1
|
Qiu M, Man C, Zhao Q, Yang X, Zhang Y, Zhang W, Zhang X, Irudayaraj J, Jiang Y. Nanozymes meet hydrogels: Fabrication, progressive applications, and perspectives. Adv Colloid Interface Sci 2025; 338:103404. [PMID: 39884113 DOI: 10.1016/j.cis.2025.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/19/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Nanozyme, a class of emerging enzyme mimics, is the nanomaterials with enzyme-mimicking activity, which has obtained significant and widespread applications in various fields. However, they still face many challenges in practical applications (e.g., instability and low biocompatibility in the physiological environments), which affect their widespread applications to a certain extent. Hydrogels with superior performances (e.g., the controllable degradability, good biocompatibility, hydrophilic properties, and adjustable physical properties) may provide a promising strategy to make up the existing deficiencies of nanozymes in practical applications. Thus, the sapiential combination of nanozymes with hydrogels endows nanozyme hydrogels with both characteristics of nanozymes and properties of hydrogels, making nanozyme hydrogels become novel multifunctional materials. In this review, we comprehensively summarizes the preparation, properties, and progressive applications of nanozyme hydrogels. First of all, the main design and preparation strategies of nanozyme hydrogels are considerately summarized. Then, the properties of different nanozyme hydrogels are introduced. In addition, sophisticated applications of nanozyme hydrogels in the fields of biosensing, biomedicine applications, and environmental are comprehensively summarized. Most importantly, future obstacles and chances in this emerging field are profoundly proposed. This review will provide a new horizon for the development and future applications of novel nanozyme hydrogels.
Collapse
Affiliation(s)
- Manyan Qiu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xianlong Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Joseph Irudayaraj
- Department of Bioengineering, Grainger College of Engineering, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China.
| |
Collapse
|
2
|
Li Y, Zhao L, Bai Y, Feng F. Applications of covalent organic frameworks (COFs)-based sensors for food safety: Synthetic strategies, characteristics and current state-of-art. Food Chem 2025; 469:142495. [PMID: 39719784 DOI: 10.1016/j.foodchem.2024.142495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
Food safety is a pressing global public issue that has garnered significant attention worldwide, especially recent outbreaks of foodborne illnesses. The use of emerging porous materials enables the development of effective and durable detection methods for the detection of food contaminants. Covalent organic frameworks (COFs), as a class of emerging porous crystalline materials, rendered with the advantage of large specific surface area, highly controllable and ordered structures, diverse pore structures, high stability, and controllable surface functionalization. Especially in the development of sensors, COFs exhibit versatile roles as signal amplifiers, molecular recognizers, molecular transfer mediators, carriers, catalysts, and reporters, making them highly valuable in various applications. In the context of food safety, COFs-based sensing platforms have shown great potential. This review aims to provide an in-depth understanding of COFs-based sensors by discussing recent advancements in this field. It begins with a systemic introduction of the synthetic strategies of COFs and the pros and cons, followed by the distinctive characteristics of COFs and their diverse functional roles in sensing strategies, emphasizing their importance in analysing food safety risks. Then the review further presented a comprehensive summary of the applications of COFs in sensing, specifically highlighting significant breakthroughs in the detection of various food contaminants like foodborne pathogens, mycotoxins, pesticides, antibiotics, heavy metals, etc. Additionally, the review addressed the challenges and opportunities associated with COFs-based sensors in the detection of food safety issues. The aim of the review was to contribute to the ongoing development and advancement of COFs for ensuring food safety.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China.
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China; School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong 037009, PR China.
| |
Collapse
|
3
|
Li X, Zheng X, Yuan Y, Deng J, Su L, Xu K. A review of research progress on COF-based biosensors in pathogen detection. Anal Chim Acta 2025; 1342:343605. [PMID: 39919853 DOI: 10.1016/j.aca.2024.343605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
Despite the availability of various detection tools, the rapid identification and accurate detection of pathogens remain a major challenge in public health management. Covalent organic frameworks (COFs), which are crystalline conjugated organic polymers with considerable application potential, offer unique advantages in several fields owing to their highly ordered structure, large specific surface area, stable chemical properties, and tunable pore microenvironment. In recent years, with the rapid development of biosensing technology, COF application in the field of pathogen detection has attracted extensive attention. Herein, the properties, applications, and synthesis methods of COFs are briefly described, and the application types and basic principles of COFs in building an efficient and sensitive pathogen detection platform are emphatically discussed. Overall, we analyze the current challenges associated with COF-based biosensors in pathogen detection and look forward to their broad application prospects in biomedicine and public health in future.
Collapse
Affiliation(s)
- Xiang Li
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Xi Zheng
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Yanhui Yuan
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Jiahui Deng
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| | - Liang Su
- Changsha Center for Disease Control and Prevention, Changsha, 410004, Hunan, PR China.
| | - Kun Xu
- School of Public Health, Hunan Normal University, Changsha, 410013, Hunan, PR China; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, Hunan, PR China; Key Laboratory of Molecular Epidemiology of Hunan Province, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
4
|
Iranpour S, Abrishami A, Saljooghi AS. Covalent organic frameworks in cancer theranostics: advancing biomarker detection and tumor-targeted therapy. Arch Pharm Res 2025; 48:183-211. [PMID: 40119211 DOI: 10.1007/s12272-025-01536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 02/12/2025] [Indexed: 03/24/2025]
Abstract
In recent years, covalent organic frameworks (COFs) have garnered considerable attention in the field of onco-nanotechnology as a new type of nanoporous construct due to their promising physicochemical properties, ease of modification, and ability to be coupled with several moieties and therapeutic molecules. They can not only be used as biocompatible nanocarriers to deliver therapeutic payloads to the tumor zone selectively but can also be combined with a variety of therapeutic modalities to achieve the desired treatments. This review comprehensively presented recent achievements and progress in COF-based cancer diagnosis, detection, and cancer therapy to provide a better prospect for further research. Herein our primary emphasis lies on exploring the application of COFs as potential sensors for cancer-derived biomarkers that have received comparatively less attention in previous discussions. While the utilization of COFs in solid tumor therapy has faced significant challenges in scientific research and clinical applications, we reviewed the most promising features that underscore their potential in cancer theranostics.
Collapse
Affiliation(s)
- Sonia Iranpour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Abrishami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
5
|
Zhao L, Yu C, Wu X, Zuo M, Zhang Q, Dong Q, Ding L. Computational Screening Guiding the Development of a Covalent-Organic Framework-Based Gas Sensor for Early Detection of Lithium-Ion Battery Electrolyte Leakage. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10108-10117. [PMID: 39900354 PMCID: PMC11826885 DOI: 10.1021/acsami.4c19321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
This study presents a computationally guided approach for selecting covalent organic frameworks (COFs) for the selective detection of the trace ethylene carbonate (EC) vapor, a key indicator of electrolyte leakage from lithium-ion batteries (LIBs). High-throughput screening, employing grand canonical Monte Carlo (GCMC) simulation complemented by density functional theory (DFT) calculations, was used to identify potential COF candidates from the CURATED COF database. Among the screened materials, an imine COF functionalized with quaternary ammonium (QA) groups, named COF-QA-4, exhibited a high adsorption capacity (5.88 mmol/g) and selectivity of EC vapor. DFT analysis revealed strong molecular interactions driven by a partial charge transfer mechanism between EC and the COF-QA-4 framework, underpinning its superior adsorption properties. Experimental validation through chemiresistive gas sensors fabricated with COF-QA-4 demonstrated excellent sensitivity and reversibility to 1.15 ppmv of EC vapor, maintaining consistent performance over three response-recovery cycles. This work highlights the potential of computationally guided material discovery for advancing sensor technologies in LIB safety monitoring.
Collapse
Affiliation(s)
- Liangdan Zhao
- Department
of Chemistry and Materials Science, Advanced Materials Research Center,
School of Science, Xi’an Jiaotong-Liverpool
University, Suzhou, Jiangsu, 215123, P. R. China
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Chunyi Yu
- Department
of Chemistry and Materials Science, Advanced Materials Research Center,
School of Science, Xi’an Jiaotong-Liverpool
University, Suzhou, Jiangsu, 215123, P. R. China
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Xiaoyu Wu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Mingrui Zuo
- Department
of Chemistry and Materials Science, Advanced Materials Research Center,
School of Science, Xi’an Jiaotong-Liverpool
University, Suzhou, Jiangsu, 215123, P. R. China
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Qian Zhang
- Department
of Chemistry and Materials Science, Advanced Materials Research Center,
School of Science, Xi’an Jiaotong-Liverpool
University, Suzhou, Jiangsu, 215123, P. R. China
| | - Qiuchen Dong
- Department
of Chemistry and Materials Science, Advanced Materials Research Center,
School of Science, Xi’an Jiaotong-Liverpool
University, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Ding
- Department
of Chemistry and Materials Science, Advanced Materials Research Center,
School of Science, Xi’an Jiaotong-Liverpool
University, Suzhou, Jiangsu, 215123, P. R. China
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
6
|
Ou Y, Zhang Y, Luo W, Wu Y, Wang Y. Rational Design of Covalent Organic Frameworks for Photocatalytic Hydrogen Peroxide Production. Macromol Rapid Commun 2025:e2401149. [PMID: 39937547 DOI: 10.1002/marc.202401149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/28/2025] [Indexed: 02/13/2025]
Abstract
Photocatalytic production of hydrogen peroxide (H2O2) represents a significant approach to achieving sustainable energy generation through solar energy, addressing both energy shortages and environmental pollution. Among various photocatalytic materials, covalent organic frameworks (COFs) have gained widespread attention and in-depth research due to their unique advantages, including high porosity, predesignability, and atomic-level tunability. In recent years, significant progress has been made in the development, performance enhancement, and mechanistic understanding of COF-based photocatalysts. This review focuses on the latest advancements in photocatalytic H2O2 production using COFs, particularly emphasizing the rational design of COF structures to regulate catalytic performance and exploring the fundamental processes involved in photocatalysis. Based on current research achievements in this field, this paper also discusses existing challenges and future opportunities, aiming to provide a reference for the application of COFs in photocatalytic H2O2 production.
Collapse
Affiliation(s)
- Yang Ou
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Yifan Zhang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Wen Luo
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Yang Wu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
7
|
Qiu M, Tian Y, Qu W, Ma Y, Zhao F, Jiang Y, Zhao Q, Man C. Postbiotic-biosynthesized silver nanoparticles anchored on covalent organic frameworks integrated into carboxymethyl chitosan-based film for enhancing antibacterial packaging. Int J Biol Macromol 2025; 291:139143. [PMID: 39722393 DOI: 10.1016/j.ijbiomac.2024.139143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Food packaging plays a vital role in guaranteeing the quality and safety of fresh products during the storage and distribution. Carboxymethyl chitosan (CMCS) is identified as a promising polymer for food packaging film owing to its film-forming ability, non-toxicity, and biodegradability. Nevertheless, the practical applications of pure CMCS film usually suffer from some limits owing to its poor antibacterial effect and mechanical strength. In this study, postbiotic-biosynthesized silver nanoparticles (AgNPs) anchored on covalent organic frameworks (COF) (namely COF-AgNP) were integrated into the CMCS film to enhance antibacterial packaging performance for preservation of fruits. Utilizing postbiotic as a reducing agent, COF-AgNPs composite nanomaterials were prepared by anchoring AgNPs on COF via in-situ reduction of Ag+. Furthermore, antibacterial packaging film was prepared using CMCS and COF-AgNPs (CMCS@COF-AgNPs) via a solution-casting method. Furthermore, characterization results proved that mechanical strength of CMCS@COF-AgNP films exhibited a gradual enhancement with the increased COFs-AgNPs content. Moreover, CMCS@COF-AgNP films exhibited an enhanced antibacterial activity and excellent biocompatibility. Importantly, CMCS@COF-AgNP coating can effectively preserve citrus quality and prolong its storage time. Therefore, CMCS@COF-AgNP films could be used as a promising and economically viable solution to diminish postharvest losses and prolong the shelf life of fresh products.
Collapse
Affiliation(s)
- Manyan Qiu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yueling Tian
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenxuan Qu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Feng Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Sayed ZS, Hieba EM, Batakoushy HA, Rashdan HRM, Ismail E, Elkatlawy SM, Elzwawy A. Cancer treatment approaches within the frame of hyperthermia, drug delivery systems, and biosensors: concepts and future potentials. RSC Adv 2024; 14:39297-39324. [PMID: 39670162 PMCID: PMC11635600 DOI: 10.1039/d4ra06992g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
This work presents a review of the therapeutic modalities and approaches for cancer treatment. A brief overview of the traditional treatment routes is presented in the introduction together with their reported side effects. A combination of the traditional approaches was reported to demonstrate an effective therapy until a few decades ago. With the improvement in the fabrication of nanomaterials, targeted therapy represents a novel therapeutic approach. This improvement established on nanoparticles is categorized into hyperthermia, drug delivery systems, and biosensors. Hyperthermia presents a personalized medicine-based approach in which targeted zones are heated up until the diseased tissue is destroyed by the thermal effect. The use of magnetic nanoparticles further improved the effectiveness of hyperthermia owing to the enhanced heating action, further increasing the accuracy of the targeting process. Nanoparticle-based biosensors present a smart nanodevice that can detect, monitor, and target tumor tissues by following the biomarkers in the body fluids. Magnetic nanoparticles offer a controlled thermo-responsive device that can be manipulated by changing the magnetic field, offering a more personalized and controlled hyperthermia therapeutic modality. Similarly, gold nanoparticles offer an effective aid in the hyperthermia treatment approach. Furthermore, carbon nanotubes and metal-organic frameworks present a cutting-edge approach to cancer treatment. A combination of functionalized nanoparticles offers a unique route for drug delivery systems, in which therapeutic agents carried by nanoparticles are guided into the human body and then released in the target spot.
Collapse
Affiliation(s)
- Zeinab S Sayed
- Faculty of Applied Medical Science, Misr University for Science and Technology (MUST) Giza Egypt
| | - Eman M Hieba
- Chemistry and Entomology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University Shebin Elkom 32511 Egypt
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St., Dokki Giza 12622 Egypt
| | - Enas Ismail
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape Cape Town 7505 South Africa
- Physics Department, Faculty of Science (Girl's Branch), Al Azhar University Nasr City 11884 Cairo Egypt
| | - Saeid M Elkatlawy
- Department of Physics, Faculty of Science, University of Sadat City Fifth Zone Sadat Egypt
| | - Amir Elzwawy
- Ceramics Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre (NRC) 33 El Bohouth St., Dokki Giza 12622 Egypt
| |
Collapse
|
9
|
Teli P, Soni S, Teli S, Agarwal S. Unveiling the catalytic potency of a novel hydrazone-linked covalent organic framework for the highly efficient one-pot synthesis of 1,2,4-triazolidine-3-thiones. NANOSCALE ADVANCES 2024:d4na00650j. [PMID: 39478999 PMCID: PMC11514329 DOI: 10.1039/d4na00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024]
Abstract
A novel hydrazone-linked covalent organic framework (TRIPOD-DHTH COF) was synthesized through the ultrasonic treatment of 2,5-dihydroxyterephthalohydrazide (DHTH) and 4,4',4''-[1,3,5-triazine-2,4,6-triyltris(oxy)]tris-benzaldehyde (TRIPOD). The COF was extensively analyzed using FT-IR, PXRD, SEM, TEM, BET, XPS, TGA, and DTA techniques. The characterization studies revealed the presence of mesoporous properties and high thermal stability, with a surface area measuring 2.78 m2 g-1 and an average pore size of 8.88 nm. The developed COF demonstrated exceptional catalytic activity in synthesizing 1,2,4-triazolidine-3-thiones from thiosemicarbazide and various ketones and aldehydes using a water : ethanol (1 : 2) medium at room temperature. A significant yield (80-98%) of 1,2,4-triazolidine-3-thiones was obtained in a low reaction time (4-20 min). The role of TRIPOD as a precursor in the synthesis of the COF and as a reactant in the synthesis of 1,2,4-triazolidine-3-thione (3l) was found to be fascinating. The synthesized COF maintained its catalytic activity over eight runs, underscoring its efficiency and reusability, highlighting its potential for sustainable chemical syntheses.
Collapse
Affiliation(s)
- Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Shivani Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Sunita Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, Mohanlal Sukhadia University Udaipur Rajasthan India
| |
Collapse
|
10
|
Xie C, He J, Wang Y, Zhang D, Liu H, Sun B. Fast detection of tryptamine in meat products with azide-functionalized covalent organic frameworks confined in molecularly imprinted polymers. Food Chem 2024; 452:139527. [PMID: 38703741 DOI: 10.1016/j.foodchem.2024.139527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Tryptamine is a biogenic amine that affects organoleptic quality through the generation of off-odours in foods. Herein, imine-based covalent organic frameworks (COFs) were synthesized via Schiff base reactions and postmodified with click chemistry to generate azide-functionalized COFs with tunable azide units on the walls. The combination of molecular imprinting with COFs enabled the specific recognition of the targets. The resulting optosensing system (azide-functionalized COFs@MIPs) was used as a sample-to-answer analyser for detecting tryptamine (detection time within 10 min). A linear relationship was observed for the fluorescence response to tryptamine concentrations in the range of 3-120 μg L-1, with a limit of detection of 1.74 μg L-1. The recoveries for spiked samples were satisfactory, with relative standard deviations <9.90%. The optosensing system is a potential tool for the quantitative detection of tryptamine in meat products because of its lower cost, shorter processing time, and simpler processing steps compared to conventional chromatographic techniques.
Collapse
Affiliation(s)
- Chenchen Xie
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China
| | | | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China
| | - Dianwei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China.
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
11
|
Chen F, Huang Y, Qian Y, Zhao Y, Bu C, Zhang D. A Machine Learning-Driven Surface-Enhanced Raman Scattering Analysis Platform for the Label-Free Detection and Identification of Gastric Lesions. Int J Nanomedicine 2024; 19:9305-9315. [PMID: 39282579 PMCID: PMC11401524 DOI: 10.2147/ijn.s471392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Background Gastric lesions pose significant clinical challenges due to their varying degrees of malignancy and difficulty in early diagnosis. Early and accurate detection of these lesions is crucial for effective treatment and improved patient outcomes. Methods This paper proposed a label-free and highly sensitive classification method for serum of patients with different degrees of gastric lesions by combining surface-enhanced Raman scattering (SERS) and machine learning analysis. Specifically, we prepared Au lotus-shaped (AuLS) nanoarrays substrates using seed-mediated and liquid-liquid interface self-assembly method for measuring SERS spectra of serum, and then the collected spectra were processed by principal component analysis (PCA) - multi-local means based nearest neighbor (MLMNN) model to achieve differentiation. Results By employing this pattern analysis, AuLS nanoarray substrates can achieve fast, sensitive, and label-free serum spectral detection. The classification accuracy can reach 97.5%, the sensitivity is higher than 96.7%, and the specificity is higher than 95.0%. Moreover, by analyzing the PCs loading plots, the most critical spectral features distinguishing different degrees of gastric lesions were successfully captured. Conclusion This discovery lays the foundation for combining SERS with machine learning for real-time diagnosis and recognition of gastric lesions.
Collapse
Affiliation(s)
- Fengsong Chen
- Department of Gastroenterology, Haimen People's Hospital, Nantong, 226000, People's Republic of China
| | - Yanhua Huang
- Department of Gastroenterology, Haimen People's Hospital, Nantong, 226000, People's Republic of China
| | - Yayun Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Ya Zhao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Chiwen Bu
- Institute of Surgery, Guanyun People's Hospital, Guanyun, 222200, People's Republic of China
| | - Dong Zhang
- Institute of Surgery, Guanyun People's Hospital, Guanyun, 222200, People's Republic of China
| |
Collapse
|
12
|
Hao Y, Xia Y, Huang J, Zhong C, Li G. Covalent-Organic Frameworks for Selective and Sensitive Detection of Antibiotics from Water. Polymers (Basel) 2024; 16:2319. [PMID: 39204541 PMCID: PMC11359747 DOI: 10.3390/polym16162319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
As the consumption of antibiotics rises, they have generated some negative impacts on organisms and the environment because they are often unable to be effectively degraded, and seeking effective detection methods is currently a challenge. Covalent-organic frameworks (COFs) are new types of crystalline porous crystals created based on the strong covalent interactions between blocked monomers, and COFs demonstrate great potential in the detection of antibiotics from aqueous solutions because of their large surface area, adjustable porosity, recyclability, and predictable structure. This review aims to present state-of-the-art insights into COFs (properties, classification, synthesis methods, and functionalization). The key mechanisms for the detection of antibiotics and the application performance of COFs in the detection of antibiotics from water are also discussed, followed by the challenges and opportunities for COFs in future research.
Collapse
Affiliation(s)
| | | | | | - Chenglin Zhong
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| | - Guizhen Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (Y.H.); (Y.X.); (J.H.)
| |
Collapse
|
13
|
Meng C, Li S, Zhang D, Liu H, Sun B. Conjugated molecularly imprinted polymers based on covalent organic frameworks: Fluorescent sensing platform for specific capture of urea and elimination of ethyl carbamate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124357. [PMID: 38692110 DOI: 10.1016/j.saa.2024.124357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
This study described the preparation of an azide covalent organic framework-embedded molecularly imprinted polymers (COFs(azide)@MIPs) platform for urea adsorption and indirect ethyl carbamate (EC) removal from Chinese yellow rice wine (Huangjiu). By modifying the pore surface of COFs using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, COFs(azide) with a high fluorescence quantum yield and particular recognition ability were inventively produced. In order to selectively trap urea, the COFs(azide) were encased in an imprinted shell layer via imprinting technology. With a detection limit (LOD) of 0.016 μg L-1 (R2 = 0.9874), the COFs(azides)@MIPs demonstrated a good linear relationship with urea in the linear range of 0-5 μg L-1. Using real Huangjiu samples, the spiking recovery trials showed the viability of this sensing platform with recoveries ranging from 88.44 % to 109.26 % and an RSD of less than 3.40 %. The Huangjiu processing model system achieved 38.93 % EC reduction by COFs(azides)@MIPs. This research will open up new avenues for the treatment of health problems associated with fermented alcoholic beverages, particularly Huangjiu, while also capturing and removing hazards coming from food.
Collapse
Affiliation(s)
- Chen Meng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Suyu Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Dianwei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
14
|
Zhang Q, Zhu N, Lu Z, He M, Chen B, Hu B. Magnetic covalent organic frameworks as sorbents in the chromatographic analysis of environmental organic pollutants. J Chromatogr A 2024; 1728:465034. [PMID: 38824842 DOI: 10.1016/j.chroma.2024.465034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Covalent organic frameworks (COFs) are featured with large specific surface areas, good thermal stability, and abundant pores. These properties are exactly what the sorbents used for extraction or adsorption of interest substances are desired with. While, the low density and hydrophobicity of COFs often makes them difficult to be dispersed evenly and recovered from the aqueous solution. Magnetic covalent organic frameworks (MCOFs) inherit magnetic property of the magnetic particles and porous structure of COFs. They have improved dispersity in aqueous solution and phase separation can be rapidly achieved via external magnetic fields. This review summarized the synthesis strategies for MCOFs, and their application in trace environmental organic pollutants analysis by chromatography techniques. The selection of COFs types and modification with active groups for a certain adsorption purpose is discussed, along with the exploration of adsorption mechanisms, which is beneficial for the design and synthesis of MCOFs.
Collapse
Affiliation(s)
- Qiulin Zhang
- Department of Chemistry, Wuhan University, China
| | - Ning Zhu
- Department of Chemistry, Wuhan University, China
| | - Ziyang Lu
- Department of Chemistry, Wuhan University, China
| | - Man He
- Department of Chemistry, Wuhan University, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, China.
| |
Collapse
|
15
|
Gao YY, He J, Li XH, Li JH, Wu H, Wen T, Li J, Hao GF, Yoon J. Fluorescent chemosensors facilitate the visualization of plant health and their living environment in sustainable agriculture. Chem Soc Rev 2024; 53:6992-7090. [PMID: 38841828 DOI: 10.1039/d3cs00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.
Collapse
Affiliation(s)
- Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jie He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Xiao-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Hong Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Ting Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jun Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
16
|
Yang S, Li X, Liao Y, Ji Y, Li R. Hydrazone-linked covalent organic framework functionalized with cysteine as a fluorescence sensor and Exploration of paper chip for p-nitrophenol detection. CHEMOSPHERE 2024; 359:142297. [PMID: 38729443 DOI: 10.1016/j.chemosphere.2024.142297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
The large use and emission of p-nitrophenol (p-NP) seriously pollute the environment and endanger human health. In this work, a hydrazone-linked fluorescent covalent organic framework (BATHz-COF) was simply synthesized at room temperature and covalently linked N-acetyl-L-cysteine (NALC) via the "thiol-ene" click reaction, where carboxyl groups were introduced to improve dispersion and fluorescence intensity. As a rapid, good selectivity and reusability fluorescence sensor, the obtained COF-NALC has been used for quantitative analysis of p-NP predicated on the internal filtering effect (IFE). Under optimal conditions, COF-NALC enabled quantitative detection of p-NP with a linear range of 5-50 μM and the detection limit was 1.46 μM. The application of COF-NALC to the detection of p-NP in river water samples was successful, and the satisfactory recoveries were 98.0%-109.3%. Furthermore, the fluorescent COF paper chips constructed by in situ growth were combined with a smartphone to build a visual platform for the quick and real-time detection of p-NP, providing an excellent illustration for the development of intelligent fluorescence sensing in environmental analysis.
Collapse
Affiliation(s)
- Shan Yang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Xinyue Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yifang Liao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China.
| |
Collapse
|
17
|
Zhang W, Sun Q, Zhu Y, Sun J, Wu Z, Tian N. High-Performance Trimethylamine Sensor Based on an Imine Covalent Organic Framework. ACS Sens 2024; 9:3262-3271. [PMID: 38809959 DOI: 10.1021/acssensors.4c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
As trimethylamine (TMA) is widely used in agriculture and industry, inhalation of TMA can cause very serious negative effects on human health. However, most of the current gas sensors for detecting TMA are commonly performed at high temperatures and cannot meet market needs. Inspired by this, we prepared imine covalent organic frameworks (TB-COF) synthesized from two monomers, 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 1,3,5-benzotricarboxaldehyde (BTCA), using acetic acid as a catalyst at room temperature. Based on this, three sensors were prepared for gas sensitivity testing, namely, TA, BT, and TB-COF sensors. The three sensors were tested for 15 different gases at room temperature. From the whole gas sensitivity data, the TB-COF sensor made by compositing TA and BT has a higher sensitivity (6845.9%) to TMA at 500 ppm, which is 6.1 and 5.4 times higher than the response of TA and BT sensors, respectively. The TB-COF sensor adsorbs and desorbs TMA in a controlled 23 s cycle with a low detection limit of 28.6 ppb. This result indicates that TB-COF prepared at room temperature can be used as a gas-sensitive sensing material for real-time monitoring of TMA. The gas sensing results demonstrate the great potential of COFs for sensor development and application and provide ideas for further development of COFs-based gas sensors.
Collapse
Affiliation(s)
- Weiyu Zhang
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
- School of Materials Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi, Xinjiang 830046, China
| | - Qihua Sun
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
- School of Materials Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Yuqing Zhu
- School of Materials Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Jun Sun
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
- School of Materials Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Zhaofeng Wu
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
- School of Materials Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi, Xinjiang 830046, China
| | - Ning Tian
- School of Materials Science and Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China
- Xinjiang Key Laboratory of Solid-State Physics and Devices, Urumqi, Xinjiang 830046, China
| |
Collapse
|
18
|
Su LH, Qian HL, Yang C, Wang C, Wang Z, Yan XP. Integrating molecular imprinting into flexible covalent organic frameworks for selective recognition and efficient extraction of aflatoxins. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133755. [PMID: 38359765 DOI: 10.1016/j.jhazmat.2024.133755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Covalent organic frameworks (COFs) are promising adsorbents for extraction, but their selectivity for molecular recognition remains a challenging issue due to the very limited structural design with rigid structure. Herein, we report an elegant strategy for the design and synthesis of molecularly imprinted flexible COFs (MI-FCOFs) via one-pot reaction between the flexible building block of 2,4,6-tris(4-formylphenoxy)- 1,3,5-triazine and linear 4-phenylenediamine for selective extraction of aflatoxins. The flexible chain structure enabled the developed MI-FCOF to adjust the shape and conformation of frameworks to suit the template molecule, giving high selectivity for aflatoxins recognition. Moreover, MI-FCOF with abundant imprinted sites and function groups exhibited an exceptional adsorption capacity of 258.4 mg g-1 for dummy template which is 3 times that of no-imprinted FCOF (NI-FCOF). Coupling MI-FCOF based solid-phase extraction with high-performance liquid chromatography gave low detection limits of 0.003-0.09 ng mL-1 and good precision with relative standard deviations ≤ 6.7% for the determination of aflatoxins. Recoveries for the spiked rice, corn, wheat and peanut samples were in the range of 85.4%- 105.4%. The high selectivity of the developed MI-FCOF allows matrix-free determination of AFTs in food samples. This work offers a new way to the design of MI-FCOF for selective molecular recognition.
Collapse
Affiliation(s)
- Li-Hong Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
19
|
Wang Y, Zhang X, Yue H. Two-dimensional nanomaterials induced nano-bio interfacial effects and biomedical applications in cancer treatment. J Nanobiotechnology 2024; 22:67. [PMID: 38369468 PMCID: PMC10874567 DOI: 10.1186/s12951-024-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024] Open
Abstract
Two-dimensional nanomaterials (2D NMs), characterized by a large number of atoms or molecules arranged in one dimension (typically thickness) while having tiny dimensions in the other two dimensions, have emerged as a pivotal class of materials with unique properties. Their flat and sheet-like structure imparts distinctive physical, chemical, and electronic attributes, which offers several advantages in biomedical applications, including enhanced surface area for efficient drug loading, surface-exposed atoms allowing precise chemical modifications, and the ability to form hierarchical multilayer structures for synergistic functionality. Exploring their nano-bio interfacial interactions with biological components holds significant importance in comprehensively and systematically guiding safe applications. However, the current lack of in-depth analysis and comprehensive understanding of interfacial effects on cancer treatment motivates our ongoing efforts in this field. This study provides a comprehensive survey of recent advances in utilizing 2D NMs for cancer treatment. It offers insights into the structural characteristics, synthesis methods, and surface modifications of diverse 2D NMs. The investigation further delves into the formation of nano-bio interfaces during their in vivo utilization. Notably, the study discusses a wide array of biomedical applications in cancer treatment. With their potential to revolutionize therapeutic strategies and outcomes, 2D NMs are poised at the forefront of cancer treatment, holding the promise of transformative advancements.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Ma M, Yang Y, Huang Z, Huang F, Li Q, Liu H. Recent progress in the synthesis and applications of covalent organic framework-based composites. NANOSCALE 2024; 16:1600-1632. [PMID: 38189523 DOI: 10.1039/d3nr05797f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Covalent organic frameworks (COFs) have historically been of interest to researchers in different areas due to their distinctive characteristics, including well-ordered pores, large specific surface area, and structural tunability. In the past few years, as COF synthesis techniques developed, COF-based composites fabricated by integrating COFs and other functional materials including various kinds of metal or metal oxide nanoparticles, ionic liquids, metal-organic frameworks, silica, polymers, enzymes and carbon nanomaterials have emerged as a novel kind of porous hybrid material. Herein, we first provide a thorough summary of advanced strategies for preparing COF-based composites; then, the emerging applications of COF-based composites in diverse fields due to their synergistic effects are systematically highlighted, including analytical chemistry (sensing, extraction, membrane separation, and chromatographic separation) and catalysis. Finally, the current challenges associated with future perspectives of COF-based composites are also briefly discussed to inspire the advancement of more COF-based composites with excellent properties.
Collapse
Affiliation(s)
- Mingxuan Ma
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Yonghao Yang
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China
| | - Zhonghua Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Fuhong Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Quanliang Li
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Hongyu Liu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| |
Collapse
|
21
|
Li G, Yuan B, Zhao L, Gao W, Xu C, Liu G. Fouling-resistant electrode for electrochemical sensing based on covalent-organic frameworks TpPA-1 dispersed cabon nanotubes. Talanta 2024; 267:125162. [PMID: 37688894 DOI: 10.1016/j.talanta.2023.125162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
The key problem that limits the practical applications of nonenzymatic electrochemical sensors in biological media, is the biofouling and chemical fouling of electrodes due to the adsorption of biological molecules and oxidation (reduction) products. Electrode fouling will cause low accuracy, poor stability, and low sensitivity. Here, a simple and efficient antifouling electrode was demonstrated for electrochemical sensing based on covalent-organic framework (COF) TpPA-1 and carboxylic multi-walled carbon nanotubes (CNT) composites. COF TpPA-1 possesses abundant hydrophilic groups, which assisted the dispersion of CNT in water and formed uniform composites by π-π interaction. In addition, the introduction of CNT into the composites improved the electron transfer rate of COF TpPA-1. The antifouling interface was characterized by electrochemistry, contact angle measurement, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The electrode showed good chemical and bio-fouling resistant performance for the electrochemical detection of β-nicotinamide adenine dinucleotide (NADH) and uric acid (UA) in real serum samples.
Collapse
Affiliation(s)
- Gang Li
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, Shandong, China
| | - Baiqing Yuan
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, Shandong, China.
| | - Lijun Zhao
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wenhan Gao
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, Shandong, China
| | - Chunying Xu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, Shandong, China
| | - Gang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, Shandong, China.
| |
Collapse
|
22
|
Yue Y, Ji D, Liu Y, Wei D. Chemical Sensors Based on Covalent Organic Frameworks. Chemistry 2024; 30:e202302474. [PMID: 37843045 DOI: 10.1002/chem.202302474] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Covalent organic frameworks (COFs) are a type of crystalline porous polymer composed of light elements through strong covalent bonds. COFs have attracted considerable attention due to their unique designable structures and excellent material properties. Currently, COFs have shown outstanding potential in various fields, including gas storage, pollutant removal, catalysis, adsorption, optoelectronics, and their research in the sensing field is also increasingly flourishing. In this review, we focus on COF-based sensors. Firstly, we elucidate the fundamental principles of COF-based sensors. Then, we present the primary application areas of COF-based sensors and their recent advancements, encompassing gas, ions, organic compounds, and biomolecules sensing. Finally, we discuss the future trends and challenges faced by COF-based sensors, outlining their promising prospects in the field of sensing.
Collapse
Affiliation(s)
- Yang Yue
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
23
|
Cao Y, Wu R, Gao YY, Zhou Y, Zhu JJ. Advances of Electrochemical and Electrochemiluminescent Sensors Based on Covalent Organic Frameworks. NANO-MICRO LETTERS 2023; 16:37. [PMID: 38032432 PMCID: PMC10689676 DOI: 10.1007/s40820-023-01249-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Covalent organic frameworks (COFs), a rapidly developing category of crystalline conjugated organic polymers, possess highly ordered structures, large specific surface areas, stable chemical properties, and tunable pore microenvironments. Since the first report of boroxine/boronate ester-linked COFs in 2005, COFs have rapidly gained popularity, showing important application prospects in various fields, such as sensing, catalysis, separation, and energy storage. Among them, COFs-based electrochemical (EC) sensors with upgraded analytical performance are arousing extensive interest. In this review, therefore, we summarize the basic properties and the general synthesis methods of COFs used in the field of electroanalytical chemistry, with special emphasis on their usages in the fabrication of chemical sensors, ions sensors, immunosensors, and aptasensors. Notably, the emerged COFs in the electrochemiluminescence (ECL) realm are thoroughly covered along with their preliminary applications. Additionally, final conclusions on state-of-the-art COFs are provided in terms of EC and ECL sensors, as well as challenges and prospects for extending and improving the research and applications of COFs in electroanalytical chemistry.
Collapse
Affiliation(s)
- Yue Cao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ru Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yan-Yan Gao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China
| | - Yang Zhou
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
24
|
He H, Li L, Wu Y, Zhao D, Liu J, Zhou J. Simulation insights into the lipase adsorption on zeolitic imidazolate framework-8. Colloids Surf B Biointerfaces 2023; 231:113540. [PMID: 37708590 DOI: 10.1016/j.colsurfb.2023.113540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) have recently emerged as immobilization matrices for biomolecules, most notably enzymes. Understanding the key factors that dominate the enzyme's catalytic activity on/in ZIFs is crucial for the development of new immobilization matrices. In this work, a combination of the parallel tempering Monte Carlo simulation and all-atom molecular dynamics simulation is performed to study the orientation and conformation of the Candida rugose lipase (CRL) adsorbed on oppositely charged and neutral ZIF-8 (i.e., ZIF-8-COOH, ZIF-8-NH2, and ZIF-8-neutral) surfaces. The results show that CRL could adsorb on all ZIF-8 surfaces, with an ordered orientation obtained on charged ZIF-8 surfaces. ZIF-8-NH2 is a good candidate for CRL immobilization since it can maximize the catalytic activity of CRL. The native conformation of CRL is well preserved on all three surfaces due to the partially water-containing surface of ZIF-8. The results could provide theoretical support for the application of porous materials in enzyme immobilization.
Collapse
Affiliation(s)
- Haokang He
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Lin Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yongsheng Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Daohui Zhao
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430205, PR China
| | - Jie Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
25
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
26
|
Ghosh P, Banerjee P. Drug delivery using biocompatible covalent organic frameworks (COFs) towards a therapeutic approach. Chem Commun (Camb) 2023; 59:12527-12547. [PMID: 37724444 DOI: 10.1039/d3cc01829f] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Covalent organic frameworks (COFs) are constructed exclusively with lightweight organic scaffolds, which can have a 2D or 3D architecture. The ease of synthesis, robust skeleton and tunable properties of COFs make them superior candidates among their counterparts for a wide range of uses including biomedical applications. In the biomedical field, drug delivery or photodynamic-photothermal (PDT-PTT) therapy can be individually considered a potential parameter to be investigated. Therefore, this comprehensive review is focused on drug delivery using COFs, highlighting the encapsulation and decapsulation of drugs by COF scaffolds and their delivery in biological media including live cells. Versatile COF scaffolds together with the delivery of several drug molecules are considered. We attempted to incorporate the status of drug encapsulation and decapsulation considering a wide range of recent publications.
Collapse
Affiliation(s)
- Pritam Ghosh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamilnadu, India.
| | - Priyabrata Banerjee
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad 201002, Uttarpradesh, India
| |
Collapse
|
27
|
Rejali NA, Dinari M, Wang Y. Post-synthetic modifications of covalent organic frameworks (COFs) for diverse applications. Chem Commun (Camb) 2023; 59:11631-11647. [PMID: 37702105 DOI: 10.1039/d3cc03091a] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Covalent organic frameworks (COFs) are porous and crystalline organic polymers, which have found usage in various fields. These frameworks are tailorable through the introduction of diverse functionalities into the platform. Indeed, functionality plays a key role in their different applications. However, sometimes functional groups are not compatible with reaction conditions or can compete and interfere with other groups of monomers in the direct synthetic method. Also, pre-synthesis of bulky moieties in COFs can negatively affect crystal formation. To avoid these problems a post-synthetic modification (PSM) approach is a helpful tactic. Also, with the assistance of this strategy porous size can be tunable and stability can be improved without considerable effect on the crystallite. In addition, conductivity, hydrophobicity/ hydrophilicity, and chirality are among the features that can be reformed with this method. In this review, different types of PSM strategies based on recent articles have been divided into four categories: (i) post-functionalization, (ii) post-metalation, (iii) chemical locking, and (iv) host-guest post-modifications. Post-functionalization and chemical locking methods are based on covalent bond formation while in post-metalation and host-guest post-modifications, non-covalent bonds are formed. Also, the potential of these post-modified COFs in energy storage and conversion (lithium-sulfur batteries, hydrogen storage, proton-exchange membrane fuel cells, and water splitting), heterogeneous catalysts, food safety evaluation, gas separation, environmental domains (greenhouse gas capture, radioactive element uptake, and water remediation), and biological applications (drug delivery, biosensors, biomarker capture, chiral column chromatography, and solid-state smart nanochannels) have been discussed.
Collapse
Affiliation(s)
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Yong Wang
- School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China.
| |
Collapse
|
28
|
Huo E, Shahab S, Dang H, Jia Q, Wang M. Triazine-based covalent-organic framework embedded with cuprous oxide as the bioplatform for photoelectrochemical aptasensing Escherichia coli. Mikrochim Acta 2023; 190:407. [PMID: 37731054 DOI: 10.1007/s00604-023-05987-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
A superior photoelectrochemical (PEC) aptasensor was manufactured for the detection of Escherichia coli (E. coli) based on a hybrid of triazine-based covalent-organic framework (COF) and cuprous oxide (Cu2O). The COF synthesized using 1,3,5-tris(4-aminophenyl)-benzene (TAPB) and 1,3,5-triformylphloroglucinol (Tp) as building blocks acted as a scaffold for encapsulated Cu2O nanoparticles (denoted as Cu2O@TAPB-Tp-COF), which then was employed as the bioplatform for anchoring E. coli-targeted aptamer. Cu2O@Cu@TAPB-Tp-COF demonstrated enhanced separation of the photogenerated carriers and photoabsorption ability and boosted photoelectric conversion efficiency. The developed Cu2O@TAPB-Tp-COF-based PEC aptasensor exhibited a lower detection limit of 2.5 CFU mL-1 toward E. coli within a wider range of 10 CFU mL-1 to 1 × 104 CFU mL-1 than most of reported aptasensors for determining foodborne bacteria, together with high selectivity, good stability, and superior ability and reproducibility. The recoveries of E. coli spiked into milk and bread samples ranged within 95.3-103.6% and 96.6-102.8%, accompanying with low RSDs of 1.37-4.48% and 1.74-3.66%, respectively. The present study shows a promising alternative for the sensitive detection of foodborne bacteria from complex foodstuffs and pathogenic bacteria-polluted environment.
Collapse
Affiliation(s)
- Erfu Huo
- Henan Chemical Industry Institute Co. Ltd., Zhengzhou, People's Republic of China.
- Quality Inspection and Analytical Test Research Center, Henan Academy of Sciences, Zhengzhou, People's Republic of China.
| | - Siyamak Shahab
- Belarusian State University, ISEI BSU, Minsk, Republic of Belarus
| | - Hao Dang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Qiaojuan Jia
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Minghua Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
29
|
Li WJ, Li YM, Ren H, Ji CY, Cheng L. Improving the Bioactivity and Stability of Embedded Enzymes by Covalent Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43580-43590. [PMID: 37672761 DOI: 10.1021/acsami.3c09459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
De novo embedding enzymes within reticular chemistry materials have shown the enhancement of physical and chemical stability for versatile catalytic reactions. Compared to metal-organic frameworks (MOFs), covalent organic frameworks (COFs) are usually considered to be the more superior host of enzymes because of their large channels with low diffusion barriers, outstanding chemical/thermal stability, and metal-free nature. However, detailed investigations on the comparison of COFs and MOFs in enhancing biocatalytic performance have not been explored. Here, we de novo encapsulated enzymes within two COFs via a mechanochemical strategy, which avoided the extreme synthetic conditions of COFs and highly maintained the biological activities of the embedded enzymes. The enzymes@COFs biocomposites exhibited a much higher activity (3.4-14.7 times higher) and enhanced stability than those in MOFs (ZIF-8, ZIF-67, HKUST-1, MIL-53, and CaBDC), and the rate parameter (kcat/Km) of enzyme@COFs was 41.3 times higher than that of enzyme@ZIF-8. Further explorations showed that the conformation of enzymes inside MOFs was disrupted, owing to the harmful interfacial interactions between enzymes and metal ions as confirmed by ATR-FTIR, fluorescence spectroscopy, and XPS data. In contrast, enzymes that were embedded in metal-free COFs highly preserved the natural conformation of free enzymes. This study provides a better understanding of the interfacial interactions between reticular supports and enzymes, which paves a new road for optimizing the bioactivities of immobilized enzymes.
Collapse
Affiliation(s)
- Wen-Jing Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yi-Ming Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Hao Ren
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Chun-Yan Ji
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
30
|
Feng J, Huang QY, Zhang C, Ramakrishna S, Dong YB. Review of covalent organic frameworks for enzyme immobilization: Strategies, applications, and prospects. Int J Biol Macromol 2023; 248:125729. [PMID: 37422245 DOI: 10.1016/j.ijbiomac.2023.125729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Efficient enzyme immobilization systems offer a promising approach for improving enzyme stability and recyclability, reducing enzyme contamination in products, and expanding the applications of enzymes in the biomedical field. Covalent organic frameworks (COFs) possess high surface areas, ordered channels, optional building blocks, highly tunable porosity, stable mechanical properties, and abundant functional groups, making them ideal candidates for enzyme immobilization. Various COF-enzyme composites have been successfully synthesized, with performances that surpass those of free enzymes in numerous ways. This review aims to provide an overview of current enzyme immobilization strategies using COFs, highlighting the characteristics of each method and recent research applications. The future opportunities and challenges of enzyme immobilization technology using COFs are also discussed.
Collapse
Affiliation(s)
- Jie Feng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China; Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, 117574 Singapore, Singapore
| | - Qing-Yun Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Ce Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Seeram Ramakrishna
- Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, 117574 Singapore, Singapore.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
31
|
Yan B. Lanthanide Functionalized Covalent Organic Frameworks Hybrid Materials for Luminescence Responsive Chemical Sensing. Chemistry 2023; 29:e202301108. [PMID: 37254951 DOI: 10.1002/chem.202301108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/01/2023]
Abstract
Covalent organic frameworks (COFs) possess several unique features of structural and functional chemistry, together with other modular photophysical performance, which make them candidates for luminescence responsive chemical sensing. Lanthanide (Ln3+ ) functionalized COFs hybrid materials still keep the parent COFs' virtues and also embody the abundant multiple luminescence response with both COFs and Ln3+ ions or other guest species. In this review, the summary is highlighted on the lanthanide functionalized COFs hybrid materials and their relevant systems for luminescence responsive chemical sensing. It is subdivided into five sections involving the three main topics. Firstly, the basic knowledges of COFs materials related to the luminescence responsive chemical sensing are introduced (including three sections), involving the chemistry, application and post-synthetic modification (PSM) of COFs, the luminescence and luminescence responsive chemical sensing, and the luminescence responsive chemical sensing of non-lanthanide functionalized COFs hybrids materials. Secondly, the systematic progresses are outlined on the lanthanide functionalized COFs hybrid materials in luminescence responsive chemical sensing, which is the emphasis for this review. Finally, the conclusion and prospect are given.
Collapse
Affiliation(s)
- Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| |
Collapse
|
32
|
Frey L, Oliveira O, Sharma A, Guntermann R, Fernandes SPS, Cid‐Seara KM, Abbay H, Thornes H, Rocha J, Döblinger M, Kowalczyk T, Rao A, Salonen LM, Medina DD. Building Blocks and COFs Formed in Concert-Three-Component Synthesis of Pyrene-Fused Azaacene Covalent Organic Framework in the Bulk and as Films. Angew Chem Int Ed Engl 2023; 62:e202302872. [PMID: 37141015 PMCID: PMC10952658 DOI: 10.1002/anie.202302872] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/05/2023]
Abstract
A three-component synthesis methodology is described for the formation of covalent organic frameworks (COFs) containing extended aromatics. Notably, this approach enables synthesis of the building blocks and COF along parallel reaction landscapes, on a similar timeframe. The use of fragmental building block components, namely pyrene dione diboronic acid as aggregation-inducing COF precursor and the diamines o-phenylenediamine (Ph), 2,3-diaminonaphthalene (Naph), or (1R,2R)-(+)-1,2-diphenylethylenediamine (2Ph) as extending functionalization units in conjunction with 2,3,6,7,10,11-hexahydroxytriphenylene, resulted in the formation of the corresponding pyrene-fused azaacene, i.e., Aza-COF series with full conversion of the dione moiety, long-range order, and high surface area. In addition, the novel three-component synthesis was successfully applied to produce highly crystalline, oriented thin films of the Aza-COFs with nanostructured surfaces on various substrates. The Aza-COFs exhibit light absorption maxima in the blue spectral region, and each Aza-COF presents a distinct photoluminescence profile. Transient absorption measurements of Aza-Ph- and Aza-Naph-COFs suggest ultrafast relaxation dynamics of excited-states within these COFs.
Collapse
Affiliation(s)
- Laura Frey
- Department of Chemistry and Center for Nanoscience (CeNS)Ludwig-Maximilians-UniversityButenandtstraße 11 (E)81377MunichGermany
| | - Orlando Oliveira
- International Iberian Nanotechnology (INL)Avenida Mestre José Veiga4715-330BragaPortugal
- CICECO—Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| | - Ashish Sharma
- Cavendish LaboratoryUniversity of Cambridge19 JJ Thomson AvenueCambridgeCB3 0HEUK
| | - Roman Guntermann
- Department of Chemistry and Center for Nanoscience (CeNS)Ludwig-Maximilians-UniversityButenandtstraße 11 (E)81377MunichGermany
| | - Soraia P. S. Fernandes
- International Iberian Nanotechnology (INL)Avenida Mestre José Veiga4715-330BragaPortugal
- Associate Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE)University of AveiroCampus Universitário de Santiago3810-193AveiroPortugal
| | - Krystal M. Cid‐Seara
- International Iberian Nanotechnology (INL)Avenida Mestre José Veiga4715-330BragaPortugal
- Department of Inorganic ChemistryUniversity of VigoCampus Universitário, As Lagoas-Marcosende36310VigoSpain
| | - Hosanna Abbay
- Department of Chemistry and Advanced Materials Science and Engineering Center (AMSEC)Western Washington University516 High StreetBellinghamWA-98225USA
| | - Henry Thornes
- Department of Chemistry and Advanced Materials Science and Engineering Center (AMSEC)Western Washington University516 High StreetBellinghamWA-98225USA
| | - João Rocha
- CICECO—Aveiro Institute of MaterialsUniversity of Aveiro3810-193AveiroPortugal
| | - Markus Döblinger
- Department of Chemistry and Center for Nanoscience (CeNS)Ludwig-Maximilians-UniversityButenandtstraße 11 (E)81377MunichGermany
| | - Tim Kowalczyk
- Department of Chemistry and Advanced Materials Science and Engineering Center (AMSEC)Western Washington University516 High StreetBellinghamWA-98225USA
| | - Akshay Rao
- Cavendish LaboratoryUniversity of Cambridge19 JJ Thomson AvenueCambridgeCB3 0HEUK
| | - Laura M. Salonen
- CINBIOUniversidade de VigoDepartment of Organic Chemistry36310VigoSpain
- International Iberian Nanotechnology (INL)Avenida Mestre José Veiga4715-330BragaPortugal
| | - Dana D. Medina
- Department of Chemistry and Center for Nanoscience (CeNS)Ludwig-Maximilians-UniversityButenandtstraße 11 (E)81377MunichGermany
| |
Collapse
|
33
|
Huang Y, Feng D, Li X, Li W, Ren J, Zhong H. Covalent organic frameworks assisted for food safety analysis. Crit Rev Food Sci Nutr 2023; 64:11006-11025. [PMID: 37417398 DOI: 10.1080/10408398.2023.2230506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Food safety incidents threaten human health and life safety. It is an effective method to prevent and control the occurrence of food safety events by enhancing the rapid and sensitive detection of food contaminants. Emerging porous materials provide for the development of efficient and stable detection methods. Covalent organic frameworks (COFs) are favored by researchers for their highly ordered pore structure, large specific surface area, and good structural and functional designability. Especially in the sensing field, COFs play the roles of carriers, conductors, quenchers, and reporters, and have broad application prospects. To better understand COFs-based sensing studies, this review briefly introduces the characteristics and different functional roles of COFs in food safety analysis, focusing on the applications of COFs in the detection of various food contaminants (including foodborne pathogens, mycotoxins, pesticides, antibiotics, heavy metals, and others). Finally, the challenges and opportunities for COFs-based sensing are discussed to facilitate further applications and development of COFs in food safety.
Collapse
Affiliation(s)
- Ying Huang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Donghui Feng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Xu Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Wang Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Jiali Ren
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Haiyan Zhong
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| |
Collapse
|
34
|
Chen J, Wang Y, Yu Y, Wang J, Liu J, Ihara H, Qiu H. Composite materials based on covalent organic frameworks for multiple advanced applications. EXPLORATION (BEIJING, CHINA) 2023; 3:20220144. [PMID: 37933382 PMCID: PMC10624394 DOI: 10.1002/exp.20220144] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/10/2023] [Indexed: 11/08/2023]
Abstract
Covalent organic frameworks (COFs) stand for a class of emerging crystalline porous organic materials, which are ingeniously constructed with organic units through strong covalent bonds. Their excellent design capabilities, and uniform and tunable pore structure make them potential materials for various applications. With the continuous development of synthesis technique and nanoscience, COFs have been successfully combined with a variety of functional materials to form COFs-based composites with superior performance than individual components. This paper offers an overview of the development of different types of COFs-based composites reported so far, with particular focus on the applications of COFs-based composites. Moreover, the challenges and future development prospects of COFs-based composites are presented. We anticipate that the review will provide some inspiration for the further development of COFs-based composites.
Collapse
Affiliation(s)
- Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| | - Yuting Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Yongliang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
| | - Hirotaka Ihara
- Department of Applied Chemistry and BiochemistryKumamoto UniversityChuo‐kuKumamotoJapan
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
| |
Collapse
|
35
|
Xiang J, Zhou P, Mei H, Liu X, Wang H, Wang X, Li Y. Highly efficient nanocomposites based on molecularly imprinted magnetic covalent organic frameworks for selective extraction of bisphenol A from liquid matrices. Mikrochim Acta 2023; 190:200. [PMID: 37140689 DOI: 10.1007/s00604-023-05778-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/02/2023] [Indexed: 05/05/2023]
Abstract
Highly efficient nanocomposites, hydrophobic molecularly imprinted magnetic covalent organic frameworks (MI-MCOF), have been farbricated by a facile Schiff-base reaction. The MI-MCOF was based on terephthalaldehyde (TPA) and 1,3,5-tris(4-aminophenyl) benzene (TAPB) as functional monomer and crosslinker, anhydrous acetic acid as catalyst, bisphenol AF as dummy template, and NiFe2O4 as magnetic core. This organic framework significantly reduced the time consumption of conventional imprinted polymerization and avoided the use of traditional initiator and cross-linking agents. The synthesized MI-MCOF exhibited superior magnetic responsivity and affinity, as well as high selectivity and kinetics for bisphenol A (BPA) in water and urine samples. The equilibrium adsorption capacity (Qe) of BPA on the MI-MCOF was 50.65 mg g-1, which was 3-7-fold higher than of its three structural analogues. The imprinting factor of BPA reached up to 3.17, and the selective coefficients of three analogues were all > 2.0, evidencing the excellent selectivity of fabricated nanocomposites to BPA. Based on the MI-MCOF nanocomposites, the magnetic solid-phase extraction (MSPE), combined with HPLC and fluorescence detection (HPLC-FLD), offered superior analytical performance: wide linear range of 0.1-100 μg L-1, high correlation coefficient of 0.9996, low limit of detection of 0.020 μg L-1, good recoveries of 83.5-110%, and relative standard deviations (RSDs) of 0.5-5.7% in environmental water, beverage, and human urine samples. Consequently, the MI-MCOF-MSPE/HPLC-FLD method provides a good prospect in selective extraction of BPA from complex matrices while replacing traditional magnetic separation and adsorption materials.
Collapse
Affiliation(s)
- Jianxing Xiang
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
- Chongqing Jiangbei Center for Disease Control and Prevention, Chongqing, 400000, China
| | - Peipei Zhou
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - He Mei
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaodong Liu
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yanyan Li
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, 510500, China.
| |
Collapse
|
36
|
Deng XR, Hu AW, Hu SQ, Yang WL, Sun C, Xiao SJ, Yang GP, Zheng QQ, Liang RP, Zhang L, Qiu JD. An in-situ strategy to construct uracil-conjugated covalent organic frameworks with tunable fluorescence/recognition characteristics for sensitive and selective Mercury(II) detection. Anal Chim Acta 2023; 1252:341056. [PMID: 36935154 DOI: 10.1016/j.aca.2023.341056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/25/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Previous researches of covalent organic frameworks (COFs) have shown their potential as fluorescent probes, but the regulation of their optical properties and recognition characteristics still remains a challenge, and most of reports required complicated post-decoration to improve the sensing performance. In this context, we propose a novel in-situ strategy to construct uracil-conjugated COFs and modulate their fluorescence properties for sensitive and selective mercury(II) detection. By using 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) and 1,3,6,8-tetrakis(4-aminophenyl)pyrene (TAPPy) as fundamental blocks and 5-aminouraci (5-AU) as the functional monomer, a series of COFs (Py-COFs and Py-U-COFs-1 to Py-U-COFs-5) with tunable fluorescence were solvothermally synthesized through an in-situ Schiff base reaction. The π-conjugated framework serves as a signal reporter, the evenly and densely distributed uracil acts as a mercury(II) receptor, and the regular pores (channels) make the rapid and sensitive detection of the mercury(II) possible. In this research, we manage to regulate the crystalline structure, the fluorescence properties, and the sensing performance of COFs by simply changing the molar ratio of precursors. We expect this research to open up a new strategy for effective and controllable construction of functionalized COFs for environmental analysis.
Collapse
Affiliation(s)
- Xi-Rui Deng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - A-Wei Hu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Sheng-Qian Hu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Wen-Li Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Chen Sun
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Sai-Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang, 330013, PR China
| | - Gui-Ping Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Qiong-Qing Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China.
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang, 330013, PR China.
| |
Collapse
|
37
|
Zhu J, Wen W, Tian Z, Zhang X, Wang S. Covalent organic framework: A state-of-the-art review of electrochemical sensing applications. Talanta 2023; 260:124613. [PMID: 37146454 DOI: 10.1016/j.talanta.2023.124613] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Covalent organic framework (COF), a kind of porous polymer with crystalline properties, is a periodic porous framework material with precise regulation at atomic level, which can be formed by the orderly connection of pre-designed organic construction units through covalent bonds. Compared with metal-organic frameworks, COFs exhibit unique performance, including tailor-made functions, stronger load ability, structural diversity, ordered porosity, intrinsic stability and excellent adsorption features, are more conducive to the expansion of electrochemical sensing applications and the universality of applications. In addition, COFs can accurately integrate organic structural units with atomic precision into ordered structures, so that the structural diversity and application of COFs can be greatly enriched by designing new construction units and adopting reasonable functional strategies. In this review, we mainly summarized state-of-the-art recent advances of the classification and synthesis strategy of COFs, the design of functionalized COF for electrochemical sensors and COFs-based electrochemical sensing. Then, an overview of the considerable recent advances made in applying outstanding COFs to establish electrochemical sensing platform, including electrochemical sensor based on voltammetry, amperometry, electrochemical impedance spectroscopy, electrochemiluminescence, photoelectrochemical sensor and others. Finally, we discussed the positive outlooks, critical challenges and bright directions of COFs-based electrochemical sensing in the field of disease diagnosis, environmental monitoring, food safety, drug analysis, etc.
Collapse
Affiliation(s)
- Junlun Zhu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhengfang Tian
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China.
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
38
|
Zhu Y, Liao Y, Zou J, Cheng J, Pan Y, Lin L, Chen X. Engineering Single-Atom Nanozymes for Catalytic Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300750. [PMID: 37058076 DOI: 10.1002/smll.202300750] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Nanomaterials with enzyme-mimicking properties, coined as nanozymes, are a promising alternative to natural enzymes owing to their remarkable advantages, such as high stability, easy preparation, and favorable catalytic performance. Recently, with the rapid development of nanotechnology and characterization techniques, single atom nanozymes (SAzymes) with atomically dispersed active sites, well-defined electronic and geometric structures, tunable coordination environment, and maximum metal atom utilization are developed and exploited. With superior catalytic performance and selectivity, SAzymes have made impressive progress in biomedical applications and are expected to bridge the gap between artificial nanozymes and natural enzymes. Herein, the recent advances in SAzyme preparation methods, catalytic mechanisms, and biomedical applications are systematically summarized. Their biomedical applications in cancer therapy, oxidative stress cytoprotection, antibacterial therapy, and biosensing are discussed in depth. Furthermore, to appreciate these advances, the main challenges, and prospects for the future development of SAzymes are also outlined and highlighted in this review.
Collapse
Affiliation(s)
- Yang Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yaxin Liao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Junjie Cheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuanbo Pan
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
39
|
Mohan B, Kumari R, Singh G, Singh K, Pombeiro AJL, Yang X, Ren P. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. ENVIRONMENT INTERNATIONAL 2023; 175:107928. [PMID: 37094512 DOI: 10.1016/j.envint.2023.107928] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Pharmaceutical residues are the undecomposed remains from drugs used in the medical and food industries. Due to their potential adverse effects on human health and natural ecosystems, they are of increasing worldwide concern. The acute detection of pharmaceutical residues can give a rapid examination of their quantity and then prevent them from further contamination. Herein, this study summarizes and discusses the most recent porous covalent-organic frameworks (COFs) and metal-organic frameworks (MOFs) for the electrochemical detection of various pharmaceutical residues. The review first introduces a brief overview of drug toxicity and its effects on living organisms. Subsequently, different porous materials and drug detection techniques are discussed with materials' properties and applications. Then the development of COFs and MOFs has been addressed with their structural properties and sensing applications. Further, the stability, reusability, and sustainability of MOFs/COFs are reviewed and discussed. Besides, COFs and MOFs' detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles are analyzed and discussed. Lastly, this review summarized and discussed the MOF@COF composite as sensors, the fabrication strategies to enhance detection potential, and the current challenges in this area.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ritu Kumari
- Department of Chemistry, Kurukshetra University Kurukshetra -136119, India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh-160014, India
| | - Kamal Singh
- Department of Physics, Chaudhary Bansi Lal University, Bhiwani, Haryana-127021, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Xuemei Yang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
40
|
Lu Z, Wang Y, Li G. Covalent Organic Frameworks-Based Electrochemical Sensors for Food Safety Analysis. BIOSENSORS 2023; 13:291. [PMID: 36832057 PMCID: PMC9954712 DOI: 10.3390/bios13020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Food safety is a key issue in promoting human health and sustaining life. Food analysis is essential to prevent food components or contaminants causing foodborne-related illnesses to consumers. Electrochemical sensors have become a desirable method for food safety analysis due to their simple, accurate and rapid response. The low sensitivity and poor selectivity of electrochemical sensors working in complex food sample matrices can be overcome by coupling them with covalent organic frameworks (COFs). COFs are a kind of novel porous organic polymer formed by light elements, such as C, H, N and B, via covalent bonds. This review focuses on the recent progress in COF-based electrochemical sensors for food safety analysis. Firstly, the synthesis methods of COFs are summarized. Then, a discussion of the strategies is given to improve the electrochemistry performance of COFs. There follows a summary of the recently developed COF-based electrochemical sensors for the determination of food contaminants, including bisphenols, antibiotics, pesticides, heavy metal ions, fungal toxin and bacterium. Finally, the challenges and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhenyu Lu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingying Wang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
41
|
Wang R, Tong W, Wu Y, Chen Z, Lin Z, Cai Z. Facile synthesis of hollow microtubular COF as enrichment probe for quantitative detection of ultratrace quinones in mice plasma with APGC-MS/MS. Mikrochim Acta 2023; 190:72. [PMID: 36695957 DOI: 10.1007/s00604-023-05639-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023]
Abstract
A hollow microtubular covalent organic framework (denoted as TatDha-COF) was synthesized by solvothermal method for the enrichment and determination of quinones. The TatDha-COF showed large specific surface area (2057 m2 g-1), good crystal structure, ordered pore size distribution (2.3 nm), stable chemical properties and good reusability. Accordingly, a simple and efficient method based on dispersive solid-phase extraction (d-SPE) and atmospheric pressure gas chromatography tandem mass spectrometry (APGC-MS/MS) was developed for the determination of quinones in complex samples. The established method demonstrated a wide liner range, good linearity (r>0.9990), high enrichment factors (EFs, 24-69-folds) and low detection limits (LODs, 0.200-30.0 pg L-1, S/N≥3). On this basis, the suggested method was successfully applied to sensitively detect the eight ultratrace quinones in mice plasma. Overall, the established method has provided a powerful tool for the enrichment and detection of ultratrace quinones in complex samples, presenting the promising application of TatDha-COF in sample pretreatment.
Collapse
Affiliation(s)
- Ran Wang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wei Tong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yijing Wu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhuling Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, 999077, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
42
|
Yao L, Ma C, Sun L, Zhang D, Chen Y, Jin E, Song X, Liang Z, Wang KX. Highly Crystalline Polyimide Covalent Organic Framework as Dual-Active-Center Cathode for High-Performance Lithium-Ion Batteries. J Am Chem Soc 2022; 144:23534-23542. [PMID: 36512747 DOI: 10.1021/jacs.2c10534] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polyimide covalent organic framework (PI-COF) materials that can realize intrinsic redox reactions by changing the charge state of their electroactive sites are considered as emerging electrode materials for rechargeable devices. However, the highly crystalline PI-COFs with hierarchical porosity are less reported due to the rapid reaction between monomers and the poor reversibility of the polyimidization reaction. Here, we developed a water-assistant synthetic strategy to adjust the reaction rate of polyimidization, and PI-COF (COFTPDA-PMDA) with kgm topology consisting of dual active centers of N,N,N',N'-tetrakis(4-aminophenyl)-1,4-benzenediamine (TPDA) and pyromellitic dianhydride (PMDA) ligands was successfully synthesized with high crystallinity and porosity. The COFTPDA-PMDA possesses hierarchical micro-/mesoporous channels with the largest surface area (2669 m2/g) in PI-COFs, which can promote the Li+ ions and bulky bis(trifluoromethanesulfonyl)imide (TFSI-) ions in organic electrolyte to sufficiently interact with the dual active sites on COF skeleton to increase the specific capacity of cathode materials. As a cathode material for lithium-ion batteries, COFTPDA-PMDA@50%CNT which integrated high surface area and dual active center of COFTPDA-PMDA with carbon nanotubes via π-π interactions gave a high initial charge capacity of 233 mAh/g (0.5 A/g) and maintains at 80 mAh/g even at a high current density of 5.0 A/g after 1800 cycles.
Collapse
Affiliation(s)
- Liyi Yao
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chao Ma
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Libo Sun
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Daliang Zhang
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, P. R. China
| | - Yuze Chen
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Enquan Jin
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaowei Song
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhiqiang Liang
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Kai-Xue Wang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
43
|
Zhang X, Yang Y, Cao J, Qi Z, Li G. Point-of-care CRISPR/Cas biosensing technology: A promising tool for preventing the possible COVID-19 resurgence caused by contaminated cold-chain food and packaging. FOOD FRONTIERS 2022; 4:FFT2176. [PMID: 36712576 PMCID: PMC9874772 DOI: 10.1002/fft2.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1912] [Revised: 12/12/1912] [Accepted: 12/12/1912] [Indexed: 02/01/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused great public health concern and has been a global threat due to its high transmissibility and morbidity. Although the SARS-CoV-2 transmission mainly relies on the person-to-person route through the respiratory droplets, the possible transmission through the contaminated cold-chain food and packaging to humans has raised widespread concerns. This review discussed the possibility of SARS-CoV-2 transmission via the contaminated cold-chain food and packaging by tracing the occurrence, the survival of SARS-CoV-2 in the contaminated cold-chain food and packaging, as well as the transmission and outbreaks related to the contaminated cold-chain food and packaging. Rapid, accurate, and reliable diagnostics of SARS-CoV-2 is of great importance for preventing and controlling the COVID-19 resurgence. Therefore, we summarized the recent advances on the emerging clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system-based biosensing technology that is promising and powerful for preventing the possible COVID-19 resurgence caused by the contaminated cold-chain food and packaging during the COVID-19 pandemic, including CRISPR/Cas system-based biosensors and their integration with portable devices (e.g., smartphone, lateral flow assays, microfluidic chips, and nanopores). Impressively, this review not only provided an insight on the possibility of SARS-CoV-2 transmission through the food supply chain, but also proposed the future opportunities and challenges on the development of CRISPR/Cas system-based detection methods for the diagnosis of SARS-CoV-2.
Collapse
Affiliation(s)
- Xianlong Zhang
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Yan Yang
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Juanjuan Cao
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Zihe Qi
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Guoliang Li
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| |
Collapse
|
44
|
Zhang X, Shi Y, Chen G, Wu D, Wu Y, Li G. CRISPR/Cas Systems-Inspired Nano/Biosensors for Detecting Infectious Viruses and Pathogenic Bacteria. SMALL METHODS 2022; 6:e2200794. [PMID: 36114150 DOI: 10.1002/smtd.202200794] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Infectious pathogens cause severe human illnesses and great deaths per year worldwide. Rapid, sensitive, and accurate detection of pathogens is of great importance for preventing infectious diseases caused by pathogens and optimizing medical healthcare systems. Inspired by a microbial defense system (i.e., CRISPR/ CRISPR-associated proteins (Cas) system, an adaptive immune system for protecting microorganisms from being attacked by invading species), a great many new biosensors have been successfully developed and widely applied in the detection of infectious viruses and pathogenic bacteria. Moreover, advanced nanotechnologies have also been integrated into these biosensors to improve their detection stability, sensitivity, and accuracy. In this review, the recent advance in CRISPR/Cas systems-based nano/biosensors and their applications in the detection of infectious viruses and pathogenic bacteria are comprehensively reviewed. First of all, the categories and working principles of CRISPR/Cas systems for establishing the nano/biosensors are simply introduced. Then, the design and construction of CRISPR/Cas systems-based nano/biosensors are comprehensively discussed. In the end, attentions are focused on the applications of CRISPR/Cas systems-based nano/biosensors in the detection of infectious viruses and pathogenic bacteria. Impressively, the remaining opportunities and challenges for the further design and development of CRISPR/Cas system-based nano/biosensors and their promising applications are proposed.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yiheng Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Di Wu
- Institute for Global Food Security, Queen's University Belfast, Belfast, BT95DL, UK
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, P. R. China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
45
|
Facile synthesis of surface functionalized Pd 2+@P-CDP/COFs for highly sensitive detection of norfloxacin drug based on the host-guest interaction. J Pharm Biomed Anal 2022; 219:114956. [PMID: 35882178 DOI: 10.1016/j.jpba.2022.114956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/05/2023]
Abstract
In this work, β-cyclodextrin porous polymers (P-CDPs) functionalized novel covalent organic frameworks (P-CDPs/COFs) were synthesized by a simple and facile method. After combined with Pd2+ via electrostatic interaction, the Pd2+@P-CDPs/COFs nanocomposites were prepared and utilized as novel electrode materials to fabricate the non-enzyme electrochemical sensors for high-sensitivity detection of Norfloxacin (NF). Due to the host-guest recognition, excellent adsorption performance and catalytic performance of Pd2+@P-CDPs/COFs, the prepared sensor exhibited excellent electrochemical performance for detecting NF under the optimum conditions, which showed two linear ranges of 0.08-7.0 μM and 7.0-100.0 μM with a low detection limit of 0.031 μM (S/N = 3). Additionally, the obtained sensor has also been successfully applied to measure NF with satisfactory results in the real medicinal samples of NF eye-drops. Our findings paved the way for the development of COFs-based sensing platform in drug analysis and testing for human health, food security and the quality control of drugs.
Collapse
|
46
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
47
|
Xia R, Li C, Yuan X, Wu Q, Jiang B, Xie Z. Facile Preparation of a Thienoisoindigo-Based Nanoscale Covalent Organic Framework with Robust Photothermal Activity for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19129-19138. [PMID: 35446556 DOI: 10.1021/acsami.2c01701] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The covalent organic frameworks (COFs) so far are usually built with small aromatic subunits, which makes their absorption spectra mainly located in the high-energy part of the visible region. In this work, we have developed a COF with a low band gap by integrating electron-deficient thienoisoindigo and electron-rich triphenylamine. The intramolecular charge-transfer effect combining the extended length of the π-conjugated backbone of COF endow it with broad absorption even to the second near-infrared region. After optimizing the solvent, a uniform size and colloidal stable COF is obtained. Benefiting from the coplanar structure of the monomer, this COF achieves a considerable photothermal conversion efficiency (PCE) of 48.2%. With these advantages, it displays convincing cancer cell killing effect upon laser irradiation in vitro or in vivo. This work provides a simple and practical method to acquire promising a COF-based phototherapy reagent that is applied in biomedicine field.
Collapse
Affiliation(s)
- Rui Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chaonan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaodie Yuan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qihang Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bowen Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
48
|
Feng Y, Xu Y, Liu S, Wu D, Su Z, Chen G, Liu J, Li G. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214414] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
49
|
Zanganeh AR. COF-43 based voltammetric sensor for Ag(I) determination: optimization of experimental conditions by Box-Behnken design. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1623-1633. [PMID: 35388830 DOI: 10.1039/d2ay00028h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrazone-linked covalent organic framework-43 (COF-43) was synthesized and the carbon paste electrode (CPE) modified with this COF was used as a voltammetric sensor to measure silver(I). Various characterization tests (XRD, FTIR, BET, SEM/EDX, electrochemical impedance (EIS), and cyclic voltammetry (CV)) were performed on the synthesized COF-43 and the prepared COF-43/CPE. Box-Behnken design was used to optimize the preparation and operation conditions of the sensor. EIS and CV investigations reveal the diffusive characteristics of silver transport in the electrode matrix. An appropriate mechanism for the sensor procedure has been suggested and ratified by electrochemical and SEM/EDX techniques. The COF-43 used has several recognition elements for the selective binding of silver ion and due to its high porosity provides a large space for the deposition and reduction of large amounts of silver. Therefore, due to the correct selection of COF used in the construction of the sensor, high selectivity and sensitivity for the prepared sensor has been achieved. The obtained data disclosed that the modification of the carbon paste electrode by COF-43 significantly improves the analytical characteristics of the sensor, which specifies the performance of COF-43 as a sensory material for determining silver(I). The obtained calibration curve is linear in the concentration range from 0.001 μM to 10.0 μM and the detection limit is 1.5 × 10-10 M. Various statistical tests have been employed to evaluate the sensor performance. The appropriate accuracy and precision of the proposed method were confirmed using the analysis of variance (ANOVA) approach. Potential interferences were investigated and it was found that the other species did not have a significant effect on the sensor performance. The prepared sensor has been successfully used to measure silver in two samples of photographic effluents, bleaching, and fixing agents. The results from the analysis of real samples demonstrate the reliable applicability of the fabricated sensor.
Collapse
Affiliation(s)
- Ali Reza Zanganeh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Iran.
| |
Collapse
|
50
|
Chang B, Zhang L, Wu S, Sun Z, Cheng Z. Engineering single-atom catalysts toward biomedical applications. Chem Soc Rev 2022; 51:3688-3734. [PMID: 35420077 DOI: 10.1039/d1cs00421b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Due to inherent structural defects, common nanocatalysts always display limited catalytic activity and selectivity, making it practically difficult for them to replace natural enzymes in a broad scope of biologically important applications. By decreasing the size of the nanocatalysts, their catalytic activity and selectivity will be substantially improved. Guided by this concept, the advances of nanocatalysts now enter an era of atomic-level precise control. Single-atom catalysts (denoted as SACs), characterized by atomically dispersed active sites, strikingly show utmost atomic utilization, precisely located metal centers, unique metal-support interactions and identical coordination environments. Such advantages of SACs drastically boost the specific activity per metal atom, and thus provide great potential for achieving superior catalytic activity and selectivity to functionally mimic or even outperform natural enzymes of interest. Although the size of the catalysts does matter, it is not clear whether the guideline of "the smaller, the better" is still correct for developing catalysts at the single-atom scale. Thus, it is clearly a new, urgent issue to address before further extending SACs into biomedical applications, representing an important branch of nanomedicine. This review begins by providing an overview of recent advances of synthesis strategies of SACs, which serve as a basis for the discussion of emerging achievements in improving the enzyme-like catalytic properties at an atomic level. Then, we carefully compare the structures and functions of catalysts at various scales from nanoparticles, nanoclusters, and few-atom clusters to single atoms. Contrary to conventional wisdom, SACs are not the most catalytically active catalysts in specific reactions, especially those requiring multi-site auxiliary activities. After that, we highlight the unique roles of SACs toward biomedical applications. To appreciate these advances, the challenges and prospects in rapidly growing studies of SACs-related catalytic nanomedicine are also discussed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Liqin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Shaolong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China. .,Bohai rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University, California 94305, USA
| |
Collapse
|