1
|
Noreen S, Ishaq I, Saleem MH, Ali B, Muhammad Ali S, Iqbal J. Electrochemical biosensing in oncology: a review advancements and prospects for cancer diagnosis. Cancer Biol Ther 2025; 26:2475581. [PMID: 40079211 PMCID: PMC11913392 DOI: 10.1080/15384047.2025.2475581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/29/2024] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Early and precise diagnosis of cancer is pivotal for effective therapeutic intervention. Traditional diagnostic methods, despite their reliability, often face limitations such as invasiveness, high costs, labor-intensive procedures, extended processing times, and reduced sensitivity for early-stage detection. Electrochemical biosensing is a revolutionary method that provides rapid, cost-effective, and highly sensitive detection of cancer biomarkers. This review discusses the use of electrochemical detection in biosensors to provide real-time insights into disease-specific molecular interactions, focusing on target recognition and signal generation mechanisms. Furthermore, the superior efficacy of electrochemical biosensors compared to conventional techniques is explored, particularly in their ability to detect cancer biomarkers with enhanced specificity and sensitivity. Advancements in electrode materials and nanostructured designs, integrating nanotechnology, microfluidics, and artificial intelligence, have the potential to overcome biological interferences and scale for clinical use. Research and innovation in oncology diagnostics hold potential for personalized medicine, despite challenges in commercial viability and real-world application.
Collapse
Affiliation(s)
- Sana Noreen
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Izwa Ishaq
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Muhammad Ali
- Nursing Department, Communicable Disease Center Hamad Medical Corporation, Doha, Qatar
| | - Javed Iqbal
- Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
2
|
Wang M, Zheng L, Sun F, Ye Q, Liang P, Pang K, Ye Z, Wang Y. Revolutionizing Escherichia coli detection in real samples with digital SERS aptamer sensor technology. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126314. [PMID: 40311255 DOI: 10.1016/j.saa.2025.126314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Aptamer sensors based on surface-enhanced Raman scattering (SERS) technology have demonstrated great potential in the ultrasensitive and rapid detection of Escherichia coli (E. coli). Herein, this paper presents a digital SERS aptamer sensor. This sensor integrates ordered nanoscale array synthesis technology and digital analysis technology, enabling highly sensitive and rapid bacterial quantification. The ordered monolayer gold nanosphere arrays (Au NS) can form uniform and dense "hot spots" on the silicon wafer due to their uniform spherical structures and narrow gaps. Moreover, digital SERS is adopted to further optimize the signal uniformity so as to achieve precise quantification. The sensor modules are combined together through base pairing. The aptamers labeled with Raman tags are detached from the complementary DNA due to the competition of the target substance, thus realizing the detection of E. coli. The digital SERS aptamer sensor has been verified to possess excellent selectivity and reproducibility. It has a wide dynamic linear detection range from 1.0 * 101 to 1.0 * 109 CFU/ml and a detection limit of 0.657 CFU/ml, maintaining excellent specificity even in the presence of mixed bacterial interference. The spiked recoveries in actual samples range from 98.80 % to 99.81 %. Leveraging different aptamers and digital analysis, the sensor holds promise for food safety and environmental monitoring applications.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Li Zheng
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Fan Sun
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Qingdan Ye
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| | - Kun Pang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zihong Ye
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yufeng Wang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Choi SJ, Lee MH, Liang Y, Lin EC, Khanthaphixay B, Leigh PJ, Hwang DS, Yoon JY. Machine learning classification of quorum sensing-induced bacterial aggregation using flow rate assays on paper chips toward bacterial species identification in potable water sources. Biosens Bioelectron 2025; 284:117563. [PMID: 40349566 DOI: 10.1016/j.bios.2025.117563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Preventing waterborne disease caused by bacteria is especially important in low-resource settings, where skilled personnel and laboratory equipment are scarce. This work reports a straightforward method for classifying bacterial species by monitoring the capillary flow rates on a multi-channel paper microfluidic chip, where quorum sensing (QS)-induced bacterial aggregation leads to measurable changes in flow rates, enabling species differentiation. It required no fluorescent molecules, microscope, particles, covalent conjugation, or surface immobilization. Five representative QS molecules and control were added to each bacterial sample, and their different extents of bacterial aggregation resulted in varied flow rates. Flow rates were collected for the duration of the flow to build the learning database, and the XGBoost machine learning algorithm predicted the accuracy for classifying ten bacterial species, including 7 gram-negative and 3 gram-positive species. Three different algorithms were developed for high, medium, and low bacterial concentration ranges, and the classification accuracies of all the algorithms exceeded 75.0 %. Using XGBoost and the previously established database, we tested bacteria in the field water samples and successfully predicted the dominant species. The technology developed in this study, using only QS molecules and a paper microfluidic chip, offers a simple system for detecting microorganisms in drinking water to help prevent waterborne diseases.
Collapse
Affiliation(s)
- Seung-Ju Choi
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, United States; Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min Hee Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Yan Liang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, United States
| | - Ethan C Lin
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Bradley Khanthaphixay
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Preston J Leigh
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus I-CREATE, Incheon, 21983, Republic of Korea.
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, United States; Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, United States; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, United States.
| |
Collapse
|
4
|
Rodriguez A, Purvinsh Y, Zhang J, Rogovskyy AS, Kurouski D. Nano-Infrared Detection and Identification of Bacteria at the Single-Cell Level. Anal Chem 2025; 97:9535-9539. [PMID: 40258302 PMCID: PMC12060090 DOI: 10.1021/acs.analchem.5c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Every year, bacterial infections are responsible for over 7 million deaths globally. Timely detection and identification of these pathogens enable timely administration of antimicrobial agents, which can save thousands of lives. Most of the currently known approaches that can address these needs are time- and labor consuming. In this study, we examine the potential of innovative nano-infrared spectroscopy, also known as atomic force microscopy infrared (AFM-IR) spectroscopy, and machine learning in the identification of different bacteria. We demonstrate that a single bacteria cell is sufficient to identify Borreliella burgdorferi, Escherichia coli, Mycobacterium smegmatis, and two strains of Acinetobacter baumannii with 100% accuracy. The identification is based on the vibrational bands that originate from the components of the cell wall as well as the interior biomolecules of the bacterial cell. These results indicate that nano-IR spectroscopy can be used for the nondestructive, confirmatory, and label-free identification of pathogenic microorganisms at the single-cell level.
Collapse
Affiliation(s)
- Axell Rodriguez
- Department of Biochemistry
and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Yana Purvinsh
- Department of Biochemistry
and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Junjie Zhang
- Department of Biochemistry
and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Artem S. Rogovskyy
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824, United States
| | - Dmitry Kurouski
- Department of Biochemistry
and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Mikagi A, Hayashita T. Design and function of boronic acid-based polyamidoamine dendrimer probes for bacteria recognition. ANAL SCI 2025; 41:541-555. [PMID: 39899247 DOI: 10.1007/s44211-025-00724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Selective bacterial recognition and early diagnosis are urgently required to address the growing problem of antimicrobial resistance and are crucial for achieving sustainable development goals (SDGs). Saccharide recognition is a promising solution because bacterial surfaces are composed of specific polysaccharides. In this study, we summarize our investigations into the use of boronic acid analogs for bacterial recognition, which shows potential for broad applications in various bacterial detection methods using nanoprobes. Methods were developed for the convenient, sensitive, and selective recognition of bacteria using spherical poly(amidoamine) dendrimers functionalized with boronic acids. We evaluated various measurement protocols (turbidity and fluorescence), interactions with bacterial surfaces (electrostatic and hydrophobic), recognition targets, and the further development of ditopic and benzoxaborole-based probes. As these methods require less than ten min, boronic acid-based recognition could serve as a powerful tool for rapid and simple clinical applications in the future. We believe that our study makes a significant contribution to the field, as the findings can be effectively applied to other studies involving boronic acid compounds or targeting bacterial surface saccharides.
Collapse
Affiliation(s)
- Ayame Mikagi
- Department of Materials and Life Sciences, Faculty of Science and Technology Graduate School of Science and Technology, Sophia University, Tokyo, 102-8554, Japan
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Faculty of Science and Technology Graduate School of Science and Technology, Sophia University, Tokyo, 102-8554, Japan.
| |
Collapse
|
6
|
Chen W, Xiao H, Lin M, Zhou J, Xuan Q, Cui X, Zhao S. Preparation and evaluation of IgY against human papillomavirus. J Virol Methods 2025; 334:115115. [PMID: 39921191 DOI: 10.1016/j.jviromet.2025.115115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Human papillomavirus (HPV) infection is a major global health challenge and is closely related to the occurrence of diseases such as cervical cancer. Unfortunately, effective treatments are still lacking. In view of the advantages of antibody drugs, antibody-targeted therapy may become one of the means of treatment and prevention of HPV infection. This study explores the potential of antibody-targeted therapy using immunization with HPV nine-valent vaccine in Leghorn chickens. The resulting egg yolk antibodies (IgY) was extracted from eggs using the bitter-ammonium sulfate method and confirmed through SDS-PAGE analysis. The neutralizing titer was performed by pseudovirus-neutralizing antibody experiments, which could reach 1:2000 (18.2 μg/mL). This successful preparation of IgY against HPV 6/11/16/18/31/33/45/52/58-L1 protein showed its potential as a therapeutic agent, particularly post-HPV16 infection. This work lays the groundwork for HPV-specific IgY preparation and contributes to advancing targeted therapies for cervical cancer, prompting further research in HPV-related therapeutic approaches.
Collapse
Affiliation(s)
- Weiguang Chen
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Huanxin Xiao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Mingxia Lin
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiqing Zhou
- Locking Antibody (Hunan) Medical Technology Co. Ltd., Hunan 411100, PR China
| | - Qiancheng Xuan
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Liu M, Wei W, Li Y, Yan K, Liu S, Zhang S, Lu Z, Wang D. The design of nanofiber-based sensors for visual identification of pathogenic bacterial contamination. Int J Biol Macromol 2025; 309:142796. [PMID: 40185438 DOI: 10.1016/j.ijbiomac.2025.142796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/28/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Pathogenic bacteria pose a serious threat to human health, and an excessively long detection time may cause patients to miss the optimal treatment opportunity. Therefore, rapid and accurate bacterial detection methods are highly significant for the diagnosis of diseases. This study aimed to develop a simple and portable detection platform for the highly sensitive colorimetric detection of P. aeruginosa, S. aureus, and E. coli. The functional NFM with a double-layer structure was used as the research material. One layer consisted of a nanofiber film loaded with Fe(III), while the other layer was a hydrophilic polymer.The functional NFM demonstrated a detection limit of 10 CFU/mL for pathogenic bacteria, with a detection time of only 10 min. This platform showed great potential in environmental and food safety detection.
