samples such as serum, determination of specific and active concentration of target proteins, independent of a calibration curve, will be valuable in many applications. Calibration-free concentration analysis (CFCA) is a surface plasmon resonance (SPR)-based label-free approach, which calculates active concentration of proteins using their known diffusion coefficient and observed changes in binding rates at different flow rates under diffusion-limited conditions. Here, for the first time we demonstrate the application of CFCA for determining protein biomarker abundance, specifically serum amyloid A (SAA), directly in the serum samples of patients suffering from different infectious and non-infectious diseases. The assay involves preparation of appropriate reaction surfaces by immobilizing antibodies on CM5 chips via amine coupling followed by serum sample preparation and injection over activated and reference surfaces at flow-rates of 5 and 100 μL/min. The system was validated in healthy and diseased (infectious and non-infectious) serum samples by quantifying two different proteins: β2-microglobulin (β2M) and SAA. All concentration assays were performed for nearly 100 serum samples, which showed reliable quantification in unattended runs with high accuracy and sensitivity. The method could detect the serum β2M to as low as 13 ng/mL in 1000-fold serum dilution, indicating the possible utility of this approach to detect low abundance protein biomarkers in body fluids. Applying the CFCA approach, significant difference in serum abundance of SAA was identified in diseased subjects as compared to the healthy controls, which correlated well with our previous proteomic investigations. Estimation of SAA concentration for a subset of healthy and diseased sera was also performed using ELISA, and the trend was observed to be similar in both SPR assay and ELISA. The reproducibility of CFCA in various serum samples made the interpretation of assay simple and reliable. This study illustrates a significant step forward in rapid monitoring of several protein markers in serum samples, with utility in biomarker validation and other therapeutic applications.
Collapse
Affiliation(s)
- Veenita Grover Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Wipro GE Healthcare, Mumbai, India
| | - Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
44
|
Heileman K, Daoud J, Hasilo C, Gasparrini M, Paraskevas S, Tabrizian M. Microfluidic platform for assessing pancreatic islet functionality through dielectric spectroscopy. BIOMICROFLUIDICS 2015; 9:044125. [PMID: 26339324 PMCID: PMC4552695 DOI: 10.1063/1.4929652] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/14/2015] [Indexed: 05/07/2023]
Abstract
Human pancreatic islets are seldom assessed for dynamic responses to external stimuli. Thus, the elucidation of human islet functionality would provide insights into the progression of diabetes mellitus, evaluation of preparations for clinical transplantation, as well as for the development of novel therapeutics. The objective of this study was to develop a microfluidic platform for in vitro islet culture, allowing the multi-parametric investigation of islet response to chemical and biochemical stimuli. This was accomplished through the fabrication and implementation of a microfluidic platform that allowed the perifusion of islet culture while integrating real-time monitoring using impedance spectroscopy, through microfabricated, interdigitated electrodes located along the microchamber arrays. Real-time impedance measurements provide important dielectric parameters, such as cell membrane capacitance and cytoplasmic conductivity, representing proliferation, differentiation, viability, and functionality. The perifusion of varying glucose concentrations and monitoring of the resulting impedance of pancreatic islets were performed as proof-of-concept validation of the lab-on-chip platform. This novel technique to elucidate the underlying mechanisms that dictate islet functionality is presented, providing new information regarding islet function that could improve the evaluation of islet preparations for transplantation. In addition, it will lead to a better understanding of fundamental diabetes-related islet dysfunction and the development of therapeutics through evaluation of potential drug effects.
