1
|
Shaji PS, Vincent SGT, Subburamu K. Sulfate-reducing bacteria in removal of pollutants: a promising candidate for bioremediation. World J Microbiol Biotechnol 2025; 41:125. [PMID: 40189658 DOI: 10.1007/s11274-025-04345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/30/2025] [Indexed: 04/23/2025]
Abstract
Industrial processes contribute significantly to environmental pollution, particularly by releasing sulfate-rich wastewater containing toxic metals and organic pollutants. Sulfate-reducing bacteria (SRB), being anaerobic microorganisms, are capable of reducing sulfate to sulfide, which precipitates harmful heavy metals and facilitates bioremediation. This review explores the potential of SRB in industrial wastewater treatment, focusing on their roles in the bioremediation of sulfates, heavy metals, and persistent organic pollutants (POPs). Laboratory-scale experiments demonstrated that SRB effectively reduces sulfate concentrations and removes heavy metals such as zinc, cadmium, and chromium through sulfidogenesis. The treatment process shows promise as an eco-friendly alternative to conventional chemical methods. However, challenges related to hydrogen sulfide emissions and process scalability persist. Future research focuses on enhancing SRB activity through optimized bioreactor designs while effectively controlling H2S release. This review emphasizes SRB as a promising candidate for industrial applications in wastewater treatment and environmental management.
Collapse
Affiliation(s)
- Panchami Sreeja Shaji
- Department of Environmental Sciences, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | - Karthikeyan Subburamu
- Centre for Post Harvest Technology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| |
Collapse
|
2
|
Zhang C, Yang K, Yuan Y, Cao X, Wang H, Sakamaki T, Li X. Material modification of electrodes in microbial electrochemical system to enhance electrons utilization on the electrode and its impact on microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134908. [PMID: 38889459 DOI: 10.1016/j.jhazmat.2024.134908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Previous research has established a MES embedding a microbial electrode to facilitate the degradation of antibiotics in water. We modified microbial electrodes in the MES with PEDOT and rGO to enhance electron utilization on electrodes and to further promote antibiotic degradation. Density functional theory calculations on the SMX molecule indicated that the C4-S8 and S8-N27 bonds are the most susceptible to electron attack. The introduction of various functional groups and multivalent elements enhanced the electrodes' capacitance and electron mediation capabilities. This led to enhance both electron utilization on the electrodes and the removal efficiency of SMX. After 120 h, the degradation efficiency of SMX by PEDOT and rGO-modified electrodes increased by 45.47 % and 25.19 %, respectively, compared to unmodified electrodes. The relative abundance of sulfate-reducing and denitrifying bacteria significantly increased in PEDOT and rGO-modified electrodes, while the abundance of nitrifying bacteria and potential antibiotic resistance gene host microbes significantly decreased. The impact of PEDOT modification positively influenced microbial Cellular Processes, including cell growth, death, and motility. This study provides insights into the mechanisms of direct electron involvement in antibiotic degradation steps in microbial electrochemistry, and provides a possible path for improved strategies in antibiotic degradation and sustainable environmental remediation.
Collapse
Affiliation(s)
- Chong Zhang
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Ke Yang
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yali Yuan
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Xian Cao
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Hui Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Takashi Sakamaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba Aramaki 6-6-06, Sendai 980-8579, Japan
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing 210096, China.
| |
Collapse
|
3
|
Veerubhotla R, Marzocchi U. Examining the resistance and resilience of anode-respiring Shewanella oneidensis biohybrid using microsensors. CHEMOSPHERE 2024; 350:141109. [PMID: 38176592 DOI: 10.1016/j.chemosphere.2024.141109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/09/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Immobilizing electro-active microbes within polymer matrices (thereby forming biohybrids) is a promising approach to accelerate microbial attachment to electrodes and increase the biofilm robustness. However, little is known on the fine scale chemical environment that develops within the electro-active biohybrids. Herein, we develop a biohybrid by immobilizing a culture of Shewanella oneidensis MR1 in agar matrix on the surface of a graphite electrode poised at +0.25 V. The resulting bioanode (3-6 mm thick) was grown under anoxic conditions and produced a steady current of 40 μA. Oxygen and pH distribution within the biohybrid were characterized in-situ using microsensors. As Shewanella is a facultative aerobe, it will halt the current production in the presence of oxygen. Thus, in addition, we investigated the alteration of the microenvironment during and after aeration of the medium to evaluate the oxygen tolerance of the system. During aeration, oxygen was effectively consumed in the top layers of the biofilm, leaving a 400-900 μm thick anoxic zone on the anode surface, that sustained >60% of the initial current. Current production recovered to pre-oxic condition within 5 h after the aeration was stopped, showing that immobilization can promote both high resistance and resilience of the system. Despite the absence of strong buffering conditions, pH profiles indicated a maximum drop of 0.2 units across the biohybrid. Characterizing the chemical microenvironment helps to elucidate the mechanistic functioning of artificial biofilms and hold a great potential for the designing of future, more effective biohybrid electrodes.
Collapse
Affiliation(s)
- Ramya Veerubhotla
- Aarhus University Center for Water Technology WATEC, Department of Biology, Aarhus University, Denmark.
| | - Ugo Marzocchi
- Aarhus University Center for Water Technology WATEC, Department of Biology, Aarhus University, Denmark; Center for Electromicrobiology CEM, Department of Biology, Aarhus University, Denmark
| |
Collapse
|
4
|
Xiang X, Bai J, Gu W, Peng S, Shih K. Mechanism and application of modified bioelectrochemical system anodes made of carbon nanomaterial for the removal of heavy metals from soil. CHEMOSPHERE 2023; 345:140431. [PMID: 37852385 DOI: 10.1016/j.chemosphere.2023.140431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Bioelectrochemical techniques are quick, efficient, and sustainable alternatives for treating heavy metal soils. The use of carbon nanomaterials in combination with electroactive microorganisms can create a conductive network that mediates long-distance electron transfer in an electrode system, thereby resolving the issue of low electron transfer efficiency in soil remediation. As a multifunctional soil heavy metal remediation technology, its application in organic remediation has matured, and numerous studies have demonstrated its potential for soil heavy metal remediation. This is a ground-breaking method for remediating soils polluted with high concentrations of heavy metals using soil microbial electrochemistry. This review summarizes the use of bioelectrochemical systems with modified anode materials for the remediation of soils with high heavy metal concentrations by discussing the mass-transfer mechanism of electrochemically active microorganisms in bioelectrochemical systems, focusing on the suitability of carbon nanomaterials and acidophilic bacteria. Finally, we discuss the emerging limitations of bioelectrochemical systems, and future research efforts to improve their performance and facilitate practical applications. The mass-transfer mechanism of electrochemically active microorganisms in bioelectrochemical systems emphasizes the suitability of carbon nanomaterials and acidophilic bacteria for remediating soils polluted with high concentrations of heavy metals. We conclude by discussing present and future research initiatives for bioelectrochemical systems to enhance their performance and facilitate practical applications. As a result, this study can close any gaps in the development of bioelectrochemical systems and guide their practical application in remediating heavy-metal-contaminated soils.