Collapse
Affiliation(s)
- Ming Liu
- Key Laboratory of Textile Fiber and Products Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Wei Wei
- Key Laboratory of Textile Fiber and Products Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Yiying Li
- Key Laboratory of Textile Fiber and Products Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Kun Yan
- Key Laboratory of Textile Fiber and Products Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Shan Liu
- Key Laboratory of Textile Fiber and Products Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Siwei Zhang
- Key Laboratory of Textile Fiber and Products Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zhentan Lu
- Key Laboratory of Textile Fiber and Products Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
8
|
Zhang J, Fu Y, Fong CY, Hua H, Li W, Khoo BL. Advancements in microfluidic technology for rapid bacterial detection and inflammation-driven diseases. LAB ON A CHIP 2025. [PMID: 40201957 DOI: 10.1039/d4lc00795f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Bacterial detection is pivotal for the timely diagnosis and effective treatment of infectious diseases. Microfluidic platforms offer advantages over traditional methods, including heightened sensitivity, rapid analysis, and minimal sample volume requirements. Traditional clinical methods for bacterial identification often involve extended processing times and necessitate high pathogen concentrations, resulting in delayed diagnoses and missed treatment opportunities. Microfluidic technology overcomes these limitations by facilitating rapid bacterial identification at lower biomass levels, thus ensuring prompt and precise treatment interventions. Additionally, bacteria-driven inflammation has been associated with the development and progression of various diseases, including cancer. Elucidating the complex interplay between bacteria, inflammation, and disease is essential for devising effective disease models and therapeutic strategies. Microfluidic platforms have been used to construct in vitro disease models that accurately replicate the intricate microenvironment that bacteria-driven inflammation affects. These models offer valuable insights into bacteria-driven inflammation and its impact on disease progression, such as cancer metastasis and therapeutic responses. This review examines recent advancements in bacterial detection using microfluidics and assesses the potential of this technology as a robust tool for exploring bacteria-driven inflammation in the context of cancer.
Collapse
Affiliation(s)
- Jing Zhang
- College of Basic Medicine, Hebei University, Baoding, China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding 071000, China
| | - Yatian Fu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Ching Yin Fong
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Haojun Hua
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Wei Li
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen-Futian Research Institute, Shenzhen 518057, China
| |
Collapse
|
9
|
Liu Y, Wang M, Zhou G, Zhang Y, Hai W. Magnetic MOF-based sensing platform integrated with graphene field-effect transistors for ultrasensitive detection of infectious disease. Bioelectrochemistry 2025; 165:108951. [PMID: 40056885 DOI: 10.1016/j.bioelechem.2025.108951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/10/2025]
Abstract
The development of highly sensitive methods for detecting infectious diseases is crucial for preventing disease spread. In this study, a novel sensing platform for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogens was developed by combining a magnetic metal-organic framework (Fe3O4@MIL-100) with graphene field-effect transistors (GFET). The Fe3O4@MIL-100 magnetic MOF was functionalized with SARS-CoV-2-specific antibodies, enabling highly selective pathogen capture in a phosphate-buffered solution. Following magnetic separation, the captured pathogens were detected using GFETs, with a linear detection range of 1 ag/mL to 10 ng/mL and a detection limit as low as 8.60 ag/mL. Furthermore, the platform has been successfully applied to human serum samples, highlighting its remarkable potential for practical application.
Collapse
Affiliation(s)
- Yushuang Liu
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China; Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China.
| | - Mingxuan Wang
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Guiqi Zhou
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Ying Zhang
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Solid State Chemistry for Battery, Inner Mongolia Engineering Research Center of Lithium-Sulfur Battery Energy Storage, College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| |
Collapse
|
10
|
Wu YL, Jia J, Das J, Riordan KT, Flynn CD, Wang Y, Kelley SO, Odom TW. Antifouling Spiky Nanoelectrodes Enhance Detection of Bacterial mRNA. J Am Chem Soc 2025; 147:7868-7874. [PMID: 39989312 DOI: 10.1021/jacs.4c18175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Nanomaterials have extensive applications in the development of sensitive biosensors, but the influence of their specific structural properties remains unclear. This work presents a platform that can provide mechanistic insight into how nanostructured electrodes improve the performance of electrochemical biosensors. We designed nanoelectrodes with sub-10 nm spike features through a combination of top-down lithography and solution-based synthesis. These anisotropic structures facilitated rapid electron-transfer, minimized biofouling, and promoted efficient target capture. Using these spiky nanoelectrodes in a biosensor, we detected bacterial mRNA at aM-levels and within 3 min. Our findings reveal the mechanism underlying signal enhancement from high-curvature regions on nanostructured electrodes, highlighting the structure-property relationships of nanostructures in electrochemical sensing.
Collapse
Affiliation(s)
- Yuhao Leo Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jin Jia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jagotamoy Das
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kimberly T Riordan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
| | - Connor D Flynn
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
| | - Yi Wang
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shana O Kelley
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60642, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Fan Y, Liao Y, Gao Z, Wang H, Li Y, Shi C, Ma C. N-Doped Porous Carbon Synergistic Freezing-Induced DNA with Catalyzed Hairpin Assembly Enables Electrochemical One-Pot Detection of Pathogen in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4342-4352. [PMID: 39920042 DOI: 10.1021/acs.jafc.4c11487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
A DNA electrochemical interface biosensor based on screen-printed carbon electrodes (SPCEs) holds promise for point-of-care testing (POCT) detection of pathogens in food safety. Nevertheless, SPCE commonly has a rough surface and suffers from a relatively low electron transfer rate, disorder of DNA capture probes (CPs), and the steric hindrance effect of target nucleic acid binding. These issues lead to a low sensitivity. Herein, a simple and rapid electrochemical biosensor based on N-doped porous carbon (NPC)-modified SPCE and freezing-directed DNA combined with catalyzed hairpin assembly (CHA) was constructed for the one-pot detection of pathogens in food samples without time-consuming growth cultures. The biosensor was constructed by SPCE modified with NPC for enhanced electrochemical properties, and the DNA CP designed for CHA was stably fixed on the electrode for a high hybridization efficiency. Moreover, the signals amplified by CHA enable the selective and sensitive detection of pathogens without washing steps. This one-pot method is simple and sensitive with a wide detection linear range of 101 to 107 CFU/mL and limit of detection of 5 CFU/mL for Escherichia coli and shows specificity against other coexisting pathogens. The whole detection of pathogens in complex samples is performed only within 60 min from sample-to-answer, which has great potential for POCT of pathogens in food safety.
Collapse
Affiliation(s)
- Yaofang Fan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| | - Yu Liao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| | - Zhiying Gao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| | - Haoran Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of the Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, 266071 Qingdao, China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| |
Collapse
|
12
|
Tan H, Zeng M, Fang C, Zhu X, Liu M, Long Y, Li H, Zhang Y, Yao S. A glutathione-sensitive small molecule fluorescent probe for rapid and facile gut microbiota sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125408. [PMID: 39550817 DOI: 10.1016/j.saa.2024.125408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
The human gut microbiota plays an integral role in the management of human health. Effective detection of gut-derived bacteria and their metabolites, as well as assessing antibiotic susceptibility, are crucial for the treatment of intestinal bacteria-related diseases. Herein, we designed and developed a dual-site (nitrophenyl sulfide group and aldehyde group) fluorescent probe DNO-HC, which could rapidly (∼1 min) respond to glutathione (GSH) with low background fluorescence, high selectivity, and low detection limits (45 nM). Moreover, the probe can be used to evaluate the metabolic levels (GSH) in different gut-derived bacteria and discriminate their Gram status. Remarkably, the assessment of antimicrobial susceptibility to a variety of antibiotics has been successfully accomplished utilizing this probe. It offers a promising strategy for the treatment of diseases associated with bacterial infections.
Collapse
Affiliation(s)
- Hongli Tan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Meizi Zeng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China
| | - Cong Fang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ying Long
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
13
|
Liu R, Li J, Salena BJ, Li Y. Aptamer and DNAzyme Based Colorimetric Biosensors for Pathogen Detection. Angew Chem Int Ed Engl 2025; 64:e202418725. [PMID: 39551709 PMCID: PMC11753613 DOI: 10.1002/anie.202418725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
The detection of pathogens is critical for preventing and controlling health hazards across clinical, environmental, and food safety sectors. Functional nucleic acids (FNAs), such as aptamers and DNAzymes, have emerged as versatile molecular tools for pathogen detection due to their high specificity and affinity. This review focuses on the in vitro selection of FNAs for pathogens, with emphasis on the selection of aptamers for specific biomarkers and intact pathogens, including bacteria and viruses. Additionally, the selection of DNAzymes for bacterial detection is discussed. The integration of these FNAs into colorimetric biosensors has enabled the development of simple, cost-effective diagnostic platforms. Both non-catalytic and catalytic colorimetric biosensors are explored, including those based on gold nanoparticles, polydiacetylenes, protein enzymes, G-quadruplexes, and nanozymes. These biosensors offer visible detection through color changes, making them ideal for point-of-care diagnostics. The review concludes by highlighting current challenges and future perspectives for advancing FNA-based colorimetric biosensing technologies for pathogen detection.
Collapse
Affiliation(s)
- Rudi Liu
- Department of Biochemistry and Biomedical SciencesMichael G. DeGroote Institute of Infectious Disease ResearchSchool of Biomedical EngineeringBiointerfaces InstituteMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical SciencesMichael G. DeGroote Institute of Infectious Disease ResearchSchool of Biomedical EngineeringBiointerfaces InstituteMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Bruno J. Salena
- Department of MedicineMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical SciencesMichael G. DeGroote Institute of Infectious Disease ResearchSchool of Biomedical EngineeringBiointerfaces InstituteMcMaster University1280 Main Street WestHamiltonOntarioL8S 4K1Canada
| |
Collapse
|
14
|
Guo C, Tang Q, Yuan J, Li S, Yang X, Li Y, Zhou X, Ji H, Qin Y, Wu L. Multiplexed bacterial recognition based on "All-in-One" semiconducting polymer dots sensor and machine learning. Talanta 2025; 282:126917. [PMID: 39341060 DOI: 10.1016/j.talanta.2024.126917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The accurate discrimination of bacterial infection is imperative for precise clinical diagnosis and treatment. Here, this work presents a simplified sensor array utilizing "All-in-One" Pdots for efficient discrimination of diverse bacterial samples. The "All-in-One" Pdots sensor (AOPS) were synthesized using three components that exhibit fluorescence resonance energy transfer (FRET) effect, facilitating the efficient integration of multiple discrimination channels to generate specific fluorescence response patterns through a single detection under single-wavelength excitation. Additionally, machine learning techniques were employed to visually represent the fluorescence response patterns of AOPS upon exposure to bacterial metabolites derived from diverse bacterial species. The as-prepared sensor platform demonstrated excellent performance in analyzing eight common bacteria, drug-resistant strains, mixed bacterial samples, bacterial biofilms and real samples, presenting significant potential in the identification of complex samples for bacterial analysis.
