1
|
Probst J, Mathur P, Gai M, Si T, He Q, Gao C, Gao H, Sapelkin AV, Kappl M, Qiu G, Wang J, Frueh J, Stavrakis S. Photoswitchable Gold Nanoparticles for Super-Resolution Radial Fluctuation Imaging in Nanostructured Materials. SMALL METHODS 2025; 9:e2401411. [PMID: 40272001 DOI: 10.1002/smtd.202401411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/17/2024] [Indexed: 04/25/2025]
Abstract
Camera-based super-resolution approaches surpass the diffraction limit of conventional optical microscopy by relying on the stochastic activation and precise localization of fluorescent molecules. However, traditional probes such as organic dyes and quantum dots present challenges such as photobleaching and blinking variability, which limit their application in super-resolution imaging, particularly in non-liquid environments. Herein, the study demonstrates the potential of gold nanoparticles as a promising alternative for localization-based super-resolution imaging. The study specifically investigates how different surface functionalizations and states (aggregated vs isolated) of gold nanoparticles impact their photoluminescence properties, including fluorescence intensity, lifetime, and blinking behavior. By leveraging the intrinsic photoluminescence of gold nanoparticles, their capability is demonstrated as probes to achieve super-resolution imaging of nano-sized structures, at a resolution down to 100 nm, without the need for conventional imaging buffers. These proof-of-concept applications, which include imaging of silica nanosized wrinkles and logos, reveal that gold nanoparticles exhibit superior photophysical properties compared to common organic fluorophores, offering a promising alternative for super-resolution imaging. This work paves the way for the application of super-resolution fluorescence microscopy in materials science where non-liquid environments often restrict the use of traditional probes.
Collapse
Affiliation(s)
- Julie Probst
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland
| | - Prerit Mathur
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland
| | - Meiyu Gai
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128, Mainz, Germany
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 215, London, E1 4NS, UK
| | - Tieyan Si
- Physics Department, School of Physics, Harbin Institute of Technology, Yikuang Street 2 2H, Harbin, 150080, P. R. China
| | - Qiang He
- Key Lab of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Yikuang Street 2 B1, Harbin, 150080, P. R. China
| | - Changyong Gao
- Key Lab of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Yikuang Street 2 B1, Harbin, 150080, P. R. China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Hanchao Gao
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland
- Advanced Analytical Technologies Laboratory, EMPA, Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Andrei V Sapelkin
- School of Engineering and Materials Science, Queen Mary University of London, Mile End, Eng, 215, London, E1 4NS, UK
| | - Michael Kappl
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128, Mainz, Germany
| | - Guangyu Qiu
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland
- Advanced Analytical Technologies Laboratory, EMPA, Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Johannes Frueh
- Key Lab of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Yikuang Street 2 B1, Harbin, 150080, P. R. China
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
2
|
Mourya A, Arya S, Singh A, Bajad G, Loharkar S, Shubhra, Devangan P, Mehra NK, Shukla R, Chandra R, Madan J. Gold Nanoparticles as a Tool to Detect Biomarkers in Osteoarthritis: New Insights. Indian J Microbiol 2025; 65:253-276. [PMID: 40371044 PMCID: PMC12069218 DOI: 10.1007/s12088-024-01331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/08/2024] [Indexed: 01/06/2025] Open
Abstract
Extensive research over the years has revealed the remarkable potential of gold nanoparticles (AuNPs) for detecting biomarkers in osteoarthritis (OA). AuNPs are a promising class of nanomaterials offering a wide range of diagnostic and clinical applications. It provides an effective and robust framework for qualitative and quantitative analysis of biomarkers present in the biological fluids of OA patients. AuNPs as theranostics have gained significant attention due to their discrete physical and optical characteristics, including localized surface plasmon resonance (LSPR), fluorescence, surface-enhanced Raman scattering, and quantized charging effect. These unique properties provide AuNPs as an excellent scaffold for ligand multiplexing, allowing accrued sensitivity for biomarker detection. Several reports have delved into the LSPR properties of the kinetics of biological interactions between the ligand and analyte. Tuneable radiative properties of AuNPs coupled with surface engineering allow facile detection of biomarkers in biological fluids. Herein, we have presented a comprehensive summary of distinct biomarkers generated from different molecular pathological processes in OA. An armamentarium of diagnostic methodologies such as aptamer conjugation, antibody coupling, ligand anchoring, and peptide decoration on the surface of AuNPs facilitates the identification and quantification of biomarkers. Additionally, a diverse range of sensing strategies for biomarker spotting, along with current challenges and future perspectives, have also been well delineated in the present manuscript. Graphical Abstract
Collapse
Affiliation(s)
- Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Shristi Arya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Ayush Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Gopal Bajad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Soham Loharkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Shubhra
- Department of Pharmacy, University of Bologna, Bologna, Italy
| | - Pawan Devangan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
- Institute of Nanomedical Sciences, University of Delhi, Delhi, India
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- Maharaja Surajmal Brij University, Bharatpur, Rajasthan India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| |
Collapse
|
3
|
Hua MZ, Liu J, Roopesh MS, Lu X. Microfluidic Optical Aptasensor for Small Molecules Based on Analyte-Tuned Growth of Gold Nanoseeds and Machine Learning-Enhanced Spectrum Analysis: Rapid Detection of Mycotoxins. ACS Sens 2024. [PMID: 39509543 DOI: 10.1021/acssensors.4c02739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Natural toxins, mainly small molecules, are a category of chemical hazards in agri-food systems that pose threats to both public health and food security. Current standard methods for monitoring these toxins, predominantly based on liquid chromatography-mass spectrometry, are costly, labor-intensive, and complex. This study presents the development of a novel microfluidic optical aptasensor for rapid detection of small molecules based on analyte-tuned growth of gold nanoseeds combined with machine learning-enhanced spectrum analysis. We discovered and optimized a previously unreported growth pattern of aptamer-coated nanoparticles in the presence of different concentrations of analyte, enabling the detection of a major mycotoxin in food. The entire analysis was miniaturized on a customized microfluidic platform, allowing for automated spectral acquisition with precise liquid manipulation. A machine learning model, based on random forest with feature engineering, was developed and evaluated for spectrum analysis, significantly enhancing the prediction of mycotoxin concentrations. This approach extended the detection limit determined by the conventional method (∼72 ppb with high variation) to a wider range of 10 ppb to 100 ppm with high accuracy (overall mean absolute percentage error of 5.7%). The developed analytical tool provides a promising solution for detecting small molecules and monitoring chemical hazards in agri-food systems and the environment.
Collapse
Affiliation(s)
- Marti Z Hua
- Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Jinxin Liu
- Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
4
|
Shao Y, Li X, Qi X, Li J, Zhao S, Sun P, Wang H, Cheng Y, Zhang Z, Chen L, Zhang X, Zhu M. A graphene oxide-assisted protein immobilization paper-tip immunosensor with smartphone and naked eye readout for the detection of okadaic acid. Anal Chim Acta 2024; 1314:342781. [PMID: 38876519 DOI: 10.1016/j.aca.2024.342781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Okadaic acid (OA), as a diarrhetic shellfish poisoning, can increase the risk of acute carcinogenic or teratogenic effects for the ingestion of OA contaminated shellfish. At present, much effort has been made to graft immunoassay onto a paper substrate to make paper-based sensors for rapid and simple detection of shellfish toxin. However, the complicated washing steps and low protein fixation efficiency on the paper substrate need to be further addressed. RESULTS A novel paper-tip immunosensor for detecting OA was developed combined with smartphone and naked eye readout. The trapezoid paper tip was consisted of quantitative and qualitative detection zones. To improve the OA antigen immobilization efficiency on the paper substrate, graphene oxide (GO)-assisted protein immobilization method was introduced. Meanwhile, Au nanoparticles composite probe combined with the lateral flow washing was developed to simplify the washing step. The OA antigen-immobilized zone, as the detection zone Ⅰ, was used for quantitative assay by smartphone imaging. The paper-tip front, as the detection zone Ⅱ, which could qualitatively differentiate OA pollution level within 45 min using the naked eye. The competitive immunoassay on the paper tip exhibited a wide linear range for detecting OA (0.02-50 ng∙mL-1) with low detection limit of 0.02 ng∙mL-1. The recovery of OA in spiked shellfish samples was in the range of 90.3 %-113.%. SIGNIFICANCE These results demonstrated that the proposed paper-tip immunosensor could provide a simple, low-cost and high-sensitivity test for OA detection without the need for additional large-scale equipment or expertise. We anticipate that this paper-tip immunosensor will be a flexible and versatile tool for on-site detecting the pollution of marine products.
Collapse
Affiliation(s)
- Yifan Shao
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xiaotong Li
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xiaoxiao Qi
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Juan Li
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | - Sheng Zhao
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | - Peiyan Sun
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, China
| | | | - Yongqiang Cheng
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China.
| | - Ziwei Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Longyu Chen
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Xi Zhang
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| | - Meijia Zhu
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University (Qingdao), Qingdao, Shandong, 266237, China
| |
Collapse
|
5
|
Raza S, Poria R, Kala D, Sharma N, Sharma AK, Florien N, Tuli HS, Kaushal A, Gupta S. Innovations in dengue virus detection: An overview of conventional and electrochemical biosensor approaches. Biotechnol Appl Biochem 2024; 71:481-500. [PMID: 38225854 DOI: 10.1002/bab.2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Globally, people are in great threat due to the highly spreading of viral infectious diseases. Every year like 100-300 million cases of infections are found, and among them, above 80% are not recognized and irrelevant. Dengue virus (DENV) is an arbovirus infection that currently infects people most frequently. DENV encompasses four viral serotypes, and they each express comparable sign. From a mild febrile sickness to a potentially fatal dengue hemorrhagic fever, dengue can induce a variety of symptoms. Presently, the globe is being challenged by the untimely identification of dengue infection. Therefore, this review summarizes advances in the detection of dengue from conventional methods (nucleic acid-based, polymerase chain reaction-based, and serological approaches) to novel biosensors. This work illustrates an extensive study of the current designs and fabrication approaches involved in the formation of electrochemical biosensors for untimely identifications of dengue. Additionally, in electrochemical sensing of DENV, we skimmed through significances of biorecognition molecules like lectins, nucleic acid, and antibodies. The introduction of emerging techniques such as the CRISPR/Cas' system and their integration with biosensing platforms has also been summarized. Furthermore, the review revealed the importance of electrochemical approach compared with traditional diagnostic methods.
Collapse
Affiliation(s)
- Shadan Raza
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Deepak Kala
- Centera Laboratories, Institute of High Pressure Physics PAS, Warsaw, Poland
| | - Nishant Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Anil K Sharma
- Department of Biotechnology, Amity University of Punjab, Mohali, Punjab, India
| | - Nkurunziza Florien
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Hardeep S Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| |
Collapse
|
6
|
Lakavath K, Kafley C, Sajeevan A, Jana S, Marty JL, Kotagiri YG. Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides. Toxins (Basel) 2024; 16:244. [PMID: 38922139 PMCID: PMC11209398 DOI: 10.3390/toxins16060244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Monitoring agricultural toxins such as mycotoxins is crucial for a healthy society. High concentrations of these toxins lead to the cause of several chronic diseases; therefore, developing analytical systems for detecting/monitoring agricultural toxins is essential. These toxins are found in crops such as vegetables, fruits, food, and beverage products. Currently, screening of these toxins is mostly performed with sophisticated instrumentation such as chromatography and spectroscopy techniques. However, these techniques are very expensive and require extensive maintenance, and their availability is limited to metro cities only. Alternatively, electrochemical biomimetic sensing methodologies have progressed hugely during the last decade due to their unique advantages like point-of-care sensing, miniaturized instrumentations, and mobile/personalized monitoring systems. Specifically, affinity-based sensing strategies including immunosensors, aptasensors, and molecular imprinted polymers offer tremendous sensitivity, selectivity, and stability to the sensing system. The current review discusses the principal mechanisms and the recent developments in affinity-based sensing methodologies for the detection and continuous monitoring of mycotoxins and pesticides. The core discussion has mainly focused on the fabrication protocols, advantages, and disadvantages of affinity-based sensing systems and different exploited electrochemical transduction techniques.
Collapse
Affiliation(s)
- Kavitha Lakavath
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Chandan Kafley
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Anjana Sajeevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Soumyajit Jana
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Jean Louis Marty
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| |
Collapse
|
7
|
Wang B, Wang Y, Zhang X, He K. Novel advanced materials and magnetic solid phase extraction as approaches in sample preparation to enhance the analysis of ochratoxin A in peanuts. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2897-2904. [PMID: 38647424 DOI: 10.1039/d4ay00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ochratoxin A (OTA) is a mycotoxin that can contaminate a variety of agricultural commodities, including fruit juices and wines. The capability of a magnetic solid-phase extraction (MSPE) method with a magnetic metal-organic framework (MOF) material having a three-layer core-shell structure to improve the detection of OTA in food matrices using high performance liquid chromatography is described. Analysis of the material through X-ray diffraction (XRD) indicated the successful synthesis of the magnetic nanomaterial Fe3O4@SiO2@UiO66-NH2. Scanning electron microscopy (SEM) and Zetasizer lab indicated its nano-sized morphological features. The conditions affecting the magnetic solid-phase extraction procedure, such as material dosage, pH, composition and amount of eluent, desorption solution and desorption time were investigated to obtain the optimal extraction conditions. Under optimized conditions, the recoveries of spiked analytes at three different concentrations ranged from 95.83 to 101.5%, and the relative standard deviations were below 5%. Coupling with HPLC allowed the limit of detection to be 0.3 μg kg-1. This method is simple and specific, and can effectively avoid the influence of coexisting elements and improve the sensitivity of determination through fast MSPE of OTA. It has broad development prospects in OTA detection pre-treatment.
Collapse
Affiliation(s)
- Bingchen Wang
- Hebei Key Laboratory of Quality & Safety Analysis-testing for Agro-products and Food, Hebei North University, Zhangjiakou 075000, Hebei, China.
| | - Yifan Wang
- Hebei Key Laboratory of Quality & Safety Analysis-testing for Agro-products and Food, Hebei North University, Zhangjiakou 075000, Hebei, China.
| | - Xiuyuan Zhang
- Hebei Key Laboratory of Quality & Safety Analysis-testing for Agro-products and Food, Hebei North University, Zhangjiakou 075000, Hebei, China.
| | - Kuo He
- Hebei Key Laboratory of Quality & Safety Analysis-testing for Agro-products and Food, Hebei North University, Zhangjiakou 075000, Hebei, China.
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050000, China
| |
Collapse
|
8
|
Halmagyi TG, Alsharif NB, Berkal MA, Hempenius MA, Szilagyi I, Vancso GJ, Nardin C. Aptamer Clicked Poly(ferrocenylsilanes) at Au Nanoparticles as Platforms with Multiple Function [†]. Chemistry 2024; 30:e202303979. [PMID: 38206093 DOI: 10.1002/chem.202303979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Aptamers are widely used in biosensing due to their specific sensitivity toward many targets. Thus, gold nanoparticle (AuNP) aptasensors are subject to intense research due to the complementary properties of aptamers as sensing elements and AuNPs as transducers. We present herein a novel method for the functional coupling of thrombin-specific aptamers to AuNPs via an anionic, redox-active poly(ferrocenylsilane) (PFS) polyelectroyte. The polymer acts as a co-reductant and stabilizer for the AuNPs, provides grafting sites for the aptamer, and can be used as a redox sensing element, making the aptamer-PFS-AuNP composite (aptamer-AuNP) a promising model system for future multifunctional sensors. The aptamer-AuNPs exhibit excellent colloidal stability in high ionic strength environments owing to the combined electrosteric stabilizing effects of the aptamer and the PFS. The synthesis of each assembly element is described, and the colloidal stability and redox responsiveness are studied. As an example to illustrate applications, we present results for thrombin sensitivity and specificity using the specific aptamer.
Collapse
Affiliation(s)
- Tibor G Halmagyi
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour F-, 64053, Pau, France
| | - Nizar B Alsharif
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Research Center, University of Szeged H-, 6720, Szeged, Hungary
| | - Mohamed A Berkal
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour F-, 64053, Pau, France
| | - Mark A Hempenius
- Sustainable Polymer Chemistry, University of Twente NL-, 7522NB, Enschede, the Netherlands
| | - Istvan Szilagyi
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Research Center, University of Szeged H-, 6720, Szeged, Hungary
| | - G Julius Vancso
- Sustainable Polymer Chemistry, University of Twente NL-, 7522NB, Enschede, the Netherlands
| | - Corinne Nardin
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour F-, 64053, Pau, France
| |
Collapse
|
9
|
Argoubi W, Algethami FK, Raouafi N. Enhanced sensitivity in electrochemical detection of ochratoxin A within food samples using ferrocene- and aptamer-tethered gold nanoparticles on disposable electrodes. RSC Adv 2024; 14:8007-8015. [PMID: 38454949 PMCID: PMC10918640 DOI: 10.1039/d3ra08567h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
Ensuring food security is crucial for public health, and the presence of mycotoxins, produced by fungi in improperly stored processed or unprocessed food, poses a significant threat. This research introduces a novel approach - a disposable aptasensing platform designed for the detection of ochratoxin A (OTA). The platform employs gold-nanostructured screen-printed carbon electrodes functionalized with a ferrocene derivative, serving as an integrated faradaic transducing system, and an anti-OTA aptamer as a bioreceptor site. Detection relies on the ferrocene electrochemical signal changes induced by the aptamer folding in the presence of the target molecule. Remarkably sensitive, the platform detects OTA within the range of 0.5 to 70 ng mL-1 and a detection limit of 11 pg mL-1. This limit is approximately 200 times below the levels stipulated by the European Commission for agricultural commodities. Notably, the sensing device exhibits efficacy in detecting OTA in complex media, such as roasted coffee beans and wine, without the need for sample pretreatment, yielding accurate recoveries. Furthermore, while label-free electrochemical aptasensors have proliferated, this study addresses a gap in understanding the binding mechanisms of some aptasensors. To enhance the experimental findings, a theoretical study was conducted to underscore the specificity of the anti-OTA aptamer as a donor for OTA detection. The molecular docking technique was employed to unveil the key binding region of the aptamer, providing valuable insights into the aptasensor specificity.