Collapse
Affiliation(s)
- Xue Xiang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jianfeng Bai
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Weihua Gu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Shengjuan Peng
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Kaimin Shih
- Department of Civil Engineering University of Hongkong, Pokfulam Road, Hongkong, China
| |
Collapse
|
5
|
Li D, Wang Y, Qi X, Huang W, Wang Y, Zhao X, Liu Y, Song X, Cao X. A photocatalytic-microbial coupling system for simultaneous removal of harmful algae and enhanced denitrification: Construction, performance and mechanism of action. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132233. [PMID: 37567143 DOI: 10.1016/j.jhazmat.2023.132233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Recently, harmful algal blooms (HABs) have become occurred with increasingly frequency worldwide. High nitrate content is one of the primary causes of eutrophication. Research has shown that photocatalytic materials enhance the effectiveness of microbial denitrification while removing other contaminants, despite some shortcomings. Based on this, we loaded TiO2/C3N4 heterojunctions onto weaveable, flexible carbon fibers and established a novel photocatalytically enhanced microbial denitrification system for the simultaneous removal of harmful algae and Microcystin-LR. We found that 99.35% of Microcystis aeruginosa and 95.34% of MC-LR were simultaneously and effectively removed. Compared to existing denitrification systems, the nitrate removal capacity improved by 72.33%. The denitrifying enzyme activity and electron transport system activity of microorganisms were enhanced by 3.54-3.86 times. Furthermore, the microbial community structure was optimized by the regulation of photogenerated electrons, and the relative abundance of main denitrifying bacteria increased from 50.72% to 66.45%, including Proteobacteria and Bacteroidetes. More importantly, we found that the increased secretion of extracellular polymeric substances by microorganisms may be responsible for the persistence of the reinforcing effect caused by photogenerated electrons in darkness. The higher removal of Microcystis aeruginosa and Microcystin-LR (MC-LR) achieved by the proposed system would reduce the frequency of HAB outbreaks and prevent the associated secondary pollution.
Collapse
Affiliation(s)
- Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yifei Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Qi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yuhui Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Wei H, Sun B, Li Y, Wang Y, Chen Y, Guo M, Mo X, Hu F, Du Y. Electrochemical immunosensor AuNPs/NG-PANI/ITO-PET for the determination of BDNF in depressed mice serum. Mikrochim Acta 2023; 190:330. [PMID: 37500906 DOI: 10.1007/s00604-023-05878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
A novel electrochemical immunosensor was developed for highly sensitive detection of brain-derived neurotrophic factor (BDNF), a well-known depression marker. The immunosensor was fabricated by modifying indium tin oxide-coated polyethylene terephthalate (ITO-PET) with N-doped graphene-polyaniline (NG-PANI) and gold nanoparticles (AuNPs) to enhance the conductivity and protein loading capacity. Subsequently, BDNF was immobilized onto the electrode surface via gold-sulfur bonds, followed by the attachment of biotinylated antibody (Biotin-Ab) and horseradish peroxidase-avidin (HRP-Avidin) to create the final immunosensor (HRP-Avidin-Biotin-Ab-BDNF-AuNPs/NG-PANI/ITO-PET). The proposed immunosensor exhibited a linear range of determination (0.781-400 pg/mL) with a low limit of detection (LOD) of 0.261 pg/mL (S/N = 3) and excellent reproducibility (RSD = 1.4%) and stability (92.7%, RSD = 3.1%). Additionally, the immunosensor demonstrated good anti-interference performance and good recovery (98.1-107%). To evaluate the practical utility of the immunosensor, BDNF levels were quantified in the serum of mice with depression induced by chronic unpredictable mild stress (CUMS). The results indicated that the serum BDNF levels were significantly decreased in the depression model group compared with the control group, highlighting the potential of this immunosensor for clinical detection of BDNF in depression diagnosis and treatment.
Collapse
Affiliation(s)
- Hong Wei
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Bolu Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730000, Gansu, China
| | - YuanYuan Li
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Yanping Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Yan Chen
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Min Guo
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Xiaohui Mo
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Fangdi Hu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China.
| | - Yongling Du
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Zhou X, Zhang C, Li Y, Xiong X, Wang Y, Rong S. Promoted microbial denitrification and carbon dioxide fixation via photogenerated electrons stored in novel core/shell memory photocatalysts in darkness. CHEMOSPHERE 2022; 303:135259. [PMID: 35675870 DOI: 10.1016/j.chemosphere.2022.135259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Excess nitrogen in water and greenhouse gases, especially atmospheric carbon dioxide (CO2) from the rapid development of modern society have become an acute threat to the environment. Herein, novel core/shell structured g-C3N4@WO3 memory photocatalyst was fabricated by coating g-C3N4 on the surface of WO3 nanoparticles and applied in the simultaneous coupling of memory photocatalysts and microbial communities (SCMPMC) for the synergistic removal of microbial nitrate and CO2 fixation in darkness. The results showed that ∼98.6% of nitrate was removed and ∼17.7% of CO2 was fixed in darkness by microorganisms in the presence of g-C3N4@WO3 memory photocatalyst within 48 h. Besides, the investigation of the mechanism evidenced that g-C3N4@WO3 memory photocatalyst can promote electron transfer in the SCMPMC system. Moreover, key enzyme activities (i.e., NAR, NIR, CAT, and ETSA) were accelerated, indicating that the activities of enzymes within microorganisms could be remarkably enhanced by the continuous release of stored electrons by the g-C3N4@WO3 memory photocatalyst in the dark. Furthermore, microbial community analysis revealed that the g-C3N4@WO3 memory photocatalyst increased the relative abundance of denitrifiers (i.e., Acidobacterota, Actinobacteria, Chloroflexi, and Proteobacteria) and CO2-assimilating microorganisms (i.e., Pseudomonas), in the treated communities compared with the original community in river sediment, demonstrating the positive effects of g-C3N4@WO3 memory photocatalyst on river sediment microbial communities. The results in this study could shed new light on the establishment of promising synergistic microbial nitrate removal and CO2 fixation methods and mechanisms in darkness.
Collapse
Affiliation(s)
- Xinyi Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing, 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xinyan Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Ye Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Shengxiang Rong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
8
|
Zhou X, Xiong W, Li Y, Zhang C, Xiong X. A novel simultaneous coupling of memory photocatalysts and microbial communities for alternate removal of dimethyl phthalate and nitrate in water under light/dark cycles. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128395. [PMID: 35149509 DOI: 10.1016/j.jhazmat.2022.128395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Efficient and sustainable removal of both organic and inorganic pollutants from contaminated water is an important but difficult task. Here, a novel chemical-biological coupling concept, namely simultaneous coupling of memory photocatalysts and microbial communities (SCMPMC), is proposed for the first time that alternates the removal of organic and inorganic pollutants under successive light/dark cycles. We established this novel coupling system with WO3/g-C3N4 memory photocatalysts and river sediment microbial communities, and applied it to alternately remove dimethyl phthalate (DMP) and nitrate under light/dark cycles. The performance of SCMPMC under the light/dark cycles (12/12 h) showed that ~84.90% of the DMP was removed mainly via robust photocatalytic oxidation during the light phase, and ~86.80% of the nitrate was removed via microbial reduction enhanced by photogenerated electrons stored in the WO3/g-C3N4 memory photocatalysts during the dark phase within one cycle. The microbial communities were positively affected by adding WO3/g-C3N4, as evidenced by increased enzyme activities, cellular antigen metabolism, and relative abundance of typical denitrifiers, including Proteobacteria and Bacteroidetes. These results will contribute to the development of promising decontamination methods and mechanisms to control water pollution driven by the natural day/night cycle.
Collapse
Affiliation(s)
- Xinyi Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wei Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, PR China
| | - Xinyan Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
9
|
Li R, Li T, Wan Y, Zhang X, Liu X, Li R, Pu H, Gao T, Wang X, Zhou Q. Efficient decolorization of azo dye wastewater with polyaniline/graphene modified anode in microbial electrochemical systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126740. [PMID: 34333409 DOI: 10.1016/j.jhazmat.2021.126740] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Azo dye pollution has become a worldwide issue, and the current treatment methods can hardly meet the expected emission standards. Microbial electrochemical systems (MESs) show promising applications for decolorization, but their performance critically depends on the microorganisms. Electrode modification is an interesting method of improving decolorization performance. However, the mechanisms of how the modification can affect microbial communities and the decolorization process remain unclear. Here, a modified anode with polyaniline (PANI) and graphene was fabricated via electro-deposition. Consequently, the highest decolorization efficiency was obtained. The Congo red (CR) decolorization rate of the MESs with the PANI/graphene-modified electrode (PG) reached 90% at 54 h. By contrast, the CR decolorization rates of the MESs with the PANI-modified electrode (P) and those of the MESs with the unmodified electrode (C) only reached 68% and 79%, respectively. Results of the microbial community analysis showed abundant Methanobrevibacter arboriphilus in PG (11%), which was 5.5 times that in C (2%) at 18 h. This phenomenon may be related to the rapid decolorization. The upregulated metabolism pathways, including arginine and proline metabolism, purine metabolism, arginine biosynthesis, and riboflavin metabolism, provided more electron shuttles and redox mediators that facilitated the extracellular electron transfer. Therefore, the PG-modified electrode facilitated the decolorization by altering certain metabolic pathways. This study can help to improve the guideline on the potential application of MESs for wastewater treatment.
Collapse
Affiliation(s)
- Ruixiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xiaolin Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xueyi Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Runtong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Hangming Pu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Tong Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
10
|
McCuskey SR, Chatsirisupachai J, Zeglio E, Parlak O, Panoy P, Herland A, Bazan GC, Nguyen TQ. Current Progress of Interfacing Organic Semiconducting Materials with Bacteria. Chem Rev 2021; 122:4791-4825. [PMID: 34714064 DOI: 10.1021/acs.chemrev.1c00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microbial bioelectronics require interfacing microorganisms with electrodes. The resulting abiotic/biotic platforms provide the basis of a range of technologies, including energy conversion and diagnostic assays. Organic semiconductors (OSCs) provide a unique strategy to modulate the interfaces between microbial systems and external electrodes, thereby improving the performance of these incipient technologies. In this review, we explore recent progress in the field on how OSCs, and related materials capable of charge transport, are being used within the context of microbial systems, and more specifically bacteria. We begin by examining the electrochemical communication modes in bacteria and the biological basis for charge transport. Different types of synthetic organic materials that have been designed and synthesized for interfacing and interrogating bacteria are discussed next, followed by the most commonly used characterization techniques for evaluating transport in microbial, synthetic, and hybrid systems. A range of applications is subsequently examined, including biological sensors and energy conversion systems. The review concludes by summarizing what has been accomplished so far and suggests future design approaches for OSC bioelectronics materials and technologies that hybridize characteristic properties of microbial and OSC systems.
Collapse
Affiliation(s)
- Samantha R McCuskey
- Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Jirat Chatsirisupachai
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Erica Zeglio
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 17177, Sweden
| | - Onur Parlak
- Dermatology and Venereology Division, Department of Medicine(Solna), Karolinska Institute, Stockholm 17177, Sweden.,AIMES Center of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Patchareepond Panoy
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Anna Herland
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 17177, Sweden.,AIMES Center of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
11
|
Liu L, Huang L, Yu D, Zhang G, Dong S. FeS 2 nanoparticles decorated carbonized Luffa cylindrica as biofilm substrates for fabricating high performance biosensors. Talanta 2021; 232:122416. [PMID: 34074404 DOI: 10.1016/j.talanta.2021.122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022]
Abstract
A high-performance microbial biosensor was fabricated with a reasonably designed biofilm substrate, where the aerogel of carbonized Luffa cylindrica (LC) was used as the scaffold for loading biofilm and FeS2 nanoparticles (FeS2NPs) were employed to modify this aerogel (FeS2NPs/GelLC). The fabricated FeS2NPs/GelLC exhibited a spring-like structure similar with that of the raw LC, which facilitated the linkage of the scaffold and promoted its mechanical strength, and further prolonged the service period of the as-prepared biosensor from few days to two months. Meanwhile, the introduced FeS2NPs improved the microbial electron transfer of the biofilm and causing an increase in the sensor's signals from 155.0 ± 2.6 to 352.0 ± 17.1 nA and a decrease in the detection limit from 0.95 to 0.38 mg O L-1 (S/N = 3) for the detection of glucose-glutamic acid (GGA). More important, the FeS2NPs had been demonstrated to have the capability for modulating a persistent shift of the microbial community with organic pollutant biodegradability. Compared with the GelLC, the FeS2NPs/GelLC exhibited a promising performance for measuring the synthetic sewage and real water samples in BOD assay and an increasing inhibition-ratio for detecting 3,5-dichlorophenol (DCP) in toxicity assay. Based on the vast resource and renewability of LC, this work pave a new avenue for developing high-performance microbial biosensors that are expected to be the engineering production.
Collapse
Affiliation(s)
- Ling Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, The High-tech North District, 4888 Sheng Bei Street, Changchun, 130102, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Dengbin Yu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, The High-tech North District, 4888 Sheng Bei Street, Changchun, 130102, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guangxin Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, The High-tech North District, 4888 Sheng Bei Street, Changchun, 130102, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
12
|
Gao X, Qiu S, Lin Z, Xie X, Yin W, Lu X. Carbon-Based Composites as Anodes for Microbial Fuel Cells: Recent Advances and Challenges. Chempluschem 2021; 86:1322-1341. [PMID: 34363342 DOI: 10.1002/cplu.202100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Owing to the low price, chemical stability and good conductivity, carbon-based materials have been extensively applied as the anode in microbial fuel cells (MFCs). In this review, apart from the charge storage mechanism and anode requirements, the major work focuses on five categories of carbon-based anode materials (traditional carbon, porous carbon, nano-carbon, metal/carbon composite and polymer/carbon composite). The relationship is demonstrated in depth between the physicochemical properties of the anode surface/interface/bulk (porosity, surface area, hydrophilicity, partical size, charge, roughness, etc.) and the bioelectrochemical performances (electron transfer, electrolyte diffusion, capacitance, toxicity, start-up time, current, power density, voltage, etc.). An outlook for future work is also proposed.
Collapse
Affiliation(s)
- Xingyuan Gao
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China.,MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem &, Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Shuxian Qiu
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Ziting Lin
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Xiangjuan Xie
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Wei Yin
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem &, Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
13
|
Rozene J, Morkvenaite-Vilkonciene I, Bruzaite I, Dzedzickis A, Ramanavicius A. Yeast-based microbial biofuel cell mediated by 9,10-phenantrenequinone. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137918] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Wang R, Li H, Sun J, Zhang L, Jiao J, Wang Q, Liu S. Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004051. [PMID: 33325567 DOI: 10.1002/adma.202004051] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Electrochemically active bacteria can transport their metabolically generated electrons to anodes, or accept electrons from cathodes to synthesize high-value chemicals and fuels, via a process known as extracellular electron transfer (EET). Harnessing of this microbial EET process has led to the development of microbial bio-electrochemical systems (BESs), which can achieve the interconversion of electrical and chemical energy and enable electricity generation, hydrogen production, electrosynthesis, wastewater treatment, desalination, water and soil remediation, and sensing. Here, the focus is on the current understanding of the microbial EET process occurring at both the bacteria-electrode interface and the biotic interface, as well as some attempts to improve the EET by using various nanomaterials. The behavior of nanomaterials in different EET routes and their influence on the performance of BESs are described. The inherent mechanisms will guide rational design of EET-related materials and lead to a better understanding of EET mechanisms.
Collapse
Affiliation(s)
- Ruiwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huidong Li
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinzhi Sun
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jia Jiao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingqing Wang
- School of Chemistry and Chemical Engineering, Micro- and Nanotechnology Research Center, Harbin Institute of Technology, Harbin, 150090, China
| | - Shaoqin Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
15
|
Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107779] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Cai T, Jiang N, Zhen G, Meng L, Song J, Chen G, Liu Y, Huang M. Simultaneous energy harvest and nitrogen removal using a supercapacitor microbial fuel cell. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115154. [PMID: 32650205 DOI: 10.1016/j.envpol.2020.115154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
The insufficient removal of pollutants and bioelectricity production have become a bottleneck for high-concentration saline wastewater treatment through microbial fuel cell (MFC) technology. Herein, a novel supercapacitor MFC (SC-MFC) was constructed with carbon nanofibers composite electrodes to investigate pollutant removal ability, power generation, and electrochemical properties using real landfill leachate. The possible extracellular electron transfer and nitrogen element conversion pathways in the bioanode were also analyzed. Results showed that the SC-MFC had higher pollutant removal rates (COD: 59.4 ± 1.2%; NH4+-N: 78.2 ± 1.6%; and TN: 77.8 ± 1.2%), smaller internal impedance Rt (∼6 Ω), higher exchange current density i0 (2.1 × 10-4 A cm-2), and a larger catalytic current j0 (704 μA cm-2) with 60% leachate than those with 10% and 20% leachate, resulting in a power output of 298 ± 22 mW m-2. Ammonium could be incorporated by chemoautotrophic bacteria to produce organic compounds that could be further utilized by heterotrophs to generate power when biodegradable organic matters are depleted. Three conversion pathways of nitrogen might be involved, including NH4+ diffusion from anode to cathode chamber, nitrification, and the denitrification process. Additionally, cyclic voltammetry tests showed that both the direct electron transfer (DET) and the mediator electron transfer in bioanode were involved and dominated by DET. The microbial analysis revealed that the bioanode was dominated by salt-tolerant denitrifying bacteria (38.5%), which was deduced to be the key functional microorganism. The electrochemically active bacteria decreased significantly from 61.7% to 4% over three stages of leachate treatment. Overall, the SC-MFC has demonstrated the potential for wastewater treatment along with energy harvesting and provides a new avenue toward sustainable leachate management.
Collapse
Affiliation(s)
- Teng Cai
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Nan Jiang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Guangyin Zhen
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Lijun Meng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Jialing Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Gang Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
17
|
Wang YX, Li WQ, He CS, Zhao HQ, Han JC, Liu XC, Mu Y. Active N dopant states of electrodes regulate extracellular electron transfer of Shewanella oneidensis MR-1 for bioelectricity generation: Experimental and theoretical investigations. Biosens Bioelectron 2020; 160:112231. [PMID: 32469730 DOI: 10.1016/j.bios.2020.112231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
Abstract
Anodic N doping is an effective way to improve power generation of bioelectrochemical systems (BESs), but the role of various active N dopant states of the anode on BES performance is still unclear. Herein, the effect of anodic active N dopant states on bioelectricity generation of Shewanella oneidensis MR-1 inoculated BESs particularly including microbial extracellular electron transfer (EET) was explored using experiments and theoretical simulations. It was found a positive linear correlation between the peak current density of BESs and pyrrolic N content of the anode, which would mainly ascribe to the enhancement of both direct electron transfer (DET) and mediated electron transfer (MET) of S. oneidensis MR-1. Morever, the molecule dynamic simulation revealed that such EET improvements of S. oneidensis MR-1 could be due to more remarkable reduction in the thermodynamic and kinetic resistances of the DET and MET processes with anodic doping of pyrrolic N compared to pyridinic N and graphitic N. This work provides a valuable guideline to design of high-performance anodes for potential BES applications.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Applied Chemistry, University of Science and Technology of China, Hefei, China
| | - Wen-Qiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Applied Chemistry, University of Science and Technology of China, Hefei, China
| | - Chuan-Shu He
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Applied Chemistry, University of Science and Technology of China, Hefei, China.
| | - Han-Qing Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Applied Chemistry, University of Science and Technology of China, Hefei, China
| | - Jun-Cheng Han
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Applied Chemistry, University of Science and Technology of China, Hefei, China
| | - Xiao-Cheng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Applied Chemistry, University of Science and Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Applied Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
18
|
Cai T, Meng L, Chen G, Xi Y, Jiang N, Song J, Zheng S, Liu Y, Zhen G, Huang M. Application of advanced anodes in microbial fuel cells for power generation: A review. CHEMOSPHERE 2020; 248:125985. [PMID: 32032871 DOI: 10.1016/j.chemosphere.2020.125985] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/22/2019] [Accepted: 01/20/2020] [Indexed: 05/20/2023]
Abstract
Microbial fuel cells (MFCs) the most extensively described bioelectrochemical systems (BES), have been made remarkable progress in the past few decades. Although the energy and environment benefits of MFCs have been recognized in bioconversion process, there are still several challenges for practical applications on large-scale, particularly for relatively low power output by high ohmic resistance and long period of start-up time. Anodes serving as an attachment carrier of microorganisms plays a vital role on bioelectricity production and extracellular electron transfer (EET) between the electroactive bacteria (EAB) and solid electrode surface in MFCs. Therefore, there has been a surge of interest in developing advanced anodes to enhance electrode electrical properties of MFCs. In this review, different properties of advanced materials for decorating anode have been comprehensively elucidated regarding to the principle of well-designed electrode, power output and electrochemical properties. In particular, the mechanism of these materials to enhance bioelectricity generation and the synergistic action between the EAB and solid electrode were clarified in detail. Furthermore, development of next generation anode materials and the potential modification methods were also prospected.
Collapse
Affiliation(s)
- Teng Cai
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
| | - Lijun Meng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China.
| | - Gang Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yu Xi
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Nan Jiang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Jialing Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Guangyin Zhen
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
19
|
Xu YN, Chen Y. Advances in heavy metal removal by sulfate-reducing bacteria. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:1797-1827. [PMID: 32666937 DOI: 10.2166/wst.2020.227] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Industrial development has led to generation of large volumes of wastewater containing heavy metals, which need to be removed before the wastewater is released into the environment. Chemical and electrochemical methods are traditionally applied to treat this type of wastewater. These conventional methods have several shortcomings, such as secondary pollution and cost. Bioprocesses are gradually gaining popularity because of their high selectivities, low costs, and reduced environmental pollution. Removal of heavy metals by sulfate-reducing bacteria (SRB) is an economical and effective alternative to conventional methods. The limitations of and advances in SRB activity have not been comprehensively reviewed. In this paper, recent advances from laboratory studies in heavy metal removal by SRB were reported. Firstly, the mechanism of heavy metal removal by SRB is introduced. Then, the factors affecting microbial activity and metal removal efficiency are elucidated and discussed in detail. In addition, recent advances in selection of an electron donor, enhancement of SRB activity, and improvement of SRB tolerance to heavy metals are reviewed. Furthermore, key points for future studies of the SRB process are proposed.
Collapse
Affiliation(s)
- Ya-Nan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China E-mail:
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China E-mail: ; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
20
|
Jian M, Xue P, Shi K, Li R, Ma L, Li P. Efficient degradation of indole by microbial fuel cell based Fe 2O 3-polyaniline-dopamine hybrid composite modified carbon felt anode. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122123. [PMID: 31972431 DOI: 10.1016/j.jhazmat.2020.122123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 05/20/2023]
Abstract
Indole is a high-toxic refractory nitrogen-containing compound that could cause serious harm to the human and ecosystem. It has been a challenge to develop economical and efficient technology for degrading indole. Microbial fuel cell (MFC) has great potential in the removal of organic pollutants utilizing microorganisms as catalysts to degrade organic matter into the nutrients. Herein, a novel anode of Fe2O3-polyaniline-dopamine hybrid composite modified carbon felt (Fe2O3-PDHC/CF) was prepared by electrochemical deposition. The degradation efficiency of indole by the MFC loading Fe2O3-PDHC/CF anode was up to 90.3 % in 120 h operation, while that of the MFC loading CF anode was only 44.0 %. The maximum power density of the MFC loading Fe2O3-PDHC/CF anode was 3184.4 mW·m-2, increasing 113 % compared to the MFC loading CF anode. The superior performances of the MFC with Fe2O3-PDHC surface-modified anode owned to the synergistic effect of high conductive Fe2O3 and admirably biocompatible polyaniline-dopamine. MFC with the Fe2O3-PDHC/CF anode could produce considerable electricity and effectively degrade indole in water, which demonstrated a practical approach for the efficient degradation of refractory organic compounds in wastewater.
Collapse
Affiliation(s)
- Minjie Jian
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China; Ningxia Academy of Metrology & Quality Inspection, Yinchuan, 750200, PR China
| | - Ping Xue
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China.
| | - Keren Shi
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Rui Li
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Lan Ma
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| | - Peng Li
- National Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, PR China
| |
Collapse
|
21
|
Cheng L, Min D, Liu DF, Zhu TT, Wang KL, Yu HQ. Deteriorated biofilm-forming capacity and electroactivity of Shewanella oneidnsis MR-1 induced by insertion sequence (IS) elements. Biosens Bioelectron 2020; 156:112136. [PMID: 32174561 DOI: 10.1016/j.bios.2020.112136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022]
Abstract
Shewanella oneidensis MR-1, a model species of exoelectrogenic bacteria (EEB), has been widely applied in bioelectrochemical systems. Biofilms of EEB grown on electrodes are essential in governing the current output and power density of bioelectrochemical systems. The MR-1 genome is exceptionally dynamic due to the existence of a large number of insertion sequence (IS) elements. However, to date, the impacts of IS elements on the biofilm-forming capacity of EEB and performance of bioelectrochemical systems remain unrevealed. Herein, we isolated a non-motile mutant (NMM) with biofilm-deficient phenotype from MR-1. We found that the insertion of an ISSod2 element into the flrA (encoding the master regulator for flagella synthesis and assembly) of MR-1 resulted in the non-motile and biofilm-deficient phenotypes in NMM cells. Notably, such a variant was readily confused with the wild-type strain because there were no obvious differences in growth rates and colonial morphologies between the two strains. However, the reduced biofilm formation on the electrodes and the deteriorated performances of bioelectrochemical systems and Cr(VI) immobilization for the strain NMM were observed. Given the wide distribution of IS elements in EEB, appropriate cultivation and preservation conditions should be adopted to reduce the likelihood that IS elements-mediated mutation occurs in EEB. These findings reveal the negative impacts of IS elements on the biofilm-forming capacity of EEB and performance of bioelectrochemical systems and suggest that great attention should be given to the actual physiological states of EEB before their applications.
Collapse
Affiliation(s)
- Lei Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Kai-Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
22
|
Li Z, Yang S, Song Y, Xu H, Wang Z, Wang W, Zhao Y. Performance evaluation of treating oil-containing restaurant wastewater in microbial fuel cell using in situ graphene/polyaniline modified titanium oxide anode. ENVIRONMENTAL TECHNOLOGY 2020; 41:420-429. [PMID: 30015569 DOI: 10.1080/09593330.2018.1499814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Most studies conducted nowadays to boost electrode performance in microbial fuel cell (MFC) have focused on carbonaceous materials. The titanium suboxides (Ti4O7, TS) are able to provide a new alternative for achieving better performance in MFC and have been tested and demonstrated in this study. The Ti4O7 electrode with high electrochemical activity was modified by graphene/polyaniline by the constant potential method. Electrogenic microorganisms were more conducive to adhere to the anode electrode due to the presence of graphene/polyaniline. The MFC reactor with polyaniline /graphene modified TS (TSGP) anode achieves the highest voltage with 980 mV, and produces a peak power density of 2073 mW/m2, which is 2.9 and 12.7 times of those with the carbon cloth anode, respectively, at the 1000 Ω external resistance. In addition, this study evaluates the effects of anolyte conductivity, pH, and COD on the treatment of oil-containing restaurant wastewater (OCRW) in MFC using TSGP anode. The OCRW amended with 120 mS/cm obtains the lowest internal resistance (160.3 Ω). Increasing the anodic pH, gradually from acidic (pH 5.5) to alkaline conditions (pH 8.0), resulted in a gradual increase in maximum power density to 576.4 mW/m2 and a decrease in internal cell resistance to 203.7 Ω. The MFC at the COD 1500 mg/L could obtain steady-state output voltage during 103 h while removing up to 65.2% of the COD of the OCRW.
Collapse
Affiliation(s)
- ZhiLiang Li
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, People's Republic of China
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - ShengKe Yang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, People's Republic of China
| | - Ya'nan Song
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, People's Republic of China
| | - HaiYang Xu
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, People's Republic of China
| | - ZongZhou Wang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, People's Republic of China
| | - WenKe Wang
- Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an, People's Republic of China
| | - YaQian Zhao
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Suo D, Fang Z, Yu Y, Yong Y. Synthetic curli enables efficient microbial electrocatalysis with stainless‐steel electrode. AIChE J 2019. [DOI: 10.1002/aic.16897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Di Suo
- Biofuels Institute, School of Environment and Safety EngineeringJiangsu University Zhenjiang China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety EngineeringJiangsu University Zhenjiang China
| | - Yang‐Yang Yu
- Biofuels Institute, School of Environment and Safety EngineeringJiangsu University Zhenjiang China
| | - Yang‐Chun Yong
- Biofuels Institute, School of Environment and Safety EngineeringJiangsu University Zhenjiang China
- Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University Zhenjiang China
| |
Collapse
|
24
|
Kirubaharan CJ, Kumar GG, Sha C, Zhou D, Yang H, Nahm KS, Raj BS, Zhang Y, Yong YC. Facile fabrication of Au@polyaniline core-shell nanocomposite as efficient anodic catalyst for microbial fuel cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135136] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Electrons selective uptake of a metal-reducing bacterium Shewanella oneidensis MR-1 from ferrocyanide. Biosens Bioelectron 2019; 142:111571. [DOI: 10.1016/j.bios.2019.111571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 12/24/2022]
|
26
|
Zhai DD, Fang Z, Jin H, Hui M, Kirubaharan CJ, Yu YY, Yong YC. Vertical alignment of polyaniline nanofibers on electrode surface for high-performance microbial fuel cells. BIORESOURCE TECHNOLOGY 2019; 288:121499. [PMID: 31128545 DOI: 10.1016/j.biortech.2019.121499] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Electrode modifications with conductive and nanostructured polyaniline (PANI) were recognized as efficient approach to improve interaction between electrode surface and electrogenic bacteria for boosting the performance of microbial fuel cell (MFC). However, it still showed undesirable performance because of the challenge to control the orientation (such as vertical alignment) of PANI nanostructure for extracellular electron transfer (EET). In this work, vertically aligned polyaniline (VA-PANI) on carbon cloth electrode surface were prepared by in-situ polymerization method (simply tuning the ratio of tartaric acid (TA) dopant). Impressively, the VA-PANI greatly improved the EET due to the increased opportunity to connect with conductive proteins. Eventually, MFC equipped with the VA-PANI electrodes delivered a power output of 853 mW/m2, which greatly outperformed those electrodes modified with un-oriented PANI. This work provided the possibility to control the orientation of PANI for EET and promise to harvest energy from wastewater with MFC.
Collapse
Affiliation(s)
- Dan-Dan Zhai
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongwei Jin
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ming Hui
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | | | - Yang-Yang Yu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
27
|
Taşkan E, Bulak S, Taşkan B, Şaşmaz M, El Abed S, El Abed A. Nitinol as a suitable anode material for electricity generation in microbial fuel cells. Bioelectrochemistry 2019; 128:118-125. [DOI: 10.1016/j.bioelechem.2019.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/22/2019] [Accepted: 03/24/2019] [Indexed: 01/26/2023]
|
28
|
Wu Y, Wang L, Jin M, Kong F, Qi H, Nan J. Reduced graphene oxide and biofilms as cathode catalysts to enhance energy and metal recovery in microbial fuel cell. BIORESOURCE TECHNOLOGY 2019; 283:129-137. [PMID: 30901585 DOI: 10.1016/j.biortech.2019.03.080] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
In this study, reduced graphene oxide (rGO) was developed and employed as cathode catalyst in a membrane-less microbial fuel cell (MFC) to improve energy and metal (copper) recovery in combined with biofilms. Results showed that rGO-based cathode exhibited better characterizations in structure and electron transfer than graphene oxide (GO)-based cathode. The voltage with rGO was about 67% increased, and Cu2+ removal efficiency was 43% improved as compared to GO. Cu species on cathode demonstrated the favorable Cu2+ reduction to Cu with the catalysis of rGO. Moreover, microbial community analysis indicated that rGO-based cathode exhibited better biocompatibility for functional bacteria that related to electron transfer and Cu2+ resistance, such as Geobacter and Pseudomonas, demonstrating the interspecific synergism of microorganisms for efficient energy and copper recovery. It will be of important significance for the heavy metal and energy recovery from low concentrations wastewater by using microbial fuel cell.
Collapse
Affiliation(s)
- Yining Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Min Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
29
|
Yuan HR, Deng LF, Qian X, Wang LF, Li DN, Chen Y, Yuan Y. Significant enhancement of electron transfer from Shewanella oneidensis using a porous N-doped carbon cloth in a bioelectrochemical system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:882-889. [PMID: 30790761 DOI: 10.1016/j.scitotenv.2019.02.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Modifying the surface of an anode can improve electron transfer, thus enhancing the performance of the associated bioelectrochemical system. In this study, a porous N-doped carbon cloth electrode was obtained via a simple thermal reduction and etching treatment, and then used as the anode in a bioelectrochemical system. The electrode has a high nitrogen-to‑carbon (N/C) ratio (~3.9%) and a large electrochemically active surface area (145.4 cm2, about 4.4 times higher than that of the original carbon cloth), which increases the bacterial attachment and provides more active sites for extracellular electron transfer. Electrochemical characterization reveals that the peak anodic current (0.71 mA) of the porous N-doped carbon cloth electrode in riboflavin is 18 times higher than that of the original carbon cloth electrode (0.04 mA), confirming the presence of more electroactive sites for the redox reaction. We also obtained a maximum current density of 0.29 mA/cm2 during operation of a bioelectrochemical system featuring the porous N-doped carbon cloth electrode, which is 14.5 times higher than that of the original carbon cloth electrode. This result demonstrates that the adoption of our new electrode is a viable strategy for boosting the performance of bioelectrochemical systems.
Collapse
Affiliation(s)
- Hao-Ran Yuan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Li-Fang Deng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Xin Qian
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Lu-Feng Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - De-Nian Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yong Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yong Yuan
- School of Environmental Science and Engineering, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
30
|
Yang Y, Fang Z, Yu YY, Wang YZ, Naraginti S, Yong YC. A mediator-free whole-cell electrochemical biosensing system for sensitive assessment of heavy metal toxicity in water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:1071-1080. [PMID: 31070587 DOI: 10.2166/wst.2019.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A bioelectrochemical sensing system (BES) based on electroactive bacteria (EAB) has been used as a new and promising tool for water toxicity assessment. However, most EAB can reduce heavy metals, which usually results in low toxicity response. Herein, a starvation pre-incubation strategy was developed which successfully avoided the metal reduction during the toxicity sensing period. By integrating this starvation pre-incubation procedure with the amperometric BES, a sensitive, robust and mediator-free biosensing method for heavy metal toxicity assessment was developed. Under the optimized conditions, the IC50 (half maximal inhibitory concentration) values for Cu2+, Ni2+, Cd2+, and Cr6+ obtained were 0.35, 3.49, 6.52, 2.48 mg L-1, respectively. The measurement with real water samples also suggested this method was reliable for practical application. This work demonstrates that it is feasible to use EAB for heavy metal toxicity assessment and provides a new tool for water toxicity warning.
Collapse
Affiliation(s)
- Yuan Yang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Yang-Yang Yu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Yan-Zhai Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Saraschandra Naraginti
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail: ; Zhenjiang Key Laboratory for Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
31
|
Wu X, Ren X, Owens G, Brunetti G, Zhou J, Yong X, Wei P, Jia H. A Facultative Electroactive Chromium(VI)-Reducing Bacterium Aerobically Isolated From a Biocathode Microbial Fuel Cell. Front Microbiol 2018; 9:2883. [PMID: 30534122 PMCID: PMC6275177 DOI: 10.3389/fmicb.2018.02883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/12/2018] [Indexed: 11/16/2022] Open
Abstract
A facultative electroactive bacterium, designated strain H, was aerobically isolated from the biocathode of a hexavalent chromium (Cr(VI))-reducing microbial fuel cell (MFC). Strain H is Gram-positive and rod shaped (1–3 μm length). 16S rRNA gene analysis suggested that this strain (accession number MH782060) belongs to the genus Bacillus and shows maximum similarity to Bacillus cereus whose electrochemical activity has never previously been reported. Moreover, this strain showed efficient Cr(VI)-reducing ability in both heterotrophic (aerobic LB broth) and autotrophic (anaerobic MFC cathode) environments. Cr(VI) removal reached 50.6 ± 1.8% after 20 h in LB broth supplemented with Cr(VI) (40 mg/L). The strain H biocathode significantly improved the performance of the Cr(VI)-reducing MFC, achieving a maximum power density of 31.80 ± 1.06 mW/m2 and Cr(VI) removal rate of 2.56 ± 0.10 mg/L–h, which were 1.26 and 1.75 times higher than those of the MFC with the sterile control cathode, respectively. This study offers a novel Gram-positive Bacillus sp. strain for Cr(VI) removal in MFCs, and shows a facile aerobic isolation method could be used to screen facultative electroactive bacteria.
Collapse
Affiliation(s)
- Xiayuan Wu
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaoqian Ren
- College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Gianluca Brunetti
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Jun Zhou
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaoyu Yong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ping Wei
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Honghua Jia
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
32
|
Algae cathode microbial fuel cells for cadmium removal with simultaneous electricity production using nickel foam/graphene electrode. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Qi M, Liang B, Chen R, Sun X, Li Z, Ma X, Zhao Y, Kong D, Wang J, Wang A. Effects of surface charge, hydrophilicity and hydrophobicity on functional biocathode catalytic efficiency and community structure. CHEMOSPHERE 2018; 202:105-110. [PMID: 29554502 DOI: 10.1016/j.chemosphere.2018.03.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
The bioelectrotransformation efficiency of various organic matters and corresponding electrode biofilm community formation as well as electron transfer efficiency in bioelectrochemical systems (BESs) with different modified electrodes has been extensively studied on the anode side. However, the effects of cathode interface characteristics towards the BESs bioelectrotransformation performance remain poorly understood. In this study, the nitrobenzene-reducing biocathode catalytic efficiency and community structure in response to different modified electrodes (control: hydrophobic and no charge; -SH: hydrophobic and single negative charge; -NH2: hydrophilic and single positive charge -NH-NH2: hydrophilic and double positive charges) were investigated. The biocathode transformation efficiency of nitrobenzene (NB) to aniline (AN) (ENB-AN) was affected by the nature of electrode interface as well as the biocathode community formation and structure. Cathodes with hydrophilic surface and positive charges have performed well in the bioelectrotransformation experiments, and especially made an outstanding performance when inorganic NaHCO3 was supplied as carbon source and cathode as the sole electron donor. Importantly, the hydrophilic surfaces with positive charges were dominated by the electroactive nitroaromatic reducers (Enterococcus, Desulfovibrio and Klebsiella) with the relative abundance as high as 72.20 ± 1.87% and 74.86 ± 8.71% for -NH2 and -NH-NH2 groups respectively. This could explain the higher ENB-AN in the hydrophilic groups than that of the hydrophobic -SH modified group. This study provides new insights into the effects of electrode interface characteristics on the BESs biocathode performance and offers some suggestions for the future design for the improvement of bioelectroremediation performance.
Collapse
Affiliation(s)
- Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Rongrong Chen
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering Uinversity, 150001, China
| | - Xun Sun
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering Uinversity, 150001, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Youkang Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Deyong Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| | - Jun Wang
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering Uinversity, 150001, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
34
|
Feng H, Tang C, Wang Q, Liang Y, Shen D, Guo K, He Q, Jayaprada T, Zhou Y, Chen T, Ying X, Wang M. A novel photoactive and three-dimensional stainless steel anode dramatically enhances the current density of bioelectrochemical systems. CHEMOSPHERE 2018; 196:476-481. [PMID: 29324387 DOI: 10.1016/j.chemosphere.2017.12.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
This study reports a high-performance 3D stainless-steel photoanode (3D SS photoanode) for bioelectrochemical systems (BESs). The 3D SS photoanode consists of 3D carbon-coated SS felt bioactive side and a flat α-Fe2O3-coated SS plate photoactive side. Without light illumination, the electrode reached a current density of 26.2 ± 1.9 A m-2, which was already one of the highest current densities reported thus far. Under illumination, the current density of the electrode was further increased to 46.5 ± 2.9 A m-2. The mechanism of the photo-enhanced current production can be attributed to the reduced charge-transfer resistance between electrode surface and the biofilm with illumination. It was also found that long-term light illumination can enhance the biofilm formation on the 3D SS photoanode. These findings demonstrate that using the synergistic effect of photocatalysis and microbial electrocatalysis is an efficient way to boost the current production of the existing high-performance 3D anodes for BESs.
Collapse
Affiliation(s)
- Huajun Feng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Chenyi Tang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Qing Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Hangzhou Water Holding Group Co., Ltd, 168 South Jianguo Road, Hangzhou, 310009, China
| | - Yuxiang Liang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Kun Guo
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Qiaoqiao He
- Zhejiang Sanhua Climate & Appliance Controls Group Co., Ltd, Xialiquan, Xinchang, 312500, China
| | - Thilini Jayaprada
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yuyang Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Ting Chen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xianbin Ying
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Meizhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
35
|
Yu YY, Fang Z, Gao L, Song H, Yang L, Mao B, Shi W, Yong YC. Engineering of bacterial electrochemical activity with global regulator manipulation. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
36
|
Yang Y, Yu YY, Wang YZ, Zhang CL, Wang JX, Fang Z, Lv H, Zhong JJ, Yong YC. Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin. Biosens Bioelectron 2017; 98:338-344. [DOI: 10.1016/j.bios.2017.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
|
37
|
Liu X, Zhao X, Yu YY, Wang YZ, Shi YT, Cheng QW, Fang Z, Yong YC. Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.153] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Yu D, Yong YC, Liu C, Fang Y, Bai L, Dong S. New applications of genetically modified Pseudomonas aeruginosa for toxicity detection in water. CHEMOSPHERE 2017; 184:106-111. [PMID: 28582765 DOI: 10.1016/j.chemosphere.2017.05.154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/22/2017] [Accepted: 05/27/2017] [Indexed: 05/20/2023]
Abstract
A novel mediator-free method based on genetically modified bacteria was developed for detecting water toxicity, where genetically modified Pseudomonas aeruginosa (GM P. aeruginosa) was selected as the biosensor strain and pyocyanin (PYO) produced by this strain was used as the indicator. The toxicity response of GM P. aeruginosa to 3, 5-dichlorophenol (3, 5-DCP) was measured electrochemically and spectroscopically, and the half maximal inhibitory concentration (IC50) of 3, 5-DCP was determined to be 15.1 mg/L. Strikingly, the toxicity of sample solution with 3, 5-DCP could also be estimated visually by naked eyes at a concentration as low as 10 mg/L. The present study provided a convenient, sensitive and cost-effective method for water toxicity detection, and extended biosensing application of the genetically modified bacterium.
Collapse
Affiliation(s)
- Dengbin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, Jilin Province, PR China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, PR China
| | - Changyu Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, Jilin Province, PR China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, Jilin Province, PR China
| | - Lu Bai
- School of Chemical and Environmental Engineering, North University of China, 3 Xueyuan Road, Taiyuan 030051, Shanxi Province, PR China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, Jilin Province, PR China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
39
|
Bioelectrochemical biosensor for water toxicity detection: generation of dual signals for electrochemical assay confirmation. Anal Bioanal Chem 2017; 410:1231-1236. [PMID: 28965160 DOI: 10.1007/s00216-017-0656-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
Toxicity assessment of water is of great important to the safety of human health and to social security because of more and more toxic compounds that are spilled into the aquatic environment. Therefore, the development of fast and reliable toxicity assessment methods is of great interest and attracts much attention. In this study, by using the electrochemical activity of Shewanella oneidensis MR-1 cells as the toxicity indicator, 3,5-dichlorophenol (DCP) as the model toxic compound, a new biosensor for water toxicity assessment was developed. Strikingly, the presence of DCP in the water significantly inhibited the maximum current output of the S. oneidensis MR-1 in a three-electrode system and also retarded the current evolution by the cells. Under the optimized conditions, the maximum current output of the biosensor was proportional to the concentration of DCP up to 30 mg/L. The half maximal inhibitory concentration of DCP determined by this biosensor is about 14.5 mg/L. Furthermore, simultaneous monitoring of the retarded time (Δt) for current generation allowed the identification of another biosensor signal in response to DCP which could be employed to verify the electrochemical result by dual confirmation. Thus, the present study has provided a reliable and promising approach for water quality assessment and risk warning of water toxicity.
Collapse
|
40
|
Wang HC, Cheng HY, Cui D, Zhang B, Wang SS, Han JL, Su SG, Chen R, Wang AJ. Corrugated stainless-steel mesh as a simple engineerable electrode module in bio-electrochemical system: Hydrodynamics and the effects on decolorization performance. JOURNAL OF HAZARDOUS MATERIALS 2017; 338:287-295. [PMID: 28578230 DOI: 10.1016/j.jhazmat.2017.05.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/12/2017] [Accepted: 05/24/2017] [Indexed: 06/07/2023]
Abstract
The application of bio-electrochemical system (BESs) is strongly depended on the development of the engineering applicable electrode. Here we described an economical and readily processable electrode module with three-dimensional structure, the corrugated stainless-steel mesh electrode module (c-SMEM). This novel developed electrode module was demonstrated to provide a good hydrodynamic characteristic and significantly enhanced the decolorization performance of the BES when serving for treating azo dye (acid orange 7, AO7) containing wastewater. Compared to the conventional planar electrodes module (p-SMEM), c-SMEM was found to prolong the mean residence time (MRTθ) of AO7 and change the flow pattern closer to the plug flow. As a result, the maximum enhancement of the volumetric decolorization rate (vDR) can reach to 255%, even when the c-SMEM and p-SMEM have the same electrode surface area. In addition, a techno-economic analysis model was established to elucidated the effects of the decolorization performance and the material cost on the initial capital cost, which revealed the BES with c-SMEM could be economically comparable to or even better than the traditional bio-decolorization technologies. These results suggest c-SMEM holds great potential for engineering application, which may help paving the way of applying BES at large-scale.
Collapse
Affiliation(s)
- Hong-Cheng Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao-Yi Cheng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Dan Cui
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Bo Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Shu-Sen Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jing-Long Han
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shi-Gang Su
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Rui Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.
| |
Collapse
|
41
|
Yu YY, Wang JX, Si RW, Yang Y, Zhang CL, Yong YC. Sensitive amperometric detection of riboflavin with a whole-cell electrochemical sensor. Anal Chim Acta 2017; 985:148-154. [DOI: 10.1016/j.aca.2017.06.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/05/2017] [Accepted: 06/29/2017] [Indexed: 11/28/2022]
|
42
|
Wang QQ, Wu XY, Yu YY, Sun DZ, Jia HH, Yong YC. Facile in-situ fabrication of graphene/riboflavin electrode for microbial fuel cells. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Li J, Hu L, Zhang L, Ye DD, Zhu X, Liao Q. Uneven biofilm and current distribution in three-dimensional macroporous anodes of bio-electrochemical systems composed of graphite electrode arrays. BIORESOURCE TECHNOLOGY 2017; 228:25-30. [PMID: 28056366 DOI: 10.1016/j.biortech.2016.12.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
A 3-D macroporous anode was constructed using different numbers of graphite rod arrays in fixed-volume bio-electrochemical systems (BESs), and the current and biofilm distribution were investigated by dividing the 3-D anode into several subunits. In the fixed-volume chamber, current production was not significantly improved after the electrode number increased to 36. In the case of 100 electrodes, a significant uneven current distribution was found in the macroporous anode. This was attributed to a differential pH distribution, which resulted from proton accumulation inside the macroporous anode. The pH distribution influenced the biofilm development and led to an uneven biofilm distribution. With respect to current generation, the uneven distribution of both the pH and biofilm contributed to the uneven current distribution. The center had a low pH, which led to less biofilm and a lower contribution to the total current, limiting the performance of the BESs.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 40003, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Linbin Hu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 40003, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Liang Zhang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 40003, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China.
| | - Ding-Ding Ye
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 40003, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 40003, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 40003, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| |
Collapse
|
44
|
Yu YY, Zhai DD, Si RW, Sun JZ, Liu X, Yong YC. Three-Dimensional Electrodes for High-Performance Bioelectrochemical Systems. Int J Mol Sci 2017; 18:ijms18010090. [PMID: 28054970 PMCID: PMC5297724 DOI: 10.3390/ijms18010090] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/15/2016] [Accepted: 12/23/2016] [Indexed: 02/02/2023] Open
Abstract
Bioelectrochemical systems (BES) are groups of bioelectrochemical technologies and platforms that could facilitate versatile environmental and biological applications. The performance of BES is mainly determined by the key process of electron transfer at the bacteria and electrode interface, which is known as extracellular electron transfer (EET). Thus, developing novel electrodes to encourage bacteria attachment and enhance EET efficiency is of great significance. Recently, three-dimensional (3D) electrodes, which provide large specific area for bacteria attachment and macroporous structures for substrate diffusion, have emerged as a promising electrode for high-performance BES. Herein, a comprehensive review of versatile methodology developed for 3D electrode fabrication is presented. This review article is organized based on the categorization of 3D electrode fabrication strategy and BES performance comparison. In particular, the advantages and shortcomings of these 3D electrodes are presented and their future development is discussed.
Collapse
Affiliation(s)
- Yang-Yang Yu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Dan-Dan Zhai
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Rong-Wei Si
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Jian-Zhong Sun
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Xiang Liu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
45
|
Wang YZ, Shen Y, Gao L, Liao ZH, Sun JZ, Yong YC. Improving the extracellular electron transfer of Shewanella oneidensis MR-1 for enhanced bioelectricity production from biomass hydrolysate. RSC Adv 2017. [DOI: 10.1039/c7ra04106c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Direct electricity production from biomass hydrolysate by microbial fuel cells (MFC) holds great promise for the development of the sustainable biomass industry.
Collapse
Affiliation(s)
- Yan-Zhai Wang
- Biofuels Institute
- School of the Environment
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yu Shen
- College of Environment and Resources
- Chongqing Technology and Business University
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing 401122
| | - Lu Gao
- Biofuels Institute
- School of the Environment
- Jiangsu University
- Zhenjiang 212013
- China
| | - Zhi-Hong Liao
- Biofuels Institute
- School of the Environment
- Jiangsu University
- Zhenjiang 212013
- China
| | - Jian-Zhong Sun
- Biofuels Institute
- School of the Environment
- Jiangsu University
- Zhenjiang 212013
- China
| | - Yang-Chun Yong
- Biofuels Institute
- School of the Environment
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
46
|
Si RW, Yang Y, Yu YY, Han S, Zhang CL, Sun DZ, Zhai DD, Liu X, Yong YC. Wiring Bacterial Electron Flow for Sensitive Whole-Cell Amperometric Detection of Riboflavin. Anal Chem 2016; 88:11222-11228. [PMID: 27750415 DOI: 10.1021/acs.analchem.6b03538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A whole-cell bioelectrochemical biosensing system for amperometric detection of riboflavin was developed. A "bioelectrochemical wire" (BW) consisting of riboflavin and cytochrome C between Shewanella oneidensis MR-1 and electrode was characterized. Typically, a strong electrochemical response was observed when riboflavin (VB2) was added to reinforce this BW. Impressively, the electrochemical response of riboflavin with this BW was over 200 times higher than that without bacteria. Uniquely, this electron rewiring process enabled the development of a biosensing system for amperometric detection of riboflavin. Remarkably, this amperometric method showed high sensitivity (LOD = 2.2 nM, S/N = 3), wide linear range (5 nM ∼ 10 μM, 3 orders of magnitude), good selectivity, and high resistance to interferences. Additionally, the developed amperometric method featured good stability and reusability. It was further applied for accurate and reliable determination of riboflavin in real conditions including food, pharmaceutical, and clinical samples without pretreatment. Both the cost-effectiveness and robustness make this whole-cell amperometric system ideal for practical applications. This work demonstrated the power of bioelectrochemical signal amplification with exoelectrogen and also provided a new idea for development of versatile whole-cell amperometric biosensors.
Collapse
Affiliation(s)
- Rong-Wei Si
- Biofuels Institute and ‡School of the Environment, Jiangsu University , 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yuan Yang
- Biofuels Institute and ‡School of the Environment, Jiangsu University , 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yang-Yang Yu
- Biofuels Institute and ‡School of the Environment, Jiangsu University , 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Song Han
- Biofuels Institute and ‡School of the Environment, Jiangsu University , 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Chun-Lian Zhang
- Biofuels Institute and ‡School of the Environment, Jiangsu University , 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - De-Zhen Sun
- Biofuels Institute and ‡School of the Environment, Jiangsu University , 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Dan-Dan Zhai
- Biofuels Institute and ‡School of the Environment, Jiangsu University , 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Xiang Liu
- Biofuels Institute and ‡School of the Environment, Jiangsu University , 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yang-Chun Yong
- Biofuels Institute and ‡School of the Environment, Jiangsu University , 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| |
Collapse
|