Collapse
Affiliation(s)
- Conglin Guo
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Jige Yuan
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Shijie Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Xiaoxiao Yang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Yuechen Li
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Xiaobo Zhou
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Haiwei Ji
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China; School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
15
|
Jiang J, Wei Y, Li S, Mo J, Li X, Cao M, Wang H. Study on the application of microfluidic-based in vitro diagnostic technology in pathogenic detection of respiratory tract infections. J Transl Med 2024; 22:1092. [PMID: 39623429 PMCID: PMC11613843 DOI: 10.1186/s12967-024-05788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
OBJECTIVE To investigate the clinical application value of microfluidic-based in vitro diagnostic (IVD) technology in pathogenic detection of respiratory tract infections. METHODS A total of 300 clinical samples, including blood, bronchoalveolar lavage fluid, and pleural effusion, were collected from patients with respiratory tract infections. The samples were randomly divided into three groups: A, B, and C, with 100 cases in each group. Group A used traditional microbiological detection methods, Group B used metagenomic next-generation sequencing (mNGS) technology, and Group C used both microfluidic-based IVD technology and traditional microbiological detection methods to detect pathogenic microorganisms in the clinical samples. The positive detection rate, detection time, and detection cost were compared among the groups. The diagnostic performance of each group was compared using the Receiver Operating Characteristic (ROC) curve. RESULTS Traditional microbiological detection identified 38 positive samples (38%), including 45 pathogens; mNGS technology identified 95 positive samples (95%), including 210 pathogens; microfluidic-based IVD technology identified 96 positive samples (96%), including 158 pathogens. Microfluidic-based IVD technology had a significantly higher positive detection rate for pathogenic microorganisms compared to traditional culture techniques (96% vs 38%, χ2 = 122.0, P < 0.01), and it was also faster and cheaper than mNGS technology. ROC analysis showed that compared to traditional microbiological culture results, microfluidic-based IVD technology had significantly increased sensitivity and specificity, similar to mNGS technology. CONCLUSION In respiratory infectious diseases, microfluidic-based IVD technology had a higher detection rate for pathogenic microorganisms than traditional culture methods, and it had advantages in detection time and cost compared to mNGS technology. It could also detect critical drug-resistant genes of pathogens. Hence, microfluidic-based IVD technology can be a viable option for diagnosis and treatment of respiratory infectious diseases.
Collapse
Affiliation(s)
- Jianping Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, 1518 Huanchen North Road, Jiaxing, 314000, Zhejiang, China
| | - Yunqi Wei
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, 1518 Huanchen North Road, Jiaxing, 314000, Zhejiang, China
- Department of Respiratory Medicine, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, 314000, Zhejiang, China
| | - Shumin Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, 1518 Huanchen North Road, Jiaxing, 314000, Zhejiang, China
| | - Juanfen Mo
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Xiaosi Li
- Clinical Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Mengqing Cao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, 1518 Huanchen North Road, Jiaxing, 314000, Zhejiang, China.
| | - Haiqin Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, 1518 Huanchen North Road, Jiaxing, 314000, Zhejiang, China.
- Department of Respiratory Medicine, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, 314000, Zhejiang, China.
| |
Collapse
|
16
|
Lee H, Kwon JS, Kim MH, Choi HJ, Kim TW, Lee SH. Swift and precise detection of unlabeled pathogens using a nanogap electrode impedimetric sensor facilitated by electrokinetics. Talanta 2024; 280:126670. [PMID: 39126965 DOI: 10.1016/j.talanta.2024.126670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
For the protection of human health and environment, there is a growing demand for high-performance, user-friendly biosensors for the prompt detection of pathogenic bacteria in samples containing various substances. We present a nanogap electrode-based purely electrical impedimetric sensor that utilizes the dielectrophoresis (DEP) mechanism. Our nanogap sensor can directly and sensitively detect pathogens present at concentrations as low as 1-10 cells/assay in buffers and drinking milk without the need for separation, purification, or specific ligand binding. This is achieved by minimizing the electrical double-layer effect and electrode polarization in nanogap impedance sensors, reducing signal loss. In addition, even at low DEP voltages, nanogap sensors can quickly establish strong DEP forces between the nanogap electrodes to control the spatial concentration of pathogens around the electrodes. This activates and stabilizes inter-electrode signal transmission along the nanogap-aligned pathogens, increasing sensitivity and reducing errors during repeated measurements. The DEP-enabled nanogap impedance sensor developed in this study is valuable for a variety of pathogen detection and monitoring systems including point-of-care testing (POCT) as it can detect pathogens in diverse samples containing multiple substances quickly and with high sensitivity, is compatible with complex solutions such as food and beverages, and provides highly reproducible results without the need for separate binding and separation processes.
Collapse
Affiliation(s)
- Hyunjung Lee
- Graduate School of Flexible and Printable Electronics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Jung Sun Kwon
- BioNano Health Guard Research Center (H-GUARD), Daejeon, 34141, Republic of Korea
| | - Min Hyeok Kim
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Hak-Jong Choi
- Nano-Convergence Manufacturing Systems Research Division, Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Tae-Wook Kim
- Graduate School of Flexible and Printable Electronics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sang Hyun Lee
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
17
|
Shalileh F, Shamani N, Golbashy M, Dadmehr M, Hosseini M. Synergistic applications of quantum dots and magnetic nanomaterials in pathogen detection: a comprehensive review. NANOTECHNOLOGY 2024; 36:052002. [PMID: 39413804 DOI: 10.1088/1361-6528/ad8751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
The rapid and accurate detection of pathogens is crucial for effective disease prevention and management in healthcare, food safety, and environmental monitoring. While conventional pathogen detection methods like culture-based techniques and PCR are sensitive and selective, they are often time-consuming, require skilled operators, and are not suitable for point-of-care or on-site testing. To address these limitations, innovative sensor technologies have emerged that leverage the unique properties of nanomaterials. Quantum dots (QDs) and magnetic nanomaterials are two classes of nanomaterials that have shown particular promise for pathogen sensing. This review comprehensively examines the synergistic applications of QDs and magnetic nanomaterials for detecting bacteria, viruses, phages, and parasites.
Collapse
Affiliation(s)
- Farzaneh Shalileh
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Negin Shamani
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Golbashy
- Department of Plant Production and Genetics Engineering, College of Agriculture, Agricultural Sciences and Natural Resources, University of Khuzestan, Mollasani, Iran
| | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
18
|
Murshed M, Mares M, Aljawdah HMA, Mohammed OB, Al-Quraishy S. Morphological and molecular characterization of Eimeria magna infecting local rabbit (Oryctolagus cuniculus) in Alkarg City, Saudi Arabia. J Eukaryot Microbiol 2024; 71:e13044. [PMID: 38962865 DOI: 10.1111/jeu.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Coccidiosis is one of the most prevalent diseases found in local rabbits (Oryctolagus cuniculus), which is caused by the Eimeria. The study aimed to more reliably identify Eimeria species (Eimeria magna) infecting Local Rabbits in Alkarg City, Saudi Arabia, based the method on the molecular properties and morphological and molecular biological techniques. Sub-spheroidal oocysts measuring 21-27 × 12-16 (24 × 14.4) μm (20 n) and with a length/width (L/W) ratio of 0.9-1.1 (1.0) were identified by microscopic analysis of a fecal sample. Oocysts feature a bi-layered wall that is 1.0-1.2 (1.1) μm thick. About two-thirds of the wall's thickness is made up of a smooth outer layer. A polar granule is present, but neither a micropyle nor an oocyst residuum is present. The ovoidal sporozoites measure 15-18 × 8-11 (16.5 × 9.5) μm, have an L/W ratio of 1.6-1.8 (1.7), and take up around 21% of the oocyst's total surface. The mean size of the sub-Stieda body is 1.4 × 2.3 μm, while the average size of the Stieda body is 0.9 × 1.8 μm. The para-Stieda body is lacking. Sporocyst residuum appears membrane-bound and has an uneven form made up of several granules. With two refractile bodies below the striations and pronounced striations at the more pointed end, sporozoites are vermiform, measuring an average of 11.6 × 4.0 μm. The results of the sequencing for the 18S rDNA gene confirmed the species of Eimeria parasites found in the host (rabbits). The current parasite species is closely related to the previously described and deposited E. magna and deeply embedded in the genus Eimeria (family Eimeriidae). According to the findings, single oocyst molecular identification of Eimeria may be accomplished through consistent use of the morphological and molecular results. It is possible to draw the conclusion that the current research supplies relevant facts that help assess the potential infection and future control measures against rabbit coccidiosis to reduce the financial losses that can be incurred by the rabbit industry in Saudi Arabia.
Collapse
Affiliation(s)
- Mutee Murshed
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Mares
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hossam M A Aljawdah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Osama B Mohammed
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Pillai RG, Azyat K, Chan NWC, Jemere AB. Rapid assembly of mixed thiols for toll-like receptor-based electrochemical pathogen sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7021-7032. [PMID: 39283241 DOI: 10.1039/d4ay00983e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Herein, we describe a rapid and facile fabrication of electrochemical sensors utilizing two different toll-like receptor (TLR) proteins as biorecognition elements to detect bacterial pathogen associated molecular patterns (PAMPs). Using potential-assisted self-assembly, binary mixtures of 11-mercaptoundecanoic acid (MUA) and 6-mercapto-1-hexanol (MCH), or MUA and an in-house synthesized zwitterionic sulfobetaine thiol (DPS) were assembled on a gold working electrode within 5 minutes, which is >200 times shorter than other TLR sensors' preparation time. Electrochemical methods and X-ray photoelectron microscopy were used to characterize the SAM layers. SAMs composed of the betaine terminated thiol exhibited superior resistance to nonspecific interactions, and were used to develop the TLR sensors. Biosensors containing two individually immobilized TLRs (TLR4 and TLR9) were fabricated on separate MUA-DPS SAM modified Au electrodes (MUA-DPS/Au) and tested for their response towards their respective PAMPs. The changes to electron transfer resistance in EIS of the TLR4/MUA-DPS/Au sensor showed a detection limit of 4 ng mL-1 for E. coli 0157:H7 endotoxin (lipopolysaccharide, LPS) and a dynamic range of up to 1000 ng mL-1. The TLR4-based sensor showed negligible response when tested with LPS spiked human plasma samples, showing no interference from the plasma matrix. The TLR9/MUA-DPS/Au sensor responded linearly up to 350 μg mL-1 bacterial DNA, with a detection limit of 7 μg mL-1. The rapid assembly of the TLR sensors, excellent antifouling properties of the mixed SAM assembly, small size and ease of operation of EIS hold great promise for the development of a portable and automated broad-spectrum pathogen detection and classification tool.
Collapse
Affiliation(s)
- Rajesh G Pillai
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
| | - Khalid Azyat
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
| | - Nora W C Chan
- Defence Research and Development Canada - Suffield Research Centre, Medicine Hat T1A 8K6, AB, Canada
| | - Abebaw B Jemere
- National Research Council Canada- Quantum and Nanotechnologies Research Center, 11421 Saskatchewan Drive, Edmonton T6G 2M9, AB, Canada.