Collapse
Affiliation(s)
- K Heileman
- Biomedical Engineering Department, McGill University , Montreal, Quebec H3A 2B4, Canada
| | - J Daoud
- Biomedical Engineering Department, McGill University , Montreal, Quebec H3A 2B4, Canada
| | - C Hasilo
- Department of Surgery, McGill University , Montreal, Quebec H3A 0G4, Canada
| | - M Gasparrini
- Department of Surgery, McGill University , Montreal, Quebec H3A 0G4, Canada
| | - S Paraskevas
- Department of Surgery, McGill University , Montreal, Quebec H3A 0G4, Canada
| | - M Tabrizian
- Biomedical Engineering Department, McGill University , Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
45
|
Ku YF, Li HY, Hsieh WH, Chau LK, Chang GE. Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers. OPTICS EXPRESS 2015; 23:14850-9. [PMID: 26072843 DOI: 10.1364/oe.23.014850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present an investigation on the use of low-index cavity layers to enhance the sensitivity of injection-molded guided-mode resonance (GMR) sensors. By adjusting the sputtering parameters, a low-index cavity layer is created at the interface between the waveguide layer and the substrate. Refractive index measurements show that a sensitivity enhancement of up to 220% is achieved with a cavity layer, in comparison to a reference GMR sensor without a cavity layer. Finite-element-method simulations were performed, and the results indicate that the cavities significantly redistribute the resonance mode profile and thus enhances the sensitivity. The present investigation demonstrates a new method for enhancing the sensitivity of injection-molded GMR sensors for high-sensitivity label-free biosensing.
Collapse
|
46
|
Akremi A, Beji M, Baklouti A. Synthesis of Bis{( S-methyl)azolespoly(ethylene oxide)} from 3,6-dioxa-1,8-octanedithiol. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ali Akremi
- Chemistry Department; HIEST, Carthage University; Borj Cedriya Tunis
| | - Mohamed Beji
- Chemistry Department; IPEIT, El Manar University; Tunis
| | - Ahmed Baklouti
- Chemistry Department, Science Faculty; El Manar University; Tunis
| |
Collapse
|
47
|
Singh R, Hong S, Jang J. Mechanical desorption of immobilized proteins using carbon dioxide aerosols for reusable biosensors. Anal Chim Acta 2015; 853:588-595. [DOI: 10.1016/j.aca.2014.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
|
48
|
Yeo ELL, Chua AJS, Parthasarathy K, Yeo HY, Ng ML, Kah JCY. Understanding aggregation-based assays: nature of protein corona and number of epitopes on antigen matters. RSC Adv 2015. [DOI: 10.1039/c4ra12089b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
In this study, we systematically examine how the nature of the protein corona on NPs, formed from either antibody or antigen, and how the number of binding sites or epitopes on the antigen affect aggregation.
Collapse
Affiliation(s)
- Eugenia Li Ling Yeo
- Nanomedicine & Nanorobotics Laboratory
- Department of Biomedical Engineering
- National University of Singapore
- Singapore 117575
| | - Anthony Jin Shun Chua
- Flavivirology Laboratory
- Department of Microbiology
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - Krupakar Parthasarathy
- Flavivirology Laboratory
- Department of Microbiology
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - Hui Yu Yeo
- Flavivirology Laboratory
- Department of Microbiology
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - Mah Lee Ng
- Flavivirology Laboratory
- Department of Microbiology
- Yong Loo Lin School of Medicine
- National University Health System
- National University of Singapore
| | - James Chen Yong Kah
- Nanomedicine & Nanorobotics Laboratory
- Department of Biomedical Engineering
- National University of Singapore
- Singapore 117575
| |
Collapse
|
49
|
Surface Plasmon Resonance Based Label-Free Detection of Salmonella using DNA Self Assembly. Appl Biochem Biotechnol 2014; 175:1330-43. [DOI: 10.1007/s12010-014-1319-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
|
50
|
Abstract
Affinity-based biosensors (ABBs) have started to be considered in sport medicine and doping control analysis because they are cheap, easy to use and sufficiently selective analytical devices, characterized by a reversible interaction with the analyte under investigation allowing the use of the same sensor for multiple analyses. In this review we describe the main categories of substances reported in the World Anti-Doping Agency Prohibited List and how ABBs may contribute to their detection. Although several ABBs proposed in the last few years display limit of detections that are in principle matching the World Anti-Doping Agency requirements, their application in the framework of 'traditional' antidoping tests seems quite unlikely, mainly because of the still insufficient selectivity especially in the case of 'pseudo-endogenous' compounds, and on the lack of complete information regarding potential matrix effects in real samples and following their routine use. At the same time, ABBs could contribute to fill a significant information gap concerning complementary evidence that can be obtained from their use 'on the spot', as well as to preselect a risk population of individuals to be targeted for a full antidoping test; while in sport medicine they could contribute to obtaining analytical information of physiological relevance from the measurement of specific parameters or markers before, during and after physical exercise.
Collapse
|