Collapse
Affiliation(s)
- Wicem Argoubi
- Sensors and Biosensors Group, ACE-Lab (LR99ES15), Faculty of Science, University of Tunis El Manar 2092 Tunis El Manar Tunisia
| | - Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) P.O. Box 90950 Riyadh 11623 Saudi Arabia
| | - Noureddine Raouafi
- Sensors and Biosensors Group, ACE-Lab (LR99ES15), Faculty of Science, University of Tunis El Manar 2092 Tunis El Manar Tunisia
| |
Collapse
|
10
|
Yang W, Ni L, Zhu M, Zhang X, Feng L. Mg 2+- or Ca 2+-regulated aptamer adsorption on polydopamine-coated magnetic nanoparticles for fluorescence detection of ochratoxin A. Mikrochim Acta 2024; 191:157. [PMID: 38409486 DOI: 10.1007/s00604-024-06252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
It has been observed that polyvalent metal ions can mediate the adsorption of DNA on polydopamine (PDA) surfaces. Exploiting this, we used two divalent metal ions (Mg2+ or Ca2+) to promote the adsorption of fluorescence-labelled ochratoxin A (OTA) aptamers on PDA-coated magnetic nanoparticles (Fe3O4@PDA). Based on the different adsorption affinities of free aptamers and OTA-bound aptamers, a facile assay method was established for OTA detection. The aptamers adsorbed on Fe3O4@PDA were removed via simple magnetic separation, and the remaining aptamers in the supernatant exhibited a positive correlation with the OTA concentration. The concentrations of Mg2+ and Ca2+ were finely tuned to attain the optimal adsorption affinity and sensitivity for OTA detection. In addition, other factors, including the Fe3O4@PDA dosage, pH, mixing order, and incubation time, were studied. Finally, under optimized conditions, a detection limit (3σ/s) of 1.26 ng/mL was achieved for OTA. Real samples of spiked red wine were analysed with this aptamer-based method. This is the first report of regulating aptamer adsorption on the PDA surface with polyvalent metal ions for OTA detection. By changing the aptamers, the method can be easily extended to other target analytes.
Collapse
Affiliation(s)
- Wei Yang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Lanxiu Ni
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Mingzhen Zhu
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaobo Zhang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
11
|
Lin X, Fang Y, Chen Q, Guo Z, Chen X, Chen X. Magnetically actuated microfluidic chip combined with a G-quadruplex DNAzyme-based fluorescent/colorimetric sensor for the dual-mode detection of ochratoxin A in wheat. Talanta 2024; 267:125273. [PMID: 37804790 DOI: 10.1016/j.talanta.2023.125273] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
In this work, a portable fluorescent/colorimetric sensor based on G-quadruplex DNAzyme was constructed to achieve rapid and dual-mode detection of ochratoxin A (OTA) in wheat. OTA aptamers coupled with magnetic beads (MBs) can self-assemble with two segments of DNA and hemin to form a G-quadruplex DNAzyme structure that can catalyze the oxidation of Amplex Red (ADHP) with H2O2, making the solution red and producing strong fluorescence in solution. However, in the presence of OTA, the structure of the G-quadruplex DNAzyme was damaged, resulting in reduced catalytic activity. According to the principle of detection, a magnet-controlled chip integrating the reaction, washing, and detection was designed in this study. Shuttling the MB-DNAzyme probes onto a magnetically controlled chip considerably reduced the background signal and improved the detection efficiency and sensitivity. In addition, a portable fluorescence and colorimetric detection platform was built for on-site OTA detection.
Collapse
Affiliation(s)
- Xueqi Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Yuwen Fang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Zhiyong Guo
- Institute of Analytical Technology and Smart Instruments and Colleague of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, 361024, China.
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
12
|
Hamad-Schifferli K. Applications of Gold Nanoparticles in Plasmonic and Nanophotonic Biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:185-221. [PMID: 38273208 PMCID: PMC11182655 DOI: 10.1007/10_2023_237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The unique properties of plasmonic nanoparticles and nanostructures have enabled a broad range of applications in a diverse set of fields, ranging from biological sensing, cancer therapy, to catalysis. They have been some of the most studied nanomaterials due in part to their chemical stability and biocompatibility as well as supporting theoretical efforts. The synthesis and fabrication of plasmonic nanoparticles and nanostructures have now reached high precision and sophistication. We review here their fundamental optical properties, discuss their tailoring for biological environments, and then detail examples on how they have been used to innovate in the biological and biomedical fields.
Collapse
Affiliation(s)
- Kimberly Hamad-Schifferli
- Department of Engineering, School for the Environment, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
13
|
Ansari MTI, Raghuwanshi SK, Kumar S. Recent Advancement in Fiber-Optic-Based SPR Biosensor for Food Adulteration Detection-A Review. IEEE Trans Nanobioscience 2023; 22:978-988. [PMID: 37216266 DOI: 10.1109/tnb.2023.3278468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Food safety is a scientific discipline that requires sophisticated handling, production, and storage. Food is common for microbial development; it acts as a source for growth and contamination. The traditional procedures for food analysis are time-consuming and labor-intensive, but optical sensors overcome these constraints. Biosensors have replaced rigorous lab procedures like chromatography and immunoassays with more precise and quick sensing. It offers quick, nondestructive, and cost-effective food adulteration detection. Over the last few decades, the significant spike in interest in developing surface plasmon resonance (SPR) sensors for the detection and monitoring of pesticides, pathogens, allergens, and other toxic chemicals in foods. This review focuses on fiber-optic SPR (FO-SPR) biosensors for detecting various adulterants in food matrix while also discussing the future perspective and the key challenges encountered by SPR based sensors.
Collapse
|
14
|
Wu R, Guo J, Wang M, Liu H, Ding L, Yang R, Liu LE, Liu Z. Fluorescent Sensor Based on Magnetic Separation and Strand Displacement Amplification for the Sensitive Detection of Ochratoxin A. ACS OMEGA 2023; 8:15741-15750. [PMID: 37151502 PMCID: PMC10157876 DOI: 10.1021/acsomega.3c01408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Ochratoxin A (OTA) is a common mycotoxin, and it is a significant threat to human health throughout the food chain. In this study, a sensitive and specific fluorescent sensor based on magnetic separation technology combined with chain displacement amplification was developed for fast and easy detection of OTA in food. The designed strand displacement amplification can improve the sensitivity for the detection, and the magnetic nanomaterials can provide a large surface area, thus enhancing the capture efficiency of the target from the sample. Based on those designs, the experimental results showed that the proposed method displayed excellent performance. The linearity range was 0.5-128.0 ng/mL. The detection limit was 0.125 ng/mL; the relative standard deviations were 3.92-7.71%. Additionally, the developed method was satisfactorily applied to determine OTA in wheat, corn, and red wine samples at three spiked levels (1.0, 8.0, and 64.0 ng/mL). The recoveries ranged from 85.45 to 107.8% for wheat flour, 101.34 to 108.35% for corn flour, and 91.15 to 93.80% for red wine, respectively. Compared with high-performance liquid chromatography, the proposed method showed a lower limit of detection and equal recovery. Hence, the designed method is a potential and good detecting tool for OTA residue analysis in complex matrix samples.