- Department of Chemistry, Queen's University, Kingston K7L 3N6, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, ON, Canada
| |
Collapse
|
20
|
Swami P, Anand S, Holani A, Gupta S. Impedance Spectroscopy for Bacterial Cell Monitoring, Analysis, and Antibiotic Susceptibility Testing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21907-21930. [PMID: 39385605 DOI: 10.1021/acs.langmuir.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Conventional approaches for bacterial cell analysis are hindered by lengthy processing times and tedious protocols that rely on gene amplification and cell culture. Impedance spectroscopy has emerged as a promising tool for efficient real-time bacterial monitoring, owing to its simple, label-free nature and cost-effectiveness. However, its limited practical applications in real-world scenarios pose a significant challenge. In this review, we provide a comprehensive study of impedance spectroscopy and its practical utilization in bacterial system measurements. We begin by outlining the fundamentals of impedance theory and modeling, specific to bacterial systems. We then offer insights into various strategies for bacterial cell detection and discuss the role of impedance spectroscopy in antimicrobial susceptibility testing (AST) and single-cell analysis. Additionally, we explore key aspects of impedance system design, including the influence of electrodes, media, and cell enrichment techniques on the sensitivity, specificity, detection speed, concentration accuracy, and cost-effectiveness of current impedance biosensors. By combining different biosensor design parameters, impedance theory, and detection principles, we propose that impedance applications can be expanded to point-of-care diagnostics, enhancing their practical utility. This Perspective focuses exclusively on ideally polarizable (fully capacitive) electrodes, excluding any consideration of charge transfer resulting from Faradaic reactions.
Collapse
Affiliation(s)
- Pragya Swami
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Satyam Anand
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Anurag Holani
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Shalini Gupta
- Dept. of Chemical Engineering, Indian Institute of Technology Delhi, Delhi 110016, India
| |
Collapse
|
21
|
Khanal S, Pillai M, Biswas D, Torequl Islam M, Verma R, Kuca K, Kumar D, Najmi A, Zoghebi K, Khalid A, Mohan S. A paradigm shift in the detection of bloodborne pathogens: conventional approaches to recent detection techniques. EXCLI JOURNAL 2024; 23:1245-1275. [PMID: 39574968 PMCID: PMC11579516 DOI: 10.17179/excli2024-7392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/04/2024] [Indexed: 11/24/2024]
Abstract
Bloodborne pathogens (BBPs) pose formidable challenges in the realm of infectious diseases, representing significant risks to both human and animal health worldwide. The review paper provides a thorough examination of bloodborne pathogens, highlighting the serious worldwide threat they pose and the effects they have on animal and human health. It addresses the potential dangers of exposure that healthcare workers confront, which have affected 3 million people annually, and investigates the many pathways by which these viruses can spread. The limitations of traditional detection techniques like PCR and ELISA have been criticized, which has led to the investigation of new detection methods driven by advances in sensor technology. The objective is to increase the amount of knowledge that is available regarding bloodborne infections as well as effective strategies for their management and detection. This review provides a thorough overview of common bloodborne infections, including their patterns of transmission, and detection techniques.
Collapse
Affiliation(s)
- Sonali Khanal
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Manjusha Pillai
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Deblina Biswas
- Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Punjab, 144011, India
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Center for Advanced Innovation Technologies, VSB-Technical University of Ostrava,70800, Ostrava-Poruba, Czech Republic
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Health Research Center, Jazan University, P. O. Box 114, Jazan, 82511, Saudi Arabia
| | - Syam Mohan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
22
|
Cheng CY, Varghese EV, Wang WJ, Yao CY, Chen CH, Li WP. Aggregation-induced emission silence-mediated pathogen detection using a rapidly degradable nanographene-embedded polymersome. J Mater Chem B 2024; 12:10028-10040. [PMID: 39253882 DOI: 10.1039/d4tb01379d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Typical pathogen detection processes are time-consuming and require expensive equipment and professional operators, limiting their practical applicability. Developing a rapid and easy-to-read method of accurately sensing pathogenic bacteria is critical for reducing the spread and risk of infection in high-risk areas. Herein, the synthesis of nanographene (nanoG) that exhibits aggregation-induced emission (AIE) is described. The nanoG was embedded into a hydrophobic shell of poly(lactic-co-glycolic acid) (PLGA) polymersome in a double-emulsion process, significantly enhancing the nanoG luminescence under irradiation at 330 nm due to the enrichment of nanoG between the inner and outer PLGA shells. Both Gram-positive and Gram-negative bacteria can rapidly degrade the PLGA vesicular structure, leading to dispersal of the nanoG inside the shell and silencing the AIE effect. A linear relationship between the bacterial concentration and emissivity was established, and the detection limit was identified. Moreover, the polymersome has excellent selectivity for methicillin-resistant Staphylococcus aureus (MRSA) detection after a screening pretreatment of a bacterial mixture with suitable antibiotics. The AIE silencing could be observed with the naked eye in an MRSA-infected wound treated with the polymersome after 1 h of incubation, demonstrating a high potential for clinical rapid screening applications.
Collapse
Affiliation(s)
- Chia-Yi Cheng
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Eldhose V Varghese
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Jyun Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Yu Yao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chia-Hsiang Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
23
|
Huang A, Dong X, Shen G, He L, Cai C, Liu Q, Niu Q, Xu C. Target Recognition-Triggered Interfacial Electron Transfer Model: Toward Signal-On Photoelectrochemical Aptasensing for Efficient Detection of Staphylococcus aureus Using Ti 3C 2T x-Au NBPs/ZnO NR Composites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20526-20536. [PMID: 39302020 DOI: 10.1021/acs.langmuir.4c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Staphylococcus aureus (S. aureus) is one of the most common foodborne pathogens worldwide, which poses a great threat to public health. It is of utmost importance to develop rapid, simple, and sensitive methods for the determination of S. aureus. A signal-on photoelectrochemical (PEC) aptasensor is constructed herein based on titanium carbide (Ti3C2Tx)-Au nanobipyramids (NBPs)/ZnO nanoarrays (NRs). The reliability and capability of the PEC aptasensor make it suitable for the sensitive and selective determination of S. aureus. First, the electrostatically self-assembled Ti3C2Tx-Au NBP nanomaterial was coated on the ZnO NR surface by a spin-coating method. On the one hand, Ti3C2Tx-Au NBPs can broaden the spectral absorption of ZnO NRs, resulting in Ti3C2Tx-Au NBPs/ZnO NR composites that exhibit a wide range of absorption from the ultraviolet to the infrared region. On the other hand, Ti3C2Tx can reduce the agglomeration of nanoparticles, while Au NBPs can effectively fix the aptamer through the Au-S bond. Specifically, the experimental results show that when S. aureus is present, the Au NBPs-aptamer-S. aureus complex is shed from the electrode surface, altering the interfacial electron transfer model and reducing the steric hindrance. Consequently, an amplified photocurrent signal for the quantitative determination of S. aureus is obtained. Under optimal experimental conditions, a linear correlation is observed between the current response of the aptasensor and the logarithm of the S. aureus concentration (ranging from 1.0 to 1.0 × 106 CFU/mL), with an impressive detection limit as low as 0.5 CFU/mL. Furthermore, the aptasensor has been successfully employed for the detection of S. aureus in milk, with the recovery of 93.0%-99.0%. Hence, this research offers a novel approach for the detection of foodborne pathogens and other noxious substances.
Collapse
Affiliation(s)
- Ao Huang
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiuxiu Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guanghui Shen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Lilong He
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chaoyang Cai
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunxiang Xu
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
24
|
Guo Z, Jiang H, Song A, Liu X, Wang X. Progress and challenges in bacterial infection theranostics based on functional metal nanoparticles. Adv Colloid Interface Sci 2024; 332:103265. [PMID: 39121833 DOI: 10.1016/j.cis.2024.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The rapid proliferation and infection of bacteria, especially multidrug-resistant bacteria, have become a great threat to global public health. Focusing on the emergence of "super drug-resistant bacteria" caused by the abuse of antibiotics and the insufficient and delayed early diagnosis of bacterial diseases, it is of great research significance to develop new technologies and methods for early targeted detection and treatment of bacterial infection. The exceptional effects of metal nanoparticles based on their unique physical and chemical properties make such systems ideal for the detection and treatment of bacterial infection both in vitro and in vivo. Metal nanoparticles also have admirable clinical application prospects due to their broad antibacterial spectrum, various antibacterial mechanisms and excellent biocompatibility. Herein, we summarized the research progress concerning the mechanism of metal nanoparticles in terms of antibacterial activity together with the detection of bacterial. Representative achievements are selected to illustrate the proof-of-concept in vitro and in vivo applications. Based on these observations, we also give a brief discussion on the current problems and perspective outlook of metal nanoparticles in the diagnosis and treatment of bacterial infection.
Collapse
Affiliation(s)
- Zengchao Guo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
25
|
Deng W, Zhu W, Chen T, Sun H, Zhang X. Ultrasensitive integrated circuit sensors based on high-order non-Hermitian topological physics. SCIENCE ADVANCES 2024; 10:eadp6905. [PMID: 39292791 PMCID: PMC11409973 DOI: 10.1126/sciadv.adp6905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
High-precision sensors are of fundamental importance in modern society and technology. Although numerous sensors have been developed, obtaining sensors with higher levels of sensitivity and stronger robustness has always been expected. Here, we propose theoretically and demonstrate experimentally an alternative class of sensors with superior performances based on exotic properties of high-order non-Hermitian topological physics. The frequency shift induced by perturbations for these sensors can show an exponential growth with respect to the size of the device, which can grow well beyond the limitations of conventional sensors. The fully integrated circuit chips have been designed and fabricated in a standard 65-nanometer complementary metal-oxide semiconductor process technology. Not only has the sensitivity of systems less than 10-3 femtofarad been experimentally verified, but these systems are also robust against disorders. Our proposed ultrasensitive integrated circuit sensors can have a wide range of applications in various fields and show an exciting prospect for next-generation sensing technologies.
Collapse
Affiliation(s)
- Wenyuan Deng
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Zhu
- Beijing Key Laboratory of Millimeter Wave and Terahertz Techniques, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Tian Chen
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Houjun Sun
- Beijing Key Laboratory of Millimeter Wave and Terahertz Techniques, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiangdong Zhang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
26
|
Yang M, Wang Z, Su M, Zhu S, Xie Y, Ying B. Smart Nanozymes for Diagnosis of Bacterial Infection: The Next Frontier from Laboratory to Bedside Testing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44361-44375. [PMID: 39162136 DOI: 10.1021/acsami.4c07043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The global spread of infectious diseases caused by pathogenic bacteria significantly poses public health concerns, and methods for sensitive, selective, and facile diagnosis of bacteria can efficiently prevent deterioration and further spreading of the infections. The advent of nanozymes has broadened the spectrum of alternatives for diagnosing bacterial infections. Compared to natural enzymes, nanozymes exhibit the same enzymatic characteristics but offer greater economic efficiency, enhanced durability, and adjustable dimensions. The importance of early diagnosis of bacterial infection and conventional diagnostic approaches is introduced. Subsequently, the review elucidates the definition, properties, and catalytic mechanism of nanozymes. Eventually, the detailed application of nanozymes in detecting bacteria is explored, highlighting their utilization as biosensors that allow for accelerated and highly sensitive identification of bacterial infections and reflecting on the potential of nanozyme-based bacterial detection as a point-of-care testing (POCT) tool. A brief summary of obstacles and future perspectives in this field is presented at the conclusion of this review.
Collapse
Affiliation(s)
- Mei Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhonghao Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mi Su
- Functional Science Laboratory, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuairu Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
27
|
Du J, Li Z, Liu K, Guo J, Bai Y. Colorimetric aptasensor for Listeria monocytogenes detection using dual functional Fe 3O 4@MIL-100(Fe) with magnetic separation and oxidase-like activities in food samples. Mikrochim Acta 2024; 191:504. [PMID: 39096325 DOI: 10.1007/s00604-024-06528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/26/2024] [Indexed: 08/05/2024]
Abstract
A novel colorimetric aptasensor assay based on the excellent magnetic responsiveness and oxidase-like activity of Fe3O4@MIL-100(Fe) was developed. Fe3O4@MIL-100(Fe) absorbed with aptamer and blocked by BSA served as capture probe for selective isolation and enrichment of Listeria monocytogenes one of the most common and dangerous foodborne pathogenic bacteria. The aptamer absorbed on Fe3O4@MIL-100(Fe) was further used as signal probe that specifically binds with target bacteria conjugation of capture probe for colorimetric detection of Listeria monocytogenes, taking advantages of its oxidase-like activity. The linear range of the detection of Listeria monocytogenes was from 102 to 107 CFU mL-1, with the limit of detection as low as 14 CFU mL-1. The approach also showed good feasibility for detection of Listeria monocytogenes in milk and meat samples. The spiked recoveries were in the range 81-114% with relative standard deviations ranging from 1.28 to 5.19%. Thus, this work provides an efficient, convenient, and practical tool for selective isolation and colorimetric detection of Listeria monocytogenes in food.
Collapse
Affiliation(s)
- Juan Du
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, China
| | - Zongshuang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Kai Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jiangli Guo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China.
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, China.
| |
Collapse
|
28
|
Kim SO, Park I, Vernet T, Moreau C, Hong S, Park TH. Duffy Antigen Receptor for Chemokines (DARC) Nanodisc-Based Biosensor for Detection of Staphylococcal Bicomponent Pore-Forming Leukocidins. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37390-37400. [PMID: 39007843 DOI: 10.1021/acsami.4c02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic infectious pathogen, which causes a high mortality rate during bloodstream infections. The early detection of virulent strains in patients' blood samples is of medical interest for rapid diagnosis. The main virulent factors identified in patient isolates include leukocidins that bind to specific membrane receptors and lyse immune cells and erythrocytes. Duffy antigen receptor for chemokines (DARC) on the surface of specific cells is a main target of leukocidins such as gamma-hemolysin AB (HlgAB) and leukocidin ED (LukED). Among them, HlgAB is a conserved and critical leukocidin that binds to DARC and forms pores on the cell membranes, leading to cell lysis. Current methods are based on ELISA or bacterial culture, which takes hours to days. For detecting HlgAB with faster response and higher sensitivity, we developed a biosensor that combines single-walled carbon nanotube field effect transistors (swCNT-FETs) with immobilized DARC receptors as biosensing elements. DARC was purified from a bacterial expression system and successfully reconstituted into nanodiscs that preserve binding capability for HlgAB. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) showed an increase of the DARC-containing nanodisc size in the presence of HlgAB, indicating the formation of HlgAB prepore or pore complexes. We demonstrate that this sensor can specifically detect the leukocidins HlgA and HlgAB in a quantitative manner within the dynamic range of 1 fM to 100 pM with an LOD of 0.122 fM and an LOQ of 0.441 fM. The sensor was challenged with human serum spiked with HlgAB as simulated clinical samples. After dilution for decreasing nonspecific binding, it selectively detected the toxin with a similar detection range and apparent dissociation constant as in the buffer. This biosensor was demonstrated with remarkable sensitivity to detect HlgAB rapidly and has the potential as a tool for fundamental research and clinical applications, although this sensor cannot differentiate between HlgAB and LukED as both have the same receptor.
Collapse
Affiliation(s)
- So-Ong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Inkyoung Park
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Thierry Vernet
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble F-38000, France
| | | | - Seunghun Hong
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
29
|
Makwana M, Patel AM. Bionanosensor utilizing single-layer graphene for the detection of iridovirus. J Mol Model 2024; 30:256. [PMID: 38972935 DOI: 10.1007/s00894-024-06035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
CONTEXT Iridoviruses, a group of double-stranded DNA viruses, pose a significant threat to various aquatic animals, causing substantial economic losses in aquaculture and impacting ecosystem health. Early and accurate detection of these viruses is crucial for effective disease management and control. Conventional diagnostic methods, including polymerase chain reaction (PCR) and virus isolation, often require specialized laboratories, skilled personnel, and considerable time. This highlights the need for rapid, sensitive, and cost-effective diagnostic tools for iridovirus detection. Single-layer graphene, a two-dimensional material with unique properties like high surface area, excellent electrical conductivity, and chemical stability, has emerged as a versatile platform for biosensing applications. This paper explores the potential of employing single-layer graphene in the development of a bionanosensor for the sensitive and rapid detection of iridoviruses. The aim of the present investigation is to develop a sensor by analyzing the vibrational responses of single-layer graphene sheets (SLGS) with attached microorganisms. Graphene-based virus sensors typically rely on the interaction between the virus and the graphene surface, which lead to changes in the frequency response of graphene. This change is measured and used to detect the presence of the virus. Its high surface-to-volume ratio and sensitivity to changes in its frequency make it a highly sensitive platform for virus detection. METHODS We employ finite element method (FEM) analysis to model the sensor's performance and optimize its design parameters. The simulation results highlight the sensor's potential for achieving high sensitivity and rapid detection of iridovirus. Bridged and simply supported with roller support boundary conditions applied at the ends of SLG structure. Simulations have been performed to see how SLG behaves when used as sensors. A single-layer graphene armchair SLG (5,5) with 50-nm length exhibits its highest frequency vibration at 8.66 × 106 Hz, with a mass of 1.2786 Zg. In contrast, a zigzag-SLG with a (18,0) configuration has its lowest frequency vibration at 2.82 × 105 Hz. This aids in comprehending the thresholds of detection and the influence of factors such as size, and boundary conditions on sensor effectiveness. These biosensors can be especially helpful in biological sciences and the medical field since they can considerably improve the treatment of patients, cancer early diagnosis, and pathogen identification when used in clinical environments.
Collapse
Affiliation(s)
- Manisha Makwana
- Mechanical Engineering Department, A D Patel Institute of Technology, CVM University, New Vallabh Vidyanagar, Gujarat, India.
| | - Ajay M Patel
- Mechatronics Engineering Department, G.H. Patel College of Engineering & Technology, CVM University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
30
|
Wang X, Li H, Wu C, Yang J, Wang J, Yang T. Metabolism-triggered sensor array aided by machine learning for rapid identification of pathogens. Biosens Bioelectron 2024; 255:116264. [PMID: 38588629 DOI: 10.1016/j.bios.2024.116264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
Chemical-nose strategy has achieved certain success in the discrimination and identification of pathogens. However, this strategy usually relies on non-specific interactions, which are prone to be significantly disturbed by the change of environment thus limiting its practical usefulness. Herein, we present a novel chemical-nose sensing approach leveraging the difference in the dynamic metabolic variation during peptidoglycan metabolism among different species for rapid pathogen discrimination. Pathogens were first tethered with clickable handles through metabolic labeling at two different acidities (pH = 5 and 7) for 20 and 60 min, respectively, followed by click reaction with fluorescence up-conversion nanoparticles to generate a four-dimensional signal output. This discriminative multi-dimensional signal allowed eight types of model bacteria to be successfully classified within the training set into strains, genera, and Gram phenotypes. As the difference in signals of the four sensing channels reflects the difference in the amount/activity of enzymes involved in metabolic labeling, this strategy has good anti-interference capability, which enables precise pathogen identification within 2 h with 100% accuracy in spiked urinary samples and allows classification of unknown species out of the training set into the right phenotype. The robustness of this approach holds significant promise for its widespread application in pathogen identification and surveillance.
Collapse
Affiliation(s)
- Xin Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Huida Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chengxin Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jianyu Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
31
|
Wang Y, Zheng T, Li X, Wu P. Integrating Recombinase Polymerase Amplification and Photosensitization Colorimetric Detection in One Tube for Fast Screening of C. sakazakii in Formula Milk Powder. Anal Chem 2024; 96:5727-5733. [PMID: 38546834 DOI: 10.1021/acs.analchem.4c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cronobacter sakazakii (C. sakazakii) is a widely existing opportunistic pathogen and thus threatens people with low immunity, especially infants. To prevent the outbreak, a rapid and accurate on-site testing method is required. The current standard culture-based method is time-consuming (3-4 days), while the nucleic acid amplification (PCR)-based detection is mostly carried out in central laboratories. Herein, isothermal recombinase polymerase amplification (RPA) coupled with a photosensitization colorimetric assay (PCA) was adopted for the on-site detection of C. sakazakii in powdered infant formulas (PIFs). The lowest visual detection concentration of C. sakazakii is 800 cfu/mL and 2 cfu/g after 8 h bacteria pre-enrichment. Furthermore, to avoid typical cap opening-resulted aerosol pollution, the PCA reagents were lyophilized onto the cap of the RPA tube (containing lyophilized RPA reagents). After amplification, the tube was subjected to simple shaking to mix the PCA reagents with the amplification products for light-driven color development. Such a one-tube assay offered a lowest concentration of 1000 copies of genomic DNA of C. sakazakii within 1 h. After 8 h of bacterial enrichment, the lowest detecting concentration could be pushed down to 5 cfu/g bacteria in PIF. To facilitate on-site monitoring, a portable, battery-powered PCA device was designed to mount the typical RPA 8-tube strip, and a color analysis cellphone APP was further employed for facile readout.
Collapse
Affiliation(s)
- Yanying Wang
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Ting Zheng
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xianming Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Wu
- Analytical & Testing Center, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
32
|
Mousavian Z, Fahimi-Kashani E, Nafisi V, Fahimi-Kashani N. Recent Advances in Development of Biosensors for Monitoring of Airborne Microorganisms. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3722. [PMID: 39220332 PMCID: PMC11364924 DOI: 10.30498/ijb.2024.399314.3722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/12/2023] [Indexed: 09/04/2024]
Abstract
Background The early detection of infectious microorganisms is crucial for preventing and controlling the transmission of diseases. This article provides a comprehensive review of biosensors based on various diagnostic methods for measuring airborne pathogens. Objective This article aims to explore recent advancements in the field of biosensors tailored for the detection and monitoring of airborne microorganisms, offering insights into emerging technologies and their potential applications in environmental surveillance and public health management. Materials and Methods The study summarizes the research conducted on novel methods of detecting airborne microorganisms using different biological sensors, as well as the application of signal amplification technologies such as polymerase chain reaction (PCR), immunoassay reactions, molecular imprinted polymers (MIP) technique, lectin and cascade reactions, and nanomaterials. Results Antibody and PCR detection methods are effective for specific microbial strains, but they have limitations including limited stability, high cost, and the need for skilled operators with basic knowledge of the target structure. Biosensors based on MIP and lectin offer a low-cost, stable, sensitive, and selective alternative to antibodies and PCR. However, challenges remain, such as the detection of small gas molecules by MIP and the lower sensitivity of lectins compared to antibodies. Additionally, achieving high sensitivity in complex environments poses difficulties for both methods. Conclusion The development of sensitive, reliable, accessible, portable, and inexpensive biosensors holds great potential for clinical and environmental applications, including disease diagnosis, treatment monitoring, and point-of-care testing, offering a promising future in this field. This review presents an overview of biosensor detection principles, covering component identification, energy conversion principles, and signal amplification. Additionally, it summarizes the research and applications of biosensors in the detection of airborne microorganisms. The latest advancements and future trends in biosensor detection of airborne microorganisms are also analyzed.
Collapse
Affiliation(s)
- Zahra Mousavian
- Ph.D. Candidate, Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Ensieh Fahimi-Kashani
- Bachelor student, Faculty of Basic Sciences, Malayer International University, Hamedan
| | - Vahidreza Nafisi
- Associate Professor, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Nafiseh Fahimi-Kashani
- Assistant Professor, Faculty of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
33
|
Adedeji AA, Priyesh PV, Odugbemi AA. The Magnitude and Impact of Food Allergens and the Potential of AI-Based Non-Destructive Testing Methods in Their Detection and Quantification. Foods 2024; 13:994. [PMID: 38611300 PMCID: PMC11011628 DOI: 10.3390/foods13070994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Reaction to food allergens is on the increase and so is the attending cost on consumers, the food industry, and society at large. According to FDA, the "big-eight" allergens found in foods include wheat (gluten), peanuts, egg, shellfish, milk, tree nuts, fish, and soybeans. Sesame was added to the list in 2023, making the target allergen list nine instead of eight. These allergenic foods are major ingredients in many food products that can cause severe reactions in those allergic to them if found at a dose that can elicit a reaction. Defining the level of contamination that can elicit sensitivity is a work in progress. The first step in preventing an allergic reaction is reliable detection, then an effective quantification method. These are critical steps in keeping contaminated foods out of the supply chain of foods with allergen-free labels. The conventional methods of chemical assay, DNA-PCR, and enzyme protocols like enzyme-linked immunosorbent assay are effective in allergen detection but slow in providing a response. Most of these methods are incapable of quantifying the level of allergen contamination. There are emerging non-destructive methods that combine the power of sensors and machine learning to provide reliable detection and quantification. This review paper highlights some of the critical information on the types of prevalent food allergens, the mechanism of an allergic reaction in humans, the measure of allergenic sensitivity and eliciting doses, and the conventional and emerging AI-based methods of detection and quantification-the merits and downsides of each type.
Collapse
Affiliation(s)
- Akinbode A. Adedeji
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA
| | - Paul V. Priyesh
- Department of Animal and Food Science, University of Kentucky, Lexington, KY 40546, USA;
| | | |
Collapse
|
34
|
Zhang L, Qi Z, Yang Y, Lu N, Tang Z. Enhanced "Electronic Tongue" for Dental Bacterial Discrimination and Elimination Based on a DNA-Encoded Nanozyme Sensor Array. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11228-11238. [PMID: 38402541 DOI: 10.1021/acsami.3c17134] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Bacterial infections are the second leading cause of death around the world, especially those caused by delayed treatment and misdiagnosis. Therefore, rapid discrimination and effective elimination of multiple bacteria are of great importance for improving the survival rate in clinic. Herein, a novel colorimetric sensor array for bacterial discrimination and elimination is constructed using programmable DNA-encoded iron oxide nanoparticles (IONPs) as sensing elements. Utilizing differential interactions of bacteria on DNA-encoded IONPs, 11 kinds of dental bacteria and 6 kinds of proteins have been successfully identified by linear discriminant analysis (LDA). Moreover, the developed sensing system also performs well in the quantitative determination of individual bacteria and identification of bacterial mixtures. More importantly, the practicability of this sensing strategy is further verified by precise differentiation of blind and artificial saliva samples. Furthermore, the sensor array is used for efficiently killing multiple bacteria, demonstrating great potential in clinical prophylaxis and therapy.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhengnan Qi
- Department of Oral Medicine, Shanghai Stomatological Hospital, Fudan University, Shanghai 200031, China
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai 200031, China
| | - Yichi Yang
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University, Sapporo 060-0815, Japan
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan
| | - Na Lu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Department of Stomatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
35
|
Xia Q, Jiang H, Liu X, Yin L, Wang X. Advances in Engineered Nano-Biosensors for Bacteria Diagnosis and Multidrug Resistance Inhibition. BIOSENSORS 2024; 14:59. [PMID: 38391978 PMCID: PMC10887026 DOI: 10.3390/bios14020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Bacterial infections continue to pose a significant global health challenge, with the emergence of multidrug-resistant (MDR) bacteria and biofilms further complicating treatment options. The rise of pan-resistant bacteria, coupled with the slow development of new antibiotics, highlights the urgent need for new therapeutic strategies. Nanotechnology-based biosensors offer fast, specific, sensitive, and selective methods for detecting and treating bacteria; hence, it is a promising approach for the diagnosis and treatment of MDR bacteria. Through mechanisms, such as destructive bacterial cell membranes, suppression of efflux pumps, and generation of reactive oxygen species, nanotechnology effectively combats bacterial resistance and biofilms. Nano-biosensors and related technology have demonstrated their importance in bacteria diagnosis and treatment, providing innovative ideas for MDR inhibition. This review focuses on multiple nanotechnology approaches in targeting MDR bacteria and eliminating antimicrobial biofilms, highlighting nano-biosensors via photodynamics-based biosensors, eletrochemistry biosensors, acoustic-dynamics sensors, and so on. Furthermore, the major challenges, opportunities of multi-physical-field biometrics-based biosensors, and relevant nanotechnology in MDR bacterial theranostics are also discussed. Overall, this review provides insights and scientific references to harness the comprehensive and diverse capabilities of nano-biosensors for precise bacteria theranostics and MDR inhibition.
Collapse
Affiliation(s)
- Qingxiu Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China (X.L.)
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China (X.L.)
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China;
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China (X.L.)
| |
Collapse
|
36
|
Luo C, Li X, Li Y. Application of the Peroxidase‒like Activity of Nanomaterials for the Detection of Pathogenic Bacteria and Viruses. Int J Nanomedicine 2024; 19:441-452. [PMID: 38250191 PMCID: PMC10799623 DOI: 10.2147/ijn.s442335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Infectious diseases caused by pathogenic bacteria and viruses pose a significant threat to human life and well-being. The prompt identification of these pathogens, characterized by speed, accuracy, and efficiency, not only aids in the timely screening of infected individuals and the prevention of further transmission, but also facilitates the precise diagnosis and treatment of patients. Direct smear microscopy, microbial culture, nucleic acid-based polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA) based on microbial surface antigens or human serum antibodies, have made substantial contributions to the prevention and management of infectious diseases. Due to its shorter processing time, simple equipment requirements, and no need for professional and technical personnel, ELISA has inherent advantages over other methods for detecting pathogenic bacteria and viruses. Horseradish peroxidase mediated catalysis of substrate coloration is the key for the detection of target substances in ELISA. However, the variability, high cost, and environmental susceptibility of natural peroxidase greatly limit the application of ELISA in pathogen detection. Compared with natural enzymes, nanomaterials with enzyme-mimicking activity are inexpensive, highly environmentally stable, easy to store and mass producing, etc. Based on their peroxidase-like activities and unique physicochemical properties, nanomaterials can greatly improve the efficiency and ease of use of ELISA-like detection methods for pathogenic bacteria and viruses. This review introduces recent advances in the application of nanomaterials with peroxidase-like activity for the detection of pathogenic bacteria (both gram-negative bacteria and gram-positive bacteria) and viruses (both RNA viruses and DNA viruses). The emphasis is on the detection principle and the evaluation of effectiveness. The limitations and prospects for future translations are also discussed.
Collapse
Affiliation(s)
- Cheng Luo
- School of Medicine, Yichun University, Yichun, 336000, People’s Republic of China
| | - Xianglong Li
- Medical and Radiation Oncology, Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Yan Li
- School of Medicine, Yichun University, Yichun, 336000, People’s Republic of China
| |
Collapse
|
37
|
Peraile I, Gil-García M, González-López L, Dabbagh-Escalante NA, Cabria-Ramos JC, Lorenzo-Lozano P. Study of the reusability and stability of nylon nanofibres as an antibody immobilisation surface. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:83-94. [PMID: 38264063 PMCID: PMC10804540 DOI: 10.3762/bjnano.15.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
In the case of a biological threat, early, rapid, and specific detection is critical. In addition, ease of handling, use in the field, and low-cost production are important considerations. Immunological devices are able to respond to these needs. In the design of these immunological devices, surface antibody immobilisation is crucial. Nylon nanofibres have been described as a very good option because they allow for an increase in the surface-to-volume ratio, leading to an increase in immunocapture efficiency. In this paper, we want to deepen the study of other key points, such as the reuse and stability of these nanofibres, in order to assess their profitability. On the one hand, the reusability of nanofibres has been studied using different stripping treatments at different pH values on the nylon nanofibres with well-oriented antibodies anchored by protein A/G. Our study shows that stripping with glycine buffer pH 2.5 allows the nanofibres to be reused as long as protein A/G has been previously anchored, leaving both nanofibre and protein A/G unchanged. On the other hand, we investigated the stability of the nylon nanofibres. To achieve this, we analysed any loss of immunocapture ability of well-oriented antibodies anchored both to the nylon nanofibres and to a specialised surface with high protein binding capacity. The nanofibre immunocapture system maintained an unchanged immunocapture ability for a longer time than the specialised planar surface. In conclusion, nylon nanofibres seem to be a very good choice as an antibody immobilisation surface, offering not only higher immunocapture efficiency, but also more cost efficiency as they are reusable and stable.
Collapse
Affiliation(s)
- Inés Peraile
- Biological Defence Area, Department of NBC Defence Systems and Energetic Materials, National Institute for Aerospace Technology “Esteban Terradas” (INTA)-Campus La Marañosa, Ctra. M-301, Km 10, 28330, San Martín de la Vega, Madrid, Spain
| | - Matilde Gil-García
- Biological Defence Area, Department of NBC Defence Systems and Energetic Materials, National Institute for Aerospace Technology “Esteban Terradas” (INTA)-Campus La Marañosa, Ctra. M-301, Km 10, 28330, San Martín de la Vega, Madrid, Spain
| | - Laura González-López
- Biological Defence Area, Department of NBC Defence Systems and Energetic Materials, National Institute for Aerospace Technology “Esteban Terradas” (INTA)-Campus La Marañosa, Ctra. M-301, Km 10, 28330, San Martín de la Vega, Madrid, Spain
| | - Nushin A Dabbagh-Escalante
- Biological Defence Area, Department of NBC Defence Systems and Energetic Materials, National Institute for Aerospace Technology “Esteban Terradas” (INTA)-Campus La Marañosa, Ctra. M-301, Km 10, 28330, San Martín de la Vega, Madrid, Spain
| | - Juan C Cabria-Ramos
- Biological Defence Area, Department of NBC Defence Systems and Energetic Materials, National Institute for Aerospace Technology “Esteban Terradas” (INTA)-Campus La Marañosa, Ctra. M-301, Km 10, 28330, San Martín de la Vega, Madrid, Spain
| | - Paloma Lorenzo-Lozano
- Biological Defence Area, Department of NBC Defence Systems and Energetic Materials, National Institute for Aerospace Technology “Esteban Terradas” (INTA)-Campus La Marañosa, Ctra. M-301, Km 10, 28330, San Martín de la Vega, Madrid, Spain
| |
Collapse
|
38
|
Liu L, Du K. A perspective on computer vision in biosensing. BIOMICROFLUIDICS 2024; 18:011301. [PMID: 38223547 PMCID: PMC10787640 DOI: 10.1063/5.0185732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Computer vision has become a powerful tool in the field of biosensing, aiding in the development of innovative and precise systems for the analysis and interpretation of biological data. This interdisciplinary approach harnesses the capabilities of computer vision algorithms and techniques to extract valuable information from various biosensing applications, including medical diagnostics, environmental monitoring, and food health. Despite years of development, there is still significant room for improvement in this area. In this perspective, we outline how computer vision is applied to raw sensor data in biosensors and its advantages to biosensing applications. We then discuss ongoing research and developments in the field and subsequently explore the challenges and opportunities that computer vision faces in biosensor applications. We also suggest directions for future work, ultimately underscoring the significant impact of computer vision on advancing biosensing technologies and their applications.
Collapse
Affiliation(s)
- Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
39
|
Rao YJ, Gunavathi Y, Ankireddy SR. Nanotechnology integration in sensing platforms for significant improvements in pathogenic bacteria detection capabilities and device functionality. RECENT DEVELOPMENTS IN NANOMATERIAL-BASED SENSING OF HUMAN PATHOGENS 2024:203-215. [DOI: 10.1016/b978-0-443-18574-8.00004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
40
|
Chen J, Zeng Y, Zhang D, Qi P, Liu X, Song R, Wang P. SERS immunoassay analysis of Escherichia coli and Staphylococcus aureus based on sandwich-structured complex probe and target-induced strand displacement. Mikrochim Acta 2023; 191:17. [PMID: 38087067 DOI: 10.1007/s00604-023-06089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023]
Abstract
A direct and ultra-sensitive surface-enhanced Raman scattering (SERS) immunoassay method is introduced for the detection of Escherichia coli and Staphylococcus aureus. This methodology is based on a sandwich-structured complex probe (SCP) mechanism, combined with target-induced strand displacement. Moreover, by leveraging the amplified SERS signal from gold nanoparticles (AuNPs) corresponding to an increase in bacterial count, we achieve quantitative determination. The SCP demonstrates remarkable specificity, sensitivity, and anti-interference capability in bacterial detection. The detection limits for both bacterial strains are as low as 10 CFU/mL. In our selectivity tests, all peak intensities had standard deviations (n = 3) below 6%. Recoveries in normal human serum were 101-110% for E. coli and 96-101% for S. aureus. In milk, the recoveries were 102-105% for E. coli and 100-105% for S. aureus, respectively, demonstrating a high level of accuracy and resistance to interference. In addition, the SCP offers a dual-detection capability, enabling simultaneous diagnosis of multiple targets, which greatly simplifies the testing procedure. The findings underscore that this immunoassay platform fulfills the demand for rapid and precise pathogenic bacterial diagnosis, holding substantial potential for practical applications.
Collapse
Affiliation(s)
- Jiawei Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Yan Zeng
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Peng Qi
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Xuguang Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ruiguo Song
- Sunrui Marine Environment Engineering Co., Ltd, Qingdao, 266101, China.
- Luoyang Ship Material Research Institute, Luoyang, 471023, China.
| | - Peng Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| |
Collapse
|
41
|
Guliy OI, Karavaeva OA, Smirnov AV, Eremin SA, Bunin VD. Optical Sensors for Bacterial Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:9391. [PMID: 38067765 PMCID: PMC10708710 DOI: 10.3390/s23239391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Analytical devices for bacterial detection are an integral part of modern laboratory medicine, as they permit the early diagnosis of diseases and their timely treatment. Therefore, special attention is directed to the development of and improvements in monitoring and diagnostic methods, including biosensor-based ones. A promising direction in the development of bacterial detection methods is optical sensor systems based on colorimetric and fluorescence techniques, the surface plasmon resonance, and the measurement of orientational effects. This review shows the detecting capabilities of these systems and the promise of electro-optical analysis for bacterial detection. It also discusses the advantages and disadvantages of optical sensor systems and the prospects for their further improvement.
Collapse
Affiliation(s)
- Olga I. Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Olga A. Karavaeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Andrey V. Smirnov
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;
| | - Sergei A. Eremin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia;
| | | |
Collapse
|
42
|
Sami AJ, Bilal S, Ahsan NUA, Hameed N, Saleem S. Rhodamine B functionalized silver nanoparticles paper discs as turn-on fluorescence sensor, coupled with a smartphone for the detection of microbial contamination in drinking water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1442. [PMID: 37945767 DOI: 10.1007/s10661-023-12077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
The precise detection of pathogenic microorganisms is crucial for the reduction of water-borne diseases. Herein, a filter-paper-based florescent chemosensor was fabricated for the detection of Escherichia coli and Staphylococcus aureus contamination exploiting protein-DNA interaction between the target and a specific probe. The sensing mechanism involved the self-assembly of Rhodamine B (RhB) on silver nanoparticles (AgNPs) surface that was labeled with a single-stranded DNA probe. This causes the fluorescence quenching of RhB by a distant-dependant process. The hybridization between pathogen-specific probe and bacterial surface protein causes the release of fluorescence of RhB, which was observed under UV light. For paper-based bio-surface preparation, the mixture comprising RhB-AgNP-ssDNA was drop-casted on filter paper discs. The conditions were optimized using isolated genomic DNA of the microbes. The method was applied for E.coli detection using an eae gene-based probe targeting intimin protein and S. aureus detection using tuf gene-based probe targeting EF-tuf protein on the microbe's surface. The chemosensor had a notable specificity and selectivity for E.coli, and S. aureus, with detection limits of 0.6 × 108 and 0.37 × 103 CFU/mL respectively. Moreover, the sensor was tested on real water samples, which presented excellent reproducibility of results (RSD ≤ 0.24%). Furthermore, the gradient change of fluorescence was captured by a smartphone, which allows direct detection of pathogens in a sensitive semi-quantitative way without the need for expensive instruments. The designed chemosensor can serve as a simple, inexpensive, and rapid method for the on-site detection of microbial contamination in drinking water.
Collapse
Affiliation(s)
- Amtul Jamil Sami
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
- Center for Biosensor Research and Development (CBRD), University of the Punjab, Lahore, 54590, Pakistan.
| | - Sehrish Bilal
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
- Department of Biochemistry, Gulab Devi Educational Complex, Lahore, Pakistan
| | - Noor-Ul-Ain Ahsan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Nayyab Hameed
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Shaifa Saleem
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
43
|
Yang C, Zhang H. A review on machine learning-powered fluorescent and colorimetric sensor arrays for bacteria identification. Mikrochim Acta 2023; 190:451. [PMID: 37880465 DOI: 10.1007/s00604-023-06021-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023]
Abstract
Biosensors have been widely used for bacteria determination with great success. However, the "lock-and-key" methodology used by biosensors to identify bacteria has a significant limitation: it can only detect one species of bacteria. In recent years, optical (fluorescent and colorimetric) sensor arrays are gradually gaining attention from researchers as a new type of biosensor. They can acquire multiple features of a target simultaneously, form a feature pattern, and determine the bacteria species with the help of pattern recognition/machine learning algorithms. Previous reviews in this area have focused on the interaction between the sensor array and bacteria or the materials used to make the sensors. This review, on the other hand, will provide researchers with a better understanding of the field by discussing fluorescent and colorimetric sensor arrays based on the mechanism of optical signal generation. These sensor arrays will be compared based on the identified species. Finally, we will discuss the limitations of these sensor arrays and explore possible solutions.
Collapse
Affiliation(s)
- Changmao Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan, 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan, 430074, China.
| |
Collapse
|
44
|
Li W, Ma X, Yong YC, Liu G, Yang Z. Review of paper-based microfluidic analytical devices for in-field testing of pathogens. Anal Chim Acta 2023; 1278:341614. [PMID: 37709421 DOI: 10.1016/j.aca.2023.341614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
Pathogens cause various infectious diseases and high morbidity and mortality which is a global public health threat. The highly sensitive and specific detection is of significant importance for the effective treatment and intervention to minimise the impact. However, conventional detection methods including culture and molecular method gravely depend on expensive equipment and well-trained skilled personnel, limiting in the laboratory. It remains challenging to adapt in resource-limiting areas, e.g., low and middle-income countries (LMICs). To this end, low-cost, rapid, and sensitive detection tools with the capability of field testing e.g., a portable device for identification and quantification of pathogens, has attracted increasing attentions. Recently, paper-based microfluidic analytical devices (μPADs) have shown a promising tool for rapid and on-site diagnosis, providing a cost-effective and sensitive analytical approach for pathogens detection. The fast turn-round data collection may also contribute to better understanding of the risks and insights on mitigation method. In this paper, critical developments of μPADs for in-field detection of pathogens both for clinical diagnostics and environmental surveillance are reviewed. The future development, and challenges of μPADs for rapid and onsite detection of pathogens are discussed, including using the cross-disciplinary development with, emerging techniques such as deep learning and Internet of Things (IoT).
Collapse
Affiliation(s)
- Wenliang Li
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom
| | - Xuanye Ma
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom
| | - Yang-Chun Yong
- Biofuels Institute, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Emergency Management & School of Environment and Safety Engineering, Zhenjiang, 212013, Jiangsu Province, China
| | - Guozhen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedford, United Kingdom.
| |
Collapse
|
45
|
Abedi R, Raoof JB, Mohseni M, Bagheri Hashkavayi A. Development of a label-free impedimetric aptasensor for the detection of Acinetobacter baumannii bacteria. Anal Biochem 2023; 679:115288. [PMID: 37619902 DOI: 10.1016/j.ab.2023.115288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is responsible for various nosocomial infections, which is known as a clinically crucial opportunistic pathogen. Therefore, rapid detection of this pathogen is critical to prevent the spread of infection and appropriate treatment. Biological detection probes, such as aptamers and synthetic receptors can be used as diagnostic layers to detect bacteria. In this work, an electrochemical aptasensor was developed for the ultrasensitive detection of A. baumannii by electrochemical impedance spectroscopy (EIS). The aptamer was immobilized on the surface of a CSPE modified with the nanocomposite Fe3O4@SiO2@Glyoxal (Gly) for selective and label-free detection of A. baumannii. The charge transfers resistance (Rct) between redox couple [Fe(CN)63-/4-] and the surface of aptasensor in the Nyquist plot of EIS study was used as electroanalytical signal for detection and determination of A. baumannii. The obtained results showed that the constructed aptasensor could specifically detect A. baumannii in the concentration range from 1.0 × 103-1.0 × 108 Colony-forming unit (CFU)/mL and with a detection limit of 150 CFU/mL (S/N = 3). In addition to its sensitivity, the biosensor exhibits high selectivity over some other pathogens. Therefore, a simple, inexpensive, rapid, label-free, selective, and sensitive electrochemical aptasensor was developed to detect A. baumannii.
Collapse
Affiliation(s)
- Rokhsareh Abedi
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Mojtaba Mohseni
- Department of Microbiology, Faculty of Science, University of Mazandaran, Iran
| | - Ayemeh Bagheri Hashkavayi
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, United States
| |
Collapse
|
46
|
Dang S, Sui H, Zhang S, Wu D, Chen Z, Zhai J, Bai M. CRISPR-Cas12a test strip (CRISPR/CAST) package: In-situ detection of Brucella from infected livestock. BMC Vet Res 2023; 19:202. [PMID: 37833763 PMCID: PMC10571365 DOI: 10.1186/s12917-023-03767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Brucellosis is a common zoonotic disease caused by Brucella, which causes enormous economic losses and public burden to epidemic areas. Early and precise diagnosis and timely culling of infected animals are crucial to prevent the infection and spread of Brucella. In recent years, RNA-guided CRISPR/Cas12a(Clustered Regularly Interspaced Short Palindromic Repeats and its associated protein 12a) nucleases have shown great promise in nucleic acid detection. This research aims to develop a CRISPR/CAST (CRISPR/Cas12a Test strip) package that can rapidly detect Brucella nucleic acid during on-site screening, especially on remote family pastures. The CRISPR/Cas12a system combined with recombinase polymerase amplification (RPA), and lateral flow read-out. RESULTS We selected the conserved gene bp26, which commonly used in Brucella infection detection and compared on Genbank with other Brucella species. The genomes of Brucella abortus 2308, Brucella suis S2, Brucella melitansis 16 M, and Brucella suis 1330, et al. were aligned, and the sequences were found to be consistent. Therefore, the experiments were only performed on B. melitensis. With the CRISPR/CAST package, the assay of Brucella nucleic acid can be completed within 30 min under isothermal temperature conditions, with a sensitivity of 10 copies/μl. Additionally, no antigen cross-reaction was observed against Yersinia enterocolitica O:9, Escherichia coli O157, Salmonella enterica serovar Urbana O:30, and Francisella tularensis. The serum samples of 398 sheep and 100 cattle were tested by the CRISPR/CAST package, of which 31 sheep and 8 cattle were Brucella DNA positive. The detection rate was consistent with the qPCR results and higher than that of the Rose Bengal Test (RBT, 19 sheep and 5 cattle were serum positive). CONCLUSIONS The CRISPR/CAST package can accurately detect Brucella DNA in infected livestock within 30 min and exhibits several advantages, including simplicity, speed, high sensitivity, and strong specificity with no window period. In addition, no expensive equipment, standard laboratory, or professional operators are needed for the package. It is an effective tool for screening in the field and obtaining early, rapid diagnoses of Brucella infection. The package is an efficient tool for preventing and controlling epidemics.
Collapse
Affiliation(s)
- Sheng Dang
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Humujile Sui
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Shuai Zhang
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, 028000, China
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028000, China
| | - Dongxing Wu
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, 028000, China
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028000, China
- Mongolian Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Zeliang Chen
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, 028000, China
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028000, China
| | - Jingbo Zhai
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, China.
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, 028000, China.
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, 028000, China.
| | - Meirong Bai
- Mongolian Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China.
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao, 028000, China.
| |
Collapse
|
47
|
Walter J, Eludin Z, Drabovich AP. Redefining serological diagnostics with immunoaffinity proteomics. Clin Proteomics 2023; 20:42. [PMID: 37821808 PMCID: PMC10568870 DOI: 10.1186/s12014-023-09431-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Serological diagnostics is generally defined as the detection of specific human immunoglobulins developed against viral, bacterial, or parasitic diseases. Serological tests facilitate the detection of past infections, evaluate immune status, and provide prognostic information. Serological assays were traditionally implemented as indirect immunoassays, and their design has not changed for decades. The advantages of straightforward setup and manufacturing, analytical sensitivity and specificity, affordability, and high-throughput measurements were accompanied by limitations such as semi-quantitative measurements, lack of universal reference standards, potential cross-reactivity, and challenges with multiplexing the complete panel of human immunoglobulin isotypes and subclasses. Redesign of conventional serological tests to include multiplex quantification of immunoglobulin isotypes and subclasses, utilize universal reference standards, and minimize cross-reactivity and non-specific binding will facilitate the development of assays with higher diagnostic specificity. Improved serological assays with higher diagnostic specificity will enable screenings of asymptomatic populations and may provide earlier detection of infectious diseases, autoimmune disorders, and cancer. In this review, we present the major clinical needs for serological diagnostics, overview conventional immunoassay detection techniques, present the emerging immunoassay detection technologies, and discuss in detail the advantages and limitations of mass spectrometry and immunoaffinity proteomics for serological diagnostics. Finally, we explore the design of novel immunoaffinity-proteomic assays to evaluate cell-mediated immunity and advance the sequencing of clinically relevant immunoglobulins.
Collapse
Affiliation(s)
- Jonathan Walter
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Zicki Eludin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
48
|
Vincy A, Gaikwad Y, Agarwal H, Jain N, Vankayala R. A Label-Free and Ultrasensitive Prussian Blue-Based Dipstick Sensor for Bacterial and Biofilm Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14246-14255. [PMID: 37750674 DOI: 10.1021/acs.langmuir.3c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Water and food contamination has become the major contributor to infections and deaths. However, rapid and sensitive bacterial detection still remains an unmet demand that has attracted widespread attention. Often water and food samples are sent out for laboratory testing to detect the presence of contamination, which is time-consuming and laborious. Herein, we have developed a highly sensitive, tenable, affordable, and robust (STAR) paper-based colorimetric dipstick sensor based on the principle of Prussian blue (PB) synthesis as an indicator of bacterial contamination. In the presence of bacteria, it leads to the formation of PB, a dye that acts as a colorimetric indicator. The intensity of the PB is the direct measure of the degree of contamination. The fabrication of the STAR dipstick sensor involves a simple and cost-effective process. The STAR dipstick sensor is ultrasensitive and can detect up to 101 CFU/mL of bacteria within minutes of contact with the test sample. The STAR dipstick sensor is fabricated using biodegradable components, which is speculated to facilitate quick and environmentally friendly degradation after each use. The sensor has been validated for its properties and capabilities at different pH to detect both Gram-positive and Gram-negative bacterial strains in real-time samples. The stability and degradation were also monitored. Comprehensively, the proposed STAR dipstick sensor can serve as a point-of-care device to detect bacterial contamination in a swift and sensitive manner.
Collapse
Affiliation(s)
- Antony Vincy
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Yohan Gaikwad
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Harshita Agarwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
- Centre for Emerging Technologies for Sustainable Development (CETSD), Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India
- Interdisciplinary Research Platform, Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, India
| |
Collapse
|
49
|
Bai H, Wang Y, Li X, Guo J. Electrochemical nucleic acid sensors: Competent pathways for mobile molecular diagnostics. Biosens Bioelectron 2023; 237:115407. [PMID: 37295136 DOI: 10.1016/j.bios.2023.115407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Electrochemical nucleic acid biosensor has demonstrated great promise in clinical diagnostic tests, mainly because of its flexibility, high efficiency, low cost, and easy integration for analytical applications. Numerous nucleic acid hybridization-based strategies have been developed for the design and construction of novel electrochemical biosensors for diagnosing genetic-related diseases. This review describes the advances, challenges, and prospects of electrochemical nucleic acid biosensors for mobile molecular diagnosis. Specifically, the basic principles, sensing elements, applications in diagnosis of cancer and infectious diseases, integration with microfluidic technology and commercialization are mainly included in this review, aiming to provide new insights and directions for the future development of electrochemical nucleic acid biosensors.
Collapse
Affiliation(s)
- Huijie Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Jinhong Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China; School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Kang HJ, Lee SH, Kim HS, Jung YW, Park HD. Rapid and sensitive detection of gram-negative bacteria using surface-immobilized polymyxin B. PLoS One 2023; 18:e0290579. [PMID: 37639398 PMCID: PMC10461818 DOI: 10.1371/journal.pone.0290579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Although detection of gram-negative bacteria (GNB) in body fluids is important for clinical purpose, traditional gram staining and other recently developed methods have inherent limitations in terms of accuracy, sensitivity, and convenience. To overcome the weakness, this study proposed a method detecting GNB based on specific binding of polymyxin B (PMB) to lipopolysaccharides (LPS) of GNB. Fluorescent microscopy demonstrated that surface immobilized PMB using a silane coupling agent was possible to detect fluorescent signal produced by a single Escherichia coli (a model GNB) cell. Furthermore, the signal was selective enough to differentiate between GNB and gram-positive bacteria. The proposed method could detect three cells per ml within one hour, indicating the method was very sensitive and the sensing was rapid. These results suggest that highly multifold PMB binding on each GNB cell occurred, as millions of LPS are present on cell wall of a GNB cell. Importantly, the principle used in this study was realized in a microfluidic chip for a sample containing E. coli cells suspended in porcine plasma, demonstrating its potential application to practical uses. In conclusion, the proposed method was accurate, sensitive, and convenient for detecting GNB, and could be applied clinically.
Collapse
Affiliation(s)
- Hyun-Jin Kang
- School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-Gu, Seoul, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-Gu, Seoul, South Korea
| | - Han-Shin Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-Gu, Seoul, South Korea
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-Gu, Seoul, South Korea
| |
Collapse
|