1
|
Sun S, Feng Y, Li H, Xu S, Huang H, Zou X, Lv Z, Yao X, Gui S, Xu Y, Jin X, Lu X. A novel biosensor MDC@N-MMCNs to selective detection and elimination of foodborne bacterial pathogens. Anal Chim Acta 2025; 1354:344008. [PMID: 40253057 DOI: 10.1016/j.aca.2025.344008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Infections caused by foodborne pathogens pose a major threat to human health. Traditional bacterial detection methods, such as plate culture and polymerase chain reaction, cannot meet the growing demand for fast and accurate detection. In contrast, colorimetric sensors have the characteristics of convenience, speed, and visualization, but their specific sensitivity is relatively poor. Therefore, it is necessary to develop a biosensor with selective identification of foodborne pathogens, high sensitivity, and early detection of foodborne pathogen contamination in food. RESULTS We have developed a broad-spectrum microbial detection biosensor platform MDC@N-MMCNs that combines antimicrobial peptides as identifying ingredients with mesoporous carbon with peroxidase-like activity to detect and eliminate foodborne pathogens rapidly. In this study, nitrogen-doped magnetic mesoporous carbon nanospheres (N-MMCNs) were prepared using ferric nitrate as the magnetic source. Musca domestica cecropin (MDC) has abundant recognition sites on the surface of bacteria, which helps to recognize and amplify the signal, and combines with N-MMCNs to form MDC@N-MMCNs. MDC@N-MMCNs have high stability, specificity, and sensitivity, with a visual detection limit as low as 102 CFU/mL. The MDC@N-MMCNs paper-based sensor enables selective and rapid detection of four foodborne pathogens via a smartphone application. SIGNIFICANCE Based on these findings, we believe that MDC@N-MMCNs hold great potential for on-site bacterial infection diagnosis in resource-limited environments or point-of-care (POCT) settings, offering a simple, cost-effective solution for food safety and public health.
Collapse
Affiliation(s)
- Shuyue Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China
| | - Yonglin Feng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China; Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518031, People's Republic of China
| | - Haonan Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China; Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518031, People's Republic of China
| | - Sijia Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China; Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518031, People's Republic of China
| | - Huijuan Huang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China; Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518031, People's Republic of China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China
| | - Xiangjie Yao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518031, People's Republic of China.
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotechnology Products, National Institutes for Food and Drug Control, Beijing, 102629, People's Republic of China.
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China.
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 Wai Huan Dong Road, Guangzhou, 510006, People's Republic of China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
2
|
Zhang M, Deng C, Chen J, Liang S. Facile preparation of a hydrophilic Eu-based ratiometric fluorescent nanosensor for Cu 2+ ion detection and imaging in living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:944-954. [PMID: 39745582 DOI: 10.1039/d4ay01984a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
In this work, a hydrophilic Eu-based ratiometric fluorescent nanosensor (PAAC-Eu) was developed for Cu2+ ion detection in aqueous solutions and imaging in living cells. The sensor was prepared via a simple one-step reaction at room temperature, leveraging the synergistic coordination of commercially accessible polyacrylic acid (PAA) and coumarin-3-carboxylic acid (CCAH) with Eu3+ ions. PAAC-Eu was easy to disperse in aqueous media and exhibited two characteristic emission bands at 406 nm and 618 nm, respectively, upon excitation at 350 nm. Cu2+ ions could bind with the free carboxyl groups in PAAC-Eu within 10 min, leading to a decrease in fluorescence at 618 nm (I618) and a negligible effect on fluorescence at 406 nm (I406). Accordingly, a rapid, sensitive and selective method for detecting Cu2+ ions was established, which could complete Cu2+ ion assay within 30 min. A good linear relationship was observed between I406/I618 and Cu2+ ion concentration at 0-20.0 μM (0-1.28 mg L-1) with a detection limit as low as 0.175 μM (11.2 μg L-1). The proposed method was successfully applied to quantify Cu2+ ions in real water samples. Moreover, a portable paper-based sensor was developed by loading PAAC-Eu in filter paper, which could enable visual detection of Cu2+ ions without using large instruments. Finally, cell experiments demonstrated the low cytotoxicity and good cell permeability of PAAC-Eu, and ratiometric fluorescence imaging of Cu2+ ions in living cells was successfully performed.
Collapse
Affiliation(s)
- Moru Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Chunyun Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Shucai Liang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
García-Azuma R, Werner K, Revilla-Monsalve C, Trinidad O, Altamirano-Bustamante NF, Altamirano-Bustamante MM. Unveiling the state of the art: a systematic review and meta-analysis of paper-based microfluidic devices. Front Bioeng Biotechnol 2024; 12:1421831. [PMID: 39234268 PMCID: PMC11372461 DOI: 10.3389/fbioe.2024.1421831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction This systematic review and meta-analysis present a comprehensive evaluation of paper-based microfluidic devices, focusing on their applications in immunoassays. These devices are emerging as innovative solutions to democratize access to diagnostic technologies, especially in resource-limited settings. Our review consolidates findings from diverse studies to outline advancements in paper-based microfluidic technology, including design intricacies and operational efficacy. Key advantages such as low cost, portability, and ease of use are highlighted. Materials and Methods The review categorizes literature based on the design and operational nuances of these diagnostic tools, exploring various methodologies, fabrication techniques, detection methods, and applications, particularly in protein science. The meta-analysis extends to the diverse applications of these technologies, providing a framework for classifying and stratifying their uses in diagnostics. Results and discussion Notable findings include a critical analysis of performance metrics, such as sensitivity and specificity. The review addresses challenges, including the need for further validation and optimization for broader clinical applications. A critical discussion on the validation processes, including cross-validation and rigorous control testing, is provided to ensure the robustness of microfluidic devices. This study offers novel insights into the computational strategies underpinning these technologies and serves as a comprehensive roadmap for future research, potentially broadening the impact across the protein science universe.
Collapse
Affiliation(s)
- Rodrigo García-Azuma
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Karen Werner
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Oscar Trinidad
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | | | - Myriam M Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| |
Collapse
|
4
|
Mutunga T, Sinanovic S, Harrison CS. Integrating Wireless Remote Sensing and Sensors for Monitoring Pesticide Pollution in Surface and Groundwater. SENSORS (BASEL, SWITZERLAND) 2024; 24:3191. [PMID: 38794044 PMCID: PMC11125874 DOI: 10.3390/s24103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Water constitutes an indispensable resource crucial for the sustenance of humanity, as it plays an integral role in various sectors such as agriculture, industrial processes, and domestic consumption. Even though water covers 71% of the global land surface, governments have been grappling with the challenge of ensuring the provision of safe water for domestic use. A contributing factor to this situation is the persistent contamination of available water sources rendering them unfit for human consumption. A common contaminant, pesticides are not frequently tested for despite their serious effects on biodiversity. Pesticide determination in water quality assessment is a challenging task because the procedures involved in the extraction and detection are complex. This reduces their popularity in many monitoring campaigns despite their harmful effects. If the existing methods of pesticide analysis are adapted by leveraging new technologies, then information concerning their presence in water ecosystems can be exposed. Furthermore, beyond the advantages conferred by the integration of wireless sensor networks (WSNs), the Internet of Things (IoT), Machine Learning (ML), and big data analytics, a notable outcome is the attainment of a heightened degree of granularity in the information of water ecosystems. This paper discusses methods of pesticide detection in water, emphasizing the possible use of electrochemical sensors, biosensors, and paper-based sensors in wireless sensing. It also explores the application of WSNs in water, the IoT, computing models, ML, and big data analytics, and their potential for integration as technologies useful for pesticide monitoring in water.
Collapse
Affiliation(s)
- Titus Mutunga
- School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK; (S.S.); (C.S.H.)
| | | | | |
Collapse
|
5
|
Hutagalung SV, Rattaprasert P, Promptmas C, Moonsom S, Yongkiettrakul S, Thima K, Chavalitshewinkoon-Petmitr P. Development of nucleic acid lateral flow immunoassay for molecular detection of Entamoeba moshkovskii and Entamoeba dispar in stool samples. Sci Rep 2024; 14:6635. [PMID: 38503871 PMCID: PMC10951296 DOI: 10.1038/s41598-024-57332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024] Open
Abstract
Entamoeba moshkovskii, recently known as a possible pathogenic amoeba, and the non-pathogenic Entamoeba dispar are morphologically indistinguishable by microscopy. Although PCR was used for differential diagnosis, gel electrophoresis is labor-intensive, time-consuming, and exposed to hazardous elements. In this study, nucleic acid lateral flow immunoassay (NALFIA) was developed to detect E. moshkovskii and E. dispar by post-PCR amplicon analysis. E. moshkovskii primers were labeled with digoxigenin and biotin whereas primers of E. dispar were lebeled with FITC and digoxigenin. The gold nanoparticles were labeled with antibodies corresponding to particular labeling. Based on the established assay, NALFIA could detect as low as 975 fg of E. moshkovskii target DNA (982 parasites or 196 parasites/microliter), and 487.5 fg of E. dispar target DNA (444 parasites or 89 parasites/microliter) without cross-reactivity to other tested intestinal organisms. After testing 91 stool samples, NALFIA was able to detect seven E. moshkovskii (87.5% sensitivity and 100% specificity) and eight E. dispar samples (66.7% sensitivity and 100% specificity) compared to real-time PCR. Interestingly, it detected three mixed infections as real-time PCR. Therefore, it can be a rapid, safe, and effective method for the detection of the emerging pathogens E. moshkovskii and E. dispar in stool samples.
Collapse
Affiliation(s)
- Sunna Vyatra Hutagalung
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pongruj Rattaprasert
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Chamras Promptmas
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Saengduen Moonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | | | - Kanthinich Thima
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | | |
Collapse
|
6
|
Rafique Q, Rehman A, Afghan MS, Ahmad HM, Zafar I, Fayyaz K, Ain Q, Rayan RA, Al-Aidarous KM, Rashid S, Mushtaq G, Sharma R. Reviewing methods of deep learning for diagnosing COVID-19, its variants and synergistic medicine combinations. Comput Biol Med 2023; 163:107191. [PMID: 37354819 PMCID: PMC10281043 DOI: 10.1016/j.compbiomed.2023.107191] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
The COVID-19 pandemic has necessitated the development of reliable diagnostic methods for accurately detecting the novel coronavirus and its variants. Deep learning (DL) techniques have shown promising potential as screening tools for COVID-19 detection. In this study, we explore the realistic development of DL-driven COVID-19 detection methods and focus on the fully automatic framework using available resources, which can effectively investigate various coronavirus variants through modalities. We conducted an exploration and comparison of several diagnostic techniques that are widely used and globally validated for the detection of COVID-19. Furthermore, we explore review-based studies that provide detailed information on synergistic medicine combinations for the treatment of COVID-19. We recommend DL methods that effectively reduce time, cost, and complexity, providing valuable guidance for utilizing available synergistic combinations in clinical and research settings. This study also highlights the implication of innovative diagnostic technical and instrumental strategies, exploring public datasets, and investigating synergistic medicines using optimised DL rules. By summarizing these findings, we aim to assist future researchers in their endeavours by providing a comprehensive overview of the implication of DL techniques in COVID-19 detection and treatment. Integrating DL methods with various diagnostic approaches holds great promise in improving the accuracy and efficiency of COVID-19 diagnostics, thus contributing to effective control and management of the ongoing pandemic.
Collapse
Affiliation(s)
- Qandeel Rafique
- Department of Internal Medicine, Sahiwal Medical College, Sahiwal, 57040, Pakistan.
| | - Ali Rehman
- Department of General Medicine Govt. Eye and General Hospital Lahore, 54000, Pakistan.
| | - Muhammad Sher Afghan
- Department of Internal Medicine District Headquarter Hospital Faislaabad, 62300, Pakistan.
| | - Hafiz Muhamad Ahmad
- Department of Internal Medicine District Headquarter Hospital Bahawalnagar, 62300, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, 44000, Pakistan.
| | - Kompal Fayyaz
- Department of National Centre for Bioinformatics, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Quratul Ain
- Department of Chemistry, Government College Women University Faisalabad, 03822, Pakistan.
| | - Rehab A Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, 21526, Egypt.
| | - Khadija Mohammed Al-Aidarous
- Department of Computer Science, College of Science and Arts in Sharurah, Najran University, 51730, Saudi Arabia.
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Gohar Mushtaq
- Center for Scientific Research, Faculty of Medicine, Idlib University, Idlib, Syria.
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
7
|
Bressi AC, Dallinger A, Steksova Y, Greco F. Bioderived Laser-Induced Graphene for Sensors and Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37471123 PMCID: PMC10401514 DOI: 10.1021/acsami.3c07687] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The maskless and chemical-free conversion and patterning of synthetic polymer precursors into laser-induced graphene (LIG) via laser-induced pyrolysis is a relatively new but growing field. Bioderived precursors from lignocellulosic materials can also be converted to LIG, opening a path to sustainable and environmentally friendly applications. This review is designed as a starting point for researchers who are not familiar with LIG and/or who wish to switch to sustainable bioderived precursors for their applications. Bioderived precursors are described, and their performances (mainly crystallinity and sheet resistance of the obtained LIG) are compared. The three main fields of application are reviewed: supercapacitors and electrochemical and physical sensors. The key advantages and disadvantages of each precursor for each application are discussed and compared to those of a benchmark of polymer-derived LIG. LIG from bioderived precursors can match, or even outperform, its synthetic analogue and represents a viable and sometimes better alternative, also considering its low cost and biodegradability.
Collapse
Affiliation(s)
- Anna Chiara Bressi
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Alexander Dallinger
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petergasse 16, Graz 8010, Austria
| | - Yulia Steksova
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Francesco Greco
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Viale R. Piaggio 34, 56025 Pontedera, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petergasse 16, Graz 8010, Austria
- Interdisciplinary Center on Sustainability and Climate, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
8
|
Liu J, Bi Y, Tai W, Wei Y, Zhang Q, Liu A, Hu Q, Yu L. The development of a paper-based distance sensor for the detection of Pb 2+ assisted with the target-responsive DNA hydrogel. Talanta 2023; 257:124344. [PMID: 36801758 DOI: 10.1016/j.talanta.2023.124344] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Due to the serious risks of lead pollution to human health, it plays a great role in constructing a simple, inexpensive, portable, and user-friendly strategy for Pb2+ detection in environmental samples. Herein, a paper-based distance sensor is developed to detect Pb2+ assisted with the target-responsive DNA hydrogel. Pb2+ can activate DNAzyme to cleave its substrate strand, which results in the hydrolysis of the DNA hydrogel. The released water molecules trapped in the hydrogel can flow along the patterned pH paper due to the capillary force. The water flow distance (WFD) is significantly influenced by the amount of water released from the collapsed DNA hydrogel triggered by the addition of various Pb2+ concentrations. In this way, Pb2+ can be quantitatively detected without using specialized instruments and labeled molecules, and the limit of detection (LOD) of Pb2+ is 3.0 nM. Additionally, the Pb2+ sensor works well in lake water and tap water. Overall, this simple, inexpensive, portable, and user-friendly method is very promising for quantitative and in-field detection of Pb2+ with excellent sensitivity and selectivity.
Collapse
Affiliation(s)
- Jinpeng Liu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China
| | - Yanhui Bi
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, 19 Keyuan Street, Jinan, 250014, China.
| | - Wenjun Tai
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China
| | - Yong Wei
- Zhongtuo Biomedical Co., Ltd., Linyi, 276017, China
| | - Qiang Zhang
- Zhongtuo Biomedical Co., Ltd., Linyi, 276017, China
| | - Anna Liu
- Zhongtuo Biomedical Co., Ltd., Linyi, 276017, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, 19 Keyuan Street, Jinan, 250014, China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China.
| |
Collapse
|
9
|
Kumari S, Islam M, Gupta A. Paper-based multiplex biosensors for inexpensive healthcare diagnostics: a comprehensive review. Biomed Microdevices 2023; 25:17. [PMID: 37133791 DOI: 10.1007/s10544-023-00656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Multiplex detection is a smart and an emerging approach in point-of-care testing as it reduces analysis time and testing cost by detecting multiple analytes or biomarkers simultaneously which are crucial for disease detection at an early stage. Application of inexpensive substrate such as paper has immense potential and matter of research interest in the area of point of care testing for multiplexed analysis as it possesses several unique advantages. This study presents the use of paper, strategies adopted to refine the design created on paper and lateral flow strips to enhance the signal, increase the sensitivity and specificity of multiplexed biosensors. An overview of different multiplexed detection studies performed using biological samples has also been reviewed along with the challenges and advantages offered by multiplexed analysis.
Collapse
Affiliation(s)
- Shrishti Kumari
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur 342037, Rajasthan, India
| | - Monsur Islam
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ankur Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur 342037, Rajasthan, India.
| |
Collapse
|
10
|
Korotcenkov G, Simonenko NP, Simonenko EP, Sysoev VV, Brinzari V. Paper-Based Humidity Sensors as Promising Flexible Devices, State of the Art, Part 2: Humidity-Sensor Performances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13081381. [PMID: 37110966 PMCID: PMC10144639 DOI: 10.3390/nano13081381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
This review article covers all types of paper-based humidity sensor, such as capacitive, resistive, impedance, fiber-optic, mass-sensitive, microwave, and RFID (radio-frequency identification) humidity sensors. The parameters of these sensors and the materials involved in their research and development, such as carbon nanotubes, graphene, semiconductors, and polymers, are comprehensively detailed, with a special focus on the advantages/disadvantages from an application perspective. Numerous technological/design approaches to the optimization of the performances of the sensors are considered, along with some non-conventional approaches. The review ends with a detailed analysis of the current problems encountered in the development of paper-based humidity sensors, supported by some solutions.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova;
| | - Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, The Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.P.S.); (E.P.S.)
| | - Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, The Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.P.S.); (E.P.S.)
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya str., 410054 Saratov, Russia;
| | - Vladimir Brinzari
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova;
| |
Collapse
|
11
|
Korotcenkov G. Paper-Based Humidity Sensors as Promising Flexible Devices: State of the Art: Part 1. General Consideration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061110. [PMID: 36986004 PMCID: PMC10059663 DOI: 10.3390/nano13061110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/14/2023]
Abstract
In the first part of the review article "General considerations" we give information about conventional flexible platforms and consider the advantages and disadvantages of paper when used in humidity sensors, both as a substrate and as a humidity-sensitive material. This consideration shows that paper, especially nanopaper, is a very promising material for the development of low-cost flexible humidity sensors suitable for a wide range of applications. Various humidity-sensitive materials suitable for use in paper-based sensors are analyzed and the humidity-sensitive characteristics of paper and other humidity-sensitive materials are compared. Various configurations of humidity sensors that can be developed on the basis of paper are considered, and a description of the mechanisms of their operation is given. Next, we discuss the manufacturing features of paper-based humidity sensors. The main attention is paid to the consideration of such problems as patterning and electrode formation. It is shown that printing technologies are the most suitable for mass production of paper-based flexible humidity sensors. At the same time, these technologies are effective both in the formation of a humidity-sensitive layer and in the manufacture of electrodes.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova
| |
Collapse
|
12
|
Asci Erkocyigit B, Ozufuklar O, Yardim A, Guler Celik E, Timur S. Biomarker Detection in Early Diagnosis of Cancer: Recent Achievements in Point-of-Care Devices Based on Paper Microfluidics. BIOSENSORS 2023; 13:387. [PMID: 36979600 PMCID: PMC10046104 DOI: 10.3390/bios13030387] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics is very crucial in lab-on-a-chip systems for carrying out operations in a large-scale laboratory environment on a single chip. Microfluidic systems are miniaturized devices in which the fluid behavior and control can be manipulated on a small platform, with surface forces on the platform being greater than volumetric forces depending on the test method used. In recent years, paper-based microfluidic analytical devices (μPADs) have been developed to be used in point-of-care (POC) technologies. μPADs have numerous advantages, including ease of use, low cost, capillary action liquid transfer without the need for power, the ability to store reagents in active form in the fiber network, and the capability to perform multiple tests using various measurement techniques. These benefits are critical in the advancement of paper-based microfluidics in the fields of disease diagnosis, drug application, and environment and food safety. Cancer is one of the most critical diseases for early detection all around the world. Detecting cancer-specific biomarkers provides significant data for both early diagnosis and controlling the disease progression. μPADs for cancer biomarker detection hold great promise for improving cure rates, quality of life, and minimizing treatment costs. Although various types of bioanalytical platforms are available for the detection of cancer biomarkers, there are limited studies and critical reviews on paper-based microfluidic platforms in the literature. Hence, this article aims to draw attention to these gaps in the literature as well as the features that future platforms should have.
Collapse
Affiliation(s)
- Bilge Asci Erkocyigit
- Department of Biotechnology, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Ozge Ozufuklar
- Department of Biotechnology, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Aysenur Yardim
- Department of Bioengineering, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey
- Central Research Test and Analysis Laboratory Application, Research Center, Ege University, Izmir 35100, Turkey
| |
Collapse
|
13
|
Holman JB, Shi Z, Fadahunsi AA, Li C, Ding W. Advances on microfluidic paper-based electroanalytical devices. Biotechnol Adv 2023; 63:108093. [PMID: 36603801 DOI: 10.1016/j.biotechadv.2022.108093] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Since the inception of the first electrochemical devices on paper substrates, many different reports of microfluidic paper-based electroanalytical devices (μPEDs), innovative hydrophobic barriers and electrode fabrication processes have allowed the incorporation of diverse materials, resulting in different applications and a boost in performance. These advancements have led to the creation of paper-based devices with comparable performance to many standard conventional devices, with the added benefits of pumpless fluidic transport, component separation and reagent storage that can be exploited to automate and handle sample preprocessing. Herein, we review μPEDs, summarize the characteristics and functionalities of μPEDs, such as separation, fluid flow control and storage, and outline the conventional and emerging fabrication and modification approaches for μPEDs. We also examine the recent application of μPEDs in biomedicine, the environment, and food and water safety, as well as some limitations and challenges that must be addressed.
Collapse
Affiliation(s)
- Joseph Benjamin Holman
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhengdi Shi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Adeola A Fadahunsi
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
14
|
Zhang Y, Khan AK, See D, Ying JY. Enhancing Protein Adsorption for Improved Lateral Flow Assay on Cellulose Paper by Depleting Inert Additive Films Using Reactive Plasma. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6561-6571. [PMID: 36692231 DOI: 10.1021/acsami.2c21501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Paper-based platforms are ideal for on-site surveillance of infectious diseases in low-resource settings due to their simplicity, self-containment, and low cost. The two most popular materials used in paper-based platforms are nitrocellulose and cellulose. The nitrocellulose membrane has a high protein binding affinity, but its high price is an issue. Cellulose paper is inexpensive and allows intricate fluidic control for more sophisticated biochemical reactions, but it has a low protein binding affinity. By examining the microstructure of cellulose paper, we discover that cellulose fibers in the paper matrix are covered by thin films, which possibly result from the additives used in the paper-making process. Our finding suggests that the thin films are inert to protein adsorption. By selectively depleting the inert films with reactive plasma, we were able to enhance the protein adsorption to the cellulose paper and improve the performance of lateral flow assays. The performance of certain lateral flow assays on the plasma-treated cellulose paper is equivalent to or better than that on the nitrocellulose membrane. This leads us to believe that cellulose paper with a microstructure exclusively designed for protein binding, either by refined paper manufacturing process or by post-manufacture modification such as the plasma treatment presented herein, can potentially replace nitrocellulose as a less expensive paper substrate for point-of-care rapid test kits.
Collapse
Affiliation(s)
- Yi Zhang
- NanoBio Lab, Institute of Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Ahmed Khalil Khan
- NanoBio Lab, Institute of Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Deanna See
- NanoBio Lab, Institute of Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Jackie Y Ying
- NanoBio Lab, Institute of Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- A*STAR Infectious Diseases Labs, NanoBio Lab, A*STAR, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
15
|
Guan Y, Liu L, Yu S, Lv F, Guo M, Luo Q, Zhang S, Wang Z, Wu L, Lin Y, Liu G. A Noninvasive Sweat Glucose Biosensor Based on Glucose Oxidase/Multiwalled Carbon Nanotubes/Ferrocene-Polyaniline Film/Cu Electrodes. MICROMACHINES 2022; 13:mi13122142. [PMID: 36557441 PMCID: PMC9787487 DOI: 10.3390/mi13122142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/11/2022] [Accepted: 12/01/2022] [Indexed: 06/01/2023]
Abstract
Diabetes remains a great threat to human beings' health and its world prevalence is projected to reach 9.9% by 2045. At present, the detection methods used are often invasive, cumbersome and time-consuming, thus increasing the burden on patients. In this paper, we propose a novel noninvasive and low-cost biosensor capable of detecting glucose in human sweat using enzyme-based electrodes for point-of-care uses. Specifically, an electrochemical method is applied for detection and the electrodes are covered with multilayered films including ferrocene-polyaniline (F-P), multi-walled carbon nanotubes (MWCNTs) and glucose oxidase (GOx) on Cu substrates (GOx/MWCNTs/F-P/Cu). The coated layers enhance the immobilization of GOx, increase the conductivity of the anode and improve the electrochemical properties of the electrode. Compared with the Cu electrode and the F-P/Cu electrode, a maximum peak current is obtained when the MWCNTs/F-P/Cu electrode is applied. We also study its current response by cyclic voltammetry (CV) at different concentrations (0-2.0 mM) of glucose solution. The best current response is obtained at 0.25 V using chronoamperometry. The effective working lifetime of an electrode is up to 8 days. Finally, to demonstrate the capability of the electrode, a portable, miniaturized and integrated detection device based on the GOx/MWCNTs/F-P/Cu electrode is developed. The results exhibit a short response time of 5 s and a correlation coefficient R2 of 0.9847 between the response current of sweat with blood glucose concentration. The LOD is of 0.081 mM and the reproducibility achieved in terms of RSD is 3.55%. The sweat glucose sensor is noninvasive and point-of-care, which shows great development potential in the health examination and monitoring field.
Collapse
Affiliation(s)
- Yanfang Guan
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
- Provincial Key Laboratory of Cereal Resource Transformation and Utilization, Henan University of Technology, Zhengzhou 450001, China
| | - Lei Liu
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shaobo Yu
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Feng Lv
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mingshuo Guo
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qing Luo
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shukai Zhang
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zongcai Wang
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lan Wu
- School of Electromechanical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yang Lin
- Department of Mechanical, Industrial & Systems Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Guangyu Liu
- Provincial Key Laboratory of Cereal Resource Transformation and Utilization, Henan University of Technology, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
16
|
Alhabbab RY. Lateral Flow Immunoassays for Detecting Viral Infectious Antigens and Antibodies. MICROMACHINES 2022; 13:1901. [PMID: 36363922 PMCID: PMC9694796 DOI: 10.3390/mi13111901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 05/28/2023]
Abstract
Abundant immunological assays currently exist for detecting pathogens and identifying infected individuals, making detection of diseases at early stages integral to preventing their spread, together with the consequent emergence of global health crises. Lateral flow immunoassay (LFIA) is a test characterized by simplicity, low cost, and quick results. Furthermore, LFIA testing does not need well-trained individuals or laboratory settings. Therefore, it has been serving as an attractive tool that has been extensively used during the ongoing COVID-19 pandemic. Here, the LFIA strip's available formats, reporter systems, components, and preparation are discussed. Moreover, this review provides an overview of the current LFIAs in detecting infectious viral antigens and humoral responses to viral infections.
Collapse
Affiliation(s)
- Rowa Y. Alhabbab
- Vaccines and Immunotherapy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Emerging biotechnology applications in natural product and synthetic pharmaceutical analyses. Acta Pharm Sin B 2022; 12:4075-4097. [DOI: 10.1016/j.apsb.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
|
18
|
Amor-Gutiérrez O, Costa-Rama E, Fernández-Abedul MT. Paper-Based Enzymatic Electrochemical Sensors for Glucose Determination. SENSORS (BASEL, SWITZERLAND) 2022; 22:6232. [PMID: 36015999 PMCID: PMC9412717 DOI: 10.3390/s22166232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 05/31/2023]
Abstract
The general objective of Analytical Chemistry, nowadays, is to obtain best-quality information in the shortest time to contribute to the resolution of real problems. In this regard, electrochemical biosensors are interesting alternatives to conventional methods thanks to their great characteristics, both those intrinsically analytical (precision, sensitivity, selectivity, etc.) and those more related to productivity (simplicity, low costs, and fast response, among others). For many years, the scientific community has made continuous progress in improving glucose biosensors, being this analyte the most important in the biosensor market, due to the large amount of people who suffer from diabetes mellitus. The sensitivity of the electrochemical techniques combined with the selectivity of the enzymatic methodologies have positioned electrochemical enzymatic sensors as the first option. This review, focusing on the electrochemical determination of glucose using paper-based analytical devices, shows recent approaches in the use of paper as a substrate for low-cost biosensing. General considerations on the principles of enzymatic detection and the design of paper-based analytical devices are given. Finally, the use of paper in enzymatic electrochemical biosensors for glucose detection, including analytical characteristics of the methodologies reported in relevant articles over the last years, is also covered.
Collapse
Affiliation(s)
| | - Estefanía Costa-Rama
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | | |
Collapse
|
19
|
Yan J, Li Z, Guo J, Liu S, Guo J. Organ-on-a-chip: A new tool for in vitro research. Biosens Bioelectron 2022; 216:114626. [PMID: 35969963 DOI: 10.1016/j.bios.2022.114626] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 08/04/2022] [Indexed: 12/16/2022]
Abstract
Organ-on-a-chip (OOC, organ chip) technology can closely simulate the human microenvironment, synthesize organ-like functional units on a fluidic chip substrate, and simulate the physiology of tissues and organs. It will become an increasingly important platform for in vitro drug development and screening. Most importantly, organ-on-a-chip technology, incorporating 3D cell cultures, overcomes the traditional drawbacks of 2D (flat) cell-culture technology in vitro and in vivo animal trials, neither of which generate completely reliable results when it comes to the actual human subject. It is expected that organ chips will allow huge reductions in the incidence of failure in late-stage human trials, thus slashing the cost of drug development and speeding up the introduction of drugs that are effective. There have been three key enabling technologies that have made organ chip technology possible: 3D bioprinting, fluidic chips, and 3D cell culture, of which the last has allowed cells to be cultivated under more physiologically realistic growth conditions than 2D culture. The fusion of these advanced technologies and the addition of new research methods and algorithms has enabled the construction of chip types with different structures and different uses, providing a wide range of controllable microenvironments, both for research at the cellular level and for more reliable analysis of the action of drugs on the human body. This paper summarizes some research progress of organ-on-a-chip in recent years, outlines the key technologies used and the achievements in drug screening, and makes some suggestions concerning the current challenges and future development of organ-on-a-chip technology.
Collapse
Affiliation(s)
- Jiasheng Yan
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China; University of Electronic Science and Technology of China, Chengdu, China
| | - Ziwei Li
- Department of Clinical Laboratory, Fuling Central Hospital of Chongqing City, Chongqing, 408008, China
| | - Jiuchuan Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China; University of Electronic Science and Technology of China, Chengdu, China.
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Jinhong Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China; School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Wax-Printed Fluidic Controls for Delaying and Accelerating Fluid Transport on Paper-Based Analytical Devices. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10050155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this work, we explore a new method for controlling fluid transport rate on paper-based analytical devices that enables both the delay and the acceleration of fluid flow. The delays were incorporated by wax printing linear patterns of variable width within the flow channel and melted to penetrate the paper. In this manner, the surface tension of the fluid decreases while its contact angle increases, causing a pressure drop along the fluid path that reduces capillary flow. The acceleration of flow was accomplished by overlaying hydrophobic stripes (prepared by wax printing and melting the wax) on the hydrophilic path (top or top–bottom). In this manner, the fluid was repelled from two dimensions (vertical and applicate), increasing the flow rate. The combination of these methods on the same devices could adjust wicking time in intermediate time internals. The method enabled a wide timing of fluid transport, accomplishing a change in wicking times that extended from −41% to +259% compared to open paper channels. As a proof of concept, an enzymatic assay of glucose was used to demonstrate the utility of these fluid control methods in kinetic methods of analysis.
Collapse
|
21
|
Joseph V, Warhaftig O, Klein S, Levine M. Paper-based manganese and β-cyclodextrin sensors for colorimetric sulfur dioxide detection. Anal Chim Acta 2022; 1200:339629. [DOI: 10.1016/j.aca.2022.339629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/28/2022]
|
22
|
Weiß LJK, Lubins G, Music E, Rinklin P, Banzet M, Peng H, Terkan K, Mayer D, Wolfrum B. Single-Impact Electrochemistry in Paper-Based Microfluidics. ACS Sens 2022; 7:884-892. [PMID: 35235291 DOI: 10.1021/acssensors.1c02703] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) have experienced an unprecedented story of success. In particular, as of today, most people have likely come into contact with one of their two most famous examples─the pregnancy or the SARS-CoV-2 antigen test. However, their sensing performance is constrained by the optical readout of nanoparticle agglomeration, which typically allows only qualitative measurements. In contrast, single-impact electrochemistry offers the possibility to quantify species concentrations beyond the pM range by resolving collisions of individual species on a microelectrode. Within this work, we investigate the integration of stochastic sensing into a μPAD design by combining a wax-patterned microchannel with a microelectrode array to detect silver nanoparticles (AgNPs) by their oxidative dissolution. In doing so, we demonstrate the possibility to resolve individual nanoparticle collisions in a reference-on-chip configuration. To simulate a lateral flow architecture, we flush previously dried AgNPs along a microchannel toward the electrode array, where we are able to record nanoparticle impacts. Consequently, single-impact electrochemistry poses a promising candidate to extend the limits of lateral flow-based sensors beyond current applications toward a fast and reliable detection of very dilute species on site.
Collapse
Affiliation(s)
- Lennart J. K. Weiß
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Georg Lubins
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Emir Music
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Philipp Rinklin
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Marko Banzet
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Hu Peng
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Korkut Terkan
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Bernhard Wolfrum
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| |
Collapse
|
23
|
Zhang Y, Zhang T, Huang Z, Yang J. A New Class of Electronic Devices Based on Flexible Porous Substrates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105084. [PMID: 35038244 PMCID: PMC8895116 DOI: 10.1002/advs.202105084] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Indexed: 05/03/2023]
Abstract
With the advent of the Internet of Things era, the connection between electronic devices and humans is getting closer and closer. New-concept electronic devices including e-skins, nanogenerators, brain-machine interfaces, and implantable medical devices, can work on or inside human bodies, calling for wearing comfort, super flexibility, biodegradability, and stability under complex deformations. However, conventional electronics based on metal and plastic substrates cannot effectively meet these new application requirements. Therefore, a series of advanced electronic devices based on flexible porous substrates (e.g., paper, fabric, electrospun nanofibers, wood, and elastic polymer sponge) is being developed to address these challenges by virtue of their superior biocompatibility, breathability, deformability, and robustness. The porous structure of these substrates can not only improve device performance but also enable new functions, but due to their wide variety, choosing the right porous substrate is crucial for preparing high-performance electronics for specific applications. Herein, the properties of different flexible porous substrates are summarized and their basic principles of design, manufacture, and use are highlighted. Subsequently, various functionalization methods of these porous substrates are briefly introduced and compared. Then, the latest advances in flexible porous substrate-based electronics are demonstrated. Finally, the remaining challenges and future directions are discussed.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Tengyuan Zhang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Zhandong Huang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
| | - Jun Yang
- Department of Mechanical and Materials EngineeringUniversity of Western OntarioLondonONN6A 5B9Canada
- Shenzhen Institute for Advanced StudyUniversity of Electronic Science and Technology of ChinaShenzhen518000P. R. China
| |
Collapse
|
24
|
Resmi PE, Suneesh PV, Ramachandran T, Babu TGS. Paper based micro/nanofluidics devices for biomedical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:159-190. [PMID: 35033283 DOI: 10.1016/bs.pmbts.2021.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This chapter details the significance, fabrication and biomedical applications of paper-based microfluidic devices. The first part of the chapter describes the importance of paper diagnostic devices, highlighting pretreatment, dipsticks, lateral flow assays, and microPADs. Various methods followed for the fabrication of the paper analytical devices are discussed in the second part. The last part is about some of the important biomedical applications of paper analytical devices. Finally, the challenges and research gaps in the paper microfluidics for biomedical applications are presented.
Collapse
Affiliation(s)
- P E Resmi
- Amrita Biosensor Research Lab, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - P V Suneesh
- Amrita Biosensor Research Lab, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India; Department of Sciences, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - T Ramachandran
- Department of Sciences, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - T G Satheesh Babu
- Amrita Biosensor Research Lab, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India; Department of Sciences, Amrita School of Engineering Coimbatore, Amrita Vishwa Vidyapeetham, Coimbatore, India.
| |
Collapse
|
25
|
Pang R, Zhu Q, Wei J, Meng X, Wang Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules 2022; 27:508. [PMID: 35056823 PMCID: PMC8779822 DOI: 10.3390/molecules27020508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks associated with PADs, which limit the entry of PADs into the real-life applications. The application of nanomaterials in PADs is showing great improvement in their detection performance in terms of sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties. In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting representative recent publications. We mainly focus on the detection principles, the sensing mechanisms of how they work and applications in disease diagnosis, environmental monitoring and food safety management. In addition, the limitations and challenges associated with the development of nanomaterial-based PADs are discussed, and further directions in this research field are proposed.
Collapse
Affiliation(s)
- Renzhu Pang
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Jia Wei
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Xianying Meng
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemical Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
26
|
Sun J, Song Y, Zhao S, Yang M, Yuan H, Wang Y, Liu X, Che F. Application of surface-enhanced Raman spectroscopy as a diagnostic system for the highly sensitive monitoring of the evolution of subarachnoid hemorrhage-induced complications. NEW J CHEM 2022. [DOI: 10.1039/d1nj06187a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A novel SERS biosensor to detect the development of SAH and its induced complications from cerebrospinal fluid is reported.
Collapse
Affiliation(s)
- Jingyi Sun
- Linyi People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Linyi, Shandong, 276003, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, China
- Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Yanan Song
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
- Qingdao Medical College of Qingdao University, Qingdao, Shandong, 266021, China
| | - Shijun Zhao
- Department of Neurology, Baotou Central Hospital, Baotou 014040, China
| | - Mingfeng Yang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Hui Yuan
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Ying Wang
- Linyi People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Linyi, Shandong, 276003, China
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Xinyu Liu
- Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Fengyuan Che
- Linyi People's Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Linyi, Shandong, 276003, China
| |
Collapse
|
27
|
Alahmad W, Sahragard A, Varanusupakul P. Online and offline preconcentration techniques on paper-based analytical devices for ultrasensitive chemical and biochemical analysis: A review. Biosens Bioelectron 2021; 194:113574. [PMID: 34474275 DOI: 10.1016/j.bios.2021.113574] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) have attracted much attention over the past decade. They embody many advantages, such as abundance, portability, cost-effectiveness, and ease of fabrication, making them superior for clinical diagnostics, environmental monitoring, and food safety assurance. Despite these advantages, μPADs lack the high sensitivity to detect many analytes at trace levels than other commercial analytical instruments such as mass spectrometry. Therefore, a preconcentration step is required to enhance their sensitivity. This review focuses on the techniques used to separate and preconcentrate the analytes onto the μPADs, such as ion concentration polarization, isotachophoresis, and field amplification sample stacking. Other separations and preconcentration techniques, including liquid-solid and liquid-liquid extractions coupled with μPADs, are also reviewed and discussed. In addition, the fabrication methods, advantages, disadvantages, and the performance evaluation of the μPADs concerning their precision and accuracy were highlighted and critically assessed. Finally, the challenges and future perspectives have been discussed.
Collapse
Affiliation(s)
- Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Ali Sahragard
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pakorn Varanusupakul
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
28
|
Sensor-Embedded Face Masks for Detection of Volatiles in Breath: A Proof of Concept Study. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The correlation between breath volatilome and health is prompting a growing interest in the development of sensors optimized for breath analysis. On the other hand, the outbreak of COVID-19 evidenced that breath is a vehicle of infection; thus, the introduction of low-cost and disposable devices is becoming urgent for a clinical implementation of breath analysis. In this paper, a proof of concept about the functionalization of face masks is provided. Porphyrin-based sensors are among the most performant devices for breath analysis, but since porphyrins are scarcely conductive, they make use of costly and bulky mass or optical transducers. To overcome this drawback, we introduce here a hybrid material made of conducting polymer and porphyrins. The resulting material can be easily deposited on the internal surface of standard FFP face masks producing resistive sensors that retain the chemical sensitivity of porphyrins implementing their combinatorial selectivity for the identification of volatile compounds and the classification of complex samples. The sensitivity of sensors has been tested with respect to a set of seven volatile compounds representative of diverse chemical families. Sensors react to all compounds but with a different sensitivity pattern. Functionalized face masks have been tested in a proof-of-concept test aimed at identifying changes of breath due to the ingestion of beverages (coffee and wine) and solid food (banana- and mint-flavored candies). Results indicate that sensors can detect volatile compounds against the background of normal breath VOCs, suggesting the possibility to embed sensors in face masks for extensive breath analysis
Collapse
|
29
|
Dragan AM, Parrilla M, Feier B, Oprean R, Cristea C, De Wael K. Analytical techniques for the detection of amphetamine-type substances in different matrices: A comprehensive review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Designing of various biosensor devices for determination of apoptosis: A comprehensive review. Biochem Biophys Res Commun 2021; 578:42-62. [PMID: 34536828 DOI: 10.1016/j.bbrc.2021.08.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022]
Abstract
Apoptosis is a type of cell death caused by the occurrence of both pathological and physiological conditions triggered by ligation of death receptors outside the cell or triggered by DNA damage and/or cytoskeleton disruption. Timely monitoring of apoptosis can effectively help early diagnosis of related diseases and continuous assessment of the effectiveness of drugs. Detecting caspases, a protease family closely related to cellular apoptosis, and its identification as markers of apoptosis is a popular procedure. Biosensors are used for early diagnosis and play a very important role in preventing disease progression in various body sections. Recently, there has been a widespread increase in the desire to use materials made of paper (e.g. nitrocellulose membrane) for Point-of-Care (POC) testing systems since paper and paper-like materials are cheap, abundant and degradable. Microfluidic paper-based analytical devices (μPADs) are highly promising as they are cost-effective, easy to use, fast, precise and sustainable over time and under different environmental conditions. In this review, we focused our efforts on compiling the different approaches on identifying apoptosis pathway while giving brief information about apoptosis and biosensors. This review includes recent advantages in biosensing techniques to simply determine what happened in the cell life and which direction it would continue. As a conclusion, we believed that the review may help to researchers to compare/update the knowledge about diagnosis of the apoptosis pathway while reminding the basic definitions about the apoptosis and biosensor technologies.
Collapse
|
31
|
Hossain L, Eastman E, De Rango M, Raghuwanshi VS, Tanner J, Garnier G. Absorption kinetics of nanocellulose foams: Effect of ionic strength and surface charge. J Colloid Interface Sci 2021; 601:124-132. [DOI: 10.1016/j.jcis.2021.05.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/07/2023]
|
32
|
Svigelj R, Dossi N, Grazioli C, Toniolo R. Paper-based aptamer-antibody biosensor for gluten detection in a deep eutectic solvent (DES). Anal Bioanal Chem 2021; 414:3341-3348. [PMID: 34617152 PMCID: PMC8494473 DOI: 10.1007/s00216-021-03653-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022]
Abstract
Paper has been widely employed as cheap material for the development of a great number of sensors such as pregnancy tests, strips to measure blood sugar, and COVID-19 rapid tests. The need for new low-cost analytical devices is growing, and consequently the use of these platforms will be extended to different assays, both for the final consumer and within laboratories. This work describes a paper-based electrochemical sensing platform that uses a paper disc conveniently modified with recognition molecules and a screen-printed carbon electrode (SPCE) to achieve the detection of gluten in a deep eutectic solvent (DES). This is the first method coupling a paper biosensor based on aptamers and antibodies with the DES ethaline. Ethaline proved to be an excellent extraction medium allowing the determination of very low gluten concentrations. The biosensor is appropriate for the determination of gluten with a limit of detection (LOD) of 0.2 mg L−1 of sample; it can detect gluten extracted in DES with a dynamic range between 0.2 and 20 mg L−1 and an intra-assay coefficient of 10.69%. This approach can be of great interest for highly gluten-sensitive people, who suffer from ingestion of gluten quantities well below the legal limit, which is 20 parts per million in foods labeled gluten-free and for which highly sensitive devices are essential.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy.
| | - Nicolò Dossi
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy
| | - Cristian Grazioli
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy
| | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, 33100, Udine, Italy.
| |
Collapse
|
33
|
Rawal G, Ghatak A. Effect of roughness on the conductivity of vacuum coated flexible paper electrodes. NANO SELECT 2021. [DOI: 10.1002/nano.202100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Gaurav Rawal
- Department of Chemical Engineering Indian Institute of Technology Kanpur Kanpur Uttar Pradesh India
| | - Animangsu Ghatak
- Department of Chemical Engineering Indian Institute of Technology Kanpur Kanpur Uttar Pradesh India
- Center for Environmental Science and Engineering Indian Institute of Technology Kanpur Kanpur Uttar Pradesh India
| |
Collapse
|
34
|
Abdelrazig AO, Tran BT, Rijiravanich P, Surareungchai W. A new and high-performance microfluidic analytical device based on Fusion 5 paper for the detection of chili pepper anthracnose pathogen Colletotrichum truncatum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3764-3771. [PMID: 34346407 DOI: 10.1039/d1ay00945a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A microfluidic analytical device based on wax-patterned Fusion 5 paper was designed and fabricated to facilitate early detection and improve control of anthracnose disease. Here, a rapid, specific, on-site, and low operational cost nucleic acid biosensor (ACT-Ct-PAD) based on the actin gene (ACT) and wax-patterned Fusion 5 paper was used to detect the PCR products of Colletotrichum truncatum (Ct), the main causal agent of chili anthracnose in Asia. The sensor was developed by using DNA conjugated gold nanoparticles (AuNPs-DNA) as a detection probe, which will hybridize to a complementary target sequence. Avidin coated mesoporous silica particles were attached to biotin-tagged DNA sequences forming capture probes, which were immobilized on the test and control zones of the device. The hybridization complex (MSP-dsDNA-AuNPs) produces an intense red color, which provides a platform for colorimetric detection. By targeting an actin gene sequence, the ACT-Ct-PAD device allows the detection of Ct DNA within 15 min. The specificity of the sensor was confirmed by the absence of a positive signal for DNA from non-target Colletotrichum species and two different fungal genera. Our wax-patterned Fusion 5 sensor provides a simple tool for the rapid nucleic acid diagnosis with a detection limit down to 17.42 femtomoles. This method has the potential to be applied for protein assay as well; hence, it has a considerable impact on on-site diagnostics.
Collapse
Affiliation(s)
- Amir Osman Abdelrazig
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok 10150, Thailand
| | - Bao Thai Tran
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok 10150, Thailand
| | - Patsamon Rijiravanich
- BioSciences and Systems Biology Research Team, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok 10150, Thailand.
| | - Werasak Surareungchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok 10150, Thailand
- Nanoscience and Nanotechnology Graduated Research Program, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand.
| |
Collapse
|
35
|
Fully integrated sampler and dilutor in an electrochemical paper-based device for glucose sensing. Mikrochim Acta 2021; 188:302. [PMID: 34417662 PMCID: PMC8379134 DOI: 10.1007/s00604-021-04946-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
An electroanalytical platform capable to take and dilute the sample has been designed in order to fully integrate the different steps of the analytical process in only one device. The concept is based on the addition of glass-fiber pads for sampling and diluting to an electrochemical cell combining a paper-based working electrode with low-cost connector headers as counter and reference electrodes. In order to demonstrate the feasibility of this all-in-one platform for biosensing applications, an enzymatic sensor for glucose determination (requiring a potential as low as −0.1 V vs. gold-plated wire by using ferrocyanide as mediator) was developed. Real food samples, such as cola beverages and orange juice, have been analyzed with the bioelectroanalytical lab-on-paper platform. As a proof-of-concept, and trying to go further in the integration of steps, sucrose was successfully detected by depositing invertase in the sampling strip. This enzyme hydrolyzes sucrose into fructose and glucose, which was determined using the enzymatic biosensor. This approach opens the pathway for the development of devices applying the lab-on-paper concept, saving costs and time, and making possible to perform decentralized analysis with high accuracy.
Collapse
|
36
|
Ahmed A, Adak B, Faruk MO, Mukhopadhyay S. Nanocellulose Coupled 2D Graphene Nanostructures: Emerging Paradigm for Sustainable Functional Applications. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01830] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Abbas Ahmed
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
- National Institute of Textile Engineering and Research, University of Dhaka, Dhaka 1000, Bangladesh
| | - Bapan Adak
- Product Development Department, Kusumgar Corporates Pvt. Ltd., Vapi, Valsad, Gujarat 396195, India
| | - Md. Omar Faruk
- National Institute of Textile Engineering and Research, University of Dhaka, Dhaka 1000, Bangladesh
| | - Samrat Mukhopadhyay
- Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
37
|
A Systematic Literature Review on Additive Manufacturing in the Context of Circular Economy. SUSTAINABILITY 2021. [DOI: 10.3390/su13116007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Additive Manufacturing (AM) is, undoubtedly, one of the most promising and potentially disruptive technologies of the Industry 4.0 era, able to transform the traditional manufacturing paradigm and fuel the generally accepted and necessary shift towards the conceptualisation, design and adoption of sustainable and circular business models. The objective of this paper is to contribute to the structure of the scientific field residing in the intersection of AM and Circular Economy (CE), by determining the status of its current state-of-the-art, proposing an initial typology in an attempt to contribute to the existing efforts of structuring this rather novice research area and pinpointing research gaps where more focus should be put, and highlighting areas with a significant potential for added-value future research. To that end, a sample of 206 papers, published from 2014 to 2020, was retrieved from the Scopus and Google Scholar databases. After studying and critically evaluating their content in full, contributions were classified into six thematic categories, providing a first typology of the current literature, followed by a detailed section highlighting and taxonomizing existing review studies. Next, contributions of the three categories of interest are discussed followed by a critical evaluation of the study’s contribution, inherent limitations and future research potential.
Collapse
|
38
|
Divya, Mahapatra S, Srivastava VR, Chandra P. Nanobioengineered Sensing Technologies Based on Cellulose Matrices for Detection of Small Molecules, Macromolecules, and Cells. BIOSENSORS 2021; 11:168. [PMID: 34073910 PMCID: PMC8225109 DOI: 10.3390/bios11060168] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Recent advancement has been accomplished in the field of biosensors through the modification of cellulose as a nano-engineered matrix material. To date, various techniques have been reported to develop cellulose-based matrices for fabricating different types of biosensors. Trends of involving cellulosic materials in paper-based multiplexing devices and microfluidic analytical technologies have increased because of their disposable, portable, biodegradable properties and cost-effectiveness. Cellulose also has potential in the development of cytosensors because of its various unique properties including biocompatibility. Such cellulose-based sensing devices are also being commercialized for various biomedical diagnostics in recent years and have also been considered as a method of choice in clinical laboratories and personalized diagnosis. In this paper, we have discussed the engineering aspects of cellulose-based sensors that have been reported where such matrices have been used to develop various analytical modules for the detection of small molecules, metal ions, macromolecules, and cells present in a diverse range of samples. Additionally, the developed cellulose-based biosensors and related analytical devices have been comprehensively described in tables with details of the sensing molecule, readout system, sensor configuration, response time, real sample, and their analytical performances.
Collapse
Affiliation(s)
| | | | | | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India; (D.); (S.M.); (V.R.S.)
| |
Collapse
|
39
|
Flores-Hernandez DR, Santamaria-Garcia VJ, Melchor-Martínez EM, Sosa-Hernández JE, Parra-Saldívar R, Bonilla-Rios J. Paper and Other Fibrous Materials-A Complete Platform for Biosensing Applications. BIOSENSORS 2021; 11:128. [PMID: 33919464 PMCID: PMC8143474 DOI: 10.3390/bios11050128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023]
Abstract
Paper-based analytical devices (PADs) and Electrospun Fiber-Based Biosensors (EFBs) have aroused the interest of the academy and industry due to their affordability, sensitivity, ease of use, robustness, being equipment-free, and deliverability to end-users. These features make them suitable to face the need for point-of-care (POC) diagnostics, monitoring, environmental, and quality food control applications. Our work introduces new and experienced researchers in the field to a practical guide for fibrous-based biosensors fabrication with insight into the chemical and physical interaction of fibrous materials with a wide variety of materials for functionalization and biofunctionalization purposes. This research also allows readers to compare classical and novel materials, fabrication techniques, immobilization methods, signal transduction, and readout. Moreover, the examined classical and alternative mathematical models provide a powerful tool for bioanalytical device designing for the multiple steps required in biosensing platforms. Finally, we aimed this research to comprise the current state of PADs and EFBs research and their future direction to offer the reader a full insight on this topic.
Collapse
Affiliation(s)
| | | | | | | | | | - Jaime Bonilla-Rios
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (D.R.F.-H.); (V.J.S.-G.); (E.M.M.-M.); (J.E.S.-H.); (R.P.-S.)
| |
Collapse
|
40
|
Wang JJ, Zhang N, Richardson SA, Wu JV. Rapid lateral flow tests for the detection of SARS-CoV-2 neutralizing antibodies. Expert Rev Mol Diagn 2021; 21:363-370. [PMID: 33840347 PMCID: PMC8054491 DOI: 10.1080/14737159.2021.1913123] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023]
Abstract
Background: Rapid Lateral Flow Test (LFT) has been broadly utilized in detection or diagnosis of numerous disease-related antigens and antibodies. It is the most popular format of point-of-care test (POCT) and quickest and easiest way to detect a targeted molecule. In the combat against COVID-19 pandemic, hundreds of POCTs have been developed and are commercially available now. They are designed to detect either a SARS-CoV-2 viral antigen or IgG and IgM antibodies binding to it. Among the binding antibodies, a special type of functional antibodies that block the interaction between SARS-CoV-2 virus and its human receptor, neutralizing antibodies (NAbs), are of particular interest to public as well as in vaccination management. However as of today, POCTs for the detection of SARS-CoV-2 NAbs remain under late stage of development.Scope and method:In this review, we first summarize the importance of awareness and monitoring of SARS-CoV-2 NAbs in the combat against COVID-19 pandemic. Secondly, we compare the available methods for the detection of SARS-CoV-2 NAbs. Next, we describe challenges in the development of a rapid lateral flow test for the detection of SARS-CoV-2 NAbs. Finally, we outline its product formats and applications in research and in disease management. Conclusion:Vaccine effectiveness is unknown for an individual unless measured. NAb level is the most viable measurement for vaccine effectiveness or immunity. A broadly accessible NAb POCT is urgently needed.
Collapse
Affiliation(s)
| | - Nan Zhang
- Department Innovation, Novodiax Inc, USA
| | | | - Jin V. Wu
- Department Innovation, Novodiax Inc, USA
| |
Collapse
|
41
|
Shirshahi V, Liu G. Enhancing the analytical performance of paper lateral flow assays: From chemistry to engineering. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Li W, Zhang X, Li T, Ji Y, Li R. Molecularly imprinted polymer-enhanced biomimetic paper-based analytical devices: A review. Anal Chim Acta 2021; 1148:238196. [PMID: 33516379 DOI: 10.1016/j.aca.2020.12.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023]
Abstract
The popularization of paper-based analytical devices (PADs) in analytical science has fostered research on enhancing their analytical performance for accurate and sensitive assays. With their superb recognition capability and structural stability, molecularly imprinted polymers (MIPs) have been extensively employed as biomimetic receptors for capturing target analytes in various complex matrices. The integration of MIPs as recognition elements with PADs (MIP-PADs) has opened new opportunities for advanced analytical devices with elevated selectivity and sensitivity, as well as a shorter assay time and a lower cost. This review covers recent advances in MIP-PAD fabrication and engineering based on multifarious signal transduction systems such as colorimetry, fluorescence, electrochemistry, photoelectrochemistry, and chemiluminescence. The application of MIP-PADs in the fields of biomedical diagnostics, environmental analysis, and food safety monitoring is also reviewed. Further, the advantages, challenges, and perspectives of MIP-PADs are discussed.
Collapse
Affiliation(s)
- Wang Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Xiaoyue Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Tingting Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China.
| |
Collapse
|
43
|
Wang H, Chen L. Electrowetting-on-Dielectric Based Economical Digital Microfluidic Chip on Flexible Substrate by Inkjet Printing. MICROMACHINES 2020; 11:mi11121113. [PMID: 33339126 PMCID: PMC7765594 DOI: 10.3390/mi11121113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022]
Abstract
In order to get rid of the dependence on expensive photolithography technology and related facilities, an economic and simple design and fabrication technology for digital microfluidics (DMF) is proposed. The electrodes pattern was generated by inkjet printing nanosilver conductive ink on the flexible Polyethylene terephthalate (PET) substrate with a 3D circuit board printer, food wrap film was attached to the electrode array to act as the dielectric layer and Teflon® AF was sprayed to form a hydrophobic layer. The PET substrate and food wrap film are low cost and accessible to general users. The proposed flexible DMF chips can be reused for a long time by replacing the dielectric film coated with hydrophobic layer. The resolution and conductivity of silver traces and the contact angle and velocity of the droplets were evaluated to demonstrate that the proposed technology is comparable to the traditional DMF fabrication process. As far as the rapid prototyping of DMF is concerned, this technology has shown very attractive advantages in many aspects, such as fabrication cost, fabrication time, material selection and mass production capacity, without sacrificing the performance of DMF. The flexible DMF chips have successfully implemented basic droplet operations on a square and hexagon electrode array.
Collapse
Affiliation(s)
- He Wang
- Robotics and Microsystems Center, Soochow University, Soochow 215006, China;
- School of Mechanical Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Liguo Chen
- Robotics and Microsystems Center, Soochow University, Soochow 215006, China;
- Correspondence:
| |
Collapse
|
44
|
Liu S, Li Y, Yang C, Lu L, Nie Y, Tian X. Portable smartphone-integrated paper sensors for fluorescence detection of As(III) in groundwater. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201500. [PMID: 33489285 PMCID: PMC7813225 DOI: 10.1098/rsos.201500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 05/27/2023]
Abstract
Arsenic contamination in groundwater is a supreme environmental problem, and levels of this toxic metalloid must be strictly monitored by a portable, sensitive and selective analytical device. Herein, a new system of smartphone-integrated paper sensors with Cu nanoclusters was established for the effective detection of As(III) in groundwater. For the integration system, the fluorescence emissive peak of Cu nanoclusters at 600 nm decreased gradually with increasing As(III) addition. Meanwhile, the fluorescence colour also changed from orange to colourless, and the detection limit was determined as 2.93 nM (0.22 ppb) in a wide detection range. The interfering ions also cannot influence the detection selectivity of As(III). Furthermore, the portable paper sensors based on Cu nanoclusters were fabricated for visual detection of As(III) in groundwater. The quantitative determination of As(III) in natural groundwater has also been accomplished with the aid of a common smartphone. Our work has provided a portable and on-site detection technique toward As(III) in groundwater with high sensitivity and selectivity.
Collapse
Affiliation(s)
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
Chaikhan P, Udnan Y, Sananmuang R, Ampiah-Bonney RJ, Chuachuad Chaiyasith W. A low-cost microfluidic paper-based analytical device (µPAD) with column chromatography preconcentration for the determination of paraquat in vegetable samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Progress in Rapid Detection Techniques Using Paper-Based Platforms for Food Safety. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60064-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Kumar Y, Narsaiah K. Rapid point-of-care testing methods/devices for meat species identification: A review. Compr Rev Food Sci Food Saf 2020; 20:900-923. [PMID: 33443804 DOI: 10.1111/1541-4337.12674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/30/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022]
Abstract
The authentication of animal species is an important issue due to an increasing trend of adulteration and mislabeling of animal species in processed meat products. Polymerase chain reaction is the most sensitive and specific technique for nucleic acid-based animal species detection. However, it is a time-consuming technique that requires costly thermocyclers and sophisticated labs. In recent times, there is a need of on-site detection by point-of-care (POC) testing methods and devices under low-resource settings. These POC devices must be affordable, sensitive, specific, user-friendly, rapid and robust, equipment free, and delivered to the end users. POC devices should also confirm the concept of micro total analysis system. This review discusses POC testing methods and devices that have been developed for meat species identification. Recent developments in lateral flow assay-based devices for the identification of animal species in meat products are also reviewed. Advancements in increasing the efficiency of lateral flow detection are also discussed.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Agricultural Structures and Environmental Control, ICAR-Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, India
| | - Kairam Narsaiah
- Department of Agricultural Structures and Environmental Control, ICAR-Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, India
| |
Collapse
|
48
|
Meena GG, Wall TA, Stott MA, Brown O, Robison R, Hawkins AR, Schmidt H. 7X multiplexed, optofluidic detection of nucleic acids for antibiotic-resistance bacterial screening. OPTICS EXPRESS 2020; 28:33019-33027. [PMID: 33114971 PMCID: PMC7679188 DOI: 10.1364/oe.402311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Rapid and accurate diagnosis of bacterial infections resistant to multiple antibiotics requires development of new bio-sensors for differentiated detection of multiple targets. This work demonstrates 7x multiplexed detection for antibiotic-resistance bacterial screening on an optofluidic platform. We utilize spectrally multiplexed multi-spot excitation for simultaneous detection of nucleic acid strands corresponding to bacterial targets and resistance genes. This is enabled by multi-mode interference (MMI) waveguides integrated in an optofluidic device. We employ a combinatorial three-color labeling scheme for the nucleic acid assays to scale up their multiplexing capability to seven different nucleic acids, representing three species and four resistance genes.
Collapse
Affiliation(s)
- G. G. Meena
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
| | - T. A. Wall
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah 84602, USA
| | - M. A. Stott
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah 84602, USA
| | - O. Brown
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602, USA
| | - R. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602, USA
| | - A. R. Hawkins
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah 84602, USA
| | - H. Schmidt
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
| |
Collapse
|
49
|
Colorimetric Diagnostic Capillary Enabled by Size Sieving in a Porous Hydrogel. BIOSENSORS-BASEL 2020; 10:bios10100130. [PMID: 32977557 PMCID: PMC7598291 DOI: 10.3390/bios10100130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 01/06/2023]
Abstract
Handy and disposable point-of-care diagnostics facilitate the early screening of severe diseases in resource-limited areas. To address urgent needs in inconvenient sites, a simple colorimetric diagnostic device equipped with a capillary tube with porous hydrogel and immunocomplex particles was developed for the rapid detection of biomarkers (16 min). In this device, probe particles attach to capture particles (dp = 40 µm) and form sandwiched immunocomplexes in the presence of target biomarkers, and a red color progressively emerges when the sandwiched immunocomplex particles are blocked by the porous hydrogel embedded inside the glass capillary. Colorimetric aggregation was recorded using a smartphone and analyzed with imaging software. The limit of detection reached 1 ng/mL and showed a maximum of 79% accuracy compared with that obtained through a conventional spectrophotometric technique. The level of a diabetic retinopathy (DR) biomarker, lipocalin-1 (LCN-1), was measured in 1 µL of a human tear sample and used in testing the practicability of the proposed device. All healthy subjects showed lower intensity levels than the other diabetic counterparts (proliferative DR or nonproliferative DR patients), implying the potential of this device in clinical applications. Overall, the diagnostic device facilitates point-of-care-testing and provides a low-cost (~1 USD), compact, and reliable tool for early diagnosis in resource-limited areas.
Collapse
|
50
|
Castro N, Ribeiro S, Fernandes MM, Ribeiro C, Cardoso V, Correia V, Minguez R, Lanceros‐Mendez S. Physically Active Bioreactors for Tissue Engineering Applications. ACTA ACUST UNITED AC 2020; 4:e2000125. [DOI: 10.1002/adbi.202000125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Indexed: 01/09/2023]
Affiliation(s)
- N. Castro
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
| | - S. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- Centre of Molecular and Environmental Biology (CBMA) University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - M. M. Fernandes
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - C. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - V. Cardoso
- CMEMS‐UMinho Universidade do Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - V. Correia
- Algoritmi Research Centre University of Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - R. Minguez
- Department of Graphic Design and Engineering Projects University of the Basque Country UPV/EHU Bilbao E‐48013 Spain
| | - S. Lanceros‐Mendez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
- IKERBASQUE Basque Foundation for Science Bilbao E‐48013 Spain
| |
Collapse
|