Collapse
Affiliation(s)
- Ruoyu Wu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Jiaping Guo
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Minkai Wang
- Department
of Neurosurgery, First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, People’s Republic of China
| | - Huimin Liu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Lihua Ding
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Ruiying Yang
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Li-e Liu
- College
of Public Health, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Zhiyong Liu
- Key
Laboratory of Food Safety Quick Testing and Smart Supervision Technology
for State Market Regulation, Beijing 100094, People’s
Republic of China
| |
Collapse
|
15
|
Yang X, Huang R, Xiong L, Chen F, Sun W, Yu L. A Colorimetric Aptasensor for Ochratoxin A Detection Based on Tetramethylrhodamine Charge Effect-Assisted Silver Enhancement. BIOSENSORS 2023; 13:bios13040468. [PMID: 37185543 PMCID: PMC10136965 DOI: 10.3390/bios13040468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023]
Abstract
A novel colorimetric aptasensor based on charge effect-assisted silver enhancement was developed to detect ochratoxin A (OTA). To achieve this objective, gold nanoparticles (AuNPs), which can catalyze silver reduction and deposition, were used as the carrier of the aptamers tagged with a positively charged tetramethylrhodamine (TAMRA). Due to the mutual attraction of positive and negative charges, the TAMRA attracted and retained the silver lactate around the AuNPs. Thus, the chance of AuNP-catalyzed silver reduction was increased. The charge effect-assisted silver enhancement was verified by tagging different base pair length aptamers with TAMRA. Under optimized conditions, the as-prepared OTA aptasensor had a working range of 1 × 102-1 × 106 pg mL-1. The detection limit was as low as 28.18 pg mL-1. Moreover, the proposed aptasensor has been successfully applied to determine OTA in actual samples with satisfactory results.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Rong Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Lulu Xiong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Feng Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ling Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Singh A, Singh G, Kaur N, Singh N. Quantitative and qualitative analysis of ochratoxin-A using fluorescent CQDs@DNA-based nanoarchitecture assembly to monitor food safety and quality. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1826-1835. [PMID: 36971227 DOI: 10.1039/d3ay00209h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ochratoxin A (OTA), a mycotoxin formed by various fungi, such as Aspergillus and Penicillium species, is dangerous to human health. Thus, to circumvent the risk of OTA ingestion, the recognition and quantification of OTA levels are of great significance. A perusal of the literature has revealed that the integration of DNA/Carbon Quantum Dot (CQD)-based hybrid systems may exhibit the unique electronic and optical properties of nanomaterials/nanoarchitecture and consequent recognition properties. Herein, we developed the CQDs@DNA-based hybrid nanoarchitecture system for the selective detection of OTA, which exhibits modulation in the emission spectrum after interaction with OTA, with a significant binding constant (Ka = 3.5 × 105 M-1), a limit of detection of 14 nM, limit of quantification of 47 nM and working range of 1-10 μM. The mechanism for sensing the OTA has been corroborated using fluorescence, UV-visible absorption spectroscopy, and FTIR techniques, demonstrating the binding mode of CQD@DNA hybrid nano-architecture assembly with OTA. Further, we demonstrated the sensing ability of developed CQDs@DNA-based nanoarchitecture assembly towards the quantification of OTA in real food monitoring analysis for real-time applications, which makes this developed nanoarchitecture assembly the potential candidate to conveniently monitor food safety and quality for human health.
Collapse
Affiliation(s)
- Amanpreet Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, Punjab, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| |
Collapse
|
17
|
He Z, Chen Q, Ding S, Wang G, Takarada T, Maeda M. Suppressed DNA base pair stacking assembly of gold nanoparticles in an alcoholic solvent for enhanced ochratoxin A detection in Baijiu. Analyst 2023; 148:1291-1299. [PMID: 36846974 DOI: 10.1039/d3an00016h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The currently established DNA nanoprobes for the detection of mycotoxin from beverages have been limited by complicated sample pretreatment and uncontrollable nanoparticle flocculation in complex systems. We develop a rapid colorimetric approach for ochratoxin A (OTA) detection in Baijiu in a sample-in/"yes" or "no" answer-out fashion through target-modulated base pair stacking assembly of DNA-functionalized gold nanoparticles (DNA-AuNPs). The colorimetric signification of OTA relies on the competition of OTA with the AuNP surface-grafted DNA in binding with an OTA-targeted aptamer. The specific recognition of OTA by the aptamer prevents DNA duplex formation on the AuNP surface, thereby inhibiting the base pair stacking assembly of the DNA-AuNPs and giving rise to a "turn-on" color. By further suppressing DNA hybridization using a bulged loop design and an alcohol solution, the DNA-AuNPs exhibit an improved reproducibility for OTA sensing while maintaining excellent susceptivity to OTA. A detection limit of 88 nM was achieved along with high specificity towards OTA, which is lower than the maximum tolerated level of OTA in foodstuffs defined by countries worldwide. The entire reaction time, avoiding sample pretreatment, is less than 17 min. The DNA-AuNPs with anti-interference features and sensitive "turn-on" performance promise convenient on-site detection of mycotoxin from daily beverages.
Collapse
Affiliation(s)
- Zhiyu He
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Qianyuan Chen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Shansen Ding
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Tohru Takarada
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mizuo Maeda
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
18
|
Zhao L, Liang X, Liu Y, Wei M, Jin H. A Novel Fluorescent Aptasensor Based on Dual-labeled DNA Nanostructure for Simultaneous Detection of Ochratoxin A and Aflatoxin B1. J Fluoresc 2023:10.1007/s10895-022-03071-5. [PMID: 36806047 DOI: 10.1007/s10895-022-03071-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/02/2022] [Indexed: 02/23/2023]
Abstract
Based on DNA strand replacement reaction and aptamer-specific recognition, a simple dual-labeled DNA nanostructure is designed for the simultaneous detection of Ochratoxin A (OTA) and aflatoxin B1 (AFB1). C1 is labeled with Cy3 and Cy5, while C2 and C3 are labeled with BHQ2. The fluorescence intensity of DNA nanostructure composed of C1, C2 and C3 is weak because of fluorescence resonance energy transfer. When OTA Aptamer (OTA-Apt) and AFB1 Aptamer (AFB1-Apt) are added to the homogeneous system at the same time, C1 can be replaced with the help of toehold strand displacement, resulting in fluorescence enhancement. In the presence of both OTA and AFB1, the toehold strand displacement reaction is inhibited due to preferential binding between the target and their corresponding aptamers. The limit of detection of OTA was 0.007 ng/mL and that of AFB1 was 0.03 ng/mL. The recoveries of OTA and AFB1 were 96%-101% and 97%-101% in the corn sample, and 99%-101% and 92%-106% in the wine sample. Compared with other sensors, the preparation of this aptasensor needs simpler experimental steps and a shorter total-preparing time, confirming the convenient, rapid, and time-saving operation process.
Collapse
Affiliation(s)
- Luyang Zhao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Xiujun Liang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Yong Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
19
|
Gong Z, Huang Y, Hu X, Zhang J, Chen Q, Chen H. Recent Progress in Electrochemical Nano-Biosensors for Detection of Pesticides and Mycotoxins in Foods. BIOSENSORS 2023; 13:140. [PMID: 36671974 PMCID: PMC9856537 DOI: 10.3390/bios13010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Pesticide and mycotoxin residues in food are concerning as they are harmful to human health. Traditional methods, such as high-performance liquid chromatography (HPLC) for such detection lack sensitivity and operation convenience. Efficient, accurate detection approaches are needed. With the recent development of nanotechnology, electrochemical biosensors based on nanomaterials have shown solid ability to detect trace pesticides and mycotoxins quickly and accurately. In this review, English articles about electrochemical biosensors in the past 11 years (2011-2022) were collected from PubMed database, and various nanomaterials are discussed, including noble metal nanomaterials, magnetic metal nanoparticles, metal-organic frameworks, carbon nanotubes, as well as graphene and its derivatives. Three main roles of such nanomaterials in the detection process are summarized, including biomolecule immobilization, signal generation, and signal amplification. The detection targets involve two types of pesticides (organophosphorus and carbamate) and six types of mycotoxins (aflatoxin, deoxynivalenol, zearalenone, fumonisin, ochratoxin A, and patulin). Although significant achievements have been made in the evolution of electrochemical nano-biosensors, many challenges remain to be overcome.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yueming Huang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
20
|
Dong X, Qi S, Khan IM, Sun Y, Zhang Y, Wang Z. Advances in riboswitch-based biosensor as food samples detection tool. Compr Rev Food Sci Food Saf 2023; 22:451-472. [PMID: 36511082 DOI: 10.1111/1541-4337.13077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
Food safety has always been a hot issue of social concern, and biosensing has been widely used in the field of food safety detection. Compared with traditional aptamer-based biosensors, aptamer-based riboswitch biosensing represents higher precision and programmability. A riboswitch is an elegant example of controlling gene expression, where the target is coupled to the aptamer domain, resulting in a conformational change in the downstream expression domain and determining the signal output. Riboswitch-based biosensing can be extensively applied to the portable real-time detection of food samples. The numerous key features of riboswitch-based biosensing emphasize their sustainability, renewable, and testing, which promises to transform engineering applications in the field of food safety. This review covers recent developments in riboswitch-based biosensors. The brief history, definition, and modular design (regulatory mode, reporter, and expression platform) of riboswitch-based biosensors are explained for better insight into the design and construction. We summarize recent advances in various riboswitch-based biosensors involving theophylline, malachite green, tetracycline, neomycin, fluoride, thrombin, naringenin, ciprofloxacin, and paromomycin, aiming to provide general guidance for the design of riboswitch-based biosensors. Finally, the challenges and prospects are also summarized as a way forward stratagem and signs of progress.
Collapse
Affiliation(s)
- Xiaoze Dong
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yuhan Sun
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Collaborative innovation center of food safety and quality control in Jiangsu Province, Food, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
An electrochemical aptasensor based on exonuclease III-assisted signal amplification coupled with CRISPR-Cas12a for ochratoxin A detection. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Yu H, Zhao Q. Aptamer Molecular Beacon Sensor for Rapid and Sensitive Detection of Ochratoxin A. Molecules 2022; 27:molecules27238267. [PMID: 36500359 PMCID: PMC9737911 DOI: 10.3390/molecules27238267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Ochratoxin A (OTA) is a carcinogenic fungal secondary metabolite which causes wide contamination in a variety of food stuffs and environments and has a high risk to human health. Developing a rapid and sensitive method for OTA detection is highly demanded in food safety, environment monitoring, and quality control. Here, we report a simple molecular aptamer beacon (MAB) sensor for rapid OTA detection. The anti-OTA aptamer has a fluorescein (FAM) labeled at the 5' end and a black hole quencher (BHQ1) labeled at the 3' end. The specific binding of OTA induced a conformational transition of the aptamer from a random coil to a duplex-quadruplex structure, which brought FAM and BHQ1 into spatial proximity causing fluorescence quenching. Under the optimized conditions, this aptamer sensor enabled OTA detection in a wide dynamic concentration range from 3.9 nM to 500 nM, and the detection limit was about 3.9 nM OTA. This method was selective for OTA detection and allowed to detect OTA spiked in diluted liquor and corn flour extraction samples, showing the capability for OTA analysis in practical applications.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Correspondence:
| |
Collapse
|
23
|
A Novel Fluorescent Aptasensor Based on Real-Time Fluorescence and Strand Displacement Amplification for the Detection of Ochratoxin A. Foods 2022; 11:foods11162443. [PMID: 36010442 PMCID: PMC9407370 DOI: 10.3390/foods11162443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
It is urgently necessary to develop convenient, reliable, ultrasensitive and specific methods of ochratoxin A determination in food safety owing to its high toxicity. In the present study, an ultrasensitive and labeled-free fluorescent aptamer sensor combining real-time fluorescence with strand displacement amplification (SDA) was fabricated for the determination of OTA. In the presence of OTA, the OTA–aptamer combines with OTA, thus opening hairpins. Then, SDA primers specifically bind to the hairpin stem, which is used for subsequent amplification as a template. SDA amplification is initiated under the action of Bst DNA polymerase and nicking endonuclease. The amplified products (ssDNA) are dyed with SYBR Green II and detected with real-time fluorescence. The method has good linearity in the range of 0.01–50 ng mL−1, with the lowest limit of detection of 0.01 ng mL−1. Additionally, the fluorescent aptamer sensor shows outstanding specificity and reproducibility. Furthermore, the sensor shows excellent analytical performance in the artificial labeled detection of wheat and oat samples, with a recovery rate of 96.1~100%. The results suggest that the developed sensor has a promising potential application for the ultrasensitive detection of contaminants in food.
Collapse
|
24
|
Wang C, Zhao X, Gu C, Xu F, Zhang W, Huang X, Qian J. Fabrication of a Versatile Aptasensing Chip for Aflatoxin B1 in Photothermal and Electrochemical Dual Modes. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02366-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Geleta GS. A colorimetric aptasensor based on gold nanoparticles for detection of microbial toxins: an alternative approach to conventional methods. Anal Bioanal Chem 2022; 414:7103-7122. [PMID: 35902394 DOI: 10.1007/s00216-022-04227-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/01/2022]
Abstract
Frequent contamination of foods with microbial toxins produced by microorganisms such as bacteria, fungi, and algae represents an increasing public health problem that requires the development of quick and easy tools to detect them at trace levels. Recently, it has been found that colorimetric detection methods may replace traditional methods in the field because of their ease of use, quick response, ease of manufacture, low cost, and naked-eye visibility. Therefore, it is suitable for fieldwork, especially for work in remote areas of the world. However, the development of colorimetric detection methods with low detection limits is a challenge that limits their wide applicability in the detection of food contaminants. To address these challenges, nanomaterial-based transduction systems are used to construct colorimetric biosensors. For example, gold nanoparticles (AuNPs) provide an excellent platform for the development of colorimetric biosensors because they offer the advantages of easy synthesis, biocompatibility, advanced surface functionality, and adjustable physicochemical properties. The selectivity of the colorimetric biosensor can be achieved by the combination of aptamers and gold nanoparticles, which provides an unprecedented opportunity to detect microbial toxins. Compared to antibodies, aptamers have significant advantages in the analysis of microbial toxins due to their smaller size, higher binding affinity, reproducible chemical synthesis and modification, stability, and specificity. Two colorimetric mechanisms for the detection of microbial toxins based on AuNPs have been described. First, sensors that use the localized surface plasmon resonance (LSPR) phenomenon of gold nanoparticles can exhibit very strong colors in the visible range because of changes caused by aggregation or disaggregation. Second, the detection mechanism of AuNPs is based on their enzyme mimetic properties and it is possible to construct a colorimetric biosensor based on the 3,3',5,5'-tetramethylbenzidine/Hydrogen peroxide, TMB/H2O2 reaction to detect microbial toxins. Therefore, this review summarizes the recent applications of AuNP-based colorimetric aptasensors for detecting microbial toxins, including bacterial toxins, fungal toxins, and algal toxins focusing on selectivity, sensitivity, and practicality. Finally, the most important current challenges in this field and future research opportunities are discussed.
Collapse
Affiliation(s)
- Girma Salale Geleta
- Department of Chemistry, College of Natural Sciences, Salale University, P.O. Box 245, Oromia, Fiche, Ethiopia.
| |
Collapse
|
26
|
Ma Q, Nie D, Sun X, Xu Y, He J, Yang L, Yang L. A versatile Y shaped DNA nanostructure for simple, rapid and one-step detection of mycotoxins. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121634. [PMID: 35863187 DOI: 10.1016/j.saa.2022.121634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023]
Abstract
A versatile Y shaped DNA nanostructure has been developed for simple, rapid and one-step simultaneous detection aflatoxin B1 (AFB1) and ochratoxin A (OTA). Y shaped duplex DNA arms was formed with two DNA tweezer at the ends. The aptamer sequence at the third end can bind to its target mycotoxins with strong affinity and then release the two DNA fragments. The released DNA fragments can open the DNA tweezers at the ends of Y shaped DNA arm. The amounts of AFB1 and OTA can be quantitative detection through the recovery of the fluorescent intensities. This strategy is simple and rapid with self-powered DNA hybridization reaction to control the "open" of Y shaped DNA tweezers. Furthermore, it can be finished in 60 min with only one-step of operation. The linear range of AFB1 was from 0.5 to 200 ng/mL (R2 = 0.995) and linear relationship of OTA was obtained from 4 to 300 ng/mL (R2 = 0.990). It also has been successfully applied for mycotoxins detection in real food samples. Importantly, the target mycotoxins can be extended to others by simply replacing the corresponding aptamer sequences.
Collapse
Affiliation(s)
- Qin Ma
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dongqin Nie
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinyi Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yaling Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingxian He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Li Yang
- The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, Sichuan 621000, China
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
27
|
Sen A, Sester C, Poulsen H, Hodgkiss JM. Accounting for Interaction Kinetics between Gold Nanoparticles and Aptamers Enables High-Performance Colorimetric Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32813-32822. [PMID: 35833898 DOI: 10.1021/acsami.2c04747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNA aptamers have emerged as promising probes for challenging analytes that cannot be easily detected by conventional probes, including small-molecule targets. Among the different signal transduction approaches, gold nanoparticle (AuNP) aggregation assays have been widely used to generate a colorimetric response from aptamer-target interactions. This sensor design relies on the competition between the aptamer adsorbing to the AuNP surface versus interacting with the target, whereby target binding reduces the number of adsorbed aptamers that destabilizes AuNPs toward salt-induced aggregation, thereby inducing a color change. However, this thermodynamic framework overlooks the potential influence of interaction kinetics of different aptamer conformations with AuNP surfaces and with targets in solution or near surfaces. Here, we show that aptamers become more strongly adsorbed on AuNPs over time, and these trapped aptamers are less responsive toward the target analyte. By varying the sequence of addition in sensing assays, we demonstrate that these interaction kinetics have a significant effect on the sensor response and thereby produce an effective sensor for methamphetamine (meth) at biologically relevant levels in oral fluids. Along with underpinning new tools for assay development, this new knowledge also highlights the need for aptamer selection strategies that evolve aptamer sequences based on the functionality that they need to exhibit in an actual sensor.
Collapse
Affiliation(s)
- Anindita Sen
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
| | - Clément Sester
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
| | - Helen Poulsen
- Forensic Specialised Analytical Services (F-SAS), Institute of Environmental Science and Research (ESR), P.O. Box 50348, Wellington 5240, New Zealand
| | - Justin M Hodgkiss
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
| |
Collapse
|
28
|
Sanford AA, Manuel BA, Romero-Reyes MA, Heemstra JM. Combating small molecule environmental contaminants: detection and sequestration using functional nucleic acids. Chem Sci 2022; 13:7670-7684. [PMID: 35865900 PMCID: PMC9258336 DOI: 10.1039/d2sc00117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/26/2022] [Indexed: 12/05/2022] Open
Abstract
Small molecule contaminants pose a significant threat to the environment and human health. While regulations are in place for allowed limits in many countries, detection and remediation of contaminants in more resource-limited settings and everyday environmental sources remains a challenge. Functional nucleic acids, including aptamers and DNA enzymes, have emerged as powerful options for addressing this challenge due to their ability to non-covalently interact with small molecule targets. The goal of this perspective is to outline recent efforts toward the selection of aptamers for small molecules and describe their subsequent implementation for environmental applications. Finally, we provide an outlook that addresses barriers that hinder these technologies from being widely adopted in field friendly settings and propose a path forward toward addressing these challenges.
Collapse
Affiliation(s)
- Aimee A Sanford
- Department of Chemistry, Emory University Atlanta Georgia 30322 USA
| | - Brea A Manuel
- Department of Chemistry, Emory University Atlanta Georgia 30322 USA
| | - Misael A Romero-Reyes
- Department of Chemistry, Emory University Atlanta Georgia 30322 USA
- Department of Chemistry, Hanover College Hanover Indiana 47243 USA
| | - Jennifer M Heemstra
- Department of Chemistry, Emory University Atlanta Georgia 30322 USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University Atlanta GA 30332 USA
| |
Collapse
|
29
|
Jiang L, Han Y, Li Y, Li Z, Zhang S, Zhu X, Liu Z, Chen Y, Fernandez-Garcia S, Tang Y, Chen X. Split-Type Assay for Wide-Range Sensitive Sensing of Ochratoxin A with Praseodymia Nanorods. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Ranganathan V, Boisjoli S, DeRosa MC. Adsorption-desorption nano-aptasensors: fluorescent screening assays for ochratoxin A. RSC Adv 2022; 12:13727-13739. [PMID: 35541430 PMCID: PMC9081825 DOI: 10.1039/d2ra00026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a FRET-based fluorescent aptasensor for the detection of ochratoxin A (OTA) was optimized based on the quenching efficiency of single-walled carbon nanotubes (SWCNTs) and the binding affinity of aptamers. OTA aptamers were conjugated with quantum dots and adsorbed to the surface of both acid-modified and unmodified SWCNTs. The maximum fluorescence quenching efficiency of the SWCNTs were compared. Acid-modified SWCNTs (amSWCNTs) have moderate quenching efficiency, providing an optimal sensitivity for qualitative fluorescence-enhancement biosensor assays. The binding parameters of the QD-modified OTA aptamers (1.12.2 and A08min) on the surface of amSWCNTs were compared. Based on our results, the A08min aptamer is a better candidate for OTA detection. Using the A08min aptamer, the SWCNT method had a limit of detection (LOD) of 40 nM. The amSWCNT method had a significantly lower LOD of 14 nM. Turn-on fluorescent nano-aptasensors are emerging as an effective diagnostic tool for simple detection of mycotoxins. Nanocomplexes designed for the detection of mycotoxins in solution and paper-based tests have proven to be useful.
Collapse
Affiliation(s)
- Velu Ranganathan
- Department of Chemistry, Carleton University 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada +1-613-520-2600
| | - Spencer Boisjoli
- Department of Chemistry, Carleton University 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada +1-613-520-2600
| | - Maria C DeRosa
- Department of Chemistry, Carleton University 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada +1-613-520-2600
| |
Collapse
|
31
|
Yang C, Abbas F, Rhouati A, Sun Y, Chu X, Cui S, Sun B, Xue C. Design of a Quencher-Free Fluorescent Aptasensor for Ochratoxin A Detection in Red Wine Based on the Guanine-Quenching Ability. BIOSENSORS 2022; 12:bios12050297. [PMID: 35624598 PMCID: PMC9138568 DOI: 10.3390/bios12050297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 05/04/2023]
Abstract
This study describes a quencher-free fluorescent aptasensor for ochratoxin A (OTA) detection using the specific quenching ability of guanine for fluorescein (FAM) molecules based on photo-induced electron transfer (PIET). In this strategy, OTA is detected by monitoring the fluorescence change induced by the conformational change of the aptamer after target binding. A new shorter OTA aptamer compromising three guanine bases at the 5' end was used in this study. This new aptamer, named G3-OTAapt1-FAM (F1), was labeled with FAM on the 3' end as a fluorophore. In order to increase the binding affinity of the aptamer and OTA, G3-OTAapt2-FAM (F2) was designed; this added a pair of complementary bases at the end compared with F1. To prevent the strong self-quenching of F2, a complementary chain, A13, was added. Although the F1 aptasensor was simpler to implement, the sensitivity of the F2 aptasensor with A13 was better than that of F1. The proposed F1 and F2 sensors can detect OTA with a concentration as low as 0.69 nmol/L and 0.36 nmol/L, respectively.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.Y.); (F.A.); (Y.S.); (X.C.); (S.C.); (B.S.)
| | - Fathimath Abbas
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.Y.); (F.A.); (Y.S.); (X.C.); (S.C.); (B.S.)
| | - Amina Rhouati
- Bioengineering Laboratory, Higher National School of Biotechnology, Constantine 25100, Algeria;
| | - Yingying Sun
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.Y.); (F.A.); (Y.S.); (X.C.); (S.C.); (B.S.)
| | - Xiaolin Chu
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.Y.); (F.A.); (Y.S.); (X.C.); (S.C.); (B.S.)
| | - Shengnan Cui
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.Y.); (F.A.); (Y.S.); (X.C.); (S.C.); (B.S.)
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; (C.Y.); (F.A.); (Y.S.); (X.C.); (S.C.); (B.S.)
| | - Changying Xue
- State Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Correspondence:
| |
Collapse
|
32
|
|
33
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
34
|
Kweon SY, Park JP, Park CY, Park TJ. Graphene Oxide-Mediated Fluorometric Aptasensor for Okadaic Acid Detection. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Xu G, Zhao J, Yu H, Wang C, Huang Y, Zhao Q, Zhou X, Li C, Liu M. Structural Insights into the Mechanism of High-Affinity Binding of Ochratoxin A by a DNA Aptamer. J Am Chem Soc 2022; 144:7731-7740. [PMID: 35442665 DOI: 10.1021/jacs.2c00478] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A 36-mer guanine (G)-rich DNA aptamer (OBA36) is able to distinguish one atomic difference between ochratoxin analogues A (OTA) and B (OTB), showing prominent recognition specificity and affinity among hundreds of aptamers for small molecules. Why OBA36 has >100-fold higher binding affinity to OTA than OTB remains a long-standing question due to the lack of high-resolution structure. Here we report the solution NMR structure of the aptamer-OTA complex. It was found that OTA binding induces the aptamer to fold into a well-defined unique duplex-quadruplex structural scaffold stabilized by Mg2+ and Na+ ions. OTA does not directly interact with the G-quadruplex, but specifically binds at the junction between the double helix and G-quadruplex through π-π stacking, halogen bonding (X-bond), and hydrophobic interaction. OTB has the same binding site as OTA but lacks the X-bond. The strong X-bond formed between the chlorine atom of OTA and the aromatic ring of C5 is the key to discriminating the strong binding toward OTA. The present research contributes to a deeper insight of aptamer molecular recognition, reveals structural basis of the high-affinity binding of aptamers, and provides a foundation for further aptamer engineering and applications.
Collapse
Affiliation(s)
- Guohua Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Jiajing Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,Xi'an Modern Chemistry Research Institute, Xi'an, 710065, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chen Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yangyu Huang
- Shaoyang University, Shaoyang, 422000, People's Republic of China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.,Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310000, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| |
Collapse
|
36
|
Shahdeo D, Khan AA, Alanazi AM, Bajpai VK, Shukla S, Gandhi S. Molecular Diagnostic of Ochratoxin A With Specific Aptamers in Corn and Groundnut via Fabrication of a Microfluidic Device. Front Nutr 2022; 9:851787. [PMID: 35399674 PMCID: PMC8988673 DOI: 10.3389/fnut.2022.851787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/14/2022] [Indexed: 01/18/2023] Open
Abstract
Ochratoxin A (OTA) is one of the predominant mycotoxins that contaminate a wide range of food commodities. In the present study, a 36-mer aptamer was used as a molecular recognition element coupled with gold nanoparticles (AuNPs) for colorimetric detection of OTA in a microfluidic paper-based analytical device (μPADs). The μPADs consisted of three zones: control, detection, and sample, interconnected by channels. UV-vis spectroscopy (UV-vis), Dynamic Light Scattering (DLS), and Transmission Electron Microscopy (TEM) were used for characterization of AuNPs and AuNPs/Aptamer. According to the colorimetric assay, limit of detection (LOD) was found to be 242, 545.45, and 95.69 ng/mL in water, corn, and groundnut, respectively. The HPLC detection method achieved acceptable coefficient in standard curves (r 2 = 0.9995), improved detection range, and recovery rates in spiked corn and groundnut samples as 43.61 ± 2.18% to 87.10 ± 1.82% and 42.01 ± 1.31% to 86.03 ± 2.64% after multiple sample extractions and cleanup steps. However, the developed μPADs analytical device had the potent ability to rapidly detect OTA without any extraction pre-requirement, derivatization, and cleanup steps, thus illustrating its feasibility in the animal health sector, agricultural, and food industries.
Collapse
Affiliation(s)
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Vivek K. Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul, South Korea
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, Sustainable Agricultural Division, The Energy and Resources Institute, TERI Gram, Gurugram, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| |
Collapse
|
37
|
Bao Y, Zhu D, Zhao Y, Li X, Gu C, Yu H. Selection and identification of high-affinity aptamer of Kunitz trypsin inhibitor and their application in rapid and specific detection. Food Sci Nutr 2022; 10:953-963. [PMID: 35282009 PMCID: PMC8907715 DOI: 10.1002/fsn3.2729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/21/2022] Open
Abstract
Kunitz trypsin inhibitor (KTI), a harmful protein, seriously affects food hygiene and safety. Therefore, a sensitive, efficient, and rapid method for KTI detection is urgently needed. Aptamers are short and single-stranded (ss) DNA that recognize target molecules with high affinity. This work used graphene oxide-SELEX (GO-SELEX) to screen KTI aptamers. The positive and reverse screening was designed to ensure the high specificity and affinity of the selected aptamers. After 10 rounds of screening, multiple nucleic acid chains were obtained, and the chains were sequenced. Three aptamers with better affinity were obtained, and the values of the dissociation constant (K d) were calculated to be 52.6 nM, 22.7 nM, and 67.9 nM, respectively. Finally, a colorimetric aptamer biosensor based on gold nanoparticles (AuNPs) was constructed. The biosensor exhibited a broader linear range of 30-750 ng/ml, with a lower detection limit of 18 ng/ml, and the spiked recovery rate was between 98.2% and 103.3%. This experiment preliminary demonstrated the potential of the application of KTI aptamer in the real sample tests.
Collapse
Affiliation(s)
- Yunxiang Bao
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Dengzhao Zhu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Yang Zhao
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- Division of Soybean ProcessingSoybean Research & Development CenterChinese Agricultural Research SystemChangchunChina
| | - Xinzhu Li
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Chunmei Gu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Hansong Yu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
- Division of Soybean ProcessingSoybean Research & Development CenterChinese Agricultural Research SystemChangchunChina
| |
Collapse
|
38
|
He K, Sun L, Wang L, Li W, Hu G, Ji X, Zhang Y, Xu X. Engineering DNA G-quadruplex assembly for label-free detection of Ochratoxin A in colorimetric and fluorescent dual modes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126962. [PMID: 34464866 DOI: 10.1016/j.jhazmat.2021.126962] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Colorimetric and fluorescent methods for Ochratoxin A (OTA) detection are convenient and well received. However, the pigments and autofluorescence originated from food matrices often interfere with detection signals. We have developed a strategy with colorimetric and fluorescent dual modes to solve this challenge. In the colorimetric mode, OTA aptamer (AP9) was assembled into a DNA triple-helix switch with a specially designed signal-amplifying sequence. The OTA-induced G-quadruplex (G4) of AP9 would open the switch and release the signal-amplifying sequence for colorimetric signal amplification. The G4 structures of AP9 were further utilized to combine with the fluorogenic dye ThT for fluorescent mode. By skillfully engineering DNA G4 assembly for signal amplification, there was no need for any DNA amplification or nanomaterials labeling. Detections could be carried out in a wide temperature range (22-37 ℃) and finished rapidly (colorimetric mode, 60 min; fluorescent mode, 15 min). Broad linear ranges (colorimetric mode, 10-1.5 ×103 μg/kg; fluorescent mode, 0.05-1.0 ×103 μg/kg) were achieved. The limit of detection for colorimetric and fluorescent modes were 4 μg/kg and 0.01 μg/kg, respectively. The two modes have been successfully applied to detect OTA in samples with intrinsic pigments and autofluorescence, showing their applicability and reliability.
Collapse
Affiliation(s)
- Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liping Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wang Li
- College of Food Science & Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Guixian Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yiming Zhang
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
39
|
Li W, Cao Y, Pei R. A Protocol for Gold Nanoparticle-Assisted Aptamer Selection for a Small Molecule Porphyrin to Develop DNAzyme. Methods Mol Biol 2022; 2439:3-13. [PMID: 35226311 DOI: 10.1007/978-1-0716-2047-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNAzymes can be obtained by in vitro selection, when specific analytes such as porphyrins are used as targets. In this process, the immobilization of targets serving as a major step is not suitable for the selection of DNAzymes because small molecules like porphyrins lack active groups for immobilization. Here, we develop a gold nanoparticle (AuNPs)-assisted aptamer selection for the small molecule porphyrin Zinc(II)-Protoporphyrin IX (ZnPPIX), which can realize the selection of DNAzyme without an immobilization step, and the detailed in vitro selection process in solution is described.
Collapse
Affiliation(s)
- Wenjing Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
40
|
YANG C, DONG SN, ABBAS F, CHU XL, FAN AQ, RHOUATI A, MAO J, LIU Y. Label-free fluorescence aptasensor for ochratoxin A using crystal violet as displacement-type probe. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
A Programmed, Autonomous, and Self-powered DNA Motor for One-Step Amplification Detection of Ochratoxin A. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Wang W, You Y, Gunasekaran S. LSPR-based colorimetric biosensing for food quality and safety. Compr Rev Food Sci Food Saf 2021; 20:5829-5855. [PMID: 34601783 DOI: 10.1111/1541-4337.12843] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022]
Abstract
Ensuring consistently high quality and safety is paramount to food producers and consumers alike. Wet chemistry and microbiological methods provide accurate results, but those methods are not conducive to rapid, onsite testing needs. Hence, many efforts have focused on rapid testing for food quality and safety, including the development of various biosensors. Herein, we focus on a group of biosensors, which provide visually recognizable colorimetric signals within minutes and can be used onsite. Although there are different ways to achieve visual color-change signals, we restrict our focus on sensors that exploit the localized surface plasmon resonance (LSPR) phenomenon of metal nanoparticles, primarily gold and silver nanoparticles. The typical approach in the design of LSPR biosensors is to conjugate biorecognition ligands on the surface of metal nanoparticles and allow the ligands to specifically recognize and bind the target analyte. This ligand-target binding reaction leads to a change in color of the test sample and a concomitant shift in the ultraviolet-visual absorption peak. Various designs applying this and other signal generation schemes are reviewed with an emphasis on those applied for evaluating factors that compromise the quality and safety of food and agricultural products. The LSPR-based colorimetric biosensing platform is a promising technology for enhancing food quality and safety. Aided by the advances in nanotechnology, this sensing technique lends itself easily for further development on field-deployable platforms such as smartphones for onsite and end-user applications.
Collapse
Affiliation(s)
- Weizheng Wang
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Youngsang You
- Department of Food Engineering, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
43
|
|
44
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
45
|
Zhu L, Zhao Y, Yao S, Xu M, Yin L, Zhai X, Teng X. A colorimetric aptasensor for the simple and rapid detection of human papillomavirus type 16 L1 proteins. Analyst 2021; 146:2712-2717. [PMID: 33688885 DOI: 10.1039/d1an00251a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, a novel colorimetric aptasensor was developed for the rapid detection and visual screening of HPV16 L1 proteins using gold nanoparticles (AuNPs) and an RNA aptamer against HPV16 L1 protein (APTHPV16 L1). The AuNP-APTHPV16 L1 conjugates could be aggregated by the addition of a salt in the presence of HPV16 L1 proteins at the ppb level. At the same time, the surface plasma resonance absorption peaks of AuNPs shifted to a short wavelength, and an observable change in color from red to blue occurred. The relative absorbance (Ablank - Asample/Ablank) at 520 nm exhibited a stable response to HPV16 L1 proteins over a concentration range from 9.6 to 201.6 ng mL-1. The visual detection limit of HPV16 L1 proteins was found to be 9.6 ng mL-1. Finally, the proposed colorimetric aptasensor was successfully applied for the rapid and effective detection of HPV16 L1 proteins in clinical samples and vaccine samples. The validity and reliability of the proposed colorimetric aptasensor were verified by the enzyme-linked immunosorbent assay method. The proposed colorimetric aptasensor provided a promising indicator for screening and quantitative detection of HPV16 L1 proteins in clinical samples.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Yu Zhao
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Shangchen Yao
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Mingzhe Xu
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Lihui Yin
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Xihai Zhai
- Institute of Plant Protection, Heilongjiang Academy of Agriculture Science, Harbin 150086, China
| | - Xu Teng
- AIE Institute, Guangzhou 510530, China.
| |
Collapse
|
46
|
Rauf S, Awan M, Rauf N, Tayyab Z, Ali N, Zhu B, Hayat A, Yang CP. The role of band structure in Co- and Fe-co-doped Ba 0.5Sr 0.5Zr 0.1Y 0.1O 3-δ perovskite semiconductor to design an electrochemical aptasensing platform: application in label-free detection of ochratoxin A using voltammetry. Mikrochim Acta 2021; 188:177. [PMID: 33907901 DOI: 10.1007/s00604-021-04820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/02/2021] [Indexed: 11/30/2022]
Abstract
Nanocomposites can offer a platform to conjugate biorecognition features of aptamer with unique size-dependent properties of a given material, which can autoprobe the binding event based on their electroactive characteristics. Herein, we design electroactive switchable aptamer probes based on co-doped single-phase semiconducting materials employing the cyclic voltammetry method to record the current signal at each step of electrochemical characterization. To do so, we utilized a facile hydrothermal method assisted by co-precipitation method such as Co-Fe-co-doped Ba0.5Sr0.5Zr0.1Y0.1O3-δ (CF-BSZY) and tuned the alignment of the energy band structure of the material to amplify the output of the electrochemical signal. At various steps, changes occurred in the electrochemical properties at the surface of CF-BSZY. The binding of the ssDNA with prepared materials enhances the current signal by the interaction with the target (ochratoxin A (OTA)) depressing the current signal and facilitating the construction of a novel design of electrochemical aptasensor. As a proof of concept, an electrochemical aptasensor for the detection of ochratoxin A (OTA) in rice samples has been developed. The electrochemical aptasensor provides a limit of detection (LOD) of 0.00012 μM (0.12 nM), with a linear range from 0.000247 to 0.74 μM and sound OTA recovery in real samples. The developed aptasensor is simply designed and is free of oligonucleotide labeling or decorative nanoparticle modifications. The proposed mechanism is generic in principle with the potential to translate any type of aptamer and target binding event into a detectable signal; hence, it can be largely applied to various bioreceptor recognition phenomena for subsequent applications.
Collapse
Affiliation(s)
- Sajid Rauf
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science, Hubei University, Wuhan, 430062, Hubei, China
| | - Maryam Awan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Naveed Rauf
- Department of Endocrinology, Children's Hospital of Zhejiang University, School of Medicine, Hangzhou, 310051, China
| | - Zuhra Tayyab
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science, Hubei University, Wuhan, 430062, Hubei, China
| | - Nasir Ali
- Zhejiang Province Key Laboratory of Quantum Technology and Devices and Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Bin Zhu
- Energy Storage Joint Research Center, School of Energy and Environment, Southeast University, No. 2 Si Pai Lou, Nanjing, 210096, People's Republic of China.
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan.
| | - Chang Ping Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science, Hubei University, Wuhan, 430062, Hubei, China. .,Faculty of Materials Science and Engineering, Taiyuan University of Science and Technology, Waliu Road 66, Wanboling District, Taiyuan City, Shanxi Province, China.
| |
Collapse
|
47
|
Stanciu LA, Wei Q, Barui AK, Mohammad N. Recent Advances in Aptamer-Based Biosensors for Global Health Applications. Annu Rev Biomed Eng 2021; 23:433-459. [PMID: 33872519 DOI: 10.1146/annurev-bioeng-082020-035644] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since aptamers were first reported in the early 2000s, research on their use for the detection of health-relevant analytical targets has exploded. This review article provides a brief overview of the most recent developments in the field of aptamer-based biosensors for global health applications. The review provides a description of general aptasensing principles and follows up with examples of recent reports of diagnostics-related applications. These applications include detection of proteins and small molecules, circulating cancer cells, whole-cell pathogens, extracellular vesicles, and tissue diagnostics. The review also discusses the main challenges that this growing technology faces in the quest of bringing these new devices from the laboratory to the market.
Collapse
Affiliation(s)
- Lia A Stanciu
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045, USA; .,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Amit K Barui
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045, USA; .,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Noor Mohammad
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
48
|
Barkheh H, Zeinoddini M, Ranjbar B, Xodadadi N. A Novel Strategy for Trinitrotoluene Detection Using Functionalized Gold Nanoparticles. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821040031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
49
|
Wu G, Xiong Z, Oh SH, Ren Y, Wang Q, Yang L. Two-color, ultra-sensitive fluorescent strategy for Ochratoxin A detection based on hybridization chain reaction and DNA tweezers. Food Chem 2021; 356:129663. [PMID: 33812184 DOI: 10.1016/j.foodchem.2021.129663] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 02/05/2023]
Abstract
A two-color fluorescent DNA tweezers was developed for ultrasensitive detection of Ochratoxin A (OTA) based on hairpin-locked aptamer and hybridization chain reaction (HCR) amplification strategy. OTA can bind with hairpin-locked aptamer and then trigger the HCR reaction to produce a long double-strand DNA. The side-chains of the long duplex can separately hybridize with the two locker sequences of DNA tweezer, causing the opening of DNA tweezer and the recovery of two-color fluorescent signals. It shows a good linear range from 0.02 to 0.8 ppb with limit of detection of 0.006 ppb for FAM and 0.014 ppb for Cy5, which is beyond the requirement of actual application. In addition, the two-color fluorescent strategy can greatly reduce the false positive rate. It shows excellent performance for detection of OTA in practical food sample.
Collapse
Affiliation(s)
- Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhengwei Xiong
- Department of Food and Biotechnology, Graduate School, Woosuk University, Samnye-eup, Wanju-gun, Jeonbuk Province 55338, Republic of Korea; School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China.
| | - Suk-Heung Oh
- Department of Food and Biotechnology, Graduate School, Woosuk University, Samnye-eup, Wanju-gun, Jeonbuk Province 55338, Republic of Korea
| | - Yanrong Ren
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China
| | - Qiang Wang
- School of Biological and Chemical Engineering, Innovation Center of Lipid Resources and Children's Daily Chemicals, Chongqing University of Education, Chongqing 400067, China
| | - Lizhu Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
50
|
Liu LS, Wang F, Ge Y, Lo PK. Recent Developments in Aptasensors for Diagnostic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9329-9358. [PMID: 33155468 DOI: 10.1021/acsami.0c14788] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Aptamers are exciting smart molecular probes for specific recognition of disease biomarkers. A number of strategies have been developed to convert target-aptamer binding into physically detectable signals. Since the aptamer sequence was first discovered, a large variety of aptamer-based biosensors have been developed, with considerable attention paid to their potential applications in clinical diagnostics. So far, a variety of techniques in combination with a wide range of functional nanomaterials have been used for the design of aptasensors to further improve the sensitivity and detection limit of target determination. In this paper, the advantages of aptamers over traditional antibodies as the molecular recognition components in biosensors for high-throughput screening target molecules are highlighted. Aptamer-target pairing configurations are predominantly single- or dual-site binding; the design of recognition modes of each aptamer-target pairing configuration is described. Furthermore, signal transduction strategies including optical, electrical, mechanical, and mass-sensitive modes are clearly explained together with examples. Finally, we summarize the recent progress in the development of aptamer-based biosensors for clinical diagnosis, including detection of cancer and disease biomarkers and in vivo molecular imaging. We then conclude with a discussion on the advanced development and challenges of aptasensors.
Collapse
Affiliation(s)
- Ling Sum Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Fei Wang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yonghe Ge